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We show that an effective particle Lagrangian yields the Mathisson-Papapetrou-Dixon (MPD) equations.
The spin of the effective particle is defined without any reference to a fixed body frame or angular velocity
variable. We then demonstrate that a continuous body, defined by a congruence of world lines and
described by a general action, can be rewritten as an effective particle. We analyze the gauge freedom of the
body and show that a natural center of mass condition is related to a spin supplementary condition.
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I. INTRODUCTION

The motion of extended bodies in general relativity was
first addressed by Mathisson in 1937 [1]. Mathisson defined
multipole moments for the stress-energy tensor expanded
about a central world line and formulated the conservation of
stress-energy as a variational principle. He derived what we
now know as the Mathisson-Papapetrou-Dixon (MPD)
equations to “pole–dipole” order, and identified the quadru-
pole terms that had a nonrelativistic analogue. Papapetrou,
using a different definition for multipole moments, derived
the same equations in 1951 [2].
The analyses of Mathisson and Papapetrou yield ten

equations for thirteen unknowns. The ten equations give the
time evolution of the four components of momentum, Pα,
and the six components of spin, Sαβ. The thirteen unknowns
are the momentum, spin, and the three degrees of freedom
contained in the particle’s proper velocity Uα.
Mathisson and later Pirani [3] addressed the mismatch

between the number of equations and number of unknowns
by introducing the spin supplementary condition
UαSαβ ¼ 0. Pirani justified this choice by analogy to a
similar identity for the center of mass in special relativity.
Papapetrou instead employed the spin supplementary con-
dition VαSαβ ¼ 0 where Vα is an arbitrary time flow vector
field. In 1959 Tulczyjew simplified Mathisson’s multipole
formulation, again deriving the same equations of motion at
pole-dipole order but choosing the spin supplementary
condition PαSαβ ¼ 0, arguing that Mathisson and Pirani’s
condition did not uniquely determine the world line. A
survey of the various spin supplementary conditions and
how they relate to one another can be found in [4]. A
concrete analysis of the relationship between spin supple-
mentary conditions and center of mass can be found in [5].
In a series of papers from 1970 to 1974, Dixon presented

yet another reformulation of the multipole moments in

terms of a Fourier transformation of the stress-energy
tensor [6–8]. The complete argument is also given in
[9]. Dixon found that Mathisson’s variational principle
yields dynamical equations for Pα and Sαβ, but leaves the
dynamical evolution of the quadrupole and higher order
multipole moments undefined. His analysis places restric-
tions on the symmetries of these multipoles. Based on these
symmetries, Dixon defines the reduced multipole moments
Jμνρσα1���αn for n ≥ 0.
The final form of the MPD equations through quadru-

pole order, as given by Dixon, is [9]:

DPα

Ds
¼ −

1

2
Rαβμν

_XβSμν −
1

6
∇αRμνρσJμνρσ; ð1:1aÞ

DSαβ
Ds

¼ 2P½α _Xβ� þ
4

3
Rμνλ½αJβ�λνμ: ð1:1bÞ

Here, theworld line is expressed as xα ¼ XαðsÞ, where xα are
the spacetime coordinates and Xα are functions of a world
line parameter s. The dot above a symbol denotes the time
derivative d=ds and D=Ds is the covariant derivative along
theworld line; for example, DPα=Ds ¼ _Pα − Γγ

αβ
_XβPγ. This

will also be denoted with a circle above the symbol, so

that P
∘
α ¼ DPα=Ds.

Dixon defines the momentum and spin in terms of
integrals over the leaves of a foliation ΣðsÞ of the world
tube. The integrals, which involve the stress-energy tensor
Tμ0ν0 , Synge’s world function σ and the Jacobi propagators
Hμ0

α and Kμ0
α (described in Appendix B) are [6]

PαðsÞ≡
Z
ΣðsÞ

dΣν0Kμ0
αTν0

μ0 ; ð1:2aÞ

SαβðsÞ≡ 2

Z
ΣðsÞ

dΣν0Hμ0 ½ασβ�Tν0
μ0 : ð1:2bÞ

Both Hμ0
α and Kμ0

α are bitensors with one primed index
“located” at the point of integration xμ

0 ∈ ΣðsÞ and one
unprimed index located at the world line XαðsÞ. These

*sloomis@ucdavis.edu
Present Address: Department of Physics, University of Califor-
nia, Davis, California 95616.

†david_brown@ncsu.edu

PHYSICAL REVIEW D 95, 044025 (2017)

2470-0010=2017=95(4)=044025(16) 044025-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.044025
http://dx.doi.org/10.1103/PhysRevD.95.044025
http://dx.doi.org/10.1103/PhysRevD.95.044025
http://dx.doi.org/10.1103/PhysRevD.95.044025


bitensors act to transfer vectors from one tangent space into
the other. The derivative of Synge’s world function σβ ¼
∇βσ points opposite to the vector tangent to the unique
geodesic connecting XαðsÞ and xμ

0
and acts as a position

vector. The corresponding integrals for the multipole
moments are complicated and beyond the scope of this
introduction.
The multipole method of Mathisson, Papapetrou,

Tulzcyjew and Dixon is not the only approach that yields
the MPD equations. Bailey and Israel [10], extending the
work of Hanson and Regge [11], showed that a form of the
MPD equations could be derived from any reparametriza-
tion–invariant Lagrangian involving aworld lineXαðsÞ, a set
of Lorentz–orthonormal basis vectors eaαðsÞ transported
along the world line, and a set of external tensor fields that
interact with the body. The basis vectors eaαðsÞ define the
orientation of the body, although the exact relationship for a
physical (i.e. nonrigid) body is not addressed. By analogy
with rigid body motion in classical mechanics, one says that
the index a labels the legs of a “body-fixed frame.”
These results were independently replicated without the

external fields by Porto [12]. More recently, Steinhoff [13]
has reformulated Bailey and Israel’s full result in newer
notation. We give a brief overview of Steinhoff’s presen-
tation below.
Steinhoff begins by considering an action of the form

S½X; e;ΦI� ¼
Z

dsLðgαβðXÞ;ΦAðXÞ; _XαðsÞ; eaαðsÞ;

ΩαβðsÞ;ΦIðsÞÞ; ð1:3Þ

where the integration is along the world line XαðsÞ. Here
gαβðxÞ is the metric of the spacetime manifold ℳ, ΦAðxÞ
are fields on this manifold and ΦIðsÞ are scalar dynamical
variables defined along the world line. Note that the ΦI are
functions of s only, and the index I can include a body
frame index a. The angular velocity is defined in terms of
the basis vectors eaαðsÞ by ΩαβðsÞ≡ ηabeaαDðebβÞ=Ds,
where ηab is the Minkowski metric.
Steinhoff defines the momentum and spin as

Pα ≡ ∂L
∂ _Xα

; ð1:4aÞ

Sαβ ≡ 2
∂L
∂Ωαβ : ð1:4bÞ

With these definitions, variation of the action (1.3) with
respect to XαðsÞ and eaαðsÞ yields the equations of motion

DPα

Ds
¼ −

1

2
Rαβμν

_XβSμν þ ð∇αΦAÞ
∂L
∂ΦA

; ð1:5aÞ

DSαβ
Ds

¼ 2P½α _Xβ� − 2ðG½αβ�ΦAÞ
∂L
∂ΦA

: ð1:5bÞ

Here, Gαβ is a linear operator defined such that
∇αΦA ¼ ∂αΦA þ Γγ

αβG
β
γΦA. The action of Gα

β depends
on the tensor type of ΦA.
In Sec. II we consider a general action that depends only

on a world line xα ¼ XαðsÞ, a set of tensors ψ IðsÞ defined
along the world line, and a set of external fields ϕAðxÞ. We
call this the “effective particle” model, and show that it
yields the MPD equations.1 Our action does not depend on
an orthonormal body frame eaα or angular velocityΩαβ. We
show in Sec. III that continuous bodies (defined as a
congruence of world lines minimizing a particular action)
can be expressed in terms of the effective particle action.
The definitions for momentum and spin that emerge from
this analysis coincide with the definitions given by Dixon
[6]. In Sec. IV we discuss the gauge constraints that can be
placed on the effective particle, and explore the relation
between spin supplementary condition and center of mass.
Finally, in Sec. V we apply our results to analyze a
continuous body of noninteracting particles—a “dust
cloud.” As an effective particle, the dust cloud satisfies
the geodesic deviation equations.

