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We study the possible effects of classical gravitational backgrounds on the Higgs field through the
modifications induced in the one-loop effective potential and the vacuum expectation value of the energy-
momentum tensor. We concentrate our study on the Higgs self-interaction contribution in a perturbed FRW
metric. For weak and slowly varying gravitational fields, a complete set of mode solutions for the Klein-
Gordon equation is obtained to leading order in the adiabatic approximation. Dimensional regularization
has been used in the integral evaluation, and a detailed study of the integration of nonrational functions in
this formalism has been presented. As expected, the regularized effective potential contains the same
divergences as in flat spacetime, which can be renormalized without the need of additional counterterms.
We find that, in contrast with other regularization methods, even though metric perturbations affect the
mode solutions, they do not contribute to the leading adiabatic order of the potential. We also obtain explicit
expressions of the complete energy-momentum tensor for general nonminimal coupling in terms of the
perturbed modes. The corresponding leading adiabatic contributions are also obtained.
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I. INTRODUCTION

There are two equally fundamental aspects of the Higgs
mechanism for electroweak symmetry breaking which have
received remarkably different attention in the last years. On
one hand, we have the prediction that a new scalar boson
should be present in the spectrum of the theory. Such a
new particle has been recently discovered by the ATLAS
and CMS experiments at the LHC [1,2]. The most precise
measurement to date of its mass comes from a combination
of data from both experiments and is given by mH ¼
125.09� 0.21ðstatÞ � 0.11ðsystÞ GeV [3]. A large deal of
experimental effort is being devoted to the study of the
properties of the Higgs boson. Apart from improving the
precision in the determination of its mass, measurements
of its production and decay channels, self-coupling and
couplings to other particles are being performed. So far,
all of them are in excellent agreement with the predictions
of the Standard Model (SM) [4–6].
On the other hand, the mechanism also predicts the

existence of a Higgs field, i.e., a constant classical field
ϕ̂ ¼ v with v the Higgs vacuum expectation value
(VEV).1 given by v ¼ 246.221� 0.002 GeV [7]. It is
precisely the interaction with the Higgs field what

generates the masses of quarks, leptons and gauge bosons.
The presence of this nonvanishing field which permeates
all of space is a distinctive feature with respect to the rest
of SM fields which have vanishing VEVs. Moreover,
together with the homogeneous gravitational field created
by the cosmological energy density, the Higgs field is the
only SM field which is present today in the Universe on its
largest scales. This fact opens the interesting possibility of
probing the Higgs field not only by exciting its quanta in
colliders, but by directly perturbing its VEV. Thus,
for example, the fact that the Higgs field is a dynamical
field sourced by massive particles suggests that the
presence of a heavy particle could induce shifts in the
masses of neighboring ones [8]. This effect does not need
the production of on-shell Higgs particles, but because of
the short range of the corresponding Yukawa interaction,
it is negligible at distances beyond the Compton wave-
length of the Higgs boson. Existing data does not seem to
contain enough kinematic information in order to confirm
or exclude it. A similar approach has been proposed in [9]
in order to probe the Higgs couplings to electrons and
light quarks. The idea of generating peculiar Higgs shifts
was also considered in a different context in [10]. In that
work a nonminimal coupling of the Higgs field to the
spacetime curvature was considered. The nonminimal
coupling modifies the effective potential inducing shifts
of the VEV in high-curvature regions such as those near
neutron stars or black holes [11].
In this work, we explore further the effects of classical

gravitational fields on the Higgs VEV. We consider the
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1In the SM, the Higgs VEV is related to the Fermi coupling

constant by v ¼ ð ffiffiffi
2

p
GFÞ−1=2. The value of this constant is known

since the original works of Fermi in the early 30’s.
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SM Higgs minimally coupled to gravity. The Higgs VEV
corresponds to the constant field configuration that
minimizes the effective potential. This potential contains
not only the classical (tree-level) contribution, but also
loop corrections introduced by quantum effects of all the
particles that couple to the Higgs, including the Higgs self-
interactions [12]. More relevant from the point of view of
the present paper is the fact that these quantum corrections
are sensitive to the spacetime geometry. The aim of this
work is precisely to start the study of the Higgs one-loop
effective potential in weak and slowly varying gravitational
backgrounds. For simplicity and as a first step, we limit
ourselves to the contributions of the Higgs self-interactions.
The fact that we assume weak gravitational backgrounds,
i.e., whose curvature scale is much smaller than the Higgs
mass, allows us to use an adiabatic approximation and
avoid the problems generated by mode mixing and particle
production typical of quantum field theory in curved
spacetime. For the same reason, we can still define an
effective quasi-potential [13,14] instead of using the full
effective action since all the kinetic terms are suppressed
with respect to the potential ones.
Our work deals with the calculation of vacuum expect-

ation values of quadratic operators in curved spacetime
[15,16]. These are divergent objects whose renormalization
requires the introduction of additional counterterms
depending on the curvature tensors. Different techniques
have been used in the literature to work out these diver-
gences which, because of the fact that they are determined
by the short-distance physics, depend locally on the
geometry of spacetime [17–26]. But, apart from the local
divergent contributions, there are also finite nonlocal terms
which are sensitive to the large-scale structure of the
manifold and, in general, depend on the quantum state
on which the expectation value is evaluated. In some
particular simple geometries, such as conformally flat
metrics, these finite contributions can be exactly computed
in some cases from the knowledge of the trace anomaly,
but in general only brute force methods, such as mode
summation, are available to evaluate them [27–30]. This is
precisely the approach we follow in this work. In particular,
we extend the analysis performed in [31] to arbitrary
dimension in order to calculate the integrals over the
quantum modes using dimensional regularization. Several
errors in [31] are also corrected in the present paper.
The work is organized as follows: in Sec. II, the effective

action formalism is briefly reviewed. The field quantization
in arbitrary Dþ 1 dimensions in the adiabatic approxima-
tion is discussed in Sec. III. Section IV contains the full
mode solutions to first order in metric perturbations. The
general results for the Higgs effective potential and the
method used to obtain them are described in Sec. V.
The vacuum expectation value of the energy-momentum
tensor is calculated in Sec. VI. The paper ends in Sec. VII
with some discussions and conclusions.

II. ONE-LOOP EFFECTIVE ACTION

The classical action for a minimally coupled real scalar
field with potential VðϕÞ in arbitrary (Dþ 1)-dimensional
curved spacetime reads

S½ϕ; gμν� ¼
Z

dDþ1x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð1Þ

In the case of the real Higgs field, the classical potential is
given by

VðϕÞ ¼ V0 þ
1

2
M2ϕ2 þ λ

4
ϕ4 ð2Þ

with M2 < 0. The minimum corresponds to ϕ ¼ v with
v2 ¼ −M2=λ. The mass of the Higgs boson at tree-level
is given by m2

H ¼ V 00ðvÞ ¼ −2M2 and from the recently
measured value of mH at the LHC, the Higgs self-coupling
is λ≃ 1=8.
The action is minimized by the solutions ϕ ¼ ϕ̂ of the

classical equation of motion:

□ϕ̂þ V 0ðϕ̂Þ ¼ 0: ð3Þ
The quantum fluctuations around the classical solution
δϕ ¼ ϕ − ϕ̂ satisfy the equation of motion

ð□þm2ðϕ̂ÞÞδϕ ¼ 0 ð4Þ
with

m2ðϕ̂Þ ¼ V 00ðϕ̂Þ ¼ M2 þ 3λϕ̂2: ð5Þ
The effective action which takes into account the effect of
quantum fluctuations on the dynamics of the classical field
can be written as

W½ϕ̂; gμν� ¼
Z

dDþ1x
ffiffiffi
g

p
Leff ð6Þ

which can be expanded up to one-loop order as

W½ϕ̂; gμν� ¼ S½ϕ̂; gμν� þWð1Þ½ϕ̂; gμν�: ð7Þ
The one-loop correction Wð1Þ can be written as [21]

