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Continuous body dynamics and the Mathisson-Papapetrou-Dixon equations
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We show that an effective particle Lagrangian yields the Mathisson-Papapetrou-Dixon (MPD) equations.
The spin of the effective particle is defined without any reference to a fixed body frame or angular velocity
variable. We then demonstrate that a continuous body, defined by a congruence of world lines and

described by a general action, can be rewritten as an effective particle. We analyze the gauge freedom of the
body and show that a natural center of mass condition is related to a spin supplementary condition.
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I. INTRODUCTION

The motion of extended bodies in general relativity was
first addressed by Mathisson in 1937 [1]. Mathisson defined
multipole moments for the stress-energy tensor expanded
about a central world line and formulated the conservation of
stress-energy as a variational principle. He derived what we
now know as the Mathisson-Papapetrou-Dixon (MPD)
equations to “pole—dipole” order, and identified the quadru-
pole terms that had a nonrelativistic analogue. Papapetrou,
using a different definition for multipole moments, derived
the same equations in 1951 [2].

The analyses of Mathisson and Papapetrou yield ten
equations for thirteen unknowns. The ten equations give the
time evolution of the four components of momentum, P%,
and the six components of spin, S?’. The thirteen unknowns
are the momentum, spin, and the three degrees of freedom
contained in the particle’s proper velocity U“.

Mathisson and later Pirani [3] addressed the mismatch
between the number of equations and number of unknowns
by introducing the spin supplementary condition
U%S,s = 0. Pirani justified this choice by analogy to a
similar identity for the center of mass in special relativity.
Papapetrou instead employed the spin supplementary con-
dition V*S,; = 0 where V* is an arbitrary time flow vector
field. In 1959 Tulczyjew simplified Mathisson’s multipole
formulation, again deriving the same equations of motion at
pole-dipole order but choosing the spin supplementary
condition P*S,; = 0, arguing that Mathisson and Pirani’s
condition did not uniquely determine the world line. A
survey of the various spin supplementary conditions and
how they relate to one another can be found in [4]. A
concrete analysis of the relationship between spin supple-
mentary conditions and center of mass can be found in [5].

In a series of papers from 1970 to 1974, Dixon presented
yet another reformulation of the multipole moments in
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terms of a Fourier transformation of the stress-energy
tensor [6-8]. The complete argument is also given in
[9]. Dixon found that Mathisson’s variational principle
yields dynamical equations for P, and S,;, but leaves the
dynamical evolution of the quadrupole and higher order
multipole moments undefined. His analysis places restric-
tions on the symmetries of these multipoles. Based on these
symmetries, Dixon defines the reduced multipole moments
Jrreoar-an for n > 0.

The final form of the MPD equations through quadru-
pole order, as given by Dixon, is [9]:

DP, 1 e vpo
b = 3R A5 = Ve, (113
DS, . 4
Q _ 2P X _R J ﬂl’ﬂ. llb
Ds (a2 p] + 3 uvala Bl ( )

Here, the world line is expressed as x* = X%(s), where x* are
the spacetime coordinates and X“ are functions of a world
line parameter s. The dot above a symbol denotes the time
derivative d/ds and D/Ds is the covariant derivative along
the world line; for example, DP,/Ds = Pa - Fflﬁ).(ﬂ P,.This
will also be denoted with a circle above the symbol, so

that P, = DP,/Ds.

Dixon defines the momentum and spin in terms of
integrals over the leaves of a foliation X(s) of the world
tube. The integrals, which involve the stress-energy tensor
7", Synge’s world function ¢ and the Jacobi propagators
H* , and K* , (described in Appendix B) are [6]

Py(s) = L . dz, k¥, T, (1.2a)

Sap(s) =2 L ( )dzy,Hﬂ’[aa,,] TY. (1.2b)

Both H* , and K* , are bitensors with one primed index
“located” at the point of integration x* € Z(s) and one
unprimed index located at the world line X%(s). These

© 2017 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.95.044025
http://dx.doi.org/10.1103/PhysRevD.95.044025
http://dx.doi.org/10.1103/PhysRevD.95.044025
http://dx.doi.org/10.1103/PhysRevD.95.044025

S.P. LOOMIS and J. DAVID BROWN

bitensors act to transfer vectors from one tangent space into
the other. The derivative of Synge’s world function 65 =
Vo points opposite to the vector tangent to the unique

geodesic connecting X“(s) and x* and acts as a position
vector. The corresponding integrals for the multipole
moments are complicated and beyond the scope of this
introduction.

The multipole method of Mathisson, Papapetrou,
Tulzcyjew and Dixon is not the only approach that yields
the MPD equations. Bailey and Israel [10], extending the
work of Hanson and Regge [11], showed that a form of the
MPD equations could be derived from any reparametriza-
tion—invariant Lagrangian involving a world line X“(s), a set
of Lorentz—orthonormal basis vectors e,*(s) transported
along the world line, and a set of external tensor fields that
interact with the body. The basis vectors e,%(s) define the
orientation of the body, although the exact relationship for a
physical (i.e. nonrigid) body is not addressed. By analogy
with rigid body motion in classical mechanics, one says that
the index a labels the legs of a “body-fixed frame.”

