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The Einstein-Proca system is studied in the case of a complex vector field self-interacting through an
appropriate potential with a global Uð1Þ symmetry. The corresponding equations for a static, cylindrically
symmetric metric and matter fields are then constructed and solved. In the probe limit (no gravity), it is
shown that the equations admit at least two classes of regular solutions distinguished by the asymptotic
behavior of the matter fields. One of these classes corresponds to lumps of vector fields localized in a
cylindrical region; we naturally call these solutions “Proca Q tubes”. They constitute the cylindrical
counterparts of spherical Proca Q balls constructed recently; they can be characterized by finite mass and
charge per unit length of the tube. The domain of existence of these Proca Q tubes with respect to the
coupling constants determining the potential is studied in detail. Finally, the gravitating Proca Q tubes are
constructed and studied.
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I. INTRODUCTION

In the recent couple of years a substantial number of
papers appeared, studying and analyzing nontopological
solitons “made of” self-interacting vector fields [1–4] whose
dynamics are set by the following Lagrangian density (we
use the “mostly minus” metric sign convention):

L ¼ −
1

4
F�
μνFμν −UðA�

μAμÞ; ð1:1Þ

where as usual Aμ is the vector potential and Fμν ¼ ∂μAν −
∂νAμ is the corresponding field strength, although they
may be complex. The potential may contain only a mass
term, UðA�

μAμÞ ¼ −m2A�
μAμ=2 as in the original Proca

Lagrangian [5–7], in which case localized solutions exist
only with the help of gravity. These structures are known as
Proca stars [2–4]. There exist also some earlier studies [8,9]
from around the year 2000.
On the other hand, a higher order polynomial like

UðψÞ ¼ −
m2

2
ψ −

λ

4
ψ2 −

ν

6
ψ3; ψ ¼ A�

μAμ ð1:2Þ

may support localized solutions even in flat space without
invoking gravity [1]. These may be named Proca Q balls in
flat space or Proca Q stars for the self-gravitating version,
reflecting the strong similarity with the analogous solutions
of scalar fields [10–14]. The reason for the sign difference
with respect to the scalar field potential is the “mostly
minus” metric sign convention that we use. However, with

this choice, the vector localized solutions require λ > 0 as
in the scalar case (while ν > 0 in both cases).
All kinds of self-interactions are covered by the follow-

ing action (R is Ricci scalar and G Newton’s constant):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

4
F�
μνFμν −UðA�

μAμÞ
�
: ð1:3Þ

In spite of the strong similarity, we stress already here an
important difference between the vector and scalar potential
functions. Unlike the scalar case, the potential UðA�

μAμÞ is
unbounded from below because of the nondefinite space-
time norm. However, the energy (or mass) density turns out
still to be bounded from below for a certain range of
parameters as we see in the next section. At any rate, the
potential function breaks explicitly the local Uð1Þ ×Uð1Þ
symmetry of the pure (double) Maxwell theory (the kinetic
term) and leaves a global Uð1Þ only. A non-Abelian
generalization has been studied as well [15].
Another aspect of these theories that was studied quite

extensively is black hole solutions that were found to
exist exhibiting a vector hair in either the Abelian [16,17] or
non-Abelian case [15].
These studies are motivated partially by suggestions of

massive spin-1 particles as a dark matter ingredient [18–21]
and partially from sheer curiosity as for the new structures
with new properties that may be composed by massive
vector particles.
All this effort has been concentrated in spherically

symmetric solutions. However, the analogous cylindrically
symmetric solutions are interesting and relevant as well.
Cylindrically symmetric localized solutions of a self-
interacting complex scalar field with a conserved global
charge—so called Q tubes—have been constructed and
studied in [22–24] and extended to gravity in [25].
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This paper is devoted to the study of solutions which we
name Proca tubes or Proca Q tubes. We find that as for the
spherically symmetric solutions, gravity is indispensable
for localized cylindrically symmetric solutions in the pure
Proca system, while the additional terms in the potential
(1.2) are enough to guarantee localized solutions even in
flat space. However, taking gravity into account introduces
significant changes with respect to the spherically sym-
metric case, such as a much smaller region in parameter
space where solutions exist. Moreover, this kind of sol-
utions is not asymptotically conic (which is the
analog of asymptotic flatness in our case) but are of the
Kasner type.