II. THE MPD EQUATIONS FOR
AN EFFECTIVE PARTICLE

In this section we generalize the method for deriving the
MPD equations used by Bailey and Israel [10].
The system consists of an effective particle in a manifold

ℳ with position xα ¼ XαðsÞ and a collection of tensors
ψ IðsÞ. The tensors ψ I take the place of the orthonormal
basis eaα and body-frame variables ϕI used in Eq. (1.3).
The index I can denote tensor indices as well as functional
dependence. The evolution of the effective particle system
is described by the action

S½X;ψ I� ¼
Z

s1

s0

dsLðϕAðXÞ; _XαðsÞ;ψ IðsÞ;ψ∘ IðsÞÞ: ð2:1Þ

The ϕAðxÞ are any collection of spacetime fields. For
example, ϕA can include the electromagnetic field and its
derivatives, the metric tensor gαβ, the curvature tensor Rαβγδ

and its symmetrized derivatives ∇ðα � � �∇γÞRμνρσ. In this
paper we treat these fields as external sources—they are not
varied in the variational principle.
Recall that the notation ψ

∘
I is an abbreviation for the

covariant derivative along the world line,

ψ
∘
I ≡ Dψ I

Ds
¼ dψ I

ds
þ Γν

αμ
_XαGμ

νψ I: ð2:2Þ

The operator Gμ
ν, discussed more fully in Appendix A, acts

on tensor indices [15]. For example, we have

1After obtaining this result, we became aware of a similar
result by H. Fuchs [14].
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Gμ
νψ

ρ ¼ δρνψμ; ð2:3aÞ

Gμ
νψρ ¼ −δμρψν; ð2:3bÞ

for contravariant and covariant vectors. The extension of
Gμ

ν to higher rank tensors is straightforward. Also note that
the covariant derivative of Xα is defined by the vector
DXα=Ds≡ _Xα. Thus, the world line coordinates behave as
spacetime scalars under covariant differentiation.
The Lagrangian (2.1) is a function over a tensor bundle.

That is, L depends on the position XðsÞ as well as tensors in
the tangent space of x ¼ XðsÞ. The variation δψ I is not
covariant whenever the base point x is also varied. As a
result, the functional derivatives δS=δXα and δS=δψ I yield
the equations of motion in noncovariant combinations.
Here we use the results of Appendix A to vary the action in
a covariant manner.
To begin, let us define the momentum variables

Pα ≡ ∂L
∂ _Xα

; ð2:4aÞ

πI ≡ ∂L
∂ψ∘ I

: ð2:4bÞ

Using the result (A15a) from Appendix A, the covariant
variation of the action is

δS ¼
Z

s1

s0

ds
�
PαΔ _Xα þ ∂L

∂ϕA
∇αϕAδXα

þ πIΔψ∘ I þ
∂L
∂ψ I

Δψ I

�
: ð2:5Þ

Here, Δ is the covariant variation defined by [13]

Δ≡ δþ Γν
αμδXαGμ

ν: ð2:6Þ

Because ϕA are external sources, their variations are given
by δϕA ¼ ð∂ϕA=∂xαÞδXα. Then the covariant variations of
these fields are ΔϕA ¼ ∇αϕAδXα. Also observe that the
covariant variation of Xα is defined by the vector
ΔXα ≡ δxα. That is, the world line coordinates behave
as spacetime scalars under covariant variation.
To bring δS into a form that will provide the equations of

motion, we must swap the order of the variations and time
derivatives in Δ _Xα and Δψ∘ α. The covariant variation and
covariant derivative do not commute; in general, we have
the following relation from Eq. (A21):

�
Δ;

D
Ds

�
¼ Rσ

ρμνδXμ _XνGρ
σ: ð2:7Þ

This yields the results

Δ _Xα ¼ D
Ds

ðδXαÞ; ð2:8aÞ

Δψ∘ I ¼
D
Ds

ðΔψ IÞ þ Rσ
ρμνδXμ _XνGρ

σψ I; ð2:8bÞ

since the world line coordinates Xα behave as scalar fields
under covariant differentiation and covariant variation.
Now integrate by parts. The endpoint terms vanish if we

assume that Xα and ψ I are fixed at s0 and s1. The variation
of the action becomes

δS ¼
Z

s1

s0

ds

��
−P

∘
α þ Rσ

ραβ
_XβπIGρ

σψ I

þ∇αϕA
∂L
∂ϕA

�
δXα þ

� ∂L
∂ψ I

− π
∘ I
�
Δψ I

�
: ð2:9Þ

The coefficients of δXα and Δψ I give the equations of
motion

P
∘
α ¼ −Rαβ

ρσ _XβπIGρσψ I þ∇αϕA
∂L
∂ϕA

; ð2:10aÞ

π
∘ I ¼ ∂L

∂ψ I
: ð2:10bÞ

Equation (2.6) shows that the variation Δψ I is a sum of
noncovariant terms proportional to δψ I and δXα. From this
we see that the equation of motion δS=δψ I ¼ 0 (with Xα

fixed) coincides with (2.10b), while the equation of motion
δS=δXα ¼ 0 (with ψ I fixed) is a noncovariant combination
of the covariant Eqs. (2.10)
Spin is defined as

Sρσ ≡ 2πIG½ρσ�ψ I: ð2:11Þ

This puts the equation of motion (2.10a) into the form of the
MPD equation (1.5a). The equation of motion for the spin
variable itself is obtained from the covariant derivative
of the definition (2.11), which yields S

∘
ρσ ¼ 2π

∘ IG½ρσ�ψ Iþ
2πIG½ρσ�ψ

∘
I . With the equation of motion (2.10b) this

becomes

S
∘
ρσ ¼ 2

∂L
∂ψ I

G½ρσ�ψ I þ 2πIG½ρσ�ψ
∘
I: ð2:12Þ

We now make use of (A15b), which follows from the
requirement of general covariance. This equation tells us
that the operator Gα

β acting on the Lagrangian L of (2.1)
follows a “chain rule”. Since L is a scalar, we have
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0 ¼ ∂L
∂ϕA

Gα
βϕA þ ∂L

∂ _Xμ
Gα

β
_Xμ

þ ∂L
∂ψ I

Gα
βψ I þ

∂L
∂ψ∘ I

Gα
βψ
∘
I: ð2:13Þ

We can lower the index α on Gα
β and antisymmetrize. Using

the notation (2.4) for the momenta, we have

0 ¼ ∂L
∂ϕA

G½αβ�ϕA þ P½β _Xα�

þ ∂L
∂ψ I

G½αβ�ψ I þ πIG½αβ�ψ
∘
I: ð2:14Þ

This result can be used to rewrite the time derivative of the
spin from (2.12) as the MPD equation (1.5b).
To summarize, we have shown that the equations of

motion (2.10) that follow from the action (2.1), along with
the definition (2.11) for spin, yield the MPD equations

P
∘
α ¼ −

1

2
Rαβμν

_XβSμν þ ð∇αϕAÞ
∂L
∂ϕA

; ð2:15aÞ

S
∘
αβ ¼ 2P½α _Xβ� − 2ðG½αβ�ϕAÞ

∂L
∂ϕA

ð2:15bÞ

in the form (1.5).
The key difference between this result and previous

analyses is that we do not require a body frame or basis
vectors eaα to define the orientation of the body, and we
have no need for an angular velocity variableΩαβ. The spin,
as defined in (2.11), does not rely on these constructions.

III. CONTINUOUS BODIES WRITTEN AS
EFFECTIVE PARTICLES

Letℳ be a Riemannianmanifold with coordinates xμ. We
consider a continuous body in the sense defined by Carter
and Quintana [16], as a congruence of world lines repre-
sented by the smoothmappingX∶R ×S → ℳ, whereS is
a differentiable manifold whose points represent the world
lines, and the real numbers R label points along each world
line.S is called the “matter space” and is given coordinates
ζi [17]. The coordinate on R is s. Thus, functions over the
congruence may bewritten in terms of coordinates ðs; ζiÞ on
R ×S , or in terms of the manifold coordinates xμ. We
introduce the inverse mapping ðZ0ðxÞ; ZiðxÞÞ that satisfies
s ¼ Z0ðXðs; ζÞÞ and ζi ¼ ZiðXðs; ζÞÞ.
The derivatives of Xμ and ðZ0; ZiÞ satisfy [18]

_XμZ0
;ν þ Xμ

;iZ
i
;ν ¼ δμν ; ð3:1aÞ

Xμ
;iZ

j
;μ ¼ δji ; ð3:1bÞ

_XμZ0
;μ ¼ 1; ð3:1cÞ

Xμ
;iZ

0
;μ ¼ 0; ð3:1dÞ

_XμZi
;μ ¼ 0; ð3:1eÞ

where _Xμ ¼ ∂Xμ=∂s.
We introduce the notations

D
Ds

≡ _Xμ∇μ ¼
∂
∂sþ Γσ

μρ
_XμGρ

σ; ð3:2aÞ

D
Dζi

≡ Xμ
;i∇μ ¼

∂
∂ζi þ Γσ

μρX
μ
;iG

ρ
σ; ð3:2bÞ

using the generators Gρ
σ from Appendix A, and following

Vines’ use of D as a covariant partial derivative [19].
As before, we may also abbreviate D=Ds with the circle

(e.g. A
∘
) and D=Dζi with semicolons (e.g. A;i).

