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In this paper, we revisit and complete our preceding work on the Fokker Lagrangian describing the
dynamics of compact binary systems at the fourth post-Newtonian (4PN) order in harmonic coordinates.
We clarify the impact of the nonlocal character of the Fokker Lagrangian or the associated Hamiltonian on
both the conserved energy and the relativistic periastron precession for circular orbits. We show that the
nonlocality of the action, due to the presence of the tail effect at the 4PN order, gives rise to an extra
contribution to the conserved integral of energy with respect to the Hamiltonian computed on shell, which
was not taken into account in our previous work. We also provide a direct derivation of the periastron
advance by taking carefully into account this nonlocality. We then argue that the infrared (IR) divergences
in the calculation of the gravitational part of the action are problematic, which motivates us to introduce a
second ambiguity parameter, in addition to the one already assumed previously. After fixing these two
ambiguity parameters by requiring that the conserved energy and the relativistic periastron precession for
circular orbits be in agreement with numerical and analytical gravitational self-force calculations, valid in
the limiting case of small mass ratio, we find that our resulting Lagrangian is physically equivalent to the
one obtained in the ADM Hamiltonian approach.
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I. INTRODUCTION

This paper is a follow-up to Ref. [1], in which we derived
the equations of motion of compact binary systems (with-
out spins) at the fourth post-Newtonian (4PN) approxima-
tion of general relativity.1 In Paper I, we gave a short
account of numerous past works on the PN equations of
motion of compact binaries (see [2] for a more exhaustive
review). At the 3PN order, the equations were independ-
ently derived using different methods: Hamiltonian for-
malism [3–8], the harmonic coordinates approach [9–14],
the surface-integral method [15–19], and effective field
theory (EFT) [20].
At the 4PN order, partial results were first obtained

within the Hamiltonian formalism in ADM-like coordinates
[21–23] and the EFT approach [24]. The 4PN Hamiltonian
was then completed in Refs. [25,26] by adding a nonlocal
(in time) contribution related to gravitational-wave tails,

known from Refs. [27,28] for general matter systems. An
alternative derivation of the 4PN dynamics, including the
same nonlocal tail piece, was achieved in Paper I by
computing the Fokker Lagrangian in harmonic coordinates.
This result agreed with the partial results of the EFT [24],
and also with most of the terms in the 4PN Hamiltonian
[21–23,25,26]. However, it disagreed with a few terms [see
Eqs. (5.18)–(5.19) in Paper I]. Part of the discrepancy was
due to the fact that Refs. [25,26] and Paper I use different
prescriptions to handle the nonlocal tail term, as discussed in
Sec. V C of Paper I and in more detail below.
An important point of comparison for the PN results is

given by gravitational self-force (GSF) calculations, valid
in the small mass-ratio limit (see Refs. [29,30] for reviews).
Recent years have seen a lot of progress on numerical or
analytical calculations of two gauge-invariant quantities,
the conserved energy and the advance of the periastron
for circular orbits, allowing for unambiguous comparisons
with the small mass-ratio limit of the PN results. The GSF
energy for circular orbits has been computed numerically in
[31–33] and analytically (in the form of a PN expansion) in
[34], while the circular orbit limit of the periastron advance
has been obtained numerically in [35–37] and analytically
in [26,38,39]. The GSF calculations of the energy and
periastron advance generally rely on the so-called first law
of black hole binaries [32,40], which was initially derived
at 3PN order, but has recently been shown to be valid at the
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1We shall refer to Ref. [1] as Paper I henceforth. As usual the

nPN order corresponds to post-Newtonian corrections up to order
ðv=cÞ2n beyond the Newtonian acceleration in the equations of
motion.
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4PN order, taking into account the nonlocal tail term [41].
Both in Paper I and in Refs. [25,26], a single free parameter
was introduced, associated to the 4PN tail term, and was
fixed by comparing the conserved energy for circular orbits
with GSF results [31,32,34].
However, the treatment of the nonlocality in the deri-

vation of this quantity from the action was different in the
two approaches. In the present paper, we investigate in
more detail the derivation of both the energy and the
periastron advance from the nonlocal action. With respect
to Paper I, we show the appearance of a new term in the
conserved integral of energy that resolves our disagreement
with Ref. [25] on this issue. This is achieved within our
initial approach, based on the direct use of the original
action containing the nonlocal 4PN tail contribution, i.e.,
not applying any nonlocal shift to transform the nonlocal
action into a local one as advocated in Ref. [25]. We
thoroughly compute the new term using Fourier series,
as well as a similar term present in the conserved integral
of angular momentum. While the result for the conserved
energy is affected by the former term, the periastron
advance remains unchanged, as the extra contributions
coming from the energy and angular momentum cancel out
in this quantity.
The computation in Paper I was supplemented by a

dimensional regularization for treating the ultraviolet (UV)
divergences associated with point particles, and by a
Hadamard regularization for curing the infrared (IR)
divergences that occur at the bound at infinity of integrals
entering the gravitational (Einstein-Hilbert) part of the
action. Past experience on the UV regularization at the
3PN order, both for the equations of motion [10] and
the radiation field [42], shows that different implementa-
tions of the Hadamard regularization can give different
physical results, but with differences that were limited to a
small subset of terms. At the time, this unsatisfactory
situation led to the introduction of unknown ambiguity
parameters, that were determined by the consistent replace-
ment of the Hadamard regularization by the dimensional
regularization. In the present paper we argue that the IR
regularization of the bound at infinity is problematic, as
different prescriptions for that regularization may lead to
different results. However, we conjecture, based on some
preliminary work [43], that the difference between different
prescriptions for the IR regularization is made, after
suitable shifts of the world lines, of two offending terms
in the Lagrangian at the order G4. We shall therefore resort
to two ambiguity parameters to account for the different
possible prescriptions regarding the IR regularization at
the 4PN order. Note that the presence of more than one
ambiguity parameter in our harmonic-coordinates approach
has been suggested in Ref. [26]. As it turns out, the
ambiguity parameter that was introduced in Paper I is
equivalent to one linear combination of them. In Ref. [43],
we shall specifically employ the powerful dimensional

regularization to handle the IR divergences and investigate
whether one can determine, with such method, some
combination of those ambiguity parameters. We emphasize
that they appear in very few terms of the 4PN Lagrangian,
which otherwise contains hundreds of difficult terms that
have been unambiguously determined in Paper I.
Using this new Lagrangian modified by the two ambi-

guity parameters, we use our new treatment of the non-
locality in the dynamics to compute the conserved integral
of energy and the orbital precession of the periastron
at the 4PN order, in the limiting case of circular orbits.
We find that we can adjust the two ambiguity parameters
in such a way that the results are in agreement with the
known GSF calculations. Their values are uniquely fixed
by this comparison, which determines completely our
Fokker Lagrangian. However, as said above, we have to
make an assumption regarding the structure of the second
ambiguity term. Work should thus continue in order to
better understand the origin of the ambiguity parameters.
Comparing our 4PN Lagrangian in harmonic coordinates
with the 4PN Hamiltonian in ADM-like coordinates as
derived in Refs. [21–23,25,26], we find that there exists a
unique shift of the dynamical variables that connects the
two dynamics; thus our harmonic-coordinates Lagrangian
is in fact equivalent to the ADM Hamiltonian.
The plan of this paper is as follows. In Sec. II, we

introduce two (and only two) ambiguity parameters to
account for some incompleteness in the IR regularization
of integrals entering the gravitational part of the Fokker
action. In Sec. III, we investigate the problem of defining
conserved integrals of energy and angular momentum from
a Hamiltonian that is nonlocal in time. In particular, we find
that some constant (DC-type) terms must be added to the
naive expectations for the energy and angular momentum.
In Sec. III, we compute the tail contribution to the energy at
the 4PN order in the case of circular orbits. An alternative
derivation, which makes use of Delaunay variables, is
also presented (in Sec. IV B). In Sec. V, we compute the
periastron advance at the 4PN order in the circular orbit
limit, mostly focusing on the delicate tail contribution
therein. The paper ends with a short conclusion in Sec. VI,
followed by several appendixes: a recapitulation of the
complete 4PN Lagrangians in Appendix A, some useful
material about the Fourier decomposition of the Newtonian
quadrupole moment in Appendix B, and complements on
Sommerfeld’s method of contour integrals in Appendix C.

II. AMBIGUITY PARAMETERS
IN THE FOKKER LAGRANGIAN

It was shown in Paper I that IR divergences, due to the
behavior of integrals at their bound at spatial infinity,
start appearing at the 4PN order in the Fokker action of
point particles. As it turned out, those IR divergences
are associated with the presence of tail effects [27,28]. In
Paper I, we found that the two arbitrary scales associated
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with the tails and the IR cutoff scale (denoted as s0 and
r0, respectively, in Paper I) combine to give a single
“ambiguity” parameter α ¼ lnðr0=s0Þ which could not be
determined within the Fokker Lagrangian method. This
parameter was then fixed from a GSF calculation of the
invariant energy for circular orbits. Similar results were
obtained by means of the Hamiltonian formalism in
Ref. [25]. The treatment of the IR divergences in Paper I
was based on the use of Hadamard partie finie integrals.
On the other hand, the UV divergences associated with
point particles were handled by resorting to dimensional
regularization.
For the present purpose, we first need to restore the

arbitrariness of the constant parameter α (which was fixed
to α ¼ 811=672 in Paper I). More precisely, starting from
the 4PN harmonic-coordinates Lagrangian of Paper I,
which is given by Eqs. (5.1)–(5.6) there, and notably
including the nonlocal tail term (5.4), we reinstate α as
an undetermined ambiguity parameter by setting

L0 ¼ LPaper I þ 2G2m
5c8

�
α −

811

672

�
ðIð3Þij Þ2; ð2:1Þ

wherem ¼ m1 þm2 is the total mass, whereas Ið3Þij denotes
the third time derivative of the quadrupole moment, as
given by Eq. (5.12) in Paper I. Next, we shall argue, based
on preliminary investigations [43], that the problem of the
regularization procedure invoked to cure the IR divergences
of the Fokker action at the 4PN order is quite subtle. A
choice was made in Paper I to regularize IR-divergent
integrals by means of a specific procedure based on analytic
continuation in some complex parameter B. Such a
procedure (finite part when B → 0) resulted in a particular
prescription for the gravitational part of the Fokker
Lagrangian, as given by Eq. (2.20) in Paper I. One can
actually show that this procedure is equivalent to the
well-known Hadamard partie finie regularization [44,45]
when applied to the bound at spatial infinity.
However, preliminary calculations [43] suggest that using

the dimensional regularization instead of the Hadamard
regularization for the bound at infinity does change the
content of the Fokker Lagrangian (i.e., the associated
gauge-invariant quantities are different). Building on this
observation, we shall conjecture here that using different IR
prescriptions entails a modification of the Lagrangian by two
types of terms, always having the same structure. Such a
behavior is characteristic of the appearance of ambiguities in
the regularization process. This will be acknowledged in the
present paper by adding to the Lagrangian (2.1) the ambigu-
ous terms by hands, in agreement with Ref. [26] who pointed
out that there might be a second ambiguity parameter in
our Fokker Lagrangian in harmonic coordinates. In a future
paper [43], we shall investigate whether specifically using
the powerful dimensional regularization should cure the
IR divergences of the Fokker action in a consistent way

at the 4PN order, in addition to already dealing with the UV
divergences. In a first step, we add for convenience three
ambiguity parameters to (2.1), β1, β2 and β3, which yields

L00 ¼ L0 þG4mm2
1m

2
2

c8r412

�
β1ðn12v12Þ2 þ β2v212 þ β3

Gm
r12

�
:

ð2:2Þ

The positions and velocities of the particles are denoted by yA
and vA ¼ dyA=dt (A ¼ 1, 2); r12 ¼ jy1 − y2j is the relative
separation (in harmonic coordinates), n12 ¼ ðy1 − y2Þ=r12 is
the corresponding unit vector, and v12 ¼ v1 − v2 the relative
velocity. We use parentheses to denote ordinary scalar
products, hence ðn12v12Þ ¼ n12 · v12 and v212 ¼ v12 · v12. In a
second step, inserting into Eq. (2.1) the expression of the
quadrupole moment Iij (to Newtonian order), we get

L000 ¼LPaper IþG4mm2
1m

2
2

c8r412

�
γ1ðn12v12Þ2þ γ2v212þ γ3

Gm
r12

�
;

ð2:3Þ

with γ1¼ β1− 176
15
αþ 8921

630
, γ2 ¼ β2þ 64

5
α− 1622

105
and γ3 ¼ β3.