Wð1Þ½ϕ̂; gμν� ¼
i
2
ln detð−KÞ ¼ i

2
Tr lnð−KÞ ð8Þ

where Tr denotes the functional trace and K is the quadratic
operator associated to the quantum fluctuations

Kðx; yÞ ¼ ð□x þm2ðϕ̂ÞÞ δ
Dþ1ðx; yÞffiffiffi

g
p : ð9Þ

The corresponding Feynman’s Green function

iGFðx; yÞ ¼ h0jTðδϕðxÞδϕðyÞÞj0i ð10Þ
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satisfies

Kðx; yÞGFðy; zÞ ¼ −
δDþ1ðx; zÞffiffiffi

g
p ð11Þ

where the de Witt repeated indices rule has been assumed.
Following [32,33], let us consider the derivative of the

one-loop effective action with respect to the mass param-
eter m2, so that from (11) we can write

dWð1Þ

dm2
¼ −

i
2
TrGF ð12Þ

or writing the trace explicitly

dWð1Þ

dm2
¼ −

1

2

Z
dDþ1x

ffiffiffi
g

p
iGFðx; xÞ

¼ −
1

2

Z
dDþ1x

ffiffiffi
g

p h0jδϕ2ðxÞj0i: ð13Þ

Thus, we can finally get a formal expression for the one-
loop contribution to the effective Lagrangian as

Lð1Þ
eff ðxÞ ¼ −

1

2

Z
m2ðϕ̂Þ

0

dm2h0jδϕ2ðxÞj0i: ð14Þ

In general, in a static homogeneous spacetime, ϕ̂ is a
constant field and the effective Lagrangian defines the

effective potential V1ðϕ̂Þ ¼ −Lð1Þ
eff ðϕ̂Þ. In time-dependent or

inhomogeneous spacetimes, ϕ̂ changes in time or space
and the effective potential is ill defined. In this case, the
effective Lagrangian is a function of the classical fields; i.e.,
it will, in general, depend on ϕ̂ and gμν and arbitrary order
derivatives,

Leff ¼ Leff ½ϕ̂; gμν; ∂ϕ̂; ∂2ϕ̂; ∂gμν; ∂2gμν;…�: ð15Þ

However, in the case in which the background fields
(ϕ̂, gμν) evolve very slowly in space and time compared to
the evolution of the fluctuations, the derivative terms in
the effective Lagrangian are negligible, and the effective
Lagrangian can be considered as an effective quasipotential
[13,14]. As we will explicitly show in the next section, this
is indeed the case for Higgs fluctuations in weak gravita-
tional backgrounds so that we can still define the one-loop
effective potential as

Veffðϕ̂Þ ¼ Vðϕ̂Þ þ V1ðϕ̂Þ; ð16Þ

where

V1ðϕ̂Þ ¼ −Lð1Þ
eff ðϕ̂Þ ¼

1

2

Z
m2ðϕ̂Þ

0

dm2h0jδϕ2j0i: ð17Þ

The equation of motion for the classical field, thus,
reduces to

V 0
effðϕ̂Þ≃ 0; ð18Þ

i.e., the effective (quasi)potential correctly determines the
VEV for a slowly varying background metric.
The central object in this calculation is the vacuum

expectation value of a quadratic operator (14). The standard
Schwinger–de Witt representation [15,16] allows us to
obtain a local expansion of GF in curvatures over the mass
parameter m2. However, as mentioned before, this repre-
sentation does not provide the full nonlocal finite contri-
butions of the effective action in which we are interested
in this work. Thus we will follow [15] and evaluate the
expectation value from the explicit mode expansion of the
quantum fields.

III. QUANTIZATION AND ADIABATIC
APPROXIMATION

We will consider quantum fluctuations of the Higgs field
in a (Dþ 1)-dimensional spacetime metric which can be
written as a scalar perturbation around a flat Robertson-
Walker background

ds2 ¼ a2ðηÞf½1þ 2Φðη;xÞ�dη2 − ½1 − 2Ψðη;xÞ�dx2g;
ð19Þ

where η is the conformal time, aðηÞ the scale factor, and Φ
andΨ are the scalar perturbations in the longitudinal gauge.
This metric describes the spacetime geometry in cosmo-
logical contexts with density perturbations, but also, in
the aðηÞ ¼ 1 case, it provides a good description of weak
gravitational fields generated by slowly rotating astrophysi-
cal objects like the Sun.
Up to first order in metric perturbations, Eq. (4) for the

fluctuation field δϕ reads

δϕ00 þ ½ðD − 1ÞH − Φ0 −DΨ0�δϕ0 − ½1þ 2ðΦþΨÞ�∇2δϕ

− ∇δϕ · ∇½Φ − ðD − 2ÞΨ� þ a2ð1þ 2ΦÞm2ðϕ̂Þδϕ ¼ 0;

ð20Þ

where H ¼ a0=a is the comoving Hubble parameter.
In order to evaluate V1ðϕ̂Þ, we need to quantize the

fluctuation field. Because of the inhomogeneities of the
metric tensor, exact solutions for the perturbed Eq. (20)
are not expected to be found. Nevertheless, a perturbative
expansion of the solution in powers of metric perturbations
can be obtained. Moreover, when the mode frequency ω is
larger than the typical temporal or spatial frequency of the
background metric, i.e., ω2 ≫ H2 and ω2 ≫ f∇2Φ;∇2Ψg,
one can consider an adiabatic approximation in order to
quantize the field fluctuations δϕ. Since ω ≥ mH, the
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adiabatic approximation is extremely good during the
whole matter and acceleration eras until present, and also
during most of the radiation era, for all cosmological and
astrophysical scales of interest.
Let us start with the canonical quantization procedure

for the field perturbations δϕ. Thus, following [34,35], we
build a complete set of mode solutions for (20), which are
orthonormal with respect to the standard scalar product in
curved spacetime [15],

ðδϕk; δϕk0 Þ ¼ i
Z
Σ
½δϕ�

k0 ð∂μδϕkÞ − ð∂μδϕ
�
k0 Þδϕk�

ffiffiffiffiffi
gΣ

p
dΣμ;

ð21Þ

with dΣμ ¼ nμdΣ. Here nμ is a unit timelike vector directed
to the future and orthogonal to the η ¼ const hypersurface
Σ, i.e.,

dΣμ ¼ dDx

�
1 − Φ
a

; 0

�
; ð22Þ

whereas the determinant of the metric on the spatial
hypersurface reads to first order in metric perturbations

ffiffiffiffiffi
gΣ

p ¼ aDð1 −DΨÞ: ð23Þ

With this definition, the scalar product is independent on
the choice of spatial hypersurface Σ.
In terms of orthonormal modes,

ðδϕk; δϕk0 Þ ¼ δDðk − k0Þ; ð24Þ

the fluctuation field δϕ can be expanded as

δϕðη;xÞ ¼
Z

dDk½akδϕkðη;xÞ þ a†kδϕ
�
kðη;xÞ�: ð25Þ

The corresponding creation and annihilation operators
satisfy the standard commutation relations

½ak; a†k0 � ¼ δDðk − k0Þ ð26Þ

and the vacuum state associated to the quantum modes
fδϕkg is defined as usual by akj0i ¼ 0 ∀k.
In order to construct the orthonormal set, we use a WKB

ansatz,

δϕkðη;xÞ ¼ fkðη;xÞeiθkðη;xÞ; ð27Þ

and assume that fkðη;xÞ evolves slowly in space and time,
whereas the evolution of θkðη;xÞ is rapid. In general, as
mentioned above, such an adiabatic ansatz works whenever
the Compton wavelength of the field perturbation is much
smaller than the typical astrophysical or cosmological

scales involved. In particular, in the adiabatic expansion
we assume ∂θ ∼ma and ∂f ∼Hf.
Substituting (27) in (20), we obtain to the leading

adiabatic order Oðð∂θÞ2Þ
−θ02k þ ½1þ 2ðΦþΨÞ�ð∇θkÞ2 þm2a2ð1þ 2ΦÞ ¼ 0

ð28Þ
and to the next-to-leading order Oð∂θÞ

fkθ00k þ 2f0kθ
0
k þ ½ðD − 1ÞH − Φ0 −DΨ0�fkθ0k

− fk∇2θk − 2∇fk · ∇θk
− fk∇θk · ∇½Φ − ðD − 2ÞΨ� ¼ 0: ð29Þ

Notice that ∂2θ ∼H∂θ and that, in the adiabatic expan-
sion, H ∼ ∂Φ.