II. THE MODEL, ANSATZ, AND
FIELD EQUATIONS

The field equations for the self-interacting vector field as
derived from (1.1) are

∇μFμν − 2
dU
dψ

Aν ¼ 0; ð2:1Þ

which are supplemented with the constraint (the analog of
the Lorentz condition for the Maxwell field)

∇μ

�
dU
dψ

Aμ

�
¼ 0: ð2:2Þ

The conserved global Uð1Þ current is

Jμ ¼ −
i
2
ðF�μνAν − FμνA�

νÞ: ð2:3Þ

If gravity is “switched on”, one should solve these
equations in a self-consistent way with the Einstein
equations which in terms of the Einstein tensor Gμν read

Gμν þ 8πGTμν ¼ 0; ð2:4Þ

where the energy-momentum tensor is given by

Tμν ¼
1

2
ðF�λ

μ Fλν þ F�λ
ν FλμÞ þ

1

4
F�
κλF

κλgμν

−
dU
dψ

ðA�
μAν þ A�

νAμÞ þ UðψÞgμν: ð2:5Þ

As mentioned above, we intend to fill here the gap of
cylindrically symmetric solutions in this system. We
assume therefore an appropriate form of metric given by
the line element

ds2 ¼ gμνdxμdxν

¼ N2ðrÞdt2 −H2ðrÞdr2 − L2ðrÞdφ2 − K2ðrÞdz2;
ð2:6Þ

while for the vector field we assume the radial “electric”
configuration

Aμdxμ ¼ e−iωtða0ðrÞdtþ ia1ðrÞdrÞ: ð2:7Þ

The two components a0ðrÞ and a1ðrÞ are assumed to be
real. They satisfy the “Lorentz” condition which takes now
the form

ω

N
ðm2 þ λψ þ νψ2Þa0

þ 1

HKL

�
NKL
H

ðm2 þ λψ þ νψ2Þa1
�0

¼ 0; ð2:8Þ

where ψ takes the form ψ ¼ a20=N
2 − a21=H

2.
The field equations (2.1) become

ω

N2
ða00 − ωa1Þ þ ðm2 þ λψ þ νψ2Þa1 ¼ 0 ð2:9Þ

N
HLK

�
KL
HN

ða00 − ωa1Þ
�0
− ðm2 þ λψ þ νψ2Þa0 ¼ 0;

ð2:10Þ

and it is easy to see that substituting (2.9) into (2.10) yields
(2.8). Alternatively, Eq. (2.9) is a linear combination of
(2.8) and (2.10).
An important characteristic of the solutions is the global

Uð1Þ charge, or in the present situation, the charge per unit
length, which may be interpreted here as the number of
vector particles per unit length. It is readily obtained from
the time component of the conserved current (2.3):

Q ¼ −2π
Z

∞

0

dr
KL
HN

ða00 − ωa1Þa1

¼ 2π

ω

Z
∞

0

dr
NKL
H

ðm2 þ λψ þ νψ2Þa21; ð2:11Þ

where the second expression was obtained by using (2.9).
We assume of course that the integral converges for the
localized solutions we are after. Without loss of generality,
we take ω > 0, so Q > 0 as long as λ2 < 4νm2 holds
(see below).
By integrating (2.8) or (2.10), one obtains the following

constraint which is useful as a check on the solutions we
find:

Z
∞

0

dr
HKL
N

ðm2 þ λψ þ νψ2Þa0 ¼ 0: ð2:12Þ

A second important characteristic is the mass per unit
length. Thus, we calculate the components of Tν

μ for the
cylindrical case which turns out to be diagonal. We find

Y. BRIHAYE and Y. VERBIN PHYSICAL REVIEW D 95, 044027 (2017)

044027-2



T0
0 ¼

ða00 − ωa1Þ2
2N2H2

þ ðm2 þ λψ þ νψ2Þ a
2
0

N2

−
�
m2

2
ψ þ λ

4
ψ2 þ ν

6
ψ3

�
ð2:13Þ

Tr
r ¼

ða00 − ωa1Þ2
2N2H2

− ðm2 þ λψ þ νψ2Þ a
2
1

H2

−
�
m2

2
ψ þ λ

4
ψ2 þ ν

6
ψ3

�
ð2:14Þ

Tφ
φ ¼ Tz

z ¼ −
ða00 − ωa1Þ2
2N2H2

−
�
m2

2
ψ þ λ

4
ψ2 þ ν

6
ψ3

�
:

ð2:15Þ

So, the mass per unit coordinate length is expressed in
terms of the mass density T0

0 as

M ¼ 2π

Z
∞

0

drNLHKT0
0: ð2:16Þ

Note that the contribution from the potential term to the
mass density (i.e., the two last terms of T0

0) is not always
positive definite, but it is so for λ2 < 4νm2. This was
shown for flat space by Loginov [1], but the same
reasoning goes over to curved space. Incidentally, by
using this bound on λ2 in (2.12), we can deduce that a0ðrÞ
of a localized solution must change sign at least once [1],
i.e., must have at least one node at a finite value of r.
The masses themselves that we calculate turn out to be
positive also outside this parameter range. A further
significance of the mass and the global charge together
is in the stability ratio M=Qm which implies stable
solutions when M=Qm < 1. This is explained in more
details in Sec. III. A. 3.
Since we prefer to solve Einstein equations in the “Ricci

form,”