When evaluating the time derivatives of Iij, we actually

replace Ið3Þij by its order reduced expression (later denoted

Îð3Þij ), so that, in fact, L000 differs from L00 by a gauge
transformation. There are still three ambiguity parameters
at this stage, but among the terms they generate one
combination is pure gauge. Thus, without loss of generality,
we can consider the following Lagrangian:

L ¼ LPaper I þ G4mm2
1m

2
2

c8r412
ðδ1ðn12v12Þ2 þ δ2v212Þ; ð2:4Þ

differing from L000 by a further gauge transformation and
containing two (and only two) ambiguity parameters, related
to the previous ones by δ1 ¼ γ1 − 4γ3 and δ2 ¼ γ2 þ γ3.

2

From the Lagrangian (2.4), one may construct, performing
the various local and nonlocal shifts of the particles’ world
lines, the associated Hamiltonian in ADM-type coordinates
as in Paper I. Since those shifts represent small 2PN
quantities at least, the extra terms in (2.4), of 4PN order,
will be unchanged in the process. The resulting Hamiltonian
reads

2For completeness, let us mention that the gauge transforma-
tion of the Lagrangian (modulo an irrelevant total time derivative)
has the following “zero-on-shell” form (with aiA being the
accelerations):

L ¼ L000 −
X
A

mAðaiA − ð∂iUÞAÞξiA;

where U ¼ P
B

GmB
jx−yBj. We have ξi1 ¼ γ3

G4mm1m2
2

c8r3
12

ni12 (and 1 ↔ 2)

for the case at hand.
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H ¼ HPaper I −
G4mm2

1m
2
2

c8r412
ðδ1ðn12v12Þ2 þ δ2v212Þ; ð2:5Þ

where the Hamiltonian of Paper I, defined in Sec. V C of [1],
contains in particular the nonlocal tail term given by
Eq. (5.17) of [1]. With an abuse of notation, we employ
the same lowercase letters as there to denote the ADM-like
conjugate variables yA and pA, with the obvious shorthand
notation vA ¼ pA=mA applicable for the small 4PN extra
terms in Eq. (2.5). However, it is important to be aware that
the variables of the formulations (2.4) and (2.5) actually
differ by appropriate shifts. With this caveat in mind, wewill
often play indifferently with the Lagrangian or Hamiltonian
formalisms.
Now, in the present paper, we shall show that the two

ambiguity parameters δ1 and δ2 can be uniquely fixed
by making our dynamics compatible with existing GSF
computations of the conserved energy and periastron
advance for circular orbits in the small mass-ratio limit
ν ¼ ðm1m2Þ=m2 → 0. Anticipating the results of our
computations, we shall get

δ1 ¼ −
2179

315
; δ2 ¼

192

35
: ð2:6Þ

Those values will be obtained (in Secs. IV and V) after
taking carefully into account the nonlocal character of the
4PN tail term in the Lagrangian or Hamiltonian. With the
latter correcting terms and the specific values (2.6)
of the ambiguity parameters, our harmonic-coordinate
4PN dynamics agrees with the 4PN Hamiltonian dynamics
of Refs. [21–23,25,26]. Indeed, building on the work
presented in Paper I, we find that there exists a unique
(non-local-in-time) shift of the trajectories connecting the
harmonic-coordinate variables to the conjugate canonical
ADM Hamiltonian variables, so that our Hamiltonian (2.5)
is equivalent to the ADM Hamiltonian fully displayed in
Appendix A of [25]. Finally, we recapitulate in Appendix A
our results for the complete 4PN Lagrangian both in
harmonic and ADM-like coordinates.

III. CONSERVED INTEGRALS
FOR A NONLOCAL HAMILTONIAN

In this section, we investigate the notions of conserved
energy and angular momentum in the case of a nonlocal (in
time) dynamics. For convenience, we adopt the Hamiltonian
formalism with the Hamiltonian (2.5). The latter is equiv-
alent, after performing some shifts of the variables, to the
Lagrangian of Sec. II. We refer to Refs. [46,47] for general
discussions on non-local-in-time Hamiltonians.
In the Hamiltonian approach, the two-body system is

described by the canonical conjugate variables yA and pA,
with A ¼ 1, 2. (Again, for simplicity’s sake, we name these
variables using the same lowercase letters as in Sec. II.)
Those canonical variables, in the center-of-mass frame,

reduce to the relative position of the particles, i.e.,
x ¼ y1 − y2, and the linear momentum p ¼ p1 ¼ −p2.
We often denote x≡ ðxiÞi¼1;2;3 and p≡ ðpiÞi¼1;2;3. We
also pose, as usual, x ¼ rn with r ¼ jxj and n2 ¼ 1,
whereas pr ¼ n · p represents the momentum conjugate
to r in polar coordinates.
We shall consider the generic situation of interest for us

where the center-of-mass Hamiltonian is made of a local
“instantaneous” piece and a non-local-in-time “tail” part:

H½x; p� ¼ H0ðx; pÞ þHtail½x; p�: ð3:1Þ

The instantaneous piece H0 is an ordinary local function of
the canonical variables xðtÞ and pðtÞ, while the tail piece is
a functional of the same variables, depending on xðtþ τÞ
and pðtþ τÞ for any τ ∈ R. This dependence is indicated
using squared brackets. Furthermore, the functional is
actually time symmetric. In the specific case of the 4PN
dynamics of compact binaries, the instantaneous piece
contains many PN contributions up to the 4PN order.
On the other hand, the nonlocal tail contribution arises at
the 4PN order and reads [1,25,48,49]

Htail ¼ −
G2M
5c8

Îð3Þij ðtÞ Pf
2rðtÞ=c

Z þ∞

−∞

dτ
jτj Î

ð3Þ
ij ðtþ τÞ: ð3:2Þ

This nonlocal tail piece ensures that the (conservative part
of the) 4PN tail effect, known in the metric and equations
of motion of general matter systems, is recovered in the
Hamiltonian framework (see [27,28]). The integral (3.2)
involves the symmetric kernel function μðτÞ ¼ 1=jτj and
possesses a singular bound at τ ¼ 0, which is handled with
the Hadamard partie finie (Pf). The partie finie depends on
an arbitrary scale (see, e.g., Ref. [11]), chosen here to be the
separation distance between the two particles at the current
time t, i.e., rðtÞ ¼ jxðtÞj. An alternative, more explicit form
of the tail integral is

Htail ¼ −
G2M
5c8

Îð3Þij ðtÞ
Z þ∞

0

ds ln

�
cs

2rðtÞ
�

× ½Îð4Þij ðt − sÞ − Îð4Þij ðtþ sÞ�: ð3:3Þ

In Eqs. (3.2)–(3.3), M denotes the ADM mass of the
binary (which reduces to m ¼ m1 þm2 in the lowest

approximation) and ÎðnÞij ðtÞ stands for the nth time deriva-
tive of the Newtonian quadrupole moment of the system in
which the accelerations have been order-reduced by means
of the Newtonian equations of motion. Following [1],
we indicate the application of such a procedure of order
reduction by adding a hat on the concerned quantity.

Thus, for instance, Îð3Þij and Îð4Þij are ordinary functions of
the center-of-mass canonical variables xi ¼ rni and pi,
given by
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Îð3Þij ¼ 2Gm
r2

ð3prnhinji − 4nhipjiÞ; ð3:4aÞ

Îð4Þij ¼ 2G
r3ν

��
3p2 − 15p2

r þ
Gm3ν2

r

�
nhinji

þ 18prnhipji − 4phipji
�
; ð3:4bÞ

with ν ¼ m1m2=m2, the angular brackets denoting the
symmetric-trace-free (STF) projection. Note that, strictly
speaking, since the accelerations are order reduced in the
two forms (3.2) and (3.3), the equivalence between (3.2)
and (3.3) is true only modulo a shift of the phase variables.
Such shifts are generally ignored here.
The basic starting point is of course the dynamical action

written in Hamiltonian form,

S ¼
Z þ∞

−∞
dt

�
pi

dxi

dt
−H½x; p�

�
: ð3:5Þ

Requiring that the action be stationary around the solution,
we obtain Hamilton’s equations, in a form appropriate even
for a nonlocal Hamiltonian. These will involve functional
derivatives with respect to the canonical variables, hence3

dxi

dt
¼ δH

δpi
;

dpi

dt
¼ −

δH
δxi

: ð3:6Þ

For future reference, we note that the functional derivatives
of the tail part of the Hamiltonian involve ordinary partial
derivatives of the third derivative of the quadrupole
moment (3.4a) with respect to the canonical variables.
More precisely, they read

δHtail

δxi
¼−

2G2M
5c8

�∂ Îð3Þjk

∂xi Pf
2r=c

Z þ∞

−∞

dτ
jτj Î

ð3Þ
jk ðtþ τÞ−ni

r
ðÎð3Þjk Þ2

�
;

ð3:7aÞ

δHtail

δpi
¼ −

2G2M
5c8

∂ Îð3Þjk

∂pi
Pf
2r=c

Z þ∞

−∞

dτ
jτj Î

ð3Þ
jk ðtþ τÞ: ð3:7bÞ

Notice the second term in Eq. (3.7a), which comes from the
differentiation of the Hadamard partie finie scale chosen
here to be rðtÞ.