We consider a fairly general action assuming that the
body is subject to no external forces, though it may be
subject to internal forces mediated by the first spatial
derivative Xμ

;i:

S½X� ¼
Z

s1

s0

ds
Z
S
d3ζLðζ; gμνðXÞ; _Xμ; Xμ

;iÞ: ð3:3Þ

Wewill generally restrict this action to be reparametrization
invariant, although the results of this section do not depend
on that assumption. When reparametrization invariance is
enforced, the above action coincides with DeWitt’s elastic
body [20,21]

S½X� ¼ −
Z

s1

s0

ds
Z
S
d3ζαρðζ; fijÞ; ð3:4Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Xμ _Xμ

q
and fij is the fleet metric fij ¼

ðgμν þUμUνÞXμ
;iX

ν
;j, with Uμ ¼ _Xμ=α being the four-

velocity field.
In this section we study some basic properties of the

action (3.3) and show that it can be expressed in the
form of the effective particle action (2.1). Doing so gives
definitions of Pα and Sαβ identical to Dixon’s definitions
(1.2) [6].
We start by varying the action to determine the equations

of motion. With the exception of its dependence on ζ
(which does not affect the variation), the Lagrangian
density L is a function of X through the metric field gμν
and is also a function of vectors _Xμ and Xμ

;i. This means we
can use the methods of Appendix A, specifically
Eq. (A15a), to vary the action. We define the canonical
momentum density and stress density as

Pμ ≡ ∂L
∂ _Xμ

; ð3:5aÞ
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Si
μ ≡ ∂L

∂Xμ
;i
: ð3:5bÞ

Then the variation with respect to Xμ is

δS ¼
Z

s1

s0

ds
Z
S
d3ζ½PμΔ _Xμ þ Si

μΔX
μ
;i�: ð3:6Þ

Note that, since the metric is treated as an external field, its
covariant variation ΔgμνðXÞ ¼ ∇αgμνδXα vanishes.
For the Δ _Xμ term in Eq. (3.6), integration by parts gives

Z
s1

s0

dsPμΔ _Xμ ¼ −
Z

s1

s0

ds
DPμ

Ds
δXμ þ ½PμδXμ�s1s0 : ð3:7Þ

The last term in the above equation vanishes when we fix
the initial and final configurations Xμðs0Þ and Xμðs1Þ; that
is, we set δXμðs0Þ ¼ δXμðs1Þ ¼ 0. We can similarly inte-
grate by parts for the Xμ

;i term, with the result

Z
S
d3ζSi

μΔX
μ
;i ¼ −

Z
S
d3ζ

DSi
μ

Dζi
δXμ þ

Z
∂S

d2ζηiSi
μδXμ:

ð3:8Þ

where ηi is the outward-pointing vector field normal to the
boundary surface ∂S . The variation of the action with Xμ

fixed at s0 and s1 is then

δS ¼
Z

s1

s0

ds
Z
S
d3ζ½−P∘ μ − Si

μ;i�δXμ

þ
Z

s1

s0

ds
Z
∂S

d2ζ½ηiSi
μ�δXμ: ð3:9Þ

Since δXμ is arbitrary, this gives the equations of motion
and boundary conditions

−P
∘
μ − Si

μ;i ¼ 0 ðζ ∈ S Þ; ð3:10aÞ

ηiSi
μ ¼ 0 ðζ ∈ ∂S Þ: ð3:10bÞ

By integrating (3.10a) over the matter space S , and using
the boundary (3.10b), we obtain a continuity equation for
the total momentum within the body.
The stress-energy tensor is defined by

Tμν ¼ 2ffiffiffiffiffiffi−gp ∂L
∂gμν : ð3:11Þ

This can be rewritten in terms of the canonical momentum
and stress densities as

Tμν ¼ 1ffiffiffiffiffiffi−gp ðPμ _Xν þ SμiXν
;iÞ: ð3:12Þ

by using the chain rule (A15b) for Gα
β. From Eq. (3.1) we

see that Pμ ¼ −
ffiffiffi
h

p
Tμνnν where h is the determinant of the

induced metric hij ¼ gμνX
μ
;iX

ν
;j on surfaces ΣðsÞ of constant

s. Also, nμ is the future-pointing unit vector field normal
to ΣðsÞ.
We now turn to the primary goal of this section: to show

that the continuous body action (3.3) can be written in the
form of the effective particle action (2.1). This requires
mapping the information about the congruence of geo-
desics to the tangent space of a point on a fiducial world
line. To prepare for this analysis, we first make a change of
notation by placing primes on coordinates and tensors
associated with the continuous body. In particular, we will
use X0∶ R ×S → ℳ rather than X to denote the con-
gruence of world lines. For tensors associated with the
body, we place the prime on the indices: for example, the
(unnormalized) velocity, momentum density and stress
density are _Xμ0 , Pμ0 and Si

μ0 , respectively.
The fiducial world line will be denoted XμðsÞ.

The fiducual worldline does not need to lie within the
material body. If it does, the spacetime point XμðsÞ (for a
given value of s) does not need to lie on the s ¼ const
surface.
The introduction of the fiducual worldline adds a gauge

freedom to the system, in additional to the reparametriza-
tion invariance that is already present. In later sections we
will discuss how the gauge freedom can be fixed.
We make use of the bitensor and exponential map

formalism of Appendix B. We begin by defining the
exponential map from a point XμðsÞ on the fiducial world
line and a vector ξμ in the tangent space at XμðsÞ, to the
point Xμ0 ðs; ζÞ in the continuous body:

X0ðs; ζÞ ¼ expðXðsÞ; ξðs; ζÞÞ: ð3:13Þ

Here, ξμðs; ζÞ ¼ −σμðXðsÞ; X0ðs; ζÞÞ is the vector at XðsÞ
tangent to the geodesic γðuÞ connecting XðsÞ and X0ðs; ζÞ,
affinely parametrized such that γð0Þ ¼ X and γð1Þ ¼ X0.
Note that the point X0ðs; ζÞ defined by the exponential map
depends on the geometry in a neighborhood of XðsÞ. To
ensure that there is a unique geodesic connecting XðsÞ and
X0ðs; ζÞ, the size of the body must be restricted by the
curvature and its derivatives at XðsÞ. The region to which it
is restricted is termed the “normal convex neighbor-
hood” (NCN).
With the placement of primes on the coordinates and

tensors associated with points in the continuous body, the
action (3.3) becomes

S½X0� ¼
Z

s1

s0

ds
Z
S
d3ζLðζ; gμ0ν0 ; _Xμ0 ; Xμ0

;i Þ: ð3:14Þ

Equation (3.13) defines a change of variables in the action
from Xμ0 ðs; ζÞ to XμðsÞ and ξμðs; ζÞ. We can use Eq. (A7) to
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write δXμ0 in terms of δXμ and the covariant variation Δξμ.
The result,

δXμ0 ¼ Kμ0
αδXα þHμ0

αΔξα; ð3:15Þ

makes use of the Jacobi propagators, Kμ0
α and Hμ0

α. The
Jacobi propagators are defined in terms of derivatives
of the exponential map. They depend on XαðsÞ, ξαðs; ζÞ
and the geometry in a neighborhood of x ¼ XðsÞ. They are
introduced in Appendix A and further developed in
Appendix B. Note that Hμ0

α is invertible in the NCN,
since there must be a one-to-one mapping between ξα

and Xμ0 .
As a functional of XμðsÞ and ξμðs; ζÞ, the variation of the

action is

δS ¼
Z

s1

s0

ds
Z
S
d3ζ½−Pμ0 − Si

μ0;i�ðKμ0
αδXα þHμ0

αΔξαÞ

þ
Z

s1

s0

ds
Z
∂S

d2ζ½ηiSi
μ0 �ðKμ0

αδXα þHμ0
αΔξαÞ;

ð3:16Þ
where we have used the results from Eq. (3.9).
Extremization of S with respect to ξα yields the equations
of motion

½−P∘ μ0 − Si
μ0;i�Hμ0

α ¼ 0 ðζ ∈ S Þ; ð3:17aÞ

½ηiSi
μ0 �Hμ0

α ¼ 0 ðζ ∈ ∂S Þ: ð3:17bÞ

The propagator Hμ0
α is invertible in the NCN, so these

equations are clearly equivalent to the equations of motion
obtained by extremizing the action with respect to Xμ0

[Eqs. (3.10) with primes on the spacetime indices].
The variation of the action with respect to the fiducial

world line Xα must be handled with care, since δXα on the
boundary ∂S is not independent of δXα in the bulk S . To
isolate δXα in Eq. (3.16), we must convert the surface term
to a volume integral. This yields

Z
S
d3ζ½−P∘ μ0Kμ0

α þ Si
μ0K

μ0
α;i� ¼ 0 ðζ ∈ S Þ ð3:18Þ

for the equation of motion that comes from extremization of
S with respect to Xμ. This equation is a combination of the
equations (3.17). To see this, we first multiply Eq. (3.17a)

byHα
−1

ν0Kν0
β and integrate over the matter spaceS . We then

integrate by parts on the term Si
μ0;iK

μ0
β. The boundary term

vanishes by virtue of Eq. (3.17b) (multiplied by Hα
−1

ν0Kν0
β).