These results were independently replicated without the
external fields by Porto [12]. More recently, Steinhoff [13]
has reformulated Bailey and Israel’s full result in newer
notation. We give a brief overview of Steinhoff’s presen-
tation below.

Steinhoff begins by considering an action of the form

SX. e, @] = / AL (g (X), @ (X). X(s). e%(s).

QY (s). @(s)). (1.3)
where the integration is along the world line X*(s). Here
Gap(x) is the metric of the spacetime manifold ./, ®4(x)
are fields on this manifold and ®;(s) are scalar dynamical
variables defined along the world line. Note that the ®; are
functions of s only, and the index / can include a body
frame index a. The angular velocity is defined in terms of
the basis vectors e,%(s) by Q%(s) =n*e,*D(e,’)/Ds,
where 7% is the Minkowski metric.
Steinhoff defines the momentum and spin as

oL

P, =——, 1.4a

oxX* (1.42)
oL

Sa/} = ZW (14b)

With these definitions, variation of the action (1.3) with
respect to X%(s) and e,%(s) yields the equations of motion

DP 1 . oL
@ — R XPS" 4+ (V D,)— 1.
Ds D) apuv S+ ( a A) aq)A ’ ( 58_)
DS, ) oL
= 2P, Xz — 2(Gip®y) — . 1.5b
Ds «Xp = 2(Gian®a) 55 (1.5b)
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Here, G, is a linear operator defined such that
V@, = 9,94 + 17,6’ ®,. The action of G% depends
on the tensor type of @y.

In Sec. II we consider a general action that depends only
on a world line x* = X“(s), a set of tensors y;(s) defined
along the world line, and a set of external fields ¢, (x). We
call this the “effective particle” model, and show that it
yields the MPD equations.1 Our action does not depend on
an orthonormal body frame e,* or angular velocity Q%. We
show in Sec. III that continuous bodies (defined as a
congruence of world lines minimizing a particular action)
can be expressed in terms of the effective particle action.
The definitions for momentum and spin that emerge from
this analysis coincide with the definitions given by Dixon
[6]. In Sec. IV we discuss the gauge constraints that can be
placed on the effective particle, and explore the relation
between spin supplementary condition and center of mass.
Finally, in Sec. V we apply our results to analyze a
continuous body of noninteracting particles—a “dust
cloud.” As an effective particle, the dust cloud satisfies
the geodesic deviation equations.

II. THE MPD EQUATIONS FOR
AN EFFECTIVE PARTICLE

In this section we generalize the method for deriving the
MPD equations used by Bailey and Israel [10].

The system consists of an effective particle in a manifold
M with position x* = X%(s) and a collection of tensors
w;(s). The tensors y; take the place of the orthonormal
basis e¢,* and body-frame variables ¢; used in Eq. (1.3).
The index / can denote tensor indices as well as functional
dependence. The evolution of the effective particle system
is described by the action

i) = [ aLA0. X)) (21

S0

The ¢4(x) are any collection of spacetime fields. For
example, ¢, can include the electromagnetic field and its
derivatives, the metric tensor g,s, the curvature tensor R 5,5
and its symmetrized derivatives V(,---V, R, ;. In this
paper we treat these fields as external sources—they are not
varied in the variational principle.

Recall that the notation y; is an abbreviation for the
covariant derivative along the world line,

o D d .
V= ull = ﬂ + FZﬂXaGﬂyl//I'

2.2
Ds ds (2.2)

The operator G*,, discussed more fully in Appendix A, acts
on tensor indices [15]. For example, we have

!After obtaining this result, we became aware of a similar
result by H. Fuchs [14].
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Gy’ = Sy, (2.3a)

Gy, = =8, (2.3b)
for contravariant and covariant vectors. The extension of
G*, to higher rank tensors is straightforward. Also note that
the covariant derivative of X“ is defined by the vector

DX%/Ds = X?. Thus, the world line coordinates behave as
spacetime scalars under covariant differentiation.

The Lagrangian (2.1) is a function over a tensor bundle.
That s, L depends on the position X (s) as well as tensors in
the tangent space of x = X(s). The variation Sy, is not
covariant whenever the base point x is also varied. As a
result, the functional derivatives 6S/6X“ and 6S/dy; yield
the equations of motion in noncovariant combinations.
Here we use the results of Appendix A to vary the action in
a covariant manner.

To begin, let us define the momentum variables

PO{ = a—L ’ (243)
ox“

= af . (2.4b)
oy,

Using the result (A15a) from Appendix A, the covariant
variation of the action is

s 0L
58 = / "ds (Pan" VX
S0

I,
+ 7l Ay, + oL Al//,) ) (2.5)
Oy
Here, A is the covariant variation defined by [13]
A =06+T7,0XGH. (2.6)

Because ¢, are external sources, their variations are given
by 8¢pq = (Op,/0x*)5X?. Then the covariant variations of
these fields are A¢p, = V,p,6X%. Also observe that the
covariant variation of X% is defined by the vector
AX* = 6x*. That is, the world line coordinates behave
as spacetime scalars under covariant variation.