A. Integral of energy

We start by computing the time derivative of the
Hamiltonian “on shell,” i.e., when theHamiltonian equations
of motion (3.6) are satisfied by xi and pi. Contrary to what
happens in the usual local case, the nonlocal Hamiltonian is
not conserved on shell (even neglecting the radiation reaction
damping effects) because of the functional derivatives
present in the Hamiltonian equations (3.6). Using Eqs. (3.7),
we find instead the “nonconservation” law

dH
dt

¼ G2M
5c8

�
Îð4Þij ðtÞ Pf

2r=c

Z þ∞

−∞

dτ
jτj Î

ð3Þ
ij ðtþ τÞ

− Îð3Þij ðtÞ Pf
2r=c

Z þ∞

−∞

dτ
jτj Î

ð4Þ
ij ðtþ τÞ

�
: ð3:8Þ

It is worth mentioning that the Hadamard partie finie scale r
cancels out from the right-hand side of (3.8). Moreover,
even though the nonlocal Hamiltonian on shell is not
conserved, it is actually conserved in an integrated sense,
i.e.,

Rþ∞
−∞ dt dHdt ¼ 0 (see Refs. [46,47]). Furthermore one can

easily check, using for instance Eq. (5.25) in Ref. [1], that the
right-hand side of (3.8) is zero in the case of circular orbits.
We shall now construct from the law (3.8) the conserved

energy E associated with the nonlocal Hamiltonian. To this
end, we perform a Taylor expansion of the integrand of (3.8)
when τ → 0. Since the kernel function μðτÞ ¼ 1=jτj is even,
we may consider only the even powers of τ. However, the
expansion remains formal, since each of the coefficients of
the Taylor expansion is a divergent integral at the bounds
τ ¼ �∞. To remedy this, we perform all our manipulations
with the modified kernel function μðτÞ ¼ e−ϵjτj=jτj for some
ϵ > 0, and we will let ϵ tend to zero at the end of our
calculation to get a finite result.4 At this stage, we can write

dH
dt

¼ G2M
5c8

Xþ∞

n¼1

½Îð4Þij ðtÞÎð2nþ3Þ
ij ðtÞ − Îð3Þij ðtÞÎð2nþ4Þ

ij ðtÞ�

×
Z þ∞

−∞

dτ e−ϵjτj

jτj
τ2n

ð2nÞ! : ð3:9Þ

We no longer need the Hadamard partie finie, because the
integrals are convergent at the bound τ ¼ 0 for n ≥ 1. Under
the form (3.9), it is straightforward to recast the right-hand
side as a total time derivative. Indeed, one readily checks that

Îð4Þij Î
ð2nþ3Þ
ij − Îð3Þij Î

ð2nþ4Þ
ij ¼ d

dt

�
−Îð3Þij Î

ð2nþ3Þ
ij

þ 2
Xn−2
s¼0

ð−ÞsÎðsþ4Þ
ij Îð2n−sþ2Þ

ij

− ð−ÞnðÎðnþ3Þ
ij Þ2

�
: ð3:10Þ

3The functional derivatives should be more accurately denoted
δH=δpiðtÞ and δH=δxiðtÞ. For any nonlocal functional F½f� of a
function fðtÞ, the functional derivative δF=δfðtÞ is defined, after
suitable integrations by parts (ignoring all integrated contribu-
tions at t ¼ �∞), by

δ

Z
dt FðtÞ ¼

Z
dt δfðtÞ δF

δfðtÞ :
4In Ref. [26], the kernel function μðτÞ ¼ 1ffiffiffiffiffiffiffi

2πσ2
p e−

1
2
ðτσÞ2 was

adopted.
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This relation is valid for any n ≥ 1, with the second term
involving the sum to be simply ignored when n ¼ 1. This
formula proves that the nonconservation law (3.8) is in
fact equivalent to a conservation law stricto sensu,
namely dE=dt ¼ 0. The conserved energy E, though,
differs from the Hamiltonian. It is defined instead by
E ¼ H þ δH, with

δH ¼ G2M
5c8

Xþ∞

n¼1

�
Îð3Þij Îð2nþ3Þ

ij − 2
Xn−2
s¼0

ð−ÞsÎðsþ4Þ
ij Îð2n−sþ2Þ

ij

þ ð−ÞnðÎðnþ3Þ
ij Þ2

� Z þ∞

−∞

dτ e−ϵjτj

jτj
τ2n

ð2nÞ! : ð3:11Þ

The quantity E ¼ H þ δH actually represents the
Noetherian conserved energy associated with the
Hamiltonian containing the nonlocal term (3.2). Obviously,
the contribution of the tail term to that energy is just
Etail ¼ Htail þ δH, where Htail is given by Eq. (3.2).
However, the expression (3.11) is not yet what we need

since it is in the form of an infinite Taylor expansion, while
we would like to get a nonperturbative expression for the
conserved energy. The most convenient approach to resum
the Taylor series is to use a Fourier decomposition of the
binary dynamics at the Newtonian approximation (which is
sufficient for our purpose). The Newtonian quadrupole
moment is a periodic function of time (there is no orbital
precession at this order), which may be decomposed as the
discrete Fourier series

IijðtÞ ¼
Xþ∞

p¼−∞
I
pije

ipℓ with I
pij ¼

Z
2π

0

dℓ
2π

Iije−ipℓ;

ð3:12Þ
where ℓ ¼ ωðt − t0Þ is the mean anomaly of the binary
motion, with ω ¼ 2π=P being the orbital frequency
(or mean motion) corresponding to the orbital period P,
and t0 the instant of passage at periastron. The
discrete Fourier coefficients pI ij are functions of the
orbit’s eccentricity e (to Newtonian order) and satisfy

pI ij ¼ −pĪ ij, with the overbar denoting the complex
conjugation. Their explicit expressions for generic ellip-
tic orbits in terms of combinations of Bessel functions
depending on the eccentricity are given in Appendix A
of [50]. We provide some alternative expressions in
Appendix B below.
Plugging (3.12) into (3.11), we obtain a double

Fourier series indexed by integers p and q, from which
we separate out the constant (DC) part corresponding to
modes pþ q ¼ 0 from the oscillating (AC) part corre-
sponding to pþ q ≠ 0. After some manipulations, we
are able to nicely resum the Taylor expansions when
τ → 0 in both DC and AC parts to simple trigonometric
functions. We obtain

δH¼−
G2Mω6

5c8

� Xþ∞

p¼−∞
jI
pijj2p6

Z þ∞

−∞

dτe−ϵjτj

jτj ðpωτÞsinðpωτÞ

þ1

2

X
pþq≠0

I
p ijIq ij

p3q3ðp−qÞ
pþq

eiðpþqÞℓ

×
Z þ∞

−∞

dτe−ϵjτj

jτj ½cosðpωτÞ−cosðqωτÞ�
�
: ð3:13Þ

The remaining integrals are convergent at the bound
τ ¼ 0, as well as at infinity τ ¼ �∞ thanks to our
exponential cutoff factor e−ϵjτj. Moreover, they can be
evaluated with standard formulas,5 yielding

δH ¼ −
2G2Mω6

5c8

�X
p

jI
pijj2p6

−
1

2

X
pþq≠0

I
pijIq ij

p3q3ðp − qÞ
pþ q

ln

����pq
����eiðpþqÞℓ

�
: ð3:14Þ

This is our final result for E ¼ H þ δH, valid for general
binary orbits. There are no other contributions to this
conserved integral of energy associated to the nonlocal
Hamiltonian H ¼ H0 þHtail at the 4PN order. Notice that
the DC contribution [first term in (3.14)] admits a closed
analytic form in physical space. We see that it is indeed
directly related to the leading order total averaged energy
flux FGW emitted in gravitational waves (with hi referring
to the time averaging):

δHDC ¼ −
2G2M
5c8

hðÎð3Þij Þ2i ¼ −
2GM
c3

FGW: ð3:15Þ

The second term in (3.14), with oscillating modes
pþ q ≠ 0, can straightforwardly be computed. Its expres-
sion may be checked by a direct integration of the Fourier
decomposition of the right-hand side of the nonconserva-
tion law (3.8). However, such a direct integration misses an
integration constant which cannot a priori be guessed by
this method. Its correct value is provided by the constant
DC contribution, i.e., the first term in (3.14) (corresponding
to Fourier modes with pþ q ¼ 0). Finally, the important
point for us is that, while for circular orbits the AC term
vanishes, the DC term does not. In the circular orbit limit,
the nonzero modes reduce to the quadrupolar ones
(p ¼ �2), and to the modes p ¼ 0 which will not

5Namely, Z þ∞

−∞

dτ e−ϵjτj

jτj ðpωτÞ sinðpωτÞ ¼ 2;

Z þ∞

−∞

dτ e−ϵjτj

jτj ½cosðpωτÞ − cosðqωτÞ� ¼ −2 ln
����pq

����;
where we have set ϵ ¼ 0 after the integration.
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contribute here.6 Equation (3.14) becomes then (with
M ¼ m)

δH ¼ −
64

5
mc2ν2x5: ð3:16Þ

As usual we have posed x ¼ ðGmω=c3Þ2=3. The extra term
(3.16) was not considered in Paper I. As we shall see,
including it gladly resolves our disagreement with the
derivation of the conserved energy for circular orbits in the
Hamiltonian formalism [25].

B. Integral of angular momentum

We keep considering the problem of defining
conserved quantities from a non-local-in-time Hamiltonian,
but focusing on the angular momentum.We assume that the
instantaneous piece H0 of the center-of-mass Hamiltonian
(3.1) is rotationally invariant; i.e., it depends on the
canonical variables only through the rotational invariants
r ¼ jxj, pr ¼ n · p and p2. This is surely the case for our
4PN Hamiltonian describing the dynamics of compact
binaries without spins. Let us therefore study the impact
of the nonlocal tail piece of H on the conservation law of
the angular momentum. First of all, it is straightforward
to derive the law of variation of the “orbital” angular
momentum L ¼ x × p (or Li ¼ εijkxjpk) which would be
conserved in the absence of the tail term:

dLi

dt
¼ −εijk

�
xj
δHtail

δxk
þ pj δH

tail

δpk

�
: ð3:17Þ

Using the functional derivatives (3.7) of the tail part of
the Hamiltonian and the explicit expression of the third
derivative of the quadrupole moment (3.4a), we further
obtain

dLi

dt
¼ 4G2M

5c8
εijkÎ

ð3Þ
jl Pf

2r=c

Z þ∞

−∞

dτ
jτj Î

ð3Þ
kl ðtþ τÞ; ð3:18Þ

noticing again the cancellation of the Hadamard partie finie
scale on the right-hand side. Next, proceeding as we
did for the energy, we Taylor expand the integrand when
τ → 0, after adding as previously the regulator e−ϵjτj to
avoid divergence problems:

dLi

dt
¼ 4G2M

5c8
εijk

Xþ∞

n¼1

Îð3Þjl Î
ð2nþ3Þ
kl

Z þ∞

−∞

dτ e−ϵjτj

jτj
τ2n

ð2nÞ! :

ð3:19Þ

It is no longer necessary to keep the Hadamard partie finie
on the remaining integral. Now, the appropriate analogue
of the formula (3.10) is