The remaining volume integral is precisely the equation of
motion (3.18).
The analysis above shows that the equations of motion

obtained by varying Xμ and ξμ are not independent; this is a

consequence of the fact that Xμ and ξμ constitute a larger set
of variables than Xμ0 . The variables Xμ and ξμ contain a new
gauge freedom, not present in the original variables Xμ0 ,
which is the freedom to choose the fiducial world line.
The action (3.14) can be written explicitly in terms of the

new variables Xμ and ξμ. To show this, we first use the
general variation (3.15) to expand the derivatives of Xμ0 as

_Xμ0 ¼ Kμ0
α
_Xα þHμ0

αξ
∘α
; ð3:19aÞ

Xμ0
;i ¼ Hμ0

αξ
α
;i: ð3:19bÞ

As a functional of XαðsÞ and ξαðs; ζÞ, the Lagrangian
density from Eq. (3.14) becomes

L ¼ Lðζ; gμ0ν0 ; Kμ0
α
_Xα þHμ0

αξ
∘α
; Hμ0

αξ
α
;iÞ ð3:20Þ

where the argument of gμ0ν0 ðX0Þ is written in terms of XðsÞ
and ξðs; ζÞ using the exponential map (3.13). Next, we
make use of the parallel propagator gαμ0 defined in
Appendix B. Since the Lagrangian density L is a scalar,
it depends only on scalar combinations of its arguments.
Furthermore, it is a property of the propagator that con-
tractions between contravariant and covariant indices are
preserved; i.e. Aμ0gαμ0gν

0
αBν0 ¼ Aμ0Bμ0 . Therefore, we see

that the Lagrangian density can be written as

L ¼ Lðζ; gαβ; gαμ0Kμ0
β
_Xβ þ gαμ0Hμ0

βξ
∘β
; gαμ0Hμ0

βξ
β
;iÞ:

ð3:21Þ

The action for the continuous body is

S½X; ξ� ¼
Z

s1

s0

dsL

¼
Z

s1

s0

ds
Z
S
d3ζLðζ; gαβ; gαμ0Kμ0

β
_Xβ

þ gαμ0Hμ0
βξ
∘β
; gαμ0Hμ0

βξ
β
;iÞ; ð3:22Þ

with the Lagrangian defined by L ¼ R
S d3ζL.

The Lagrangian density (3.21) is constructed entirely
from tensor fields defined in the tangent spaces of points
XμðsÞ along the fiducial world line. Hence, the action (3.22)
describes an effective particle with world line XμðsÞ,
carrying internal degrees of freedom described by the
vectors ξμðsÞ. The effective particle interacts nonlocally
with the geometry in a neighborhood of the world line; this
dependence is contained in the tensors gαμ0Hμ0

β and
gαμ0Kμ0

β. In Eqs. (B7) we show the series expansions for
gαμ0Hμ0

β and gαμ0Kμ0
β. Expressed in this way, gαμ0Hμ0

β and
gαμ0Kμ0

β depend on the Riemann tensor and its derivatives
evaluated along the fiducial world line.
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The effective particle action (3.22) takes the form of
Eq. (2.1) with the correspondences:

ψ I ↔ ξαðζÞ; ð3:23aÞ

ϕA ↔ fgαβ; Rμνρσ;∇αRμνρσ;…g; ð3:23bÞ

where the dots denote higher order derivatives of the
Riemann tensor. Note that the index I now represents
the continuous labels ζi, as well as the discrete spacetime
index α. This requires us to replace certain partial deriv-
atives with functional derivatives; for example, ∂L=∂ψ I
becomes δL=δξαðζÞ. Furthermore, a repeated index I must
include an integral over the matter space S .
The momenta as defined in Eqs. (2.4) are

Pα ≡ ∂L
∂ _Xα

¼
Z
S
d3ζKμ0

αPμ0 ; ð3:24aÞ

παðζÞ≡ δL

δξ
∘αðζÞ

¼ Hμ0
αPμ0 : ð3:24bÞ

These results are most easily derived with the Lagrangian
density written in the form of Eq. (3.20). We also note the
result

δL
δξα;i

¼ Hμ0
αSi

μ0 ð3:25Þ

satisfied by the momentum density. From the definition
(2.11), the spin is

Sαβ ¼ 2

Z
S
d3ζπμG½αβ�ξμ ¼ 2

Z
S
d3ζξ½απβ�: ð3:26Þ

Using dΣν0 ¼ −nν0
ffiffiffiffi
h0

p
d3ζ, our earlier result that

Pμ0 ¼ −
ffiffiffiffi
h0

p
nν0Tν0

μ0 , and the definition ξα ¼ −σα, we see
that the above definitions for momentum and spin coincide
with Dixon’s definitions in Eqs. (1.2).
The equations of motion for the effective particle, as

derived in Sec. II, must be generalized to account for the
fact that the index I now includes the continuous labels ζi.
The variation of the action, from Eq. (2.5), becomes

δS ¼
Z

s1

s0

ds

�
PαΔ _Xα þ ∂L

∂Rμνρσ
∇αRμνρσδXα þ � � �

þ
Z
S
d3ζ

�
παΔξ

∘α þ δL
δξα

Δξα þ δL
δξα;i

Δξα;i

��
: ð3:27Þ

After integration by parts, we obtain the generalization of
Eq. (2.9):

δS ¼
Z

s1

s0

ds

�
−P

∘
α þ

∂L
∂Rμνρσ

∇αRμνρσ þ � � �

þ Rμ
νασ

_Xσ

Z
S
d3ζπμξν

�
δXα

þ
Z

s1

s0

ds
Z
S
d3ζ

�
−π∘ α þ

δL
δξα

−
D
Dζi

�
δL
δξα;i

��
Δξα

þ
Z

s1

s0

ds
Z
∂S

d2ζ

�
ηi

δL
δξα;i

�
Δξα: ð3:28Þ

The equations of motion obtained by extremizing S with
respect to ξαðζÞ are

π
∘
α ¼

δL
δξα

−
D
Dζi

�
δL
δξα;i

�
ðζ ∈ S Þ; ð3:29aÞ

ηi
δL
δξαi;

¼ 0 ðζ ∈ ∂S Þ: ð3:29bÞ

These equations generalize the effective particle
Eq. (2.10b). They are equivalent to Eqs. (3.17).
The equation of motion that comes from extremization of

S with respect to the fiducial particle world line Xα is

P
∘
α ¼ −Rαβ

ρσ _Xβ

Z
S
d3ζξρπσ þ

∂L
∂Rμνρσ

∇αRμνρσ þ � � � :

ð3:30Þ

This equation generalizes the effective particle Eq. (2.10a).
It is equivalent to Eq. (3.18). As shown before, Eq. (3.30) is
redundant; it can be derived from Eqs. (3.29).
We have shown that the continuous body, described by

the action (3.14), can be interpreted as an effective single
particle with action (3.22). This result still holds when the
Lagrangian density depends on higher-order spatial deriv-
atives of Xμ0 . In that case, the formulas for converting
derivatives of Xμ0 into derivatives of ξα and bitensors are
more complicated. Nevertheless, it is still true that the final
Lagrangian density can be written in terms of a XμðsÞ,
ξαðs; ζÞ and their derivatives, in combinations that depend
on the geometry in a neighborhood of the fiducal world
line. In terms of a series expansion, the dependence on
geometry appears as the Riemann tensor and its derivatives
evaluated at XμðsÞ.
We can also generalize the action (3.14) by allowing for

further dependence on X0 through some exterior fields. This
would not change the main result—we simply use the
parallel propagator to express these fields in terms of
tensors defined along the fiducial world line.

IV. GAUGE CONDITIONS

In this section we assume the action (3.3) for the
continuous body is reparametrization invariant
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(RP-invariant). A reparametrization ~s ¼ Fðs; ζÞ consists
in replacing the coordinates Xμ0 with ~Xμ0 such that
~Xμ0 ð~s; ζÞ ¼ Xμ0 ðs; ζÞ. In this case, the action can be written
in the form (3.4) for an elastic body [21].
A natural way to remove the gauge freedom for the

continuous body is to choose the “proper time gauge”
_Xμ0 _Xμ0 ¼ −1. With this condition, the separation ds
between neighboring constant s surfaces coincides with
the proper time interval measured along each of the
world lines.
The effective particle action (3.22) inherits RP-invari-

ance from the continuous body (3.3). Recall the change of
variables from Xμ0 to Xμ and ξμ, defined by the exponential
map, Eq. (3.13). RP-invariance consists in replacing the
vector ξαðs; ζÞ with ~ξαð~s; ζÞ such that

~X0ð~s; ζÞ ¼ exp ðXð~sÞ; ~ξð~s; ζÞÞ: ð4:1Þ

Note that the reparametrization ~s ¼ Fðs; ζÞ only changes
the parametrization of the particle world lines. It does not
affect the parametrization of the fiducial world line.
See Fig. 1.
The fiducial world line can be chosen arbitrarily.