Rμν þ 8πGSμν ¼ 0;

Sμν ¼ Tμν −
Tλ
λ

2
gμν; ð2:17Þ

we give below the components of Sνμ for the right-hand side:

S00 ¼
ða00 − ωa1Þ2
2N2H2

þ ðm2 þ λψ þ νψ2Þ a
2
0

N2

−
�
λ

4
ψ2 þ ν

3
ψ3

�
ð2:18Þ

Srr ¼
ða00 − ωa1Þ2
2N2H2

− ðm2 þ λψ þ νψ2Þ a
2
1

H2

−
�
λ

4
ψ2 þ ν

3
ψ3

�
ð2:19Þ

Sφφ ¼ Szz ¼ −
ða00 − ωa1Þ2
2N2H2

−
�
λ

4
ψ2 þ ν

3
ψ3

�
ð2:20Þ

and the components of Ricci tensor for the left-hand
side:

R0
0 ¼ −

ðKLN0=HÞ0
KLNH

;

Rφ
φ ¼ −

ðNKL0=HÞ0
KLNH

;

Rz
z ¼ −

ðLNK0=HÞ0
KLNH

Rr
r ¼ −

1

H2

�
N00

N
þ L00

L
þ K00

K
−
H0

H

�
N0

N
þ L0

L
þ K0

K

��
:

ð2:21Þ

We still have a gauge freedom reflected in the metric
component HðrÞ, which we choose from now on to be
HðrÞ ¼ 1, so we get three second order equations for
the three remaining metric components. By writing the
field equations in a dimensionless form, it becomes
obvious that there are only two independent free
parameters in this system. So, we replace r by x ¼
mr and scale the components a0 and a1 by a mass scale
μ ¼ m1=2=ν1=4. A dimensionless gravitational coupling
constant γ ¼ 8πGμ2 ¼ 8πGm=ν1=2 appears naturally.
This way we get

ðKLN0Þ0
KLN

− γ

�ða00 − ωa1Þ2
2N2

þ ð1þ λψ þ ψ2Þ a
2
0

N2

−
�
λ

4
ψ2 þ 1

3
ψ3

��
¼ 0 ð2:22Þ

ðNKL0Þ0
KLN

þ γ

�ða00 − ωa1Þ2
2N2

þ
�
λ

4
ψ2 þ 1

3
ψ3

��
¼ 0

ð2:23Þ

ðLNK0Þ0
KLN

þ γ

�ða00 − ωa1Þ2
2N2

þ
�
λ

4
ψ2 þ 1

3
ψ3

��
¼ 0:

ð2:24Þ

All quantities in these equations are dimensionless. In
particular, ω stands for ω=m, and λ here is actually
λμ2=m2 ¼ λ=ðmν1=2Þ in terms of the original parameters.
A fourth equation which is not independent but still
useful as a check is the ðrrÞ component of (2.4) which
is first order:
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N0

N
K0

K
þ K0

K
L0

L
þ L0

L
N0

N
þ γ

�ða00 − ωa1Þ2
2N2H2

− ðm2 þ λψ þ νψ2Þ a
2
1

H2
−
�
m2

2
ψ þ λ

4
ψ2 þ ν

6
ψ3

��
¼ 0:

ð2:25Þ

The dimensionless version of the vector field equa-
tions (2.8)–(2.10) are obtained formally by taking m ¼ 1
and ν ¼ 1 and replacing r by the dimensionless radial
variable x, and of course, using the same coordinate
condition HðxÞ ¼ 1. We do not write them again here.
We also comment that the dimensionless version of the
charge and mass are obtained by the same way exactly.
They are related to one another by M̄ ¼ M=μ2 and
Q̄ ¼ Qm=μ2. The stability ratio may be calculated both
ways: M=Qm ¼ M̄=Q̄.

III. PROCA Q TUBES IN FLAT SPACE

A. Boundary conditions

Let us first discuss the probe limit of the equations, i.e.,
the case γ ¼ 0. In this case, the relevant equations reduce to
a system for the fields a0 and a1, which can also be derived
directly from the following effective Lagrangian:

Leff ¼ x

�
−
1

2
ða00Þ2 þ ωa00a1 − Veffða0; a1Þ

�
;

Veffða0; a1Þ ¼
ω2

2
a21 þ

�
1

2
ψ þ λ

4
ψ2 þ 1

6
ψ3

�
;