εijkÎ
ð3Þ
jl Î

ð2nþ3Þ
kl ¼ d

dt

�Xn−1
s¼0

ð−ÞsεijkÎðsþ3Þ
jl Îð2n−sþ2Þ

kl

�
: ð3:20Þ

Hence we obtain the full-fledged conservation law for
the integral of angular momentum: dJi=dt ¼ 0. When the
Hamiltonian is nonlocal, Ji ¼ Li þ δLi contains, in addi-
tion to the naive guess Li ¼ εijkxjpk, the extra contribution

δLi ¼ −
4G2M
5c8

Xþ∞

n¼1

�Xn−1
s¼0

ð−ÞsεijkÎðsþ3Þ
jl Îð2n−sþ2Þ

kl

�

×
Z þ∞

−∞

dτ e−ϵjτj

jτj
τ2n

ð2nÞ! : ð3:21Þ

The Taylor expansion when τ → 0 can be summed up at the
prize of introducing Fourier series. We end up with the
following result, composed of a constant DC term and a
nonconstant oscillation AC term:

δLi ¼ 4G2Mω5

5c8

�X
p

iεijkIpjl I−pklp
5

−
X

pþq≠0
iεijkIpjl Iq kl

p3q3

pþ q
ln

����pq
����eiðpþqÞℓ

�
: ð3:22Þ

For the DC term, a relation similar to Eq. (3.15) for the
energy holds, namely

ðδLiÞDC ¼ 4G2M
5c8

hεijkÎð3Þjl Î
ð2Þ
kl i ¼ −

2GM
c3

Gi
GW; ð3:23Þ

where Gi
GW denotes the total (averaged) flux of angular

momentum at leading PN order. Finally, for circular orbits,
the latter expression reduces to the DC contribution

δL ¼ −
64

5

Gm2

c
ν2x7=2ℓ ¼ δpφℓ ; ð3:24Þ

with ℓ ¼ L=jLj, the symbol δpφ denoting the correspond-
ing contribution in the restricted problem (see Sec. IVA),
such that h ¼ pφ þ δpφ is conserved.

IV. CONSERVED ENERGY
FOR CIRCULAR ORBITS

In the present section, we shall compute the energy E
for circular orbits, extending the derivation of Paper I by
including the extra contribution δHDC investigated in the
previous section. In the next section, we will also compute
the advance of the periastron in the circular orbit limit, but

6We have (with m being the total mass and ν the symmetric
mass ratio)

I
2
xx ¼ I−2xx ¼

1

4
mνr2; I

2
yy ¼ I−2yy ¼ −

1

4
mνr2;

I
2
xy ¼ −I−2xy ¼ −

i
4
mνr2; I

0
xx ¼ I

0
yy ¼ −

1

2
I
0
zz ¼

1

6
mνr2:
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we shall find that, in this case, the extra contributions in the
energy and the angular momentum do not contribute.
When the orbits are exactly circular, i.e., when the space-

time admits a helical Killing vector, both the energy and
periastron advance can be determined in the small mass-
ratio limit using perturbative gravitational self-force meth-
ods [29,30]. One first obtains the redshift observable [51],
which is the invariant associated with the helical Killing
symmetry. From this quantity, one deduces the energy
using the first law of binary point-particle mechanics [32].
To get the periastron advance, one needs both an averaged
version of the redshift observable [52] and a generalization
of the first law valid for eccentric orbits [40,41]. We shall
thus limit ourselves to the case of circular orbits in order
to make meaningful comparisons between our 4PN results
and the self-force results.

A. Derivation using reduced canonical variables

We consider the restricted problem of particle motion in
a fixed orbital plane, which is appropriate for the 4PN
dynamics of particles without spin. Let φ be the phase
angle or true anomaly of the orbit, defined from the
orbit’s periastron. For the restricted problem, the relative
separation is given by x ¼ rn with the unit vector
n ¼ ðcosφ; sinφÞ in polar coordinates. Introducing the
second unit vector λ ¼ ð− sinφ; cosφÞ, orthogonal to n
in the orbital plane, we also decompose p ¼ prnþ pφλ=r,
where pφ is the conserved angular momentum in the case
of a rotationally invariant Hamiltonian. Then, ℓ ¼ n × λ is
the unit vector normal to the orbital plane and we have
L ¼ x × p ¼ pφℓ . Another useful notation is to pose
m ¼ 1ffiffi

2
p ðnþ iλÞ (see Appendix B).

Performing the change of canonical variables ðx; pÞ →
ðr;φ; pr; pφÞ, Hamilton’s equations, derived from the
action S ¼ R ½prdrþ pφdφ −Hdt�, read

dr
dt

¼ δH
δpr

;
dpr

dt
¼ −

δH
δr

; ð4:1aÞ

dφ
dt

¼ δH
δpφ

;
dpφ

dt
¼ −

δH
δφ

; ð4:1bÞ

where the derivatives are still to be considered in a functional
sense. The Hamiltonian, as in Eq. (3.1), is again the sum of
the instantaneous pieceH0ðr; pr; pφÞ and of the nonlocal tail
term (3.2). While the instantaneous pieceH0 is independent
of the phase angle φ, the tail piece does depend on it,
so that the conjugate momentum pφ is no longer conserved
for the nonlocal dynamics [see Eqs. (3.17)–(3.18)].
In this section, we shall mainly study the contribution of

the tail term in the circular energy, as the computations due
to the instantaneous part are standard. We simply choose
for the instantaneous term the Newtonian Hamiltonian and
add to it the tail term (3.2), setting

H ¼ 1

2mν

�
p2
r þ

p2
φ

r2

�
−
Gm2ν

r
þHtail: ð4:2Þ

We then write the tail term asHtail¼−ðG2MÞ=ð5c8ÞÎð3Þij T
ð3Þ
ij

with the following special notation for the tail factor (where
the Hadamard Pf is still defined with the scale r):

T ðaÞ
ij ¼ Pf

2r=c

Z þ∞

−∞

dτ
jτj Î

ðaÞ
ij ðtþ τÞ: ð4:3Þ

This tail factor may be computed explicitly by means
of the Fourier series (3.12), which leads to (with γE the
Euler constant)

T ðaÞ
ij ¼−2

Xþ∞

p¼−∞
ðipωÞaI ij

p
eipℓ

�
ln

�
2jpjωr

c

�
þ γE

�
: ð4:4Þ

In the following, we shall systematically project out the
tail factor onto the moving vector basis ðn; λÞ, thus defining
T ðaÞ

nn ¼ ninjT ðaÞ
ij , T ðaÞ

nλ ¼ niλjT ðaÞ
ij and T ðaÞ

λλ ¼ λiλjT ðaÞ
ij .

For instance, thanks to (3.4a), we may put the tail piece
of the Hamiltonian in the form (with M ¼ m in this
approximation)

Htail ¼ 2G3m2

5c8r2

�
prT

ð3Þ
nn þ 4pφ

r
T ð3Þ

nλ

�
: ð4:5Þ

The Hamilton’s equations (4.1), in which we consistently
use the functional derivatives of the tail part of the
Hamiltonian, can be written more explicitly as

dr
dt

¼ pr

mν
þ 4G3m2

5c8r2
T ð3Þ

nn ; ð4:6aÞ

dpr

dt
¼ p2

φ

mνr3
−
Gm2ν

r2
þ 8G3m2

5c8r3

�
prT

ð3Þ
nn þ 6pφ

r
T ð3Þ

nλ

−
Gm
r2

�
2

3
p2
r þ 8

p2
φ

r2

��
; ð4:6bÞ

dφ
dt

¼ pφ

mνr2
þ 16G3m2

5c8r3
T ð3Þ

nλ ; ð4:6cÞ

dpφ

dt
¼ −

8G3m2

5c8r2

�
prT

ð3Þ
nλ þ 2pφ

r
ðT ð3Þ

λλ − T ð3Þ
nn Þ

�
: ð4:6dÞ

Let us now derive the tail contribution to the conserved
energy for circular orbits (extending the derivation from
Sec. V D in Paper I). Imposing pr ¼ 0 in Eqs. (4.6), we first
recover the usual Newtonian solution pφ ¼ p0

φ þOðc−8Þ,
φ ¼ ω0t þ Oðc−8Þ, in which p0

φ ¼ mν
ffiffiffiffiffiffiffiffiffiffiffiffi
Gmr0

p
and

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=r30

q
are the constant Newtonian angular

momentum and orbital frequency, respectively, with r0
being the radius of the circular orbit. Proceeding iteratively,
we inject the Newtonian solution into the tail terms of
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Eqs. (4.6). These can then be reduced for circular orbits
with the help of the formulas [see Eq. (5.25) in Paper I]

ðT ð3Þ
nλ Þjðp0

φ;ω0tÞ ¼ 8
G3=2m5=2ν

r5=2

�
ln

�
4ω0r0
c

�
þ γE

�
; ð4:7aÞ

ðT ð3Þ
nn Þjðp0

φ;ω0tÞ ¼ ðT ð3Þ
λλ Þjðp0

φ;ω0tÞ ¼ 0: ð4:7bÞ

In turn, the system of equations (4.6) including tails admits
the solutions pφ ¼ p0

φ þ Δpφ and φ ¼ ðω0 þ ΔωÞt, where
Δpφ and Δω are the tail contributions to the angular
momentum and orbital frequency, respectively, as a func-
tion of the radius r0. Their expressions are

Δpφðr0Þ¼
G9=2m11=2ν2

c8r7=20

�
−
192

5

�
ln
�
4ω0r0
c

�
þ γE

�
þ32

5

�
;

ð4:8aÞ

Δωðr0Þ ¼
G9=2m9=2ν

c8r11=20

�
−
64

5

�
ln

�
4ω0r0
c

�
þ γE

�
þ 32

5

�
:

ð4:8bÞ
This solves two ofHamilton’s equations, while the two others
simply say that r0 and pφ are constant for circular orbits.
We are now in a position to calculate the conserved

energy associated with the nonlocal Hamiltonian for
circular orbits. As shown in Sec. III, one must take into
account extra contributions in the definition of the energy
and angular momentum with respect to the naive expect-
ations, i.e., H and L ¼ x × p, respectively. In fact, we have
seen that E ¼ H þ δH and J ¼ Lþ δL, with δH and δL
given by (3.14) and (3.22), or by the explicit formulas (3.16)
and (3.24), respectively, in the circular orbit limit. For the
restricted problem, since L ¼ pφℓ , we shall decompose the
true angular momentum invariant h as h ¼ pφ þ δpφ,
where δpφ is given by (3.24) for circular orbits. Beware
that Δpφ denotes the tail contribution in pφ, whereas δpφ

serves to connect pφ to the angular momentum invariant h,
as appropriate for our nonlocal Hamiltonian.
Thus, the conserved energy for a circular orbit is the sum

of the total Hamiltonian H, made of the instantaneous part
as well as the tail term (4.5), which is to be evaluated thanks

to Eqs. (4.7), and of the crucial term δH given by (3.16).
After using (4.8a), we find that the tail contribution of the
circular energy, regarded as a function of r0, is