This freedom appears as a gauge symmetry for the
effective particle action (3.22), in addition to the
RP-invariance. This gauge symmetry can be identified
by varying the action,

δS ¼
Z

ds
Z
S
d3ζ

�
δS

δXμ0

�
δXμ0 ; ð4:2Þ

where δXμ0 depends on δXα and δξα through the exponen-
tial map (3.13). Using the results of Appendix B, we find
δXμ0 ¼ Kμ0

αδXα þHμ0
αΔξα. This shows that the action is

invariant, δS ¼ 0, for any variation satisfying

Δξβ ¼ σβμ0Kμ0
αδXα: ð4:3Þ

This invariance holds independent of the equations of
motion.
For the effective particle, the reparametrization

invariance (4.1) and fiducial world line invariance (4.3)
are independent symmetries, each requiring their own
conditions for gauge fixing. RP-invariance is characterized
by 1 real function of 4 real parameters. World line
invariance is characterized by 4 real functions of 1 real
parameter.
There are many ways to fix RP-invariance for the

effective particle. We will consider two different condi-
tions, namely, the “proper time” gauge and the “normal”
gauge. For the fiducial world line invariance, it is generally
convenient to impose _Xμ _Xμ ¼ −1. This partially fixes the
gauge by setting the fiducial world line parameter equal to
proper time. The remaining freedom in the fiducial world
line is removed by imposing a center of mass condition. We
show that for a specific definition of the center of mass, the
center of mass condition is related to a spin supplementary
condition.
The proper time gauge for an effective particle is an

approximation to the conditions _Xμ0 _Xμ0 ¼ −1, where Xμ0 is
defined in terms of Xα and ξα by the exponential map. In
our examples in the next sections, we will take this
approximation to third order in ϵ, where we suppose
jξj=l < ϵ for any relevant length scale l. For example,
l would include the radius of curvature ∼1=

ffiffiffiffiffiffijRjp
. This

condition allows for convergence of series expansions in ξ.

We also impose jξ∘j=α < ϵ. This second condition requires
the relative motions of the particles to be much less than the
speed of light (so that vibrational energy is not comparable
to the total mass-energy).

FIG. 1. Each figure shows the fiducial world line XðsÞ and the world line for a generic particle X0ðs; ζÞ in the body. The dots on the
fiducial world line indicate the parameter values for XðsÞ. In the left figure, the particle world lines are parametrized by s; in the right
figure, the particle world lines are parametrized by ~s. The spacetime point X0ð1; ζÞ ¼ expðXð1Þ; ξð1; ζÞÞ in the left figure coincides with
the spacetime point ~X0ð2; ζÞ ¼ expðXð2Þ; ~ξð2; ζÞÞ in the right figure. The dashed line in each figure is the geodesic that defines the
exponential map.
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Using Eqs. (3.19) and (B7), we have

gαμ0 _X
μ0 ¼

�
δαβ −

1

2
Rα

ξβξ −
1

6
Rα

ξβξ;ξ

�
_Xβ

þ
�
δαβ −

1

6
Rα

ξβξ

�
ξ
∘α þOðϵ4Þ

¼ _Xα þ ξ
∘α

−
1

2
Rα

ξ _Xξ −
1

6
Rα

ξξ
∘
ξ

−
1

6
Rα

ξ _Xξ;ξ þOðϵ4Þ; ð4:4Þ

which gives

_Xμ0 _Xμ0 ¼ _Xα
_Xα þ 2 _Xαξ

∘α þ ξ
∘2
− R _Xξ _Xξ −

4

3
R

_Xξξ
∘
ξ

−
1

3
R _Xξ _Xξ;ξ þOðϵ4Þ: ð4:5Þ

The occurrence of _X and ξ as indices on the Riemann
curvature tensor indicates contraction of those indices with
the specified vectors. We now partially fix the fiducial
world line by setting _Xα

_Xα ¼ −1. Then the proper time
gauge condition _Xμ0 _Xμ0 ¼ −1 yields

2 _Xαξ
∘α þ ξ

∘2
− R _Xξ _Xξ −

4

3
R

_Xξξ
∘
ξ
−
1

3
R _Xξ _Xξ;ξ þOðϵ4Þ ¼ 0;

ð4:6Þ

to third order in ϵ.
An alternative to the proper time gauge is the “normal

gauge”, in which we simply suppose the vectors ξαðs; ζÞ
inhabit the subspace normal to some timelike vector field
VαðsÞ defined along the world line, that is,

VαðsÞξαðs; ζÞ ¼ 0: ð4:7Þ

The vector field can be a defined in various ways; for
example, Vα might equal four-velocity Uα or the momen-
tum Pα.
With _Xα _Xα ¼ −1, three degrees of freedom remain to be

fixed for the fiducial world line. Two options are a “center
of mass” condition and or a “spin supplementary” con-
dition VαSαβ ¼ 0. We will consider a natural formulation of
the center of mass condition which is equivalent to a spin
supplementary condition up to quadrupole order, though
further multipole corrections exist.
The center of mass at parameter time s can be defined as

the Frechet-Karcher mean of the surface ΣðsÞ. Specifically,
XðsÞ is the center of mass of ΣðsÞ if it minimizes the
function [22]

fðyÞ≡
Z
S
d3ζwðζÞσðy; X0ðs; ζÞÞ; ð4:8Þ

where wðζÞ can be any density defined on S . Essentially,
this definition tells us that the center of mass minimizes a
weighted average of the squared distance between itself and
every other point on the surface. It may be the case that the
point x ¼ XðsÞ that minimizes fðyÞ does not lie on the
surface ΣðsÞ.
The most useful form of the center of mass condition is

found by setting ∂αf ¼ 0 at the minimum.With the relation
(B3) this yields Ξα ¼ 0, where

Ξα ≡
Z
S
d3ζwξα ð4:9Þ

defines the center of mass
One natural choice for the density weight is

w ¼
ffiffiffiffi
h0

p
nμ

0
nν

0
Tμ0ν0 , where nμ

0
is the unit vector field

normal to the surface ΣðsÞ of constant s and h0 is the
determinant of the induced metric on ΣðsÞ. This w is the
energy density relative to a fleet of observers at rest in ΣðsÞ.
If we choose the normal gauge, then ΣðsÞ is (a subset of)
the surface of geodesics passing through XðsÞ which are
normal to Vα at XðsÞ. This gauge choice has been
considered by Costa and Natario [5], but using different
definitions of Pα and Sαβ than those used in this paper. They
showed that with the normal gauge (with their definitions of
spin and momentum), the center of mass condition Ξα ¼ 0

with w ¼ −
ffiffiffiffi
h0

p
Z0;μ0nν

0
Tμ0ν0 is exactly equivalent to a spin

supplementary condition VαSαβ ¼ 0. We produce a similar
result for our definitions of Pα, Sαβ and w.
The quickest way to derive the result is by using the

series expansion of Hα
−1

μ0nμ
0
. If we differentiate the normal

gauge condition (4.7) with respect to ζi, we see that it
satisfies the property Vαξ

α
;i ¼ 0. We also have nμ0X

μ0
;i ¼ 0

everywhere on ΣðsÞ. Using the identity Hα
−1

μ0Hν0
α ¼ δμ

0
ν0 and

the result (3.19b), we can write nν0δν
0
μ0X

μ0
;i ¼ 0 as

ðHν0
αnν0 ÞðHα

−1
μ0X

μ0
;i Þ ¼ Hν0

αnν0ξα;i ¼ 0: ð4:10Þ

This means that Hμ0
αnμ0 is parallel to Vα. Next, set

Hμ0
αnμ0 ¼ AVα and write

gμ
0ν0nμ0nν0 ¼ A2ðHα

−1
μ0Hβ

−1

ν0gμ
0ν0 ÞVαVβ: ð4:11Þ

Using the series expansion (B6) and nμ
0
nμ0 ¼ −1 we have

A ¼
�
1 −

1

3
RVξVξ −

1

6
∇ξRVξVξ þOðϵ4Þ

�
−1
2

¼ 1þ 1

6
RVξVξ þ

1

12
∇ξRVξVξ þOðϵ4Þ: ð4:12Þ

Now we can calculate
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Hα
−1

μ0nμ
0 ¼ Hα

−1
μ0gμ

0ν0nν0 ¼ Hα
−1

μ0gμ
0ν0 ðHβ

−1

ν0Hλ0
βÞnλ0 : ð4:13Þ

Using the results above forHλ0
βnλ0 and the expansion (B6b)

from Appendix B, we have

Hα
−1

μ0nμ
0 ¼

�
gαβ þ 1

3
Rα

ξ
β
ξ þ

1

6
∇ξRα

ξ
β
ξ þOðϵ4Þ

�

×

�
1þ 1

6
RVξVξ þ

1

12
∇ξRVξVξ þOðϵ4Þ

�
Vβ

¼ Vα þ 1

3
ψαβ

�
RβξVξ þ

1

2
∇ξRβξVξ

�
þOðϵ4Þ:

ð4:14Þ

where ψαβ ≡ gαβ þ 1
2
VαVβ.