IV. PERTURBATIVE EXPANSION
AND MODE SOLUTIONS

To solve these two equations, (28) and (29), we look for
a perturbative expansion in the metric potentials. To obtain
the lowest-order solution; i.e., in the absence of metric
perturbations, we write (20) in the limit Φ ¼ Ψ ¼ 0 and get

δϕð0Þ00 þ ðD − 1ÞHδϕð0Þ0 −∇2δϕð0Þ þ a2m2ðϕ̂Þδϕð0Þ ¼ 0;

ð30Þ

where a2m2ðϕ̂Þ only depends on time. Fourier transforming
the spatial coordinates, the following positive frequency
solution with momentum k is obtained

δϕð0Þ
k ðη;xÞ ¼ FkðηÞeik·x−i

R
η
ωkðη0Þdη0 ð31Þ

with

ω2
k ¼ k2 þm2a2 ð32Þ

and

FkðηÞ ¼
1

ð2πÞD=2

1

aðD−1Þ=2 ffiffiffiffiffiffiffiffi
2ωk

p ; ð33Þ

which is fixed by the normalization condition (24).
Once the unperturbed solution is known, we can look for

the first-order corrections. Thus, the amplitude and phase of
(27) are expanded in metric perturbations as follows

fkðη;xÞ ¼ FkðηÞ þ δfkðη;xÞ

θkðη;xÞ ¼ k · x −
Z

η
ωkðη0Þdη0 þ δθkðη;xÞ ð34Þ

where δfk and δθk are first order in perturbations.
Substituting (35) in the leading equation (28), we obtain
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(32) to the lowest order as expected, and to first order
we get

ωkδθ
0
k þ k · ∇δθk þ k2ðΦþΨÞ þm2a2Φ ¼ 0: ð35Þ

On the other hand, by substituting in the next-to-leading
equation (30), we recover (33) to the lowest perturbative
order, whereas to first order we get

Fkδθ
00
k þ 2F0

kδθ
0
k þ ðD − 1ÞHFkδθ

0
k − Fk∇2δθk

− 2ωkδf0k − 2k · ∇δfk − ðD − 1ÞωkHδfk − ω0
kδfk

þ ωkFkΦ0 þDωkFkΨ0 − Fkk · ∇½Φ − ðD − 2ÞΨ� ¼ 0:

ð36Þ
The two new equations (35) and (36) can also be solved

by performing an additional Fourier transformation in the
spatial coordinates since the equations coefficients only
depend on time.

A. Phase solution δθk
Equation (35) in Fourier space reads

δθ0kðη;pÞ þ i
k · p
ωk

δθkðη;pÞ ¼ −ωk

�
Φðη;pÞ þ k2

ω2
k

Ψðη;pÞ
�
;

ð37Þ

where

δθkðη;pÞ ¼
1

ð2πÞ3=2
Z

d3xδθkðη;xÞe−ip·x ð38Þ

and analogous definitions apply for Φðη;pÞ, Ψðη;pÞ and
δfkðη;pÞ.2 Defining

βkðηf; ηiÞ ¼
Z

ηf

ηi

dη0

ωkðη0Þ

Gkðη;pÞ ¼ −ωk

�
Φðη;pÞ þ k2

ω2
k

Ψðη;pÞ
�
; ð39Þ

the solution of (37) is

δθkðη;pÞ

¼
Z

η

0

e−ik·pβkðη;η0ÞGkðη0;pÞdη0 þ e−ik·pβkðη;0Þδθkð0;pÞ:

ð40Þ
The term δθkð0;pÞ stands for the initial boundary condition
of the modes or, equivalently, the phase difference of the
modes at the initial time. In principle, δθkð0;pÞ is not
completely arbitrary since the orthonormalization condition

of the modes (24) may constrain its functional dependence.
We discuss this point at the end of this section.

B. Amplitude solution δf k
Let us write

δfkðη;pÞ ¼ FkðηÞPkðη;pÞ ð41Þ

and following a similar procedure with the next-to-leading-
order equation (36), it can be rewritten in Fourier space as

P0
kðη;pÞ þ i

k · p
ωk

Pkðη;pÞ ¼
Hkðη;pÞ
2ωk

; ð42Þ

where

Hkðη;pÞ ¼ ωkQ0
kðη;pÞ þ Tkðη;pÞ ð43Þ

with

Qkðη;pÞ ¼ −i
k · p
ω2
k

δθkðη;pÞ þ
�
D −

k2

ω2
k

�
Ψðη;pÞ ð44Þ

and

Tkðη;pÞ ¼ p2δθkðη;pÞ
− ik · p½Φðη;pÞ − ðD − 2ÞΨðη;pÞ�: ð45Þ

The corresponding solution is given by

Pkðη;pÞ

¼
Z

η

0

e−ik·pβkðη;η0Þ
Hkðη0;pÞ
2ωkðη0Þ

dη0 þ e−ik·pβkðη;0ÞPkð0;pÞ:

ð46Þ

The integration constant Pkð0;pÞ is fixed by the normali-
zation condition (24).

1. Time-independent gravitational potentials

For simplicity, in the rest of the work we focus on time-
independent gravitational potentials. This case encom-
passes super-Hubble modes in both matter and radiation
era, and also sub-Hubble modes in the matter era. This is
also a good approximation to describe the gravitational
potentials in the Solar System. In such a case, the constants
Pkð0;pÞ are given by

Pkð0;pÞ ¼
1

2

�
D −

k2

ωkð0Þ2
�
ΨðpÞ: ð47Þ

Integrating by parts in (46), the integration constant can
be eliminated and the following expression is obtained:

2In the following, the wave vector of the quantum modes is
denoted by k, and p is used for that of metric perturbations.
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Pkðη;pÞ ¼
1

2
Qkðη;pÞ

− i
Z

η

0

�
k · p

2ωkðη0Þ
e−ik·pβkðη;η0Þ

×

�
Qkðη0;pÞ þ

Tkðη0;pÞ
k · p

��
dη0: ð48Þ

There are three types of contributions to Pk, depending
on the number of time integrals involved. Thus, we can
write

Pkðη;pÞ ¼ Pð0Þ
k ðη;pÞ þ Pð1Þ

k ðη;pÞ þ Pð2Þ
k ðη;pÞ ð49Þ

where

Pð0Þ
k ðη;pÞ ¼ 1

2

�
D −

k2

ωkðηÞ2
�
ΨðpÞ ð50Þ

Pð1Þ
k ðη;pÞ ¼

Z
η

0

e−ik·pβkðη;η0ÞNð1Þ
k ðη; η0;pÞdη0 ð51Þ

Pð2Þ
k ðη;pÞ ¼

Z
η

0

Z
η0

0

e−ik·pβkðη;η00ÞNð2Þ
k ðη0; η00;pÞdη00dη0

ð52Þ

with

Nð1Þ
k ðη;η0;pÞ¼ ik ·p

2ω2
kðηÞωkðη0Þ

�
½ω2

kðη0Þ−ω2
kðηÞ�ΦðpÞ

þ
�
k2þω2

kðηÞ
�

k2

ω2
kðη0Þ

−2

��
ΨðpÞ

�
ð53Þ

Nð2Þ
k ðη0; η00;pÞ ¼ ðk · pÞ2 − p2ω2

kðη0Þ
2ω3

kðη0Þωkðη00Þ
× ½ω2

kðη00ÞΦðpÞ þ k2ΨðpÞ� ð54Þ

where p ¼ jpj.