ψ ¼ a20 − a21: ð3:1Þ

In order to formulate a boundary value problem on the
interval ½0;∞Þ, we found it convenient to use a form
where the equations for a1 and a0 are, respectively, of the
first and second order. Three conditions on the boundary
have then to be imposed. The regularity of the solutions
on the axis of symmetry x ¼ 0 imposes a1ð0Þ ¼ 0 and
a00ð0Þ ¼ 0. These conditions are completed by demand-
ing a0ð∞Þ ¼ 0.
Inspecting the possible asymptotic behavior of the fields,

we found two possibilities. The first is

a0ðxÞ ∝
e−

ffiffiffiffiffiffiffiffi
1−ω2

p
xffiffiffi

x
p ; a1ðxÞ ¼ −

ω

1 − ω2

da0
dx

: ð3:2Þ

The solutions of this type are referred to as Type 1. The
other possibility is the following:

a0ðxÞ ¼ −
A
ωx

þ oð1=x2Þ; a1ðxÞ ¼ A −
ω

1 − ω2

da0
dx

;

ð3:3Þ

where the constantsA,ω are related byω2 þ λA2 − νA4 ¼ 1.
We refer to these solutions as being Type 0. We note that
the possibility (3.3) is specific to the vector field system
and has no counterpart for the scalar case.
The Type 0 boundary conditions comes from the fact

that the effective potential Veff admits some extra critical
points, apart from the origin a0 ¼ a1 ¼ 0. In particular, (as
observed in [1]) if

ω2 > ω2
m ≡ 1 − 3λ2=16; ð3:4Þ

one of the critical points occurring leads to a negative value
of Veff . As a consequence, solutions of Type 0 can be
expected for appropriate values of λ and ω.
Once the boundary conditions are imposed, and with a

given choice of the self-interacting potential (actually, by
choosing the rescaled parameter λ only), the system can be
solved for continuous values of the frequency ω or of the
central value a0ð0Þ; these quantities are related through the
equations, see, e.g., Fig. 1. The set of solutions labeled by
a0ð0Þ or ω then constitutes a branch of Proca Q tubes. The
main challenge is to determine the pattern of these solutions
for different choices of the coupling constant λ.
Since the two asymptotic forms (3.2) and (3.3) are

consistent with the boundary conditions, the corresponding
solutions have been emphasized. These families present
quite different properties, in particular:

(i) Type 0: These solutions have a1ð∞Þ ≠ 0 and
a01ð∞Þ ¼ 0. They have no finite mass per unit length
as seen from Eqs. (2.13) and (2.16). Nevertheless,
they turn out useful to understand of the pattern of
solutions.

(ii) Type 1: These solutions have a1ð∞Þ ¼ 0 and
a01ð∞Þ ¼ 0. These solutions have a finite mass
per unit length. These are Proca Q tubes.

The occurrence (and eventually the co-existence) of Type 0
and Type 1 solutions depends, as we see, on the potential
(i.e., the parameter λ) and on the value of a0ð0Þ.
Let us finally point out that Type 1 solutions split into

several classes according to their radial excitation number
which is in a one-to-one correspondence with the number
of nodes of a0ðxÞ and a1ðxÞ. We denote these classes as
Type 1* (for the first excitation), Type 1**, etc.

B. Numerical results

The Type 1 solutions can be constructed in a way
technically inspired from the construction of spherically
symmetric Q balls in three spatial dimensions. Since we do
not expect closed form solutions to exist, we construct the
solutions by numerical methods. We used, in particular, the
routine COLSYS [26].
First, we pick a value for λ. Obviously, setting a0ð0Þ ¼ 0,

the equations are fulfilled by the trivial configuration
a0ðxÞ ¼ a1ðxÞ ¼ 0. Then, by increasing gradually the
parameter a0ð0Þ, nontrivial solutions to the boundary value
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problem emerge provided the frequency ω is fine-tuned
appropriately. The numerical results show that solutions
exist for ωc < ω < ωM, where ωM can be determined by
using an argument presented in [24]. Namely, ωM ¼
−2 dU

dψ ð0Þ, which, in our scaling, corresponds to ωM ¼ 1

(the issue of ωc is discussed next). The limiting value
ω → ωM corresponds to a0ð0Þ → 0. The ω − a0ð0Þ rela-
tions for the solutions are represented by the solid lines in
Fig. 1 for several values of λ. The next task is to determine
the value ωc; in fact, the critical phenomenon limiting the
solutions for ω → ωc depends on the value of the constant λ
as we now discuss.