Now set w ¼
ffiffiffiffi
h0

p
nμ

0
nν

0
Tμ0ν0 ¼ −nμ0Pμ0 , where the sec-

ond equality follows from the results of Sec. III, to obtain

Z
S
d3ζwξα ¼ −

Z
S
d3ζnμ

0
Hβ
−1

μ0Hν0
βPν0ξα

¼ −2
Z
S
d3ζHβ

−1

μ0nμ
0
ξ½αHν0

β�Pν0 : ð4:15Þ

Here we utilize the result Hβ
−1

μ0nμ
0
ξβ ¼ nμ

0
σβμ0σβ ¼

nμ
0
σμ0 ¼ 0, derived from the relations in Appendix B

and the fact that σμ0 is tangent to ΣðsÞ and therefore

orthogonal to nμ
0
. Now replacing Hβ

−1

μ0nμ
0
with the expan-

sion in Eq. (4.14) and using the definition of spin from
Eqs. (3.24b) and (3.26), we find that the center of mass
satisfies

Ξα ≡
Z
S
d3ζwξα ¼ VβSβα −

2

3
ψβγVδRγρδσOρσ

αβ þOðϵ4Þ:

ð4:16Þ

Here,

Oρσ
αβ ≡

Z
S
d3ζξρξσξ½αHμ0

β�Pμ0 ð4:17Þ

is an octupole moment in the sense that it is an integral over
a density field with three position vectors. It is not clear to
us how this term relates to the gravitational or reduced
multipoles. In any case, Eq. (4.16) shows that the center of
mass condition Ξα ¼ 0 with appropriately chosen weight w
is equivalent to a spin supplementary condition up to
second order in ϵ, with an octupole correction at third order.

V. EXAMPLE: DUST

An extremely simple example of a continuous body is a
cloud of dust. This is a special case of an elastic body
Eq. (3.4) with the Lagrangian density L ¼ −αρ, where
ρðζ; fijÞ ¼ ρðζÞ is independent of the fleet metric fij.
Thus, for the dust cloud, there is no interaction energy
between particles.
With the definition α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Xμ0 _Xμ0

q
, the dust cloud

action is

S½X0� ¼ −
Z

s1

s0

ds
Z
S
d3ζρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Xμ0 _Xμ0

q
: ð5:1Þ

The equations of motion are given in (3.10), with primes
placed on the spacetime indices. In this case the stress density

Si
μ0 ≡ ∂L=∂Xμ0

;i vanishes, so the equations of motion reduce

to P
∘
μ0 ¼ 0. The momentum density is Pμ0 ≡ ∂L=∂ _Xμ0 ¼

ρUμ0 , where Uμ0 ðs; ζÞ≡ _Xμ0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Xμ0 _Xμ0

q
is the four-velocity

of the particle with label ζi. Therefore the equations of

motion for the dust cloud imply U
∘
μ0 ¼ 0; as expected, each

dust particle follows a geodesic.
We now use the exponential map to write the action in

terms of a fiducial world line Xμ and vectors ξμ. From
Eq. (4.5) we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Xμ0 _Xμ0

q
¼

ffiffiffiffiffiffiffiffiffi
− _X2

p �
1 −U · ξ

�
−
1

2
ð1þ U · ξ

�
Þ

× ðfαβξα
�
ξβ
�
−RUξUξÞ þ

2

3
R
Uξξ

�
ξ

þ 1

6
RUξUξ;ξ þOðϵ4Þ

�
ð5:2Þ

where we have used the abbreviationsUα ≡ _Xα=
ffiffiffiffiffiffiffiffiffi
− _X2

p
and

ξα
� ≡ ξ

∘α
=

ffiffiffiffiffiffiffiffiffi
− _X2

p
. The action is given to third order in ϵ by

inserting (5.2) into (5.1).
The canonical momenta conjugate to Xα and ξα are

Pα ¼
Z
S
d3ζρ

�
Uα þ

1

2
ðfβσξβ

�
ξσ
�
−RUξUξÞ

þ ð1þU · ξ
�
Þfαβξβ

�
− RαξUξ þOðϵ3Þ

�
ð5:3Þ

and

πα ¼ ρ

�
Uα þ

1

2
Uαðfβσξβ

�
ξσ
�
−RUξUξÞ

þ ð1þ U · ξ
�
Þfαβξβ

�
−
2

3
RUξαξ þOðϵ3Þ

�
; ð5:4Þ

respectively. The equations of motion (2.10) are
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P
∘
α ¼

Z
S
d3ζρ

ffiffiffiffiffiffiffiffiffi
− _X2

p �
ð1þU · ξ

�
ÞRαUUξ

þ R
αUξ
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and
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Equation (5.5) follows from Eq. (5.6). To show this, we

multiply Eq. (5.6) byHα
−1

μ0Kμ0
β and integrate over the matter

space S . We can make use of the relations

Hα
−1

μ0Kμ0
β ¼ σαβ ¼ δαβ −

1

3
Rα

ξβξ þOðϵ3Þ ð5:7Þ

which follow from Eqs. (B5) and (B7) of Appendix B. The
calculation leading from (5.6) to (5.5) uses the first and
second Bianchi identities.
The spin for the dust cloud, from the definition (2.11), is
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Z
S
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�
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�
:

ð5:8Þ

One can show by direct calculation that the spin Sαβ and
the momentum Pα from (5.3) satisfy the MPD
equations (2.15).
We now apply gauge conditions to analyze geodesic

deviation. First, we use proper time to parametrize the

fiducual world line, so that
ffiffiffiffiffiffiffiffiffi
− _X2

p
¼ 1. With this choice we

have Uα ¼ _Xα and ξσ
�
¼ ξα

∘
. Applying the proper time

gauge (4.6), the momentum (5.4) becomes

πα ¼ ρ

�
_Xα þ ξ

∘
α −

2

3
R _Xξαξ þOðϵ3Þ

�
: ð5:9Þ

The equation of motion (5.6) reduces to

π
∘
α ¼ ρ
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R
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�
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Finally, we can fix the fiducial world line to be a geodesic;

this implies Uα
∘ ¼ Xα

∘∘ ¼ 0. The equation of motion (5.10)
together with the definition (5.9) yields

ξα
∘∘
−
2

3
Rαξ _Xξ; _X þ 4

3
R
αðξξ∘Þ _X

¼ Rα _X _X ξ þ
4

3
R
αð _X ξ

∘Þξ −
1

6
R _Xξ _Xξ;α

þ 1

3
Rα _X _X ξ;ξ þOðϵ3Þ: ð5:11Þ

Applying the first and second Bianchi identities simplifies
this to

ξα
∘∘ ¼ Rα _X _X ξ þ 2R

αξ
∘
_X ξ

−∇ðξR _XÞα _Xξ þOðϵ3Þ ð5:12Þ

which matches previous derivations of the geodesic
deviation equations to second order [23,24].
Geodesic deviation is often studied in terms of the nth

order Jacobi fields Jαn, each of which is associated with a
finite differential equation linear in Jαn and only including
lower-order Jacobi fields. We can generalize to our three-
dimensional congruence of geodesics, representing Jacobi
fields with spatial derivatives of the vector ξα evaluated
at ζi0:

Jαi1���in ≡ ξα;i1���inðs; ζ0Þ: ð5:13Þ

The equations of motion for the first- and second-order
Jacobi fields can be computed from the first and second
spatial derivatives of (5.12), respectively, evaluated at ζi0.
This yields

Jαi
∘∘ ¼ Rα

_X _X βJ
β
i ; ð5:14aÞ

Jαij
∘∘ ¼ Rα

_X _X βJ
β
ij þ 2∇ðβRα

_XÞ _XγJ
β
ðiJ

γ
jÞ

þ 4Rα
β _XγJ

∘β
ðiJ

γ
jÞ ð5:14bÞ

which are the three-dimensional analogues of the tradi-
tional geodesic deviation equation and Bazanski’s equation
[25], respectively. These results are exact (requiring no
further expansion in ϵ) because all Oðϵ3Þ terms vanish
when their first and second spatial derivatives are evaluated
at ζi0.
Alternatively, instead of applying the proper time gauge

and fixing the fiducial world line to be a geodesic, we can
choose the normal gauge Uαξ

α ¼ 0 and the center-of-mass
condition Ξα ¼ 0. For dust, the center of mass with density
weight w ¼

ffiffiffiffi
h0

p
nμ

0
nν

0
Tμ0ν0 is

Ξα ¼
Z
S
d3ζγρξα ð5:15Þ

where γ ¼ −nμ0Uμ0 is the relativistic gamma factor
between the dust particles and the observers at rest in
ΣðsÞ. The series expansion for γ can be computed using
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Eqs. (3.19a), (5.7), and the results for Hμ0
αnμ0 from Sec. IV.

To second order, we find

γ ¼ 1þ 1

2
fαβξα

�
ξβ
�
þOðϵ3Þ: ð5:16Þ

Under these gauge conditions, the spin becomes

Sαβ ¼ 2

Z
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d3ζρ

�
ð1þU · ξ
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Þξ½αfβ�γξγ

�
−
1

2
RUξUξξ½αUβ�
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2

3
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�
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To order ϵ2, the spin has the familiar form for the angular
momentum of a system about its center of mass; roughly,
Sαβ is a sum over particles of the “cross product” between
the position vector ξα and the relative momentum vector

d3ζρfβγξγ
�
(projected orthogonal to the four-velocity Uα of

the fiducial world line).
Taking the inner product of Sαβ with Uβ yields

UβSβα −
1

6

Z
S
d3ζρξαRUξUξ þOðϵ4Þ ¼ 0: ð5:18Þ

This is precisely the center of mass condition Ξα ¼ 0 with
Ξα written in terms of spin as in Eq. (4.16). It has the form
of a spin supplementary condition with octupole correction.