C. Orthonormalization condition

In order to quantize the field canonically, we must check
that the modes δϕk used to define the creation and
annihilation operators are orthonormal (24). This may
restrict the functional dependence of the initial conditions
of our solution, i.e., Pkð0;pÞ and δθkð0;pÞ.3 We already
fixed Pkð0;pÞ when imposing the correct normalization of
the modes; hence, we can only play with δθkð0;pÞ to have
orthogonal modes. The scalar product (21) can be com-
puted using (27), (35), (40), and (46) to get

ðδϕk; δϕk0 Þ ¼ δDðk − k0Þ þ τΨðk;k0Þ þ τδθðk;k0Þ; ð55Þ

where τΨ;δθ are first order in metric perturbation. The
explicit expressions for τΨ;δθ are given in Appendix A.
In this appendix it is shown that they are zero for ∀k;k0
up to corrections beyond the leading adiabatic order for
slowly varying gravitational fields. This result does not
impose any restriction on the functional dependence
of δθkð0;pÞ.
Different initial conditions δθkð0;pÞ amount to different

definitions of the vacuum. The discussion above guarantees
that the modes given by (27), (35), (40), (46), are
orthonormal for any choice of the vacuum. In the following
we take δθkð0;pÞ ¼ 0 as the initial condition for the
modes.

V. HIGGS EFFECTIVE POTENTIAL

Once we have the expressions for the mode solutions of
the perturbative equations, namely (40) and (41) [together
with (46)]; we can proceed to calculate the one-loop
contribution to the effective potential (17).
Let us first calculate h0jδϕ2ðη;xÞj0i to first order in

metric perturbations. Because of the inhomogeneity of the
background, this quantity depends on ðη;xÞ as follows

h0jδϕ2ðη;xÞj0i ¼ hδϕ2ihðηÞ þ hδϕ2iiðη;xÞ ð56Þ
where

hδϕ2ihðηÞ ¼
Z

dDkF2
kðηÞ ð57Þ

and

hδϕ2iiðη;xÞ ¼ 2

Z
dDkF2

kðηÞ½RePkðη;xÞ − Imδθkðη;xÞ�:

ð58Þ

A. Homogeneous contribution hδϕ2ih
The homogeneous contribution hδϕ2ih reads

hδϕ2ihðηÞ ¼
1

2ð2πÞDaD−1ðηÞ
Z

dDkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
¼ 1

2ð2πÞDaD−1ðηÞ
2πD=2

ΓðD=2Þ
Z

∞

0

dkkD−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p
ð59Þ

which is analogous to the Minkowskian result, except for
the scale-factor dependence.

B. Nonhomogeneous contribution hδϕ2ii
The inhomogeneous component hδϕ2ii can be dealt with

more easily in momentum space. The only angular
dependence of the quantum fluctuation wave vector k

3Pkð0;xÞ and δθkð0;xÞ are assumed to be real. If this were not
the case, the phase of Pkð0;xÞ could be absorbed into δθkð0;xÞ
and the imaginary part of δθkð0;xÞ could also be absorbed into
Pkð0;xÞ in a trivial way.
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enters as k · p ¼ kpx̂ with x̂ ¼ cos θ, where we have taken
the kz direction along p. On the other hand, the contribution
from δθ in (58) vanishes after integrating in x̂. Then, we
have

hδϕ2iiðη;pÞ ¼
1

ð2πÞDaD−1ðηÞ
Z

dDk
Pkðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2a2ðηÞ
p :

ð60Þ

Since the integration on x̂ can be performed in a straight-
forward way, let us define

P̂kðη;pÞ ¼
Z

1

−1
dx̂ð1 − x̂2ÞðD−3Þ=2Pkðη;pÞ; ð61Þ

where we have included the general integration measure in
D dimensions. Hence, we can write (see Appendix B)

hδϕ2iiðη;pÞ ¼
1

ð2πÞDaD−1ðηÞ
2πðD−1Þ=2

ΓððD − 1Þ=2Þ

×
Z

∞

0

dk
kD−1P̂kðη;pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2a2ðηÞ

p : ð62Þ

Both integrals (60) and (62) are divergent in D ¼ 3
dimensions, and they should be regularized as discussed in
the next section.

C. Regularization

Let us now discuss the regularization procedure based on
standard dimensional regularization techniques.

1. Regularized homogeneous contribution hδϕ2ihðηÞ
The momentum integral in hδϕ2ih (60) can be done using

(B3) of Appendix B. After expanding for small ϵ with
D ¼ 3 − ϵ dimensions, the final result is

hδϕ2ihðηÞ ¼
m2ðϕ̂Þ
16π2

�
ln

�
m2ðϕ̂Þ
μ2

�
− Nϵ −

3

2

�
; ð63Þ

where μ is the renormalization scale and

Nϵ ¼
2

ϵ
þ log 4π − γ ð64Þ

with γ the Euler-Mascheroni constant.

2. Regularized nonhomogeneous
contribution hδϕ2iiðη; xÞ

Let us now consider the inhomogeneous contribution
(62). We cannot apply directly standard dimensional
regularization formulas because of the nontrivial k depend-
ence of P̂kðη;pÞ. Thus, additional work is necessary.

First, it should be noticed that the dependence of
P̂kðη;pÞ on the direction of p only enters through the
potentials,ΦðpÞ andΨðpÞ. Therefore, it can be expanded in
the following way:

P̂kðη;pÞ ¼
�X∞
l¼0

PΦ
k;lðηÞp2l

�
ΦðpÞ þ

�X∞
l¼0

PΨ
k;lðηÞp2l

�
ΨðpÞ:

ð65Þ

The coefficients PfΦ;Ψg
k;l ðηÞ are given in Appendix C. The

l ¼ 0 terms only get contributions from the Pð0Þ
k ðη;pÞ term

given in (50), and its integral vanishes in dimensional
regularization. The l > 0 terms involve time integrals of the
form

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0

dηi
ωkðηiÞ

�
k2α

ωkðηÞaωkðη0Þb
ð66Þ

for the contributions coming from Pð1Þ
k ðη;pÞ in (51), and

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00

dηi
ωkðηiÞ

�
k2α

ωkðηÞaωkðη0Þbωkðη00Þc

ð67Þ

for those coming from Pð2Þ
k ðη;pÞ in (52), with α, a, b,

c ∈ Z. In order to simplify the functional dependence on k,
we apply the generalized Feynman trick,

1

Ad1
1 � � �Adn

n
¼ Γðd1 þ � � � þ dnÞ

Γðd1Þ � � �ΓðdnÞ

×
Z

1

0

dx1 � � �
Z

1

0

dxn × δðx1 þ…þ xn − 1Þ

×
xd1−11 � � � xdn−1n

ðx1A1 þ � � � þ xnAnÞd1þ���þdn
: ð68Þ

Then, let the parameters of the Feynman formula be
defined by

n ¼ 2lþ 1 ð69Þ

Aj ¼
8<
:

ω2
kðηÞ if j ¼ 1

ω2
kðη0Þ if j ¼ 2

ω2
kðηj−2Þ if 3 ≤ j ≤ 2lþ 1

ð70Þ

dj ¼
8<
:

a=2 if j ¼ 1

b=2 if j ¼ 2

1=2 if 3 ≤ j ≤ 2lþ 1

ð71Þ

for the case (66) [with a trivial modification for the
expression (67)]. In this way, the k dependence only
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appears in
P

2lþ1
i¼1 xiω2

k;i which can be simplified in the
following way,

X2lþ1

i¼1

xiω2
k;i ¼

X2lþ1

i¼1

xiðk2þm2a2i Þ¼ k2þm2
X2lþ1

i¼1

xia2i ; ð72Þ

where we have used
P

2lþ1
i¼1 xi ¼ 1. Now, the k dependence

is simple enough to use standard dimensional regulariza-
tion formulas (Appendix B). The integration over the fxig
and the time integrals can be performed analytically
(Appendix D).
As we did with P̂kðη;pÞ, we now decompose

hδϕ2iiðη;pÞ into two terms proportional to ΦðpÞ and
ΨðpÞ, respectively,

hδϕ2iiðη;pÞ ¼ hδϕ2iΦi ðη;pÞΦðpÞ þ hδϕ2iΨi ðη;pÞΨðpÞ:
ð73Þ

Then, integrating in dimensional regularization, we see that
the Oð1=ϵÞ terms cancel out, and the results are finite,

hδϕ2ifΦ;Ψg
i ðη;pÞ ¼ m2

4π2a2ðηÞ
�X∞
l¼1

RfΦ;Ψg
l ðηÞp2l

�
; ð74Þ

where RfΦ;Ψg
l are the already regularized integrals in k of

PfΦ;Ψg
k;l divided by m2 for convenience. The coefficients

RfΦ;Ψg
l can be written as

RfΦ;Ψg
l ðηÞ ¼ RfΦ;Ψg

l;pol ðηÞ þ RfΦ;Ψg
l;log ðηÞ; ð75Þ

where, as shown in Appendix D, RfΦ;Ψg
l;pol are polynomials in

η, and RfΦ;Ψg
l;log involve a logarithmic dependence on η.