1. Weak coupling

Let us first examine the case of small λ (typically, for
0 < λ ≤ 1.15). First, we recall that for Type 1 solutions,
a0ðxÞ has one node at some x > 0, while a1ðxÞ has a node
at x ¼ 0 and a minimum at some x > 0. While decreasing
ω for Type 1 solutions, it turns out that a1ðxÞ has the
tendency to stay very close to its minimal value for a larger
and larger interval of x. This is illustrated in Fig. 2, where
we set λ ¼ 1 for the solutions with ω ¼ 0.96 and ω ¼ 0.92
(note: here, we find ωc ≈ 0.9125).
The Type 0 solutions have been constructed as well and,

like Type 1, are characterized by the value a0ð0Þ and the
relation of this parameter with frequency ω. The ω − a0ð0Þ
relation of the Type 0 solutions corresponding to λ ¼ 1.0
and λ ¼ 0.75 are shown by the black-dashed lines in
Fig. 1. Interestingly, this figure reveals that the branch
of Type 1 solutions bifurcates from a branch of Type 0
solutions at the minimal frequency for Type 1 solutions,
ω ¼ ωc. This property, which was confirmed for several
values of λ, contrasts with the case of Q balls where the
central value of the field, say ϕð0Þ, can take arbitrarily large
values. We see later that the maximal value of a0ð0Þ on the

bifurcating Type 1 branch is a border between lower and
higher mass solutions, where the higher mass ones are more
stable than the lower mass Q tubes.
Similarly, the first excited states are found along a curve

which branches off the Type 0 curve somewhat higher and
so on for the higher excitations as well. The corresponding
data is presented by the red-dashed lines on the ω − a0ð0Þ
curve in Fig. 1. Let us summarize a few features character-
izing the Type 0 and Type 1 solutions.

(i) Contrasting with the Type 1, Type 0 solutions have
lima0ð0Þ→0ω ¼ ωmðλÞ, where ωmðλÞ is determined
by Eq. (3.4).

(ii) While the Type 1 branch approaches the vacuum
configuration in the limit a0ð0Þ → 0, Type 0 have
nontrivial a0ðxÞ and a1ðxÞ as a limiting solution.

FIG. 2. Profiles of Type-1 solution with λ ¼ 1; the solid (resp.
dashed) lines correspond to ω ¼ 0.96 and a0ð0Þ ¼ 0.1787 (resp.
ω ¼ 0.92 and a0ð0Þ ¼ 0.238).

FIG. 1. Left: Frequency ω versus a0ð0Þ for λ ¼ 0.75 and λ ¼ 1.0 for the Type 0 (black dashed), Type 1 (black solid) and Type 1* (red
dashed) solutions. Recall that all quantities are dimensionless. Right: ω versus a0ð0Þ of Type 0 and Type 1 solutions for higher values of
λ; strong coupling case explained in Sec. III. B. 2.
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(iii) When a0ð0Þ approaches a maximal value on the
Type 0 branch, say a0ð0Þmax, the corresponding
solutions approach a singular configuration such
as illustrated by Fig. 3 for λ ¼ 0.75 (a0ð0Þmax ≈
0.70, ω ≈ 1.1).

(iv) In this critical limit, the Type 0 field a1ðxÞ ap-
proaches a wall shape at a particular value of the
radial coordinate, say x ¼ xw, and reaches its (non-
zero) asymptotic value for x > xw. As a conse-
quence, the value ja01ðxwÞj becomes very large.

2. Strong coupling

Solutions of both types (Type 0 and Type 1) can be
constructed for large values of λ (typically, λ > 1.15), but
the branch of Type 1 solutions ceases to bifurcate into the

Type 0 one, as shown on the right side of Fig. 1. The
numerical results suggest the ProcaQ tubes terminate into a
singular (i.e. nonanalytical) configuration when a maximal
value of the parameter a0ð0Þ is approached (this is
symbolized by the bullets on Fig. 1). At the approach of
this maximal value, the Proca fields a0ðxÞ and a1ðxÞ behave
differently in the two regions separated by the cylinder
x ¼ xw: the function a0ðxÞ forms a “wall” at x ¼ xw. In
the neighborhood of the wall, the function a1ðxÞ presents a
“V-shape” and the function a01ðxÞ presents a discontinuity.
The limiting solution for λ ¼ 2 is shown in Fig. 4; it has
a0ð0Þ ¼ 0.13 and a corresponding frequency ω ≈ 0.965.
Note that the field strength F0r ¼ −ða00 − ωa1Þ is smooth.
Type 0 solutions have been constructed for λ > 1 as well.

We found that the domain of existence of these solutions

FIG. 4. Profiles of a Type 1 limiting solution for λ ¼ 2 with a0ð0Þ ¼ 0.13 (corresponding to ω ¼ 0.965). Note that the “electric field”
F0r is smooth in spite of the shape of a0 and a1.

FIG. 3. Profiles of a Type 0 limiting solution for λ ¼ 0.75 with a0ð0Þ ¼ 0.70 (corresponding to ω ≈ 1.1). Note that the “electric field”
F0r is smooth in spite of the shape of a0 and a1.
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decreases strongly when increasing λ and vanishes for
λ ≈ 1.34, but we have, so far, no explanation for this
feature. In the limit a0ð0Þ → 0, the frequency ωm (defined
at Eq. (3.4)) is approached.