ΔEðr0Þ ¼
G5m6ν2

c8r50

�
−
128

5

�
ln

�
4ω0r0
c

�
þ γE

�
−
32

5

�
:

ð4:9Þ
Finally, the invariant energy must be expressed in terms
of the orbital frequency through the usual parameter
x ¼ ðGmω=c3Þ2=3. We obtain

ΔEðxÞ ¼ −
224

15
mc2ν2x5

�
ln ð16xÞ þ 2γE þ

2

7

�
: ð4:10Þ

The above value for ΔEðxÞ includes notably the tail
contribution due to the replacement of r0 as a function
of x into the Newtonian energy EN ¼ − 1

2
Gm2ν=r0 by

means of Eq. (4.8b). The result (4.10) corrects Eq. (5.30) in
Paper I and we are now in agreement with the Hamiltonian
formalism of Refs. [25,26], regarding the treatment of
nonlocalities in the circular energy. It is the extra term δH
displayed in Eq. (3.16) that permits us to reconcile our
work with the Hamiltonian results.
The complete expression of the circular energy through

the 4PN order is the sum of the tail part (4.10) and
of all the terms coming from the instantaneous part of
the 4PN dynamics. The latter terms may be computed
either in Lagrangian form, using the harmonic coordinates
Lagrangian of Paper I augmented by the two ambiguity
parameters δ1 and δ2 as advocated in Sec. II, or in
Hamiltonian form. After reducing to the frame of the
center of mass and specializing to circular orbits, we get
the full 4PN result, which however still depends on one
of the ambiguity parameters, namely δ2. As usual, the
ambiguous parameter is expected to be a pure rational
fraction entering the coefficient that is linear in the
symmetric mass ratio ν, since the terms involving loga-
rithms or irrationals such as π and γE are uniquely
determined. To find this fraction, we compare our expres-
sion with the result of GSF calculations, valid in the small
mass-ratio limit [31,34]. This uniquely fixes δ2 ¼ 192

35
. In

the end, our complete invariant 4PN circular energy as a
function of the orbital frequency reads

E ¼ −
mνc2x

2

�
1þ

�
−
3

4
−

ν

12

�
xþ

�
−
27

8
þ 19

8
ν −

ν2

24

�
x2

þ
�
−
675

64
þ
�
34445

576
−
205

96
π2
�
ν −

155

96
ν2 −

35

5184
ν3
�
x3

þ
�
−
3969

128
þ
�
−
123671

5760
þ 9037

1536
π2 þ 896

15
γE þ

448

15
lnð16xÞ

�
ν

þ
�
−
498449

3456
þ 3157

576
π2
�
ν2 þ 301

1728
ν3 þ 77

31104
ν4
�
x4
	
: ð4:11Þ
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B. Derivation using Delaunay-Poincaré variables

In this section, we present a derivation based on a simple
nonlocal model that has been proposed in Refs. [26].
Moreover, we aim at comparing and contrasting the
nonlocal dynamics to some other simpler models also
discussed in [26]. Starting from the original 4PN nonlocal
action for compact binaries, an alternative local action
has been derived in [26] by applying nonlocal shifts of
the particles’ world lines and removing “double-zero”
contributions. This local action has then been used in
applications such as building the 4PN effective-one-body
(EOB) Hamiltonian [39]. In this section, we shall check
that, in such a local dynamics, the conserved energy for
circular orbits reproduces that of the original nonlocal
dynamics. Furthermore, we shall confirm that the so-called
“Ostrogradski” dynamics investigated in [26] is equivalent
to this local dynamics. It is thus also equivalent to the
nonlocal dynamics, at least regarding the evaluation of
the conserved energy for circular orbits. Since Ref. [26]
insisted on the usefulness of a particular set of variables,
known as the elliptical Delaunay variables, we shall adopt
those variables here.
Starting from the restricted problem (the motion lying in

a fixed orbital plane), using the canonical variables ðx; pÞ,
we define the velocity as v ¼ p=μ (where μ ¼ mν) and
parametrize the motion by means of the usual elliptic
elements, i.e., the semimajor axis a, the eccentricity e, the
argument of the periastron g (often denoted ω in celestial
mechanics), and the instant of passage at periastron t0. The
Delaunay variables are then given by ðℓ; g; μL; μGÞ, where
ℓ ¼ ωðt − t0Þ is the mean anomaly, ω ¼ ðGm=a3Þ1=2 is the
mean motion (generally denoted n in celestial mechanics),
L ¼ ðGmaÞ1=2, and G ¼ ½Gmað1 − e2Þ�1=2 is the angular
momentum per unit mass. The important point is that the
variables ðℓ; g; μL; μGÞ are canonical, with ℓ and g repre-
senting the generalized positions, μL and μG being the
associated generalized momenta. In fact, we shall use a
variant of these variables, known as the Poincaré canonical
variables, ðλ; h;Λ;HÞ, where the generalized positions are
λ ¼ ℓþ g and h ¼ −g, while the associated canonical
momenta are Λ ¼ μL and H ¼ μðL − GÞ. Their main
advantage is that λ represents directly the phase variable,
measured from a fixed direction in the orbital plane (thus
taking into account the effect of orbital precession), so that
ω ¼ _λ is nothing but the orbital frequency.
For our discussion we keep only the Newtonian term

and the 4PN tail term given by (3.2). Furthermore, one
advantage of the Delaunay-Poincaré variables (as empha-
sized in [26]) is that we can treat the tail term at the level of
the Hamiltonian as an expansion when the eccentricity
tends to zero, where

eðΛ;HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð2Λ −HÞp

Λ
: ð4:12Þ

As we are ultimately interested in the energy for circular
orbits, we shall neglect the eccentricity in the Hamiltonian.
On the other hand, notice that the semimajor axis is only a
function of Λ through

aðΛÞ ¼ Λ2

Gmμ2
: ð4:13Þ

Thus, Λ will be directly related to the radius of the circular
orbit. Working out the nonlocal Hamiltonian (4.2) in the
limit of e → 0 and using the Delaunay-Poincaré variables
we obtain

H ¼ −
G2m2μ3

2Λ2
−
32G10m9μ12

5c8

×

�
Pf

2
ffiffiffiffi
Λ0

p
Z þ∞

−∞

dτ
jτj

cos½2ðλ − λ0Þ�
Λ5Λ05 − 4

lnðΛ=Λ0Þ
Λ10

�

þOðeÞ: ð4:14Þ

We denote λ¼λðtÞ and λ0 ¼λðtþτÞ together with Λ¼ΛðtÞ,
Λ0 ¼ Λðtþ τÞ. When e → 0 the Hamiltonian depends
functionally only on the phase variable λ and its conjugate
momentum Λ. We have a Hadamard partie finie in front of
the nonlocal integral, and the last term in (4.14) accounts
for the fact that the partie finie depends on a scale which is
the separation at time t, i.e., r ¼ að1 − e cos uÞ in elliptical
representation, which yields r ∝

ffiffiffiffi
Λ

p
in the limit e → 0.

The constant Λ0 introduced in (4.14) is irrelevant and
actually cancels out from the two terms.
We introduce a small parameter ε ∝ c−8 in front

of the tail term and work at linear order in ε. Posing
Gm ¼ ν ¼ c ¼ Λ0 ¼ 1 for simplicity, and ignoring the
remainder term in the eccentricity and the Hadamard partie
finie (always implicitly understood in what follows), we
have the very simple model

H¼−
1

2Λ2
þ ε

�Z þ∞

−∞

dτ
jτj

cos½2ðλ− λ0Þ�
Λ5Λ05 − 4

lnΛ
Λ10

�
: ð4:15Þ

The dynamics follows from varying the action
S ¼ R ½Λdλ −Hdt�. The nonlocality results in functional
derivatives in Hamilton’s equations, hence

_λ¼δH
δΛ

¼ 1

Λ3
þε

�
−10

Z þ∞

−∞

dτ
jτj

cos½2ðλ−λ0Þ�
Λ6Λ05 þ40lnΛ−4

Λ11

�
;

ð4:16aÞ

_Λ ¼ −
δH
δλ

¼ 4ε

Z þ∞

−∞

dτ
jτj

sin½2ðλ − λ0Þ�
Λ5Λ05 : ð4:16bÞ

We shall now solve those equations for circular orbits.
Noticing that the orbital frequency ω ¼ _λ of the circular
motion is equal to 1=Λ3 to zeroth order in ε, and that Λ is
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constant at that order, we can solve the equations thanks to
the results [see Eq. (5.25) in Paper I]

Z þ∞

−∞

dτ
jτj sin½2ðλ − λ0Þ� ¼ 0; ð4:17aÞ

Z þ∞

−∞

dτ
jτj cos½2ðλ − λ0Þ� ¼ −2

�
ln

�
4

Λ3

�
þ γE

�
: ð4:17bÞ

Equations (4.16) are thus equivalent to saying that Λ is now
constant to linear order in ε, and that the following relation
between Λ and the orbital frequency holds:

ω ¼ 1

Λ3
þ 20ε

Λ11

�
ln

�
4

Λ

�
þ γE −

1

5

�
: ð4:18Þ

Our next problem is to relate the conserved energy of the
circular orbit to the Hamiltonian (4.15) computed on shell.
This problem has been solved in the general case in
Sec. III A and here we redo the reasoning within the toy
model (4.15). Differentiating (4.15) with the help of the
equations of motion (4.16) we get

dH
dt

¼ 2ε

Z þ∞

−∞

dτ
jτj ð

_λþ _λ0Þ sin½2ðλ − λ0Þ�
Λ5Λ05 : ð4:19Þ

As in Sec. III A we perform a formal Taylor expansion
when τ → 0 and are able to rewrite the right-hand side in
the form of a total derivative which is then transferred to the
left-hand side. This yields the looked-for energy in the form
E ¼ H þ δH where

δH ¼ −ε
Xþ∞

n¼1

�
CCð2nÞ − 2

Xn−2
s¼0

ð−ÞsCðsþ1ÞCð2n−s−1Þ

þ ð−ÞnðCðnÞÞ2
� Z þ∞

−∞

dτ e−ϵjτj

jτj
τ2n

ð2nÞ!
þ ðidem with C ↔ SÞ: ð4:20Þ

We have posed C ¼ cosð2λÞ=Λ5 and S ¼ sinð2λÞ=Λ5 and
the second term represents exactly the same expression
but with S in place of C. The Taylor expansion can be
resummed up by going to Fourier space. We decompose
C and S in Fourier series [with the conventions (3.12)] and
get closed-form expressions involving trigonometric inte-
grals that are finally computed using the formulas in
footnote 5. Finally we have

δH ¼ ε

�
2
X
p

jC
p
j2 þ

X
pþq≠0

C
p
C
q

p − q
pþ q

ln

����pq
����eiðpþqÞℓ

�

þ ðidem with C
p
↔ S

p
Þ: ð4:21Þ

This is made of oscillatory terms having pþ q ≠ 0 and
of a crucial constant DC contribution with pþ q ¼ 0.