VI. DISCUSSION

In Sec. II we generalized the result of Steinhoff [13], to
show that “effective particle” actions of the form (2.1)
always yield the MPD equations. These actions make no
explicit reference to a body frame or angular velocity, and
the spin is defined directly in terms of the internal structure
of the effective particle.
We define continuous bodies in terms of a congruence of

world lines in Sec. III, and show how a continuous body
can be expressed as an effective particle. The momentum
and spin for this effective particle are exactly equivalent to
Dixon’s definitions for the momentum and spin of extended
bodies.
The MPD equations are often considered to be “incom-

plete”, requiring the addition of a spin supplementary
condition. By starting with the action principle for a
continuous body, written as an effective particle, we see
clearly that the fiducial particle world line is a gauge degree
of freedom. The equations of motion, and the MPD
equations in particular, are “complete” in the sense of
providing an unambiguous description of the evolution of
the physical system. They are incomplete only in the sense
that gauge conditions are needed to specify the evolution of
the gauge variables. In Sec. IV we defined the center of
mass of the continuous body and fixed the effective particle
world line to coincide with the center of mass. With the

chosen center of mass density weight w, we showed that
this gauge condition can be written as a spin-supplementary
condition with higher-order corrections.
Note that the action (3.3) depends on the position Xμ

through the metric tensor, which is treated as a fixed field.
Treating the metric as a dynamical variable can provide a
new direction for the study of gravitational self-force.
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APPENDIX A: COVARIANT VARIATIONS AND
THE EXPONENTIAL MAP

Consider a tensor ψ I that lives in the tangent space at a
point x in a manifold ℳ. The variation δψ I ¼ ψ 0

I − ψ I is
the difference between ψ I and another tensor, ψ 0

I , which is
(in some sense) close to ψ I . If ψ 0

I lives in a nearby tangent
space at point x0, then δψ I is not a tensor. We define the
difference between ψ 0

I and ψ I as a tensor by parallel
transporting ψ 0

I to the tangent space at x, then subtracting.
This difference is Δψ I ¼ δψ I þ Γσ

αρδxαGρ
σψ I, where

δx ¼ x0 − x. This leads us to define the covariant variation

Δ≡ δþ Γσ
αρδxαGρ

σ ðA1Þ

acting on tensors. Here, Gρ
σ is an operator acting on tensor

indices. Specifically, Gα
β are representations of the Lie

algebra of the general linear group GL(4) acting on the
tensor space [15]. In particular, for contravariant and
covariant vectors ψμ and ψμ, we have

Gα
βψ

μ ¼ δμβψ
α; ðA2aÞ

Gα
βψμ ¼ −δαμψβ: ðA2bÞ

The G’s satisfy the commutation relations

½Gα
β;Gμ

ν� ¼ δμβG
α
ν − δανGμ

β ðA3Þ

for the Lie algebra of GL(4).
For a given point x ∈ ℳ and a vector ξ ∈ Txℳ, let

γx;ξðuÞ be the affinely parametrized geodesic satisfying
γx;ξð0Þ ¼ x and _γx;ξð0Þ ¼ ξ. Define the exponential map as
expðx; ξÞ ¼ γx;ξð1Þ. In component form, we abbreviate
xμ

0 ¼ expμ
0 ðx; ξÞ, where xμ0 are the coordinates of the point

x0. Primed indices are also used to denote tensors in the
tangent space at x0.
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The variation of the exponential map is

δxμ
0 ¼ ∂xμ0

∂xα δx
α þ ∂xμ0

∂ξα δξ
α: ðA4Þ

As discussed above, δξα is not a tensor whenever the
variation of the base point x is nonzero. Using the definition
(A1), and Eq. (A2), we have

δxμ
0 ¼

�∂xμ0
∂xα −

∂xμ0
∂ξσ Γ

σ
αρξ

ρ

�
δxα þ ∂xμ0

∂ξα Δξ
α: ðA5Þ

The coefficients of δxα and Δξα are

Kμ0
α ≡ ∂xμ0

∂xα − Γγ
αβξ

β ∂xμ0
∂ξγ ; ðA6aÞ

Hμ0
α ≡ ∂xμ0

∂ξα : ðA6bÞ

These are bitensors, meaning that they depend on two
points x and x0, and they have indices that exist in the
tangent spaces of both points.
Using this notation, the variation of the exponential map

becomes

δxμ
0 ¼ Kμ0

αδxα þHμ0
αΔξα: ðA7Þ

We use this result in the main text to compute results
(3.19a) and (3.19b).
The definitions of Hμ0

α and Kμ0
α as the vertical and

horizontal derivatives of the exponential function were, to
our knowledge, first given in [23], though Dixon employs
similar definitions in [9]. H and K are often called the
Jacobi propagators and were first discovered in the context
of Synge’s world function σ [6].
Next, consider a tensor function Tðx;ψ IÞ on the tensor

bundle. That is, Tðx;ψ IÞ depends on the point x ∈ ℳ and
tensor arguments ψ I. Both T and ψ I exist in the tangent
space of x. The variation of T is

δT ¼ ∂T
∂xα δx

α þ ∂T
∂ψ I

δψ I: ðA8Þ

When δxα is not zero, neither δT nor δψ I are tensors. Using
the covariant variation (A1), we have

ΔT ¼
�∂T
∂xα þ Γσ

αρGρ
σT −

∂T
∂ψ I

Γσ
αρGρ

σψ I

�
δxα

þ ∂T
∂ψ I

Δψ I: ðA9Þ

Each of the factors on the right-hand side of this equation is
covariant. Note that the first two terms in parenthesis give
the traditional definition of the covariant derivative,

∇αT ≡ ∂T
∂xα þ Γσ

αρGρ
σT: ðA10Þ

When T depends on ψ I , ∇αT is not covariant. Covariance
requires the third term in parenthesis above, which arises
from the parallel transport of ψ as the base point x is varied.
It would be a misnomer to call ∇α the “covariant

derivative”: we shall opt here to call it by its other
traditional name, the Levi-Civita derivative. The covariant
derivative is defined by

DT
Dxα

≡∇αT −
∂T
∂ψ I

Γσ
αρGρ

σψ I: ðA11Þ

With this notation, the covariant variation of T becomes

ΔT ¼ DT
Dxα

δxα þ ∂T
∂ψ I

Δψ I: ðA12Þ

We also use the shorthand notation DαT ¼ DT=Dxα. It is
worth noting that when ψ I is the contravariant vector ξα, the
covariant derivative Dα corresponds to the vertical deriva-
tive ∇�α defined by Dixon and ∂=∂ψ I ¼ ∂=∂ξα corre-
sponds to the horizontal derivative∇α� [8,26]. The notation
DT=Dxα for the covariant partial derivative is adopted from
Vines [19].
For the case where T has no explicit dependence

on x [that is, T ¼ Tðψ IÞ], Eq. (A8) becomes δT ¼
ð∂T=∂ψ IÞδψ I . We can derive a “chain rule” for the
generators Gρ

σ by considering the passive coordinate
transformations ~xα ¼ xα þ δxα. Note that, in this context,
δxα denotes the difference between coordinate values, using
two different coordinate systems, at a single point in the
manifold ℳ. Elsewhere in this appendix, δxα denotes the
difference between coordinates values, using a single
coordinate system, for two distinct points of ℳ.
Under the passive coordinate transformation, T and ψ I

transform as

δT ¼ −∂αδxβGα
βT; ðA13aÞ

δψ I ¼ −∂αδxβGα
βψ I: ðA13bÞ

Using these results in the relation δT ¼ ð∂T=∂ψ IÞδψ I

and noting that ∂αδxβ is arbitrary, we have

Gα
βT ¼ ∂T

∂ψ I
Gα

βψ I: ðA14Þ

In this paper we often consider the case T ¼ TðϕA;ψ IÞ,
where ϕA ¼ ϕAðxÞ is a field defined on the manifold, and
ψ IðsÞ is a tensor function defined solely along a world line
xα ¼ XαðsÞ. In this case the results (A9) and (A14) become
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ΔT ¼ ∂T
∂ϕA