The most important aspect of (74) is that all the divergent
parts have canceled out. In particular, the divergent terms

coming from Pð1Þ
k ðη;pÞ cancel exactly the ones from

Pð2Þ
k ðη;pÞ order by order in p. This means that the UV

behavior is the same as in an unperturbed FRW background
and the inhomogeneous contributions are finite to the
leading adiabatic order.

D. Nonhomogeneous contribution: Particular cases

1. Nonexpanding spacetimes

Let us consider weak gravitational fields generated by
static sources. For the corresponding spacetime metric, we
can take (19) with aðηÞ ¼ 1 and static potentials ΦðxÞ and
ΨðxÞ which allow us to use the previous results. This
simplifies the calculations in several of the steps discussed
above. For instance, all the time integrals can be done in a
straightforward way, there is no need to apply the Feynamn

trick since the ω’s are all the same, and the coefficients

RfΦ;Ψg
l;log are zero (see Appendix D).
The results for a nonexpanding geometry read

RΦ
l ðηÞ ¼ RΦ

l;polðηÞ ¼ 0 ð76Þ

RΨ
l ðηÞ ¼ RΨ

l;polðηÞ ¼ 0; ð77Þ

which imply

hδϕ2iΦi ðη;pÞ ¼ 0 ð78Þ

hδϕ2iΨi ðη;pÞ ¼ 0 ð79Þ

and

hδϕ2iiðη;pÞ ¼ 0: ð80Þ

Thus, to the leading adiabatic order, the metric perturba-
tions do not contribute to the Higgs effective potential in
dimensional regularization. This is in contrast with pre-
vious results [31] using cutoff regularization, in which
nonvanishing inhomogeneous contributions were obtained.
Although we have considered a particular coordinate

choice in (19), corresponding to the longitudinal gauge,
since in the absence of metric perturbations Vh

effðϕ̂Þ is a
constant, the Stewart-Walker lemma [36] guarantees that
the obtained effective potential is gauge invariant.

2. Expanding spacetimes: Cosmology

Now we consider the case of a perturbed expanding
universe with scale factor aðηÞ and constant metric pertur-
bationsΦðxÞ andΨðxÞ. In particular, we will concentrate in
the matter-dominated era, in which the metric perturbations
are constant both for sub-Hubble and super-Hubble modes.
In addition, we will also provide results for super-Hubble
modes in the radiation era for which the metric perturba-
tions are also constant.
For the Ψ contribution, we get for the matter and

radiation eras with a ∝ η2 and a ∝ η, respectively,

RΨ
l;polðηÞ ¼ 0; RΨ

l;logðηÞ ¼ 0: ð81Þ

The Φ terms are harder to compute since the RΦ
l;log

contribution is not zero, and the integration over the
Feynman parameters fxig and the time integrals has to
be performed by Taylor expanding the logarithm (see
Appendix D). An exact analytical expression can be
obtained for each order of the logarithm expansion given
in terms of finite sums, which can be computed numerically
for practical purposes. We have checked that the relative
difference between RΦ

l;pol and RΦ
l;log terms is ∼10−4 for

l ¼ 1, 2, 3 and ∼10−2 for l ¼ 4, 5. Then,
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RΦ
l;polðηÞ þ RΦ

l;logðηÞ
RΦ
l;polðηÞ

≤ 10−2 for l ¼ 1; 2; 3; 4; 5:

This suggests that the exact Φ contribution also may be
zero, as for theΨ terms, so that for expanding geometries as
well, static perturbations do not contribute to the Higgs
effective potential to the leading adiabatic order.

E. Higgs effective potential

Taking into account (17), the one-loop contribution to
the effective potential can be expressed as

V1ðη;xÞ ¼ Vh
1ðηÞ þ V i

1ðη;xÞ: ð82Þ
Given the fact that, to the leading order, the nonhomo-

geneous contribution vanishes, the potential reads

V1 ¼ Vh
1ðηÞ ¼

1

2

Z
m2ðϕ̂Þ

0

dm2hδϕ2ihðηÞ; ð83Þ

and substituting (63), we get

V1ðϕ̂Þ ¼
m4ðϕ̂Þ
64π2

�
ln

�
m2ðϕ̂Þ
μ2

�
− Nϵ −

3

2

�
: ð84Þ

As expected from previous works [17–26], the homo-
geneous contribution is constant even though the geometry
is expanding. The Nϵ term is proportional to m4ðϕ̂Þ, so that
we have three kinds of divergences: constant, quadratic in ϕ̂
and quartic, which can be reabsorbed in the renormalization
of the tree-level potential parameters V0, M2 and λ. This
means that at the leading adiabatic order we obtain exactly
the same divergences as in flat spacetime and we do not
need additional counterterms to renormalize the effective
potential.
Following the minimal subtraction scheme MS, we

remove the terms proportional to Nϵ. Thus, we are left
with the complete renormalized homogeneous effective
potential,

Veffðϕ̂Þ ¼ V0þ
1

2
M2ϕ̂2þ λ

4
ϕ̂4þm4ðϕ̂Þ

64π2

�
ln

�
m2ðϕ̂Þ
μ2

�
−
3

2

�
;

ð85Þ

which agrees with the standard result in flat spacetime.
Here, the physical mass M and coupling constant λ are
defined at a given physical scale μ. Since the renormalized
effective potential is independent of the renormalization
scale μ, M2 and the coupling constant should depend on μ
according to the renormalization group equations

βðλÞ≡ dλ
dðlog μÞ ¼

18λ2

ð4πÞ2

γMðλÞ≡ dðlogM2Þ
dðlog μÞ ¼ 6λ

ð4πÞ2 : ð86Þ

VI. ENERGY-MOMENTUM TENSOR

In the previous sections, we have considered the one-
loop correction to the effective potential. The complete set
of perturbed modes obtained also allows us to evaluate the
vacuum expectation value of the energy-momentum tensor.
For the sake of completeness wewill include also a possible
nonminimal coupling to curvature, so that the equation for
an arbitrary massive scalar field now reads

ð□þm2 þ ξRÞφ ¼ 0; ð87Þ

Notice that, to the leading adiabatic order, the curvature
term is not going to modify the mode solutions found in
Sec. IV; however, the energy-momentum tensor acquires
new contributions. Thus,

Tμ
ν ¼ −δμν

�
1

2
− 2ξ

�
ðgρσ∂ρφ∂σφ −m2φ2Þ

þ ð1 − 2ξÞgμρ∂ρφ∂νφ − 2ξφ∇μ∇νφ

þ 2

Dþ 1
ξgμνðφ□φþm2φ2Þ

− ξ

�
Rμ
ν −

1

2
Rgμν þ 2D

Dþ 1
ξRgμν

�
φ2: ð88Þ

Considering perturbations over a flat Robertson-Walker
background (19), the vacuum expectation value of this
tensor, hTμ

νi, can be explicitly written to the leading
adiabatic order in Fourier space as a mode sum in terms
of the expansion (35) as

hT0
0ðη;pÞi ¼ ρðη;pÞ ¼ 1

ð2πÞD
1

aDþ1

Z
dDk

ωk

2

�
1þ 2

k2

ω2
k

ΨðpÞ þ 2Pkðη;pÞ þ 2i
k · p
ω2
k

δθkðη;pÞ −
2ξ

ω2
k

P00
kðη;pÞ

�
ð89Þ

hTi
iðη;pÞi ¼−piðη;pÞ ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
k2i
2ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ 2i
kipi