For circular orbits7 we find that the DC term does give
the extra contribution δH ¼ 2ε=Λ10 and we obtain, after
reducing Eq. (4.15) to circular orbits using (4.17),

E ¼ −
1

2Λ2
−

2ε

Λ10

�
ln

�
4

Λ

�
þ γE − 1

�
: ð4:22Þ

Combining (4.18) and (4.22) we can express E at linear
order in ε as a function of the circular orbit frequency, or,
rather, the usual parameter x ¼ ω2=3. The result is

E ¼ −
x
2
þ 7ε

3
x5
�
ln ð16xÞ þ 2γE þ

2

7

�
; ð4:23Þ

which is consistent with Eq. (4.10), and with the result from
the ADM Hamiltonian approach obtained in Refs. [25,26].
In fact, the latter works [25,26] proceeded in another

way. Instead of working with the original nonlocal
Hamiltonian (4.15), they first inserted into the nonlocal
tail integral the equations of motion “off shell,” i.e.,
containing nonzero source terms Sλ and SΛ defined by
the variation of the action with respect to the canonical
variables, Sλ ¼ δS=δλ and SΛ ¼ δS=δΛ. In Eqs. (4.7) of
[26] they obtained a solution to those off-shell equations
at linear order in the source terms Sλ and SΛ, which they
inserted back into the nonlocal action, again keeping only
the linear terms when Sλ; SΛ → 0, arguing that the higher
nonlinear terms are double-zero or multiple-zero contribu-
tions that do not affect the dynamics. Then the extra
terms linear in the source contributions Sλ and SΛ could
be “field-redefined away” by some shifts of the dynamical
variables, say δλ ¼ ξλ and δΛ ¼ ξΛ, where the shifts are
given as some nonlocal integrals over Sλ and SΛ. Thus,
according to Ref. [26], performing these shifts justifies the
naive replacement of λ0 and Λ0 in the nonlocal Hamiltonian
(4.15) by the solution of the Newtonian equations of
motion, which in this case is λ0 ¼ λþ τ=Λ3 and Λ0 ¼ Λ.
As a result the nonlocal dynamics becomes local in the
shifted variables, with the Hamiltonian given by

H¼−
1

2 ~Λ2
þ ε

�
1

~Λ10

Z þ∞

−∞

dτ
jτjcos

�
2τ
~Λ3

�
− 4

ln ~Λ
~Λ10

�
; ð4:24Þ

where the shifted variables are ~λ ¼ λþ ξλ and ~Λ ¼ Λþ ξΛ.
This is the toy model of Eq. (4.12) in [26], except that here
we keep the same last term as in (4.15) to account for our
choice for the Hadamard partie finie scale. Since (4.24)
depends only on ~Λ and not on ~λ (the dependence on ~λ
would arise in eccentricity-dependent terms), we have
~Λ ¼ const, while the orbital frequency comes from the
conjugate Hamiltonian equation as

7In this case we just have 2C¼ 1
2Λ5 ¼ −2C and 2S¼ 1

2iΛ5 ¼−−2S
(others are zero).
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ω ¼ ∂H
∂ ~Λ

¼ 1

~Λ3
þ ε

�
−

10

~Λ11

Z þ∞

−∞

dτ
jτj cos

�
2τ
~Λ3

�

þ 6

~Λ14

Z þ∞

−∞

dτ
jτj τ sin

�
2τ
~Λ3

�
þ 40 ln ~Λ − 4

~Λ11

�
: ð4:25Þ

Note that the second term in the square brackets is due to the
derivationofthe“frequency”1= ~Λ3 intheargumentofthecosine
inside the integral, and this contribution is evaluated using the
formulas in footnote5. On the other hand, in the local model
there is no need to add an extra contribution to the
conserved energy E, since the energy is obviously given
by the Hamiltonian on shell. The extra term δH in the
nonlocal model gives a contribution which exactly accounts
for the presence of the second term in Eq. (4.25). Finally,
taking into account the relation between ω and ~Λ deduced
from (4.25), we obtain for the invariant circular energy
expressed in terms of x ¼ ω2=3 the same result as
Eq. (4.23). In particular this is a confirmation of the
procedure of “localization” of the nonlocal action by means
of nonlocal shifts, as advocated in Ref. [26].
The authors of [26] also argued that the nonlocal

dynamics is equivalent to another dynamics, specified by
a generalized Hamiltonian à la Ostrogradski obtained from
the nonlocal Hamiltonian (4.15) by formally performing
the Taylor expansion λ0 ¼ λþ _λτ þOðτ2Þ and keeping
only the linear term, thus

H ¼ −
1

2Λ2
þ ε

�
1

Λ10

Z þ∞

−∞

dτ
jτj cosð2

_λτÞ − 4
lnΛ
Λ10

�
: ð4:26Þ

This Hamiltonian is a generalized one, as it depends on Λ
and _λ, but it is local since the canonical variables are
evaluated at time t. The Hamiltonian equations read now

_λ ¼ ∂H
∂Λ ; _Λ ¼ d

dt

�∂H
∂ _λ

�
; ð4:27Þ

while the associated conserved energy is given by

E ¼ H − _λ
∂H
∂ _λ : ð4:28Þ

We readily find that the equations of motion imply that
Λ ¼ const and that ω ¼ _λ is related to Λ by the same
relation (4.18) as in the nonlocal model. Furthermore the
result is the same as for the nonlocal model because the
second term present in the conserved energy (4.28) plays
the same role as the extra term due to the DC part of
Eq. (4.21) in the nonlocal model, and we end up again with
the same result as in Eq. (4.23), thus confirming the
arguments of Ref. [26].

V. PERIASTRON ADVANCE
FOR CIRCULAR ORBITS

We denote by K the fractional angle of the periastron
advance, such that the precession of the periastron

per revolution is Φ ¼ 2πK. As K tends to 1 in the limit
c → þ∞ (no precession at the Newtonian level) the
relativistic precession is entirely described by k ¼ K − 1.
Because of the nonlocal tail term (3.2), it will be possible to
compute K only in the form of an expansion series when
the orbit’s eccentricity e → 0. In fact we shall restrict our
calculation to the limiting case of circular orbits. In this
section we shall focus our attention mostly on the control of
the tail contribution to the periastron. The contributions due
to the local part of the dynamics will essentially be dealt
with using standard methods [53], but some complements
are given in Appendix C.
Even if we consider in fine the limiting case of circular

orbits, we must be careful about taking into account high
enough corrections in the eccentricity, because of cancel-
lations occurring with powers of e in denominators,
yielding a finite result when e → 0. The precession
equation we need to integrate in the Hamiltonian formalism
[see Eqs. (4.1)] is

dφ
dr

¼ δH=δpφ

δH=δpr
: ð5:1Þ

In the more detailed modelH ¼ H0 þHtail whereH0 is the
Newtonian Hamiltonian [see (4.2)], we insert Eqs. (4.6)
into (5.1) and obtain, after expanding to 4PN order,

dφ
dr

¼ pφ

r2pr

�
1þ 4G3m3ν

5c8r2

�
4r
pφ

T ð3Þ
nλ −

1

pr
T ð3Þ

nn

��
: ð5:2Þ

Since we must consistently include high-order corrections
in the eccentricity, recall that pφ and the HamiltonianH are
not constant but oscillate at the 4PN order, and we must
take into account those variations in the precession equa-
tion (5.2). With the notation (4.3), the equations obeyed by
these quantities, which are equivalent to (3.8) and (3.18),
read

dH
dt

¼ 2G2m2

5c8

�
1

mνr3

��
2p2

r þ
3h2

r2
þm3ν2

r

�
T ð3Þ

nn

þ 10hpr

r
T ð3Þ

nλ −
4h2

r2
T ð3Þ

λλ

�

þ 1

r2

�
prT

ð4Þ
nn þ 4h

r
T ð4Þ

nλ

��
; ð5:3aÞ

dpφ

dt
¼ −

8G3m2

5c8r2

�
prT

ð3Þ
nλ þ 2h

r
ðT ð3Þ

λλ − T ð3Þ
nn Þ

�
: ð5:3bÞ

In Sec. III we related the solutions of these equations to the
conserved integrals of energy E and angular momentum
J ¼ hℓ , with results E ¼ H þ δH and h ¼ pφ þ δpφ

where δH and δpφ have been provided in a general way
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by Eqs. (3.14) and (3.22), with the obvious correspondence
J ¼ Lþ δL ¼ ðpφ þ δpφÞℓ . Recall that δH and δpφ con-
tain both oscillating AC and constant DC terms. We have
checked that the DC terms in (3.14) and (3.22) do not
contribute to the periastron advance. On the other hand the
AC terms play an important role and can be computed
either from (3.14) and (3.22) or directly by integrating out
Eqs. (5.3), using the Fourier transform of the tail term (4.4).
Note that the Fourier series is equivalent to an expansion
when the eccentricity e → 0 so it must be pushed far
enough to fully control the periastron even in the circular
orbit limit e ¼ 0.
Next we equate H given by (4.2) to E − δH, which

permits us to solve for the radial momentum pr consistently
to the 4PN order, with the result

pr ¼ fðrÞ
�
1þ h

r2f2ðrÞ δpφ −
mν

f2ðrÞ ðH
tail þ δHÞ

�
; ð5:4Þ

in which Htail can also be replaced by the more explicit
expression (4.5). Here we have introduced the function
fðrÞ representing the Newtonian approximation for the
radial momentum in terms of the orbit’s invariants E and h,
namely

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mνEþ 2Gm3ν2

r
−
h2

r2

r
: ð5:5Þ

With such a notation we end up with a completely explicit
expression for the precession equation, depending also on
the previously determined δH and δpφ,

dφ
dr

¼ h
r2fðrÞ

�
1þ 2G3m3ν

5c8r2

�
−

1

fðrÞ T
ð3Þ
nn

þ 4r
h

�
2þ h2

r2f2ðrÞ
�
T ð3Þ

nλ

�

−
�
1þ h2

r2f2ðrÞ
�
δpφ

h
þ mν

f2ðrÞ δH
	
: ð5:6Þ

In this expression the tail terms can be obtained using the
Fourier expansion (4.4), together with the usual formulas
for the Fourier decomposition of the Keplerian motion.8

Note that because the radial function fðrÞ is proportional
to e for a solution of the motion, one must expand the tail
terms (and δH, δpφ as well) to sufficiently high order in e.
Finally we integrate the precession equation (5.6) between
the turning points rp and ra corresponding to periastron
and apastron. All the integrals can be computed either from
Sommerfeld’s method of complex contour integrals or
equivalently by using Hadamard’s partie finie method
[53]. One of the integrals to be computed contains a
logarithm and we explain in Appendix C how we employ
the method of contour integrals in this case. We obtain in
the limiting circular case e → 0 the tail contribution to the
periastron advance as

Ktail¼
�
352

5
−
1256

15
lnx−

592

15
ln2−

1458

5
ln3−

2512

15
γE

�
νx4:

ð5:7Þ

Next we evaluate the numerous instantaneous contri-
butions up to 4PN order. We did two independent
calculations, one based on the invariants associated with
our harmonic-coordinates Lagrangian, as given in Paper I
but corrected by Eq. (A3) above, and one based on the
associated ADM Hamiltonian. The simplification, of
course, is that with the instantaneous part of the dynamics
the invariants are defined in the usual way—there is no
need to worry about their variations as in Eqs. (5.3), and
the calculation can be done for any eccentric orbits. Again
we compute all integrals by means of Sommerfeld’s
contour integrals [54] or alternatively by Hadamard’s
partie finie integrals. As is well known, in harmonic
coordinates we meet integrals containing some logarithms.
In that case the Sommerfeld method is no longer straight-
forward and has to be adapted as described in
Appendix C.
Considering the circular orbit limit and adding the

tail part (5.7) we look for the values of the ambiguity
parameters δ1 and δ2 that are needed to reproduce the
known GSF contribution to the periastron advance when
ν → 0 [26,35–38]. Like for the energy we find that the
logarithms and all irrationals (like π2 and γE) are already
correct, and we get only one constraint δ1 þ 14δ2 ¼ 22013

315
.