ΔϕA þ ∂T
∂ψ I

Δψ I; ðA15aÞ

Gα
βT ¼ ∂T

∂ϕA
Gα

βϕA þ ∂T
∂ψ I

Gα
βψ I; ðA15bÞ

respectively.
The results (A15) are applied in the main text to the

effective particle Lagrangian, which is a spacetime scalar,
by evaluating these relations at the spacetime point x ¼
XðsÞ on the particle world line. In particular, the variation
of the action Eq. (2.5) and the property (2.13) of the
Lagrangian are obtained from Eqs. (A15). The results
(A15) are also applied to the Lagrangian density for the
continuous body by evaluating them at the spacetime point
x ¼ Xðs; ζÞ. See for example the variation of the action in
Eq. (3.6) and the calculation leading to the stress-energy
tensor (3.12).
Now suppose that T1ðx;ψ IÞ is a tensor function on the

tensor bundle defined by T1ðx;ψ IÞ≡ T2ðϕAðx;ψ IÞ;ψ IÞ,
where ϕAðx;ψÞ are also functions on the tensor bundle. By
applying Eq. (A15a) to T2 and Eq. (A12) to T1 and ϕA, we
find the chain rules

DT1

Dxα
¼ ∂T2

∂ϕA

DϕA

Dxα
ðA16aÞ

∂T1

∂ψ I
¼ ∂T2

∂ϕA

∂ϕA

∂ψ I
þ ∂T2

∂ψ I
: ðA16bÞ

These results are used in Appendix B.
Finally, suppose we have two independent variations Δ1

and Δ2 acting on a general tensor Tðx;ψ IÞ. The covariant
variation Δ1 corresponds to a change in xα by δ1xα and Δ2

corresponds to the change δ2xα. Explicitly, we have Δ1 ¼
δ1 þ Γσ

αρδ1xα and Δ2 ¼ δ2 þ Γσ
αρδ2xα. In general these

variations will not commute. Rather,

½Δ1;Δ2� ¼ ½δ1 þ Γσ
αρδ1xαGρ

σ;Δ2�
¼ δ1Δ2 þ Γσ

αρδ1xαGρ
σΔ2 − ð1 ↔ 2Þ ðA17Þ

where ð1 ↔ 2Þ denotes the previous terms with indices 1
and 2 exchanged. Note that Δ2 is a scalar operator—it
carries no tensor indices—so it commutes with the gen-
erator Gρ

σ. Thus, we have

Gρ
σΔ2T ¼ Δ2ðGρ

σTÞ
¼ δ2ðGρ

σTÞ þ Γν
βμδ2x

βGμ
νGρ

σT: ðA18Þ

With this result it is straightforward to obtain

½Δ1;Δ2� ¼ δ1δ2 þ δ1ðΓν
βμδ2x

βGμ
νÞ

þ Γσ
αρΓν

βμδ1x
αδ2xβGμ

νG
ρ
σ − ð1 ↔ 2Þ: ðA19Þ

(The variation δ1 in the second term on the right acts only
on the factor in parenthesis.) Terms such as δ1Γν

βμ yield
derivatives of Christoffel symbols. The terms Gμ

νG
ρ
σ are

simplified using the commutation relations (A3). The final
result is

½Δ1;Δ2� ¼ ½δ1; δ2� þ Γν
αμð½δ1; δ2�xαÞGμ

ν

þ Rσ
ρμνδ1xμδ2xνGρ

σ; ðA20Þ

where Rσ
ρμν is the Riemann tensor. Note that the first two

terms on the right-hand side are the covariant extension of
the operator ½δ1; δ2�.
Now suppose x is a point on a world line, x ¼ XðsÞ, so

the tensors T, ϕA and ψ I depend on the parameter s. Let
δ2 ¼ δsðd=dsÞ, where δs is infinitesimal. Then δ2xα ¼
_Xαδs and Δ2 ¼ δsðD=DsÞ, where D=Ds is the covariant
derivative along the world line. We can also drop the
subscripts from δ1 and Δ1. The result (A20) now gives
the commutator of a general covariant variation Δ with the
covariant derivative D=Ds. Since δ and d=ds commute, we
have

�
Δ;

D
Ds

�
¼ Rσ

ραβδXα _XβGρ
σ: ðA21Þ

This result is used in the variation of the Lagrangian
in Sec. II.

APPENDIX B: BITENSORS AND SYNGE’S
WORLD FUNCTION

Synge’s world function is closely related to the exponen-
tial function. Given two points x and x0, take the geodesic
γx;x0 ðuÞ affinely parametrized so that γx;x0 ð0Þ ¼ x and
γx;x0 ð1Þ ¼ x0. Then Synge’s world function is defined as [27]

σðx; x0Þ≡ 1

2

Z
1

0

dugαβðγx;x0 ðuÞÞ
dγαx;x0

du

dγβx;x0

du
; ðB1Þ

which is one-half the squared distance of the geodesic
connecting x and x0. Obviously, this function is well-defined
only when x and x0 are close enough that they are connected
by one geodesic. In this paperwe consider the approximation
of small bodies and assume that this is the case for any
spacelike-separated x and x0 in theworld tubeW of our body.
When taking derivatives of σ, we omit semicolons

following the standard notation, and as before use primed
indices for derivatives with respect to x0 and unprimed
indices for x. It can be seen that Synge’s world function
satisfies the formulae [28]
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σαðx; x0Þ ¼ −_γαx;x0 ð0Þ; ðB2aÞ

σμ
0 ðx; x0Þ ¼ _γμ

0
x;x0 ð1Þ; ðB2bÞ

σμ
0
σμ0 ¼ σασα ¼ 2σ; ðB2cÞ

σμ
0

α σμ0 ¼ σβασβ ¼ σα; ðB2dÞ

σν
0
μ0σν0 ¼ σαμ0σα ¼ σμ0 : ðB2eÞ

Based on (B2a) and the definition of the exponential
map, we see that x0ðx; ξÞ and σðx; x0Þ are related by

ξα ¼ −σαðx; x0Þ: ðB3Þ

We can treat each side of this equation as a tensor function
of xα and ξα by writing ξα ¼ −σαðx; x0ðx; ξÞÞ. This allows
us to apply the covariant variation (A12) and get

Δξα ¼ −ðσαβ þ σαμ0Kμ0
βÞδxβ − σαμ0Hμ0

βΔξβ ðB4Þ

where we have used the chain rule (A16). Matching
coefficients gives −σαμ0H

μ0
β ¼ δαβ and σαβ þ σαμ0Kμ0

β ¼ 0,
which imply

Kμ0
α ¼ − σ

−1μ0
βσ

β
α; ðB5aÞ

Hμ0
α ¼ − σ

−1μ0
α: ðB5bÞ

The symbol −1 over the matrices indicates matrix inver-
sion. Equations (B5b) and (B5a) are Dixon’s original
definitions for H and K [6].
We can use the Jacobi propagator H and its inverse to

transfer indices on bitensors into a single tangent space, so
that we can sensibly define series expansions for bitensors.
In Riemann normal coordinates, the components of
ξαðx; x0Þ are (by definition) equal to the coordinates of
the point x0. Thus, in Riemann normal coordinates, we have
Hμ0

α ¼ δμ
0

α . (This equality is by components, and is
obviously not a tensor equation.) As such, the coefficients

of a series expansion mediated by H and its inverse can be
found from the Taylor expansion of the same tensor field in
Riemann normal coordinates. For example, in this paper we
use the following expansion for the metric tensor and its
inverse:

Hμ0
αHν0

βgμ0ν0 ðx0Þ ¼ gαβðxÞ −
1

3
RαξβξðxÞ

−
1

6
Rαξβξ;ξðxÞ þOðϵ4Þ; ðB6aÞ

Hα
−1

μ0Hβ
−1

ν0gμ
0ν0 ðx0Þ ¼ gαβðxÞ þ 1

3
Rα

ξ
β
ξðxÞ

þ 1

6
Rα

ξ
β
ξ;ξðxÞ þOðϵ4Þ: ðB6bÞ

These follow from the familiar expansions for the metric
and its inverse in Riemann normal coordinates [29]. Here, ξ
appears as an index in the Riemann curvature tensor,
indicating contraction of that index with ξα. The coeffi-
cients in the H-series expansion of a tensor field are the
Veblen extensions of that tensor field [30].
Another important bitensor is the parallel propagator

gμ
0
αðx; x0Þ. This bitensor parallel propagates contravariant

indices from Txℳ to Tx0ℳ along the geodesic γx;x0 .
Because the metric is parallel propagated, we have
gαβðxÞgμ0αgν0β ¼ gμ

0ν0 ðx0Þ. It follows that gαμ0 parallel prop-
agates covariant indices from Txℳ to Tx0ℳ. We also have

the relations gαμ0gμ
0
β ¼ δαβ and gμ

0
αgαν0 ¼ δμ

0
ν0 , so that gαμ0

and gμ
0
α can inversely propagate contravariant and covar-

iant indices from Tx0ℳ to Txℳ, respectively.
We can also use the parallel propagator to define series

expansions for bitensors. In this paper we use the expan-
sions [19]

gαμ0Hμ0
β ¼ δαβ −

1

6
Rα

ξβξ −
1

12
Rα

ξβξ;ξ þOðϵ4Þ; ðB7aÞ

gαμ0Kμ0
β ¼ δαβ −

1

2
Rα

ξβξ −
1

6
Rα

ξβξ;ξ þOðϵ4Þ ðB7bÞ

for the Jacobi propagators.
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