3. Physical properties

We now present some physical quantities characterizing
the Type 1 (Q tube) families, namely, the mass M and the
charge Q. From these data, the stability criterium usually
used in the study of boson stars (see, e.g., [10]) can be
inferred. It consists in studying the sign of B≡M=
ðQmÞ − 1; since Q represents the particle number and m
the mass of an individual quantum, M −Qm provides a
measure of the classical binding energy of the solution.
Solutions with B < 0 have a positive binding energy per
particle and then cannot decay into Q elementary quanta;
B < 0 is usually seen as a necessary condition of stability.
The dependence of the masses of these solutions on the

central value a0ð0Þ is depicted in the left side of Fig. 5 for
several values of λ. For the small values of λ, the mass
diverges as ω approaches the critical value in agreement
with the fact that these branches approach Type 0 solutions.
For large λ, the Type 0 and Type 1 branches do not meet,
and the Type 1 branches terminate in a singular configu-
ration like that of Fig. 4, symbolized by the bullets on the
plot. Note also the finite mass (and also charge) as
a0ð0Þ → 0. This is a common feature of Q balls and Q
tubes [27,28] and occurs since the fields fall off to zero very
slowly such that the integrals for the mass and charge stay
finite.
The right panel of the figure shows the a0ð0Þ dependence

of ω and of the ratioM=Qm discussed above. For the weak
coupling solutions, a0ð0Þ first increases as ω decreases
from 1, reaches a maximum, and then decreases, while ω

tends to its minimum value of ωc at the branching point.
TheQ tubes of this lowest part of the curve have the highest
mass and are more stable then the higher ω tubes. We see
that stable solutions (M=Qm < 1) exist up to about a little
higher than λ ¼ 1. At λ ¼ 1.25, most of the Q tube
solutions become unstable, apart from a small interval of
a0ð0Þ or ω. For larger values of λ (i.e. strong coupling), all
solutions are unstable. We also note that the condition
for the positivity of T0

0, whose dimensionless form reads
λ2 < 4, seems to play no role in this context. There exist
positive mass solutions above λ ¼ 2 and unstable solutions
below λ ¼ 2.
We also constructed several classes of radially excited

states of Proca Q tubes. Figure 6 presents the M − a0ð0Þ
curves of the ground states and first excited states for two
values of λ. In view of these solutions and since radially
excited states in scalar Q balls are well known to exist
[24,27,29], it can be expected that excited Proca Q balls
also exist. However, there have been no reports about it
so far.

IV. GRAVITATING PROCA Q TUBES

In this section, we study the effect of gravity on the Q
tubes discussed in the previous section, assuming a
minimal coupling to gravity [Eq. (1.3)].1 The equations
then involve the Newton constant which, after an appro-
priate rescaling, appears through the effective gravitational
parameter γ ≡ 8πGμ2. Due to the occurrence of two
independent coupling constants in the equations (γ and
λ), we did not study the solutions in a systematic way but

FIG. 5. Left: Q tube mass (logarithmic scale) as a function of a0ð0Þ for several values of λ. Right: The corresponding frequency ω and
the ratio M=Qm as a function of a0ð0Þ. Note that the λ values of the ω curves can be inferred from comparison with the higher M=Qm
curves.

1Proca field with nonminimal coupling to gravity was dis-
cussed by Fan [17] in the context of black hole solutions. We
intend to give attention to this case in a future publication.
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focused on a few particular values which we considered as
representative. The values chosen for reporting our results
(γ ¼ 1=40, γ ¼ 1=80, and γ ¼ 1=160) are large, but this
choice has a double purpose: (i) facilitate the numerical
analysis and (ii) enhance the effects of gravity which could
be too small to be appreciated with values of γ correspond-
ing to “ordinary” mass scales of the order of a TeV, or even
to the GUT scale.

A. Boundary value and asymptotics

As far as Proca equations for matter are concerned, the
boundary conditions are identical to the nongravitating
case. The Einstein equations imply the following condi-
tions for the metric to be regular on the axis of symmetry:

Nð0Þ ¼ 1; N0ð0Þ ¼ 0; Lð0Þ ¼ 0;

L0ð0Þ ¼ 1; Kð0Þ ¼ 1; K0ð0Þ ¼ 0: ð4:1Þ

Perhaps the main feature characterizing the gravitating
solutions is the fact that the underlying spacetime is not
asymptotically flat (or conic). Indeed an analysis of the
asymptotic form of the field reveals that the metric is
asymptotically of the Kasner-Type:

NðxÞjx→∞ ∼ xa; LðxÞjx→∞ ∼ xb; KðxÞjx→∞ ∼ xc;

aþ bþ c ¼ a2 þ b2 þ c2 ¼ 1: ð4:2Þ

The Kasner solution is a well-known parametrization of the
most general cylindrically symmetric and static vacuum
solution of Einstein equations and may be obtained easily
from the vacuum version of Eqs. (2.22)–(2.25).
The values a, b, c are generic and can be reconstructed

from the numerical solutions. They are also related to the
internal structure of the source (Proca tubes in our case) and

may be expressed in terms of integrals of Sνμ over the tube
cross section [30]. More detailed study of the asymptotic
behavior reveals that the power a must satisfy a > 0. This
constitutes a major difference between the gravitating Proca
tubes and the ones of the probe limit.
The reason that these solutions cannot be asymptotically

conic, is that this kind of solution must have NðxÞ ¼ KðxÞ;
hence, a ¼ c ¼ 0 (and b ¼ 1), which is related to the
corresponding “boost symmetry” of the source, i.e., the
components of Tν

μ or Sνμ and moreover the fact that
the integrals of S00 and Szz over the tube cross section
vanish [30]. Incidentally, by looking at (2.23)–(2.24), we
notice now a symmetry between LðxÞ and KðxÞ. However,
it does not follow in this case that LðxÞ ¼ KðxÞ, neither
b ¼ c, since it is inconsistent with the boundary conditions.
As for the vector field, we find

a0ðxÞjx→∞ ∼ xp expð−xÞ; p ¼ a − 1=2: ð4:3Þ

B. Numerical results

Fixing the constant γ > 0, the solutions can be con-
structed by increasing progressively the amplitude of the
Proca field on the center, i.e., a0ð0Þ. First, it should be
mentioned that no Type 0 solutions could be found in the
gravitating case. Attempts to deform a Type 0 solution by
coupling it to gravity lead to the occurrence of a singularity
at a finite value of the radial coordinate. As a consequence,
no bifurcation of the type of Fig. 1 could be found. For all
pairs of γ, λ that we choose, the curves of gravitating Q
tubes are limited by nonanalytical configurations of the
vector potential when a critical value of the control
parameter a0ð0Þ is approached. More precisely, the field
a1ðxÞ reached a more and more pronounced wall shape at
some x ¼ xw; the value ja01ðxwÞj becomes very large and

FIG. 6. Left: Mass (logarithmic scale) as a function of a0ð0Þ for λ ¼ 0.75 and λ ¼ 1 of the Type 1 (solid lines) and Type 1* (dashed
lines) Proca Q tubes. Right: The correponding ratio M=Qm.
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likely tends to infinity. The profile of such a behavior
is shown in Fig. 7 for γ ¼ 1=40; it has a0ð0Þ ¼ 0.55 and
xw ≈ 1.688 [note that the function a01ðxÞ is still finite in
this case: a01ðxwÞ ≈ −5.0. but we truncated the figure for
clarity]. The metric functions are presented on the right-
hand side of Fig. 7 through the combinations xN0=N,
xK0=K, and xL0=L − 1 characterizing the deviation of the
metric potentials with respect to the Minkowski spacetime
and stressing the asymptotic power-law behavior. The
Kasner powers can be read on the figure; we find
a ≈ 0.1773, c ≈ −0.15, and the relation aþ bþ c − 1 is
fulfilled within 10−4.
Several features of gravitating Proca Q tubes are illus-

trated in Figs. 8 and 9. The influence of gravity on the Q

tube ω − a0ð0Þ relations is shown in Fig. 8. The singular
configurations limiting the gravitating solutions are sym-
bolized by the bullets. Note however the similarity between
the flat space Type 0 curves and those of the localized
(finiteQ andM) self-gravitating solutions with large a0ð0Þ.
It seems that when γ > 0, the two branches merge into one
continuous curve of localized solutions only. The right-
hand side of Fig. 8 reveals that when the gravitational
parameter increases gravitating solutions with ω > 1 exist
on a large domain of the control parameter a0ð0Þ. This is
not a violation of the ω < 1 bound because of the time
dilation in the Kasner spacetime represented by the NðxÞ
factor. Therefore, it is ω=NðxÞ, which should be smaller
than 1 throughout most space as is indeed the case. Note

FIG. 8. The effect of gravity on the ω − a0ð0Þ relation. Left: Curves for λ ¼ 0.75 and λ ¼ 1 with γ ¼ 0 (as in Fig. 1, left) and
γ ¼ 1=160. Right: Type 1 curves for λ ¼ 1 with four values of γ starting from γ ¼ 0.