Since we already know that δ2 ¼ 192
35

from the circular
limit of the energy (see Sec. IVA), we obtain δ1 ¼ − 2179

315
.

The ambiguity parameters are therefore determined, as
announced in Eq. (2.6). Thus the GSF limit has permitted
us to uniquely fix the values of the two ambiguity
parameters and our 4PN dynamics is now complete (for
any mass ratio).
For the instantaneous part of the periastron advance and

for general orbits we find9

8Among these let us report the well-known expansion of the
eccentric anomaly u, related to the mean anomaly ℓ by Kepler’s
equation ℓ ¼ u − e sin u:

u ¼ ℓþ 2
Xþ∞

q¼1

1

q
JqðqeÞ sinðqℓÞ;

eiku ¼ −
e
2
δ1;jkj þ

X
s≠0

k
s
Js−kðseÞeikℓ ðfor any k ∈ N�Þ:

We provide in Appendix B the explicit expressions of the Fourier
coefficients of the Newtonian quadrupole moment in terms of
Bessel functions of the eccentricity.

9Our computations make extensive use of the software
Mathematica together with the tensor package xAct [55].
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K0 ¼ 1þ 3

c2ĥ2

þ 1

c4

�
1

ĥ4

�
105

4
−
15

2
ν

�
þ Ê

ĥ2

�
15

2
− 3ν

��

þ 1

c6

�
1

ĥ6

�
1155

4
þ
�
−
625

2
þ 615

128
π2
�
νþ 105

8
ν2
�

þ Ê

ĥ4

�
315

2
þ
�
−218þ 123

64
π2
�
νþ 45

2
ν2
�
þ Ê2

ĥ2

�
15

4
−
15

4
νþ 3ν2

��

þ 1

c8

�
1

ĥ8

�
225225

64
þ
�
−
1736399

288
þ 2975735

24576
π2
�
νþ

�
132475

96
−
7175

256
π2
�
ν2 −

315

16
ν3
�

þ Ê

ĥ6

�
45045

16
þ
�
−
293413

48
þ 257195

2048
π2
�
νþ

�
35065

16
−
615

16
π2
�
ν2 −

525

8
ν3
�

þ Ê2

ĥ4

�
4725

16
þ
�
−
20323

24
þ 35569

2048
π2
�
νþ

�
4045

8
−
615

128
π2
�
ν2 − 45ν3

�

þ Ê3

ĥ2

�
15

4
ν2 − 3ν3

��
; ð5:8Þ

where we have conveniently rescaled the invariants as
Ê ¼ E

mνc2 and ĥ ¼ hc
Gm2ν2

. Reducing (5.8) to circular orbits is

quite simple, as we need Ê and ĥ in terms of x ¼ ðGmω
c3 Þ2=3

only to 3PN order (since the Newtonian term is merely 1),
and we get

K0 ¼ 1þ 3xþ
�
27

2
− 7ν

�
x2

þ
�
135

2
þ
�
−
649

4
þ 123

32
π2
�
νþ 7ν2

�
x3

þ
�
2835

8
þ
�
−
60257

72
þ 48007

3072
π2
�
ν

þ
�
5861

12
−
451

32
π2
�
ν2 −

98

27
ν3
�
x4: ð5:9Þ

Finally, our complete prediction for the periastron advance
in the case of circular orbits is

K ¼ 1þ 3xþ
�
27

2
− 7ν

�
x2

þ
�
135

2
þ
�
−
649

4
þ 123

32
π2
�
νþ 7ν2

�
x3

þ
�
2835

8
þ
�
−
275941

360
þ 48007

3072
π2 −

1256

15
ln x

−
592

15
ln 2 −

1458

5
ln 3 −

2512

15
γE

�
ν

þ
�
5861

12
−
451

32
π2
�
ν2 −

98

27
ν3
�
x4; ð5:10Þ

which agrees with the result of [39] obtained via the EOB
link derived in [38]. The GSF contribution therein is
generally described by means of the function ρðxÞ such
that K−2 ¼ 1 − 6xþ νρðxÞ þOðν2Þ [36,38], and we get

ρ ¼ 14x2 þ
�
397

2
−
123

16
π2
�
x3

þ
�
−
215729

180
þ 58265

1536
π2 þ 1184

15
ln 2þ 2916

5
ln 3

þ 5024

15
γE þ

2512

15
ln x

�
x4: ð5:11Þ

The 4PN coefficient is of the type ρ4PN ¼ a4PN þ b4PN ln x
and in particular, the coefficient a4PN, with numerical value
a4PN ≃ 64.6406, is in perfect agreement (thanks to our
previous adjustment of ambiguity parameters) with GSF
numerical calculations [37].

VI. CONCLUSIONS

In this paper, we further investigated the problem of
the 4PN equations of motion of compact binary systems
without spins in harmonic coordinates. In our previous
work [1] (Paper I), we computed the Fokker Lagrangian of
the motion in harmonic coordinates or, equivalently, after
performing suitable shifts of the particles’ world lines, the
Hamiltonian in ADM-like coordinates. An important fea-
ture of the dynamics at the 4PN order is that it is nonlocal in
time, due to the appearance of the tail effect. In the present
paper, we advocated that the IR regularization of the bound
of integrals at spatial infinity in the Einstein-Hilbert part
of the Fokker action is problematic, as different types of
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regularizations might lead to different results. However, we
conjectured that the difference is composed of two types of
terms (modulo some irrelevant shifts of the trajectories).
Motivated by this, we introduced two and only two
ambiguity parameters reflecting an incompleteness in our
understanding of the IR regularization. Among these two
parameters, one is actually equivalent to the ambiguity
parameter already assumed in Paper I, so that we actually
just added one extra parameter. The likely existence of a
second ambiguity parameter in harmonic coordinates has
been first suggested in Ref. [26]. Further work [43] will be
needed to confirm our conjecture regarding the structure of
the ambiguous terms and to understand whether the use
of dimensional regularization permits determining one
combination of these ambiguity parameters.
Next, we obtained the conserved integral of energy and

the periastron advance in the case of circular orbits, fully
taking into account the nonlocal character of the dynamics
brought by the tail term. Thanks to these two observables,
we have been able to uniquely fix the values of the two
ambiguity parameters by requiring that the expressions
of the energy and periastron advance for circular orbits
coincide with those predicted by gravitational self-force
(GSF) calculations in the small mass-ratio limit. Therefore,
our 4PN dynamics of compact binaries, with arbitrary mass
ratio, in either Lagrangian or Hamiltonian form, is com-
plete. However, to reach our goal, we have postulated a
particular structure for the ambiguous part of the Fokker
Lagrangian and relied on it. We leave to future work [43]
the task of better understanding the nature of these
ambiguities.
An important problem encountered in Paper I was a

discrepancy between our computation of the conserved
energy in the circular orbit limit for the nonlocal dynamics
and the derivation proposed in Refs. [25,26] within the
Hamiltonian formalism. The latter was based on an initial
“localization” of the Hamiltonian by means of appropriate
nonlocal shifts of the trajectories, which yielded a local
Hamiltonian in the shifted variables. In the present paper,
we resolved this discrepancy by showing that, when a
Hamiltonian is nonlocal, there arises an extra term in the
conserved integral of energy (with respect to the value on
shell of the Hamiltonian itself) containing a purely constant
(DC-type) piece that gives a net contribution in the case of
circular orbits. This extra contribution was not considered
in Paper I. We thoroughly investigated such extra terms,
both in the integrals of energy and angular momentum,
by means of Fourier series valid for general orbits. Taking
into account the presence of the DC term in the conserved
energy for circular orbits, we recovered the same result as
that derived in the Hamiltonian framework [25,26]. Finally,
after having fixed the two ambiguity parameters by
comparison with GSF results, we found that our complete
4PN dynamics is in full agreement (for all the terms)
with the results of the ADM Hamiltonian formalism

[21–23,25,26]. However both the ADM and harmonic
gauge methods rely on GSF results to fix the ambiguity
parameters that arise from the IR regularization. In the
future it would be interesting to devise a method that
provides an unambiguous complete result without resorting
to GSF.
Future works will extend the equations of motion to the

4.5PN order by including the dissipative radiation-reaction
terms. We will also concentrate on the computation of
the multipole moments of compact binaries and on the
gravitational radiation field to 4.5PN order. A first part of
the latter program, concerning high-order tail effects in the
radiation field, has been recently completed [56].
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APPENDIX A: THE 4PN LAGRANGIAN
IN HARMONIC AND ADM COORDINATES

Our final 4PN Lagrangian in harmonic coordinates is
written like in Paper I as

L¼LNþ
1

c2
L1PNþ

1

c4
L2PNþ

1

c6
L3PNþ

1

c8
L4PNþO

�
1

c10

�
:

ðA1Þ

The terms up to the 3PN order are given by Eqs. (5.2) in
Paper I, and the 4PN term is made of a nonlocal tail piece
and many instantaneous contributions,

L4PN ¼ Linst
4PN þ Ltail

4PN; ðA2aÞ

Linst
4PN ¼ Lð0Þ

4PN þ GLð1Þ
4PN þ G2Lð2Þ

4PN þ G3Lð3Þ
4PN

þ G4Lð4Þ
4PN þ G5Lð5Þ

4PN: ðA2bÞ

The tail piece is given by Eq. (5.4) in Paper I, while
all the instantaneous terms are provided by Eqs. (5.6) in
Paper I, except for theG4 term which is now to be corrected
with the extra term in Eq. (2.4), with the specific values
(2.6) of the ambiguity parameters. Thus the G4 term in
Paper I is to be replaced by
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Lð4Þ
4PN ¼ m4