2ωk
δθkðη;pÞ þ ξ

p2
i

ωk
Pkðη;pÞ

�
ð90Þ

hTi
0ðη;pÞi ¼

1

ð2πÞD
1

aDþ1

Z
dDk

�
ki
2

�
1þ 2Pkðη;pÞ þ 2i

k · p
2ω2

k

δθkðη;pÞ
�
þ i
2
piδθkðη;pÞ þ ξ

ipi

ωk
P0
kðη;pÞ

�
ð91Þ
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hTi
jðη;pÞi ¼ −

1

ð2πÞD
1

aDþ1

Z
dDk

�
kikj
2ωk

ð1þ 2ΨðpÞ þ 2Pkðη;pÞÞ þ i
kipj þ kjpi

2ωk
δθkðη;pÞ þ ξ

pipj

ωk
Pkðη;pÞ

�
ð92Þ

hTμ
μðη;pÞi ¼ 1

ð2πÞD
1

aDþ1

Z
dDk

�
m2

2ωk
ð1þ 2Pkðη;pÞÞ −

ξ

ωk
ðP00

kðη;pÞ þ p2Pkðη;pÞÞ
�
: ð93Þ

The integration over the quantum modes can be per-
formed using the same methods applied above and some
tricks to reduce the integrals involving the components of
k, ki or kikj, to integrals of scalar character in k
(Appendix B). After doing that, the homogeneous part is
found to be diagonal, and the energy ρ and pressure p are
given in the minimal substraction scheme MS by

ρ ¼ −p ¼ m4

64π2

�
log

�
m2

μ2

�
−
3

2

�
; ð94Þ

where μ is the renormalization physical scale.
On the other hand, much as for the effective potential, the

nonhomogeneous part of the energy-momentum tensor
vanishes to this order.
While classical and weak gravitational fields are not able

to change the UV behavior of quantum effects, it is
expected that gravity should modify the IR parts of all
quantum corrections. The result presented in this work
shows that, within the dimensional regularization scheme,
there are no gravitational corrections arising from a
perturbed FRW metric up to first order in perturbations,
and to the leading order in the adiabatic expansion, to the
vacuum expectation value of the energy-momentum tensor
of a scalar field. Then, gravitational corrections may appear
beyond the leading adiabatic order, or through nonlin-
ear terms.
In the considered regime, namely the one in which the

Hubble scale is much smaller than the mass of the quantum
field, corrections beyond the zero adiabatic order are
negligible and they are unlikely to belong to the exper-
imental realm in the near future.
On the other hand, although nonlinear contributions

are expected to be smaller than the linear ones, they will
be more important than the contribution from the first
adiabatic order. Nevertheless, the computation of the
second-order corrections to the energy-momentum tensor
is a formidable task which is well beyond the scope of
this work.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have computed the one-loop corrections
to the effective potential due to the self-interactions of the
Higgs field and the vacuum expectation value of its energy-
momentum tensor in a perturbed FRW background. Unlike
previous results based on the Schwinger–de Witt approxi-
mation, we have calculated explicitly a complete

orthonormal set of modes of the perturbed Klein-Gordon
equation and the dimensional regularization procedure
was used for the mode summation to the leading adiabatic
order. The integrals containing metric perturbations
involved nonrational functions of the momenta so that
standard formulas in dimensional regularization were not
suitable to evaluate them. New expressions have been
developed for those cases which applied both to static
and expanding backgrounds.
We have checked that the homogeneous contribution

agrees with the Minkowski result as expected. On the other
hand, we have found that to the leading adiabatic order, and
to first order in metric perturbations, no additional con-
tributions appear either in the regularized effective potential
nor in the energy-momentum tensor. This is in contrast with
previous results obtained with a cutoff regularization [31],
in which quartic and quadratic inhomogeneous divergences
appear in the calculation. Thus, we see that dimensional
regularization ensures that the theory can be renormalized
just absorbing the divergences in the tree-level parameters
(at the leading adiabatic order).
We expect additional contributions from the metric

perturbations at the next-to-leading adiabatic orders. Unlike
the Schwinger–de Witt method which provides a local
expansion of the effective action. The mode summation
method used in this work could allow to determine the
corresponding finite nonlocal contributions. In this sense,
the explicit mode calculation obtained here together
with the method developed to perform the integrals in
dimensional regularization of nonrational functions of the
momenta are a fundamental first step in this program. The
results presented in this work would also allow to calculate
the temperature effects on the Higgs effective potential
using the explicit mode summation and, in general, the
complete expressions of other expectations values in
perturbed metric backgrounds. Work is in progress in these
directions.
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APPENDIX A: ORTHONORMALIZATION CONDITION: τΨ ðk; k0Þ AND τδθðk; k0Þ
In this appendix, we show that τΨðk;k0Þ and τδθðk;k0Þ appearing in (55) are zero to the leading adiabatic order. This

implies that the modes given by (27), (35), (40), (41), (46) are orthonormal and, therefore, the scalar field δϕ can be
quantized within the canonical formalism.
The explicit expressions for τΨðk;k0Þ and τδθðk;k0Þ are

τΨðk;k0Þ ¼
Z

dDx
ðωk − ωk0 Þðk2ω2

k0 − k02ω2
kÞ

4ðωkωk0 Þ5=2
ΨðxÞ e

iðk−k0Þ·x

ð2πÞD ðA1Þ

τδθðk;k0Þ ¼
Z

dDx
ðωk − ωk0 Þðω2

k0k ·∇δθkð0;xÞ − ω2
kk

0 · ∇δθk0 ð0;xÞÞ
4ðωkωk0 Þ5=2

eiðk−k0Þ·x

ð2πÞD : ðA2Þ

First, let us focus on τΨ in Fourier space:

τΨðk;k0Þ ¼
Z

dDx
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þðk2ω2
k0 − k02ω2

kÞ
4ðωkωk0 Þ5=2

ΨðpÞ e
iðk−k0þpÞ·x

ð2πÞD

¼
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þðk2ω2
k0 − k02ω2

kÞ
4ðωkωk0 Þ5=2

ΨðpÞδDðk − k0 þ pÞ

¼ 1

ð2πÞD=2

ðωk − ωk0 Þðk2ω2
k0 − k02ω2

kÞ
4ðωkωk0 Þ5=2

Ψðk − k0Þ: ðA3Þ

Since Ψ varies over macroscopic scales, we can a assume an exponential damping for Ψ when jk − k0j ≫ j∇Ψj ∼H;
therefore, τΨðk;k0Þ ≈ 0 in this case. For jk − k0j ∼H, we can Taylor expand the coefficient in front of Ψðk − k0Þ
in H=ωk to get

τΨðk;k0Þ ≈ 1

ð2πÞD=2

m2k2

2ω4
k

�
H
ωk

�
2

Ψðk − k0Þ; ðA4Þ

which is beyond the leading adiabatic order.
The same procedure works for τδθ, for instance,

τδθðk;k0Þ ¼
Z

dDx
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þip · ðω2
k0kδθkð0;pÞ − ω2

kk
0δθk0 ð0;pÞÞ

4ðωkωk0 Þ5=2
eiðk−k0þpÞ·x

ð2πÞD

¼
Z

dDp

ð2πÞD=2

ðωk − ωk0 Þip · ðω2
k0kδθkð0;pÞ − ω2

kk
0δθk0 ð0;pÞÞ

4ðωkωk0 Þ5=2
δDðk − k0 þ pÞ

¼ 1

ð2πÞD=2

ðωk − ωk0 Þiðk − k0Þ · ðω2
k0kδθkð0;k − k0Þ − ω2

kk
0δθk0 ð0;k − k0ÞÞ

4ðωkωk0 Þ5=2
: ðA5Þ

The initial condition is supposed to not introduce power at
small scales; therefore, δθkð0;k − k0Þ is also exponentially
damped for modes jk − k0j ≫ H. For jk − k0j ∼H, we can
Taylor expand in H=ωk to get

τδθðk;k0Þ ≈ i

ð2πÞD=2

1

4ω3
k

k ·
k − k0

jk − k0j
�
H
ωk

�
3

× ððm2 − k2Þδθkð0;k − k0Þ
þ ω2

kk ·∇δθkð0;k − k0ÞÞ: ðA6Þ

Thus, for jk − k0j ∼H, τδθ is also beyond the leading
adiabatic order. Note that the nabla operator in (A6) is to be
understood as acting over the index variable k, not over the
argument k − k0.