FIG. 7. Left: Profiles of the vector field components a0ðxÞ, a1ðxÞ, and their derivatives for the solution corresponding to λ ¼ 1,
γ ¼ 1=40, and a0ð0Þ ¼ 0.55. Right: The corresponding functions rN0=N, ðrL0=LÞ − 1, and rK0=K. This way of presenting the metric
components is aimed to stress the asymptotic power-law behavior.
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also Eq. (4.3), which does not impose a limit on the
parameter ω in the self-gravitating case as Eq. (3.2) does in
the probe limit.
Another aspect of the gravitational effects on theQ tubes

is shown in Fig. 9. It presents the a0ð0Þ dependence of the
mass and stability parameter M=ðQmÞ. The left side of the
figure shows, in particular, that the mass of the gravitating
solutions vanishes in the limit a0ð0Þ → 0 (in a clear contrast
with the probe limit) and that, for a fixed a0ð0Þ, the mass is
generally much lower than without gravity. This is actually
expected, due to the fact that gravity now makes the system
“more bound.” The right panel shows that stable self-
gravitating Q tubes are much less common than their flat
space counterparts.
As for the dependence on the parameter λ, generally, it

has a similar effect as in the probe limit; namely, the mass

and charge increase with λ but they have quite a small upper
bound. Since the region of stability (i.e., whenM=Qm < 1)
is much more limited when γ > 0, we did not perform here
a full analysis of the λ-dependence of the self-gravitatingQ
tube characteristics.

C. Stability

In the presence of gravity, a smaller number of particles
is needed in order to form localized bound structures. Thus,
Q is now much smaller, too. This preference of small
number of particles is reflected also in the fact that when Q
is increased the Q tubes become unstable and “prefer” to
undergo “fission” into a number of smaller stable tubes,
see Fig. 10. This phenomenon is common to scalar Q balls
[31,32], but here it is much more prominent.

FIG. 10. The dependence of the stability ratio M=Qm on the particle number Q (left) and on ω (right) for four values of γ, starting
from γ ¼ 0.

FIG. 9. Left: The mass of the gravitating solutions as a function of a0ð0Þ for λ ¼ 1 and four values of γ, starting from γ ¼ 0. Right:
The dependence of the ratio M=Qm on a0ð0Þ for the same parameters.
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From the right panel of Fig. 9 and from Fig. 10, we see
also that the stability ratio M=mQ is often larger than 1
and the corresponding solutions are unstable. The larger
(relatively) γ values (above γ ≈ 0.01) yield solutions
which are unstable throughout the whole branch. On
the other hand, the nongravitating Q tubes are always
stable. In the middle, there exists a small region where the
solutions are stable for a certain interval of charge values
or a0ð0Þ values.
Finally, we present in Fig. 11 the ω dependence of the Q

tube mass and Uð1Þ charge for four values of the gravi-
tational strength parameter γ. We notice a sharp difference
in the behavior with respect to the analogous plot for
Proca Q balls, Fig. 6 of Ref. [3]. As ω → 1, both Q and M
vanish as in the spherically symmetric case, but unlike that
case, Q and M increase with increasing ω up to a maximal
value of ω slightly larger than 1. Then, Q and M increase

significantly, while ω undergoes several oscillations, until
the curves terminate at the maximal a0ð0Þ. This is much
unlike the spiral behavior of Q and M presented in [3].

V. CONCLUSION

In this paper, we presented and analyzed the main
properties of ProcaQ tubes, that is, cylindrically symmetric
localized solutions of a self-interacting massive vector
field with a global conserved Uð1Þ charge. We found that
the system is defined by two independent parameters,
λ=ðmν1=2Þ and γ ¼ 8πGm=ν1=2. For a given pair of these
parameters, there exists a family of “ground state” solutions
defined by the central value of the vector field, a0ð0Þ. These
“ground state” solutions have a minimal number of nodes:
a0ðxÞ has one node at some x > 0, while a1ðxÞ has a node
at x ¼ 0. We found several families of radially excited
states with an increasing number of nodes and correspond-
ingly increasing mass and charge.
These Q tubes are stable in a large portion of parameter

space if gravity is neglected. However, when gravity is
taken into account, it limits quite significantly the stability
region. In physical terms, stable solutions seems to exist for
small values of the gravitational strength γ up to about 0.01
and a relatively small value of particle number per unit
length as seen in Fig. 10. These results are the product of a
first survey, and a much more extensive study is needed in
order to reveal more detailed aspects of these structures and
to understand them in more depth. This study was limited
to static solutions of the “electric” type whose geometry is
asymptotically Kasner. A further study is required as to the
question of the existence of “magnetic” solutions (static or
stationary) and the possibility of asymptotically conic
geometry. Preliminary results show that indeed some
self-gravitating magnetic Proca tubes are asymptoti-
cally conic.
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