1m2

r312

�
1691807

25200
ða1n12Þ −

149

6
ða2n12Þ

�

þm3
1m

2
2

r312

��
−
2470667

16800
þ 1099

96
π2
�
ða1n12Þ þ

�
9246557

50400
−
555

64
π2
�
ða2n12Þ

�

þm4
1m2

r412

��
2146

75
−
880

3
ln

�
r12
r01

��
ðn12v1Þ2 þ

�
3461

50
þ 880

3
ln

�
r12
r01

��
ðn12v1Þðn12v2Þ

−
1165

12
ðn12v2Þ2 þ

�
−
11479

300
−
220

3
ln

�
r12
r01

��
ðv1v2Þ

þ
�
317

25
þ 220

3
ln

�
r12
r01

��
v21 þ

1237

48
v22

�

þm3
1m

2
2

r412

��
26957687

50400
−
3737

96
π2 −

286

3
ln

�
r12
r01

��
ðn12v1Þ2

þ
�
−
4158043

5040
þ 179

4
π2 þ 44 ln

�
r12
r01

�
þ 64 ln

�
r12
r02

��
ðn12v1Þðn12v2Þ

þ
�
16311923

50400
−
559

96
π2 þ 110

3
ln

�
r12
r01

�
− 64 ln

�
r12
r02

��
ðn12v2Þ2

þ
�
1568689

6300
−
2627

192
π2 −

154

3
ln

�
r12
r01

�
− 16 ln

�
r12
r02

��
ðv1v2Þ

þ
�
−
1818001

12600
þ 527

48
π2 þ 121

3
ln

�
r12
r01

��
v21

þ
�
−
293443

3150
þ 173

64
π2 þ 22

3
ln

�
r12
r01

�
þ 16 ln

�
r12
r02

��
v22

�

þ 1 ↔ 2: ðA3Þ
Similarly, theG4 instantaneous contribution to the 4PN term in our Lagrangian in ADM coordinates as given by Eq. (5.10e)
in Paper I is to be replaced by

~Lð4Þ
4PN ¼ m4

1m2

r412

�
19341

1600
ðn12v1Þ2 −

15

8
ðv1v2Þ −

16411

4800
v21 þ

31

32
v22

�

þm3
1m

2
2

r412

��
−
6250423

403200
−
15857

16384
π2
�
ðn12v1Þ2

þ
�
52572353

403200
−
79385

24576
π2
�
ðn12v1Þðn12v2Þ

þ
�
−
19635893

403200
þ 35603

24576
π2
�
ðn12v2Þ2 þ

�
15368099

403200
−
171041

24576
π2
�
ðv1v2Þ

þ
�
−
10602871

403200
þ 193801

49152
π2
�
v21 þ

�
−
5896421

403200
þ 21069

8192
π2
�
v22

�

þ 1 ↔ 2; ðA4Þ
with all the other terms in the ADM Lagrangian unchanged with respect to Paper I.

APPENDIX B: FOURIER COEFFICIENTS OF
THE QUADRUPOLE MOMENT

Here we give the expressions of the Fourier coefficients

of the Newtonian quadrupole moments in terms of

combinations of ordinary Bessel functions. The Fourier

coefficients are defined by Eq. (3.12) and are explicitly

given in the appendix of [50]. We present here some

alternative expressions, based on the decomposition
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I
pij ¼ A

p
mi

0m
j
0 þ B

p
m̄i

0m̄
j
0 þ C

p
ℓhiℓji; ðB1Þ

where we denote m0 ¼ 1ffiffi
2

p ðiþ i jÞ and m̄0 ¼ 1ffiffi
2

p ði − i jÞ,
with i, j being two fixed orthonormal basis vectors in the
orbital plane, i pointing towards the orbit’s periastron.
Thus, if ðn; λÞ denotes the moving triad in the notation
of Sec. III A, we have m ¼ 1ffiffi

2
p ðnþ i λÞ ¼ e−iφm0 and

ℓ ¼ n × λ ¼ im0 × m̄0. With this decomposition the coef-
ficients, functions of the eccentricity e and semimajor axis
a of the Keplerian orbit, are relatively simple:

A
p
¼ mνa2

p2e2

�
2eJp−1ðpeÞ

�
p

�
1 − e2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �

þ JpðpeÞ
�
−2ðpþ 1Þ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �

þ e2
�
1þ 2p

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ���	
; ðB2aÞ

B
p
¼ mνa2

p2e2

�
2eJp−1ðpeÞ

�
p

�
1 − e2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �

þ JpðpeÞ
�
−2ðpþ 1Þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p �

þ e2
�
1þ 2p

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ���	
; ðB2bÞ

C
p
¼ mνa2

p2
JpðpeÞ: ðB2cÞ

These expressions are only valid when p ≠ 0. In the case
p ¼ 0 the coefficients are

A
0
¼ B

0
¼ 5

4
mνa2e2; C

0
¼ −

1

2
mνa2

�
1þ 3

2
e2
�
:

ðB3Þ
Note that for circular orbits we have (with other modes

being zero)

I
2 ij

¼mνa2

2
m̄i

0m̄
j
0; I−2ij ¼

mνa2

2
mi

0m
j
0; I

0 ij
¼−

mνa2

2
ℓhiℓji

ðB4Þ

(cf. footnote 6).

APPENDIX C: ON SOMMERFELD’S METHOD
OF CONTOUR INTEGRALS

In this appendix, we provide more details on
Sommerfeld’s method of contour integrals [54], which
we used in Sec. V to determine the periastron advance for
circular orbits. More precisely we want to show how to

adapt the method to the case of integrals containing a
logarithm. The integrals to be evaluated in our calculation
take the form

In;p ¼ 1

π

Z
ra

rp

dr
rn

lnprffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr; E; hÞp ; ðC1Þ

for p ¼ 0, 1, where the effective radial potential Rðr; E; hÞ
up to 4PN order has the following structure, extending that
in Eq. (3.4) of Ref. [53],

Rðr; E; hÞ ¼ Aþ 2B
r

þ C
r2

þ
X
i≥3

Di þ Ei ln r
ri

: ðC2Þ

The coefficients A, B, C, Di and Ei depend only on the
energy E and angular momentum h, and may be considered
as mere constants in the present discussion. While A, B and
C start at Newtonian order, Di and Ei are post-Newtonian
expressions. By construction, the effective potential (C2)
vanishes at the periastron r ¼ rp and at the apastron ra,
which are the only real roots of the equation R ¼ 0. Note
that, while logarithmic contributions start at the 3PN order
in our Lagrangian-based derivation (since the Lagrangian is
defined in harmonic coordinates), they arise only at the
4PN order, and only in the tail part, in our derivation based
on the Hamiltonian in ADM coordinates.
To compute (C1), we invoke the procedure described in

Ref. [53]. The first step consists in choosing one branch cut
for ½Rðr; E; hÞ�−1

2, regarded as a function of r over the
complex plane, to be along the real segment ½rp; ra� on the
real axis. Since the values of the integrand over and under
that segment are opposite to each other, the original integral
(C1) is equal to half the corresponding contour integral over
a closed path C that surrounds the real segment ½rp; ra�
anticlockwise (see Fig. 1):

In;p ¼ 1

2π

I
C

dr
rn

lnprffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr; E; hÞp : ðC3Þ

In a second step, we perform the post-Newtonian expansion
of ½Rðr; E; hÞ�−1

2 under the integration symbol up to the 4PN
order, holding the contour C fixed. This yields a linear
combination of elementary integrals of two types, namely

In;m ¼ 1

2π

I
C

dr
rn

�
−1þ β

r
−

γ

r2

�
−m

2

; ðC4aÞ

Kn;m ¼ 1

2π

I
C

dr
rn

ln r

�
−1þ β

r
−

γ

r2

�
−m

2

: ðC4bÞ

The constants β and γ are explicitly given by β ¼ − Gm2ν
E

and γ ¼ − h2
2mνE [see Eq. (5.5)], and both are positive:

β; γ > 0. For the integrals In;m, we finally deform the
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integration path C to the contour C0∪C∞ displayed in the
left panel of Fig. 1, as in the method originally devised by
Sommerfeld [54]. The computation of In;m then amounts to
a straightforward application of the residue theorem (see
Ref. [53] for more details).
The integrals Kn;m have to be handled more carefully.

The crucial point is that we must change the way C is
deformed so as to avoid the branch cut due to the
logarithm of r on the R− axis. The final contour in the
complex plane is now replaced by the one shown on
the right panel of Fig. 1. Let us decompose it into the four
different paths C0, C−, Cþ and C∞ as depicted on the
figure. They respectively correspond to the contours
around zero, below the R− branch cut, above the R−

branch cut, and at infinity. This decomposition induces the
corresponding splitting

Kn;m ¼ Kn;m
0 þ Kn;m

− þ Kn;m
þ þ Kn;m

∞ : ðC5Þ

On C0, we can write r ¼ ηe−iθ with η a small positive
number and θ going from π to −π,10 so that the logarithm
becomes ln r ¼ ln η − iθ. We are led to

Kn;m
0 ¼ ið−Þm=2

2πγm=2ηn−m−1

Z
π

−π
dθeiðn−m−1Þθðln η − i θÞ

×

�
1 −

β

γ
ηe−i θ þ 1

γ
η2e−2i θ

�
−m

2

: ðC6Þ

After expanding the above expression in powers of η, the
resulting integrals are immediate to evaluate. For example,
when n ¼ 5 and m ¼ 3, we obtain

K5;3
0 ¼ −

1

γ3=2η
−

3β

2γ5=2
ln η: ðC7Þ

As for the integrals at infinity that we have to consider,
they are all zero:

Kn;m
∞ ¼ 0: ðC8Þ

We are left with the two integrals under and over the
branch cut R−. On the contour C−, we use the para-
metrization r ¼ ρe−iπ , for ρ going from η to some radius R,
with R ≫ 1 and η ≪ 1. Similarly, on the contour Cþ we
take r ¼ ρeiπ , for ρ going from R to η. The difference of 2π
is due to the presence of the branch cut for the complex
logarithm. Adding the two integrals, we get

Kn;m
− þ Kn;m

þ ¼ ð−Þni
Z

R

η

dρ
ρn

�
−1 −

β

ρ
−

γ

ρ2

�
−m

2

: ðC9Þ

As one can see, the logarithms have canceled out.
In the end, there remains a well-known, tabulated
integral [57]. For example, for n ¼ 5 and m ¼ 1,
we find

K5;1
− þK5;1

þ ¼−
1

3
ffiffiffi
γ

p
η3
þ β

4γ3=2η2
þ
�
−

3β2

8γ5=2
þ 1

2γ3=2

�
1

η

−
37β3

96γ7=2
þ5β2

8γ3
þ 5β

8γ5=2
−

2

3γ2

þ
�
−

5β3

16γ7=2
þ 3β

4γ5=2

��
ln

�
β

4γ
þ 1

2
ffiffiffi
γ

p
�
þ lnη

�
:

ðC10Þ

Finally, one must add all the different pieces and take the
limits η → 0 and R → þ∞.

C C

FIG. 1. Left panel: Path of integration of the integrals In;m corresponding to the standard, logarithmic-free case. Right panel: Path of
integration of the integrals Kn;m for the logarithmic case. The branch cut R− of the logarithm function is avoided.

10Strictly speaking, we should first integrate with θ going from
π − ϵ to−π þ ϵ, and then take the limit ϵ → 0 in the end. We have
checked that the end result comes out the same.
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