APPENDIX B: DIMENSIONAL
REGULARIZATION FORMULAS

The fundamental formula used in dimensional regulari-
zation in Euclidean space is [37,38]
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Z
dDk
ð2πÞD

k2α

ðk2 þm2Þβ ¼ m2ðα−βÞ
�
m2

4π

�
D=2

×
ΓðD=2þ αÞΓðβ − α −D=2Þ

ΓðβÞΓðD=2Þ :

ðB1Þ

This expression has been used to compute hδϕ2ih in (60)
in D ¼ 3 − ϵ. The left-hand side of the equation can be
written as

Z
dDk
ð2πÞD

k2α

ðk2 þm2Þβ ¼
1

ð2πÞD
2πD=2

ΓðD=2Þ
Z

∞

0

dk
kD−1k2α

ðk2 þm2Þβ ;

ðB2Þ

then

Z
∞

0

dk
kD−1k2α

ðk2 þm2Þβ ¼
�

1

ð2πÞD
2πD=2

ΓðD=2Þ
�−1

m2ðα−βÞ
�
m2

4π

�
D=2

×
ΓðD=2þ αÞΓðβ − α −D=2Þ

ΓðβÞΓðD=2Þ :

ðB3Þ

On the other hand, for the hδϕ2ii term in (60), we have to
deal with integrals of the following form,

Z
dDk
ð2πÞD

fðk · pÞ
ðk2 þm2Þβ ; ðB4Þ

where fðk · pÞ is an analytical function. Taking the kz
direction along p, we have fðk · pÞ ¼ fðkpx̂Þ with
k ¼ jkj, p ¼ jpj and x̂ ¼ cosðθD−2Þ, θD−2 being the angle
between k and p. When using spherical coordinates in D
dimensions fϕ; θ; θ2;…; θD−2g, the volume element can be
expressed as

dDk ¼ kD−1sinD−2ðθD−2ÞsinD−3ðθD−3Þ…
× sinðθÞdkdϕdθ…dθD−2: ðB5Þ

The integrand of (B4) depends on cosðθD−2Þ, so we can
integrate in all the angular variables but θD−2. With that
purpose, notice that the area of a sphere in aD-dimensional
space is

Z
π

0

� � �
Z

π

0

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{D−2 Z
2π

0

sinD−2ðθD−2ÞsinD−3ðθD−3Þ…

× sin2ðθ2Þ sinðθÞdϕdθdθ2…dθD−2 ¼
2πD=2

ΓðD=2Þ : ðB6Þ

Since all the integrals involved can be factorized, the
integration over all the angular variables but θD−2 is simply

given by the area of a sphere in (D − 1)-dimensional space,
i.e., 2πðD−1Þ=2

ΓððD−1Þ=2Þ. Therefore, Eq. (B4) can be expressed as

Z
dDk
ð2πÞD

fðk · pÞ
ðk2 þm2Þβ ¼

1

ð2πÞD
2πðD−1Þ=2

ΓððD − 1Þ=2Þ
Z

∞

0

dk

×
kD−1

ðk2 þm2Þβ f̂ðkpÞ; ðB7Þ

where f̂ðkpÞ ¼ R
1
−1 dx̂ð1 − x̂2ÞðD−3Þ=2fðkpx̂Þ. Finally,

Taylor expanding f̂ðkpÞ, the expression can be regularized
order by order using Eq. (B3).
To regularize physical quantities like hδϕ2ih and hδϕ2ii,

two important aspects should be taken into consideration.
First of all, the full physical expression should be computed
in D dimensions, so that when taking D ¼ 3 − ϵ, all the
terms are expanded in ϵ. Moreover, a physical scale μϵ

should be introduced to compensate the physical
dimensions.

1. Integrals involving ki or kikj
Finally, we explain how to compute the integrals

involving the components of k, ki, and kikj, appearing
in the expression of the energy-momentum tensor in
Sec. VI. For these cases, the other vector quantity, namely
the wave vector of the metric perturbations p, can be used
to produce scalar quantities that can be easily computed in
terms of the expressions given above. For instanceZ

dDkgðk;k · pÞki ¼ Api; ðB8Þ

taking the scalar product with p in each member we get that

A ¼
Z

dDkgðk;k · pÞk · p
p2

ðB9Þ

which can be integrated using the expression (B7). For the
remaining case, we have

Z
dDkgðk;k · pÞkikj ¼ Bδij þ Cpipj; ðB10Þ

where B and C can be computed solving the system
obtained by taking the trace and contracting with pipj.
The results are

B ¼ 1

ðD − 1Þ
Z

dDkgðk;k · pÞ ðkpÞ
2 − ðk · pÞ2
p2

ðB11Þ

C ¼ 1

ðD − 1Þ
Z

dDkgðk;k · pÞDðk · pÞ2 − ðkpÞ2
p4

:

ðB12Þ
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APPENDIX C: PfΦ;Ψg
k;l

In this appendix, the exact expressions for the PfΦ;Ψg
k;l ðηÞ

coefficients of Eq. (65) are given. First, let us separate these
coefficients as

PΦ
k;lðηÞ ¼ PΦ;ð0Þ

k;l ðηÞ þ PΦ;ð1Þ
k;l ðηÞ þ PΦ;ð2Þ

k;l ðηÞ; ðC1Þ

where the indices (0), (1), (2) stand for the contribution

coming from Pð0Þ
k in (50), Pð1Þ

k in (51), and Pð2Þ
k in (52),

respectively. The same definition applies for the terms PΨ
k;l.

The l ¼ 0 coefficients are given by

PΦ
k;0ðηÞ ¼ 0 ðC2Þ

PΨ
k;0ðηÞ ¼ PΨ;ð0Þ

k;0 ðηÞ ¼ 1

2

ffiffiffi
π

p
ΓððD − 1Þ=2Þ
ΓðD=2Þ

�
D −

k2

ω2
kðηÞ

�
:

ðC3Þ

For l > 0, we have

PΦ
k;lðηÞ ¼ PΦ;ð1Þ

k;l ðηÞ þ PΦ;ð2Þ
k;l ðηÞ ðC4Þ

PΨ
k;lðηÞ ¼ PΨ;ð1Þ

k;l ðηÞ þ PΨ;ð2Þ
k;l ðηÞ ðC5Þ

with

PΦ;ð1Þ
k;l ðηÞ ¼ ð−1Þl

22l

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ðl − 1Þ!ΓðD=2þ lÞ k
2l

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0

dηi
ωkðηiÞ

��
1

ωkðη0Þ
−
ωkðη0Þ
ω2
kðηÞ

�
ðC6Þ

PΨ;ð1Þ
k;l ðηÞ ¼ ð−1Þl

22l

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ðl − 1Þ!ΓðD=2þ lÞ k
2l

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0

dηi
ωkðηiÞ

��
2

ωkðη0Þ
−

k2

ω2
kðηÞωkðη0Þ

−
k2

ω3
kðη0Þ

�
ðC7Þ

PΦ;ð2Þ
k;l ðηÞ ¼ ð−1Þl

22l−1

ffiffiffi
π

p
ΓððD − 1Þ=2Þ

ðl − 1Þ!ΓðD=2þ l − 1Þ k
2l

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00

dηi
ωkðηiÞ

��
ωkðη00Þ
k2ωkðη0Þ

−
ð2l − 1Þωkðη00Þ

ðD − 2l − 2Þω3
kðη0Þ

�
ðC8Þ

PΨ;ð2Þ
k;l ðηÞ ¼ ð−1Þl

22l−1

ffiffiffi
π

p
ΓððD− 1Þ=2Þ

ðl− 1Þ!ΓðD=2þ l− 1Þk
2l

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00

dηi
ωkðηiÞ

��
1

ωkðη0Þωkðη00Þ
−

ð2l− 1Þk2
ðD− 2l− 2Þω3

kðη0Þωkðη00Þ
�
:

ðC9Þ

The integral over k of all these terms can be regularized
with the expressions given in Appendix B after applying
the generalized Feynman trick discussed in Sec. V. After
regularization, we are left with two terms: one polynomic in
η, the other one logarithmic in η. The integration over the
Feynman parameters fxig and the time integrals can be
done following the procedure discussed in Appendix D.

APPENDIX D: INTEGRATION
OVER fxig AND fηig

This appendix shows how to compute the integrals over

fxig and fηig appearing in the RfΦ;Ψg
l coefficients in (74).

These terms have the general form

Z
dη1 � � �

Z
dη2N

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{2N Z
1

0

dx1ffiffiffiffiffi
x1

p � � �
Z

1

0

dx2Nþ1ffiffiffiffiffiffiffiffiffiffiffiffi
x2Nþ1

p
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2Nþ1

δ

�X2Nþ1

k¼1

xk − 1

��
Pol1ðfxig; fηigÞ þ log

�X2Nþ1

k¼1

xka2ðηkÞ
�
Pol2ðfxig; fηigÞ

�
;

ðD1Þ
where the logarithmic contribution is included in the RfΦ;Ψg

l;log part of (75), whereas the pure polynomic one coming from Pol1
is included in RfΦ;Ψg

l;pol . Notice that we have redefined 2l appearing in expression (74), namely the power of p, to be 2N in
(D1) in order to highlight its importance in the following discussion. Since the polynomials only introduce trivial
modifications of the following formulas, let us focus on the expression

Z
dη1 � � �

Z
dη2N

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{2N Z
1

0

dx1ffiffiffiffiffi
x1

p � � �
Z

1

0

dx2Nþ1ffiffiffiffiffiffiffiffiffiffiffiffi
x2Nþ1

p
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2Nþ1

δ

�X2Nþ1

k¼1

xk − 1

�
log

�X2Nþ1

k¼1

xka2ðηkÞ
�
: ðD2Þ
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There are 2N þ 1 variables xi from the Feynman trick and
all of them are integrated from 0 to 1. There are also 2N þ 1
time variables ηi, but only 2N of them are integrated. In
particular, η2Nþ1 is not integrated. In order to recover the
expressions given in the text, we have renamed η as η2Nþ1,
η0 as η2N and η00 as η2N−1. From the general expression (D2),
it is straightforward to prove that for aðηÞ¼ 1, the logarithm

vanishes since
P

2Nþ1
k¼1 xk¼1. Therefore, RfΦ;Ψg

l;log ¼0 in
nonexpanding spacetimes.
First, we deal with the integration over the fxig. Defining

new variables y2i ¼ xi for i ¼ 1;…; 2N þ 1, this integra-
tion can be written over the 2N sphere

Z
1

0

dx1ffiffiffiffiffi
x1

p � � �
Z

1

0

dx2Nþ1ffiffiffiffiffiffiffiffiffiffiffiffi
x2Nþ1

p δ

�X2Nþ1

k¼1

xk − 1

�
¼ 22N

Z
S2N

d2NΩ:

ðD3Þ
Then, the logarithm can be expressed as

log

�X2Nþ1

k¼1

y2ka
2ðηkÞ

�
¼ log ½a2ðη2Nþ1Þ�

þ log

�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��
;

ðD4Þ
where we have used that y22Nþ1 ¼ 1 −

P
2N
k¼1 y

2
k. The first

logarithm on the right-hand side is the usual logarithm of
the scale factor which appears in dimensional regulariza-
tion in a FRW metric and it cancels out at the end. On the
other hand, since η2Nþ1 is an upper limit in all the time
integrations (see next subsection), we have ηk ≤ η2Nþ1 for

k ¼ 1;…; 2N. Thus, considering expanding universes, the
argument of the logarithm is of the form 1þ x with
−1 < x ≤ 1. Hence, it can be Taylor expanded as

log

�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��

¼
X∞
j¼1

ð−1Þjþ1

j

�X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��j
; ðD5Þ

where the last factor on the right-hand side can also be
expanded using the multinomial theorem

�X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��j

¼
Xj

l1 ;l2 ;…;l2N¼0P
2N
i¼1

li¼j

j!
l1!l2! � � � l2N!

Y2N
m¼1

�
y2m

�
a2ðηmÞ

a2ðη2Nþ1Þ
− 1

��
lm
:

ðD6Þ

Therefore, the integration over the 2N-sphere reduces to an
integration of this kind:

Z
S2N

d2NΩy2l11 y2l22 � � � y2l2N2N ¼
ffiffiffi
π

p Q
2N
i¼1 Γð12 þ liÞ

22NΓðN þ 1
2
þP

2N
i¼1 liÞ

≡ 1

22N
Γ½flig; 2N�: ðD7Þ

Then,

22N
Z
S2N

d2NΩ log

�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��
¼
X∞
j¼1

ð−1Þjþ1

j

Xj

l1 ;l2 ;…;l2N¼0P
2N
i¼1

li¼j

j!
l1!l2! � � � l2N!

Γ½flig;2N�
Y2N
m¼1

�
a2ðηmÞ

a2ðη2Nþ1Þ
− 1

�
lm
:

ðD8Þ
Applying the binomial theorem to the last factors,

�
a2ðηmÞ

a2ðη2Nþ1Þ
− 1

�
lm ¼

Xlm
im¼0

ð−1Þlm−im
�
lm
im

��
a2ðηmÞ

a2ðη2Nþ1Þ
�
im
; ðD9Þ

and gathering all the results, we get

22N
Z
S2N

d2NΩ log
�
1þ

X2N
k¼1

y2k

�
a2ðηkÞ

a2ðη2Nþ1Þ
− 1

��

¼ −
X∞
j¼1

Xj

l1 ;l2 ;…;l2N¼0P
2N
i¼1

li¼j

ðj − 1Þ!
l1!l2! � � � l2N!

Γ½flig; 2N�
Xl1;l2;…;l2N

i1;i2;…;i2N¼0

ð−1Þ
P

2N
m¼1

im
Y2N
m¼1

�
lm
im

��
a2ðηmÞ

a2ðη2Nþ1Þ
�
im
: ðD10Þ

Finally, the time integrations can be done in a straightforward way since the dependence on ηm of the scale factor is
polynomial for the cosmologies considered in this work.
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1. RΨ
l; log = 0 for all cosmologies

In Sec. V D, it is mentioned that the RΨ
l;log coefficients

are all zero for all the cases considered. In fact, these
expressions vanish not because of the integration over fxig
but because the polynomial Pol2ðfxig; fηigÞ in (D1) is zero
for the Ψ contribution. This can be shown by summing
the already regularized expression for (C5). Although the
limits of integration are apparently different in each of the
terms (C7), (C9), the region of integration is the same. For
instance, the first integral can be written as

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

η0
dηi

�
¼

Z
η

0

dη0
�Y2l−1

i¼1

Z
η

0

dηiθðηi − η0Þ
�
;

ðD11Þ

where θ is the step function, while

Z
η

0

dη0
Z

η0

0

dη00
�Y2l−2

i¼1

Z
η

η00
dηi

�

¼
Z

η

0

dη0
Z

η

0

dη00θðη0 − η00Þ
�Y2l−2

i¼1

Z
η

0

dηiθðηi − η00Þ
�
:

ðD12Þ
Then, redefining in the last integral η0 as η2l−1 and η00 as η0,
both integrals have the same form

Z
η

0

dη1 � � �
Z

η

0

dη2N

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2N Y2N−1

i¼1

θðηi − η2NÞ: ðD13Þ
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