To bring 6S into a form that will provide the equations of
motion, we must swap the order of the variations and time
derivatives in AX® and Ay®. The covariant variation and
covariant derivative do not commute; in general, we have
the following relation from Eq. (A21):

D .
[A,—] = R?,,,0X' X' G, (2.7)

Ds

This yields the results
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. D
AX* = —(6X7), 2.8
o (X7 (2.8a)
o D U
Al[/[ = E (Al//[) + R”/,W(SX”X Gﬂo.l//[, (28b)

since the world line coordinates X% behave as scalar fields
under covariant differentiation and covariant variation.

Now integrate by parts. The endpoint terms vanish if we
assume that X* and y; are fixed at s, and s,. The variation
of the action becomes

A o .
5 = / ds K—Pa + R, XP RGPy
So

OL oL
+V, —>6X" + <—— °’>A } 2.9
Pa B B, T Y (2.9)

The coefficients of 6X* and Ay, give the equations of
motion

. . oL
P, = =Ry X'n'G o + Vs ——. (2.10a)
Opa
oL
ol
=== 2.10b
Y ( )

Equation (2.6) shows that the variation Ay; is a sum of
noncovariant terms proportional to dy; and 6X“. From this
we see that the equation of motion §S/8y; = 0 (with X*
fixed) coincides with (2.10b), while the equation of motion
6S/6X* = 0 (with y; fixed) is a noncovariant combination
of the covariant Egs. (2.10)

Spin is defined as

Sp(, = 277'JGL06]1//1' (211)

This puts the equation of motion (2.10a) into the form of the
MPD equation (1.5a). The equation of motion for the spin
variable itself is obtained from the covariant derivative
of the definition (2.11), which yields §,, = 21t Gpowit
2n! G[p(,]yoll. With the equation of motion (2.10b) this
becomes

o OL .
S, =2—G 22'G .
po 81//1 [pol¥1 + 27 o)W1

(2.12)
We now make use of (Al5b), which follows from the
requirement of general covariance. This equation tells us
that the operator G”4 acting on the Lagrangian L of (2.1)
follows a “chain rule”. Since L is a scalar, we have
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oL oL .
0=—-G%¢p, +——G%X*
Opa pha ox+ 7’
OL OL o
+ —G%y; +—G%y;.
op, ! Oy g

(2.13)

We can lower the index a on G?4 and antisymmetrize. Using
the notation (2.4) for the momenta, we have

oL .
0=2"G PyX
o, ClenPa T PipXa

oL o

+ 5y, sV + 7' G- (2.14)
Vi

This result can be used to rewrite the time derivative of the
spin from (2.12) as the MPD equation (1.5b).

To summarize, we have shown that the equations of
motion (2.10) that follow from the action (2.1), along with
the definition (2.11) for spin, yield the MPD equations

: 1 - oL

a 2 aﬁﬂb S + ( {I¢A) 8¢A ’ ( 58.)
e . oL
Sa/} = 2P[(1Xﬁ] - Z(G[a/}]¢A) 8¢A (215b)

in the form (1.5).

The key difference between this result and previous
analyses is that we do not require a body frame or basis
vectors e,* to define the orientation of the body, and we
have no need for an angular velocity variable Q5. The spin,
as defined in (2.11), does not rely on these constructions.

III. CONTINUOUS BODIES WRITTEN AS
EFFECTIVE PARTICLES

Let ./ be a Riemannian manifold with coordinates x*. We
consider a continuous body in the sense defined by Carter
and Quintana [16], as a congruence of world lines repre-
sented by the smooth mapping X : R x . — ., where . is
a differentiable manifold whose points represent the world
lines, and the real numbers R label points along each world
line. . is called the “matter space” and is given coordinates
£ [17]. The coordinate on R is s. Thus, functions over the
congruence may be written in terms of coordinates (s, {’) on
R x .#, or in terms of the manifold coordinates x*. We
introduce the inverse mapping (Z°(x), Z'(x)) that satisfies
s =Z"(X(s.¢)) and {' = Z'(X(s,0)).

The derivatives of X and (Z°, Z') satisfy [18]

X+70 + X"'7i, = &, (3.1a)
X"z}, = ¢, (3.1b)
X175 =1, (3.1c)
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X’_‘l-ZfL =0, (3.1d)
X+zi, =0, (3.1e)
where X* = 9X*/9s.
We introduce the notations
D Y 9 c Y »
o = X"VH = 5 + I“W,X"G/(,, (3.2a)
D 0
= XﬁVM =—+ Fl‘jﬂXf‘iG/’o, (3.2b)

D! oL’
using the generators G”, from Appendix A, and following
Vines’ use of D as a covariant partial derivative [19].
As before, we may also abbreviate D/Ds with the circle

(e.g. /3) and D/D¢' with semicolons (e.g. A)).

We consider a fairly general action assuming that the
body is subject to no external forces, though it may be
subject to internal forces mediated by the first spatial
derivative X;:

S[x] = / ds // BELE g (X). X0 X1).  (3.3)

We will generally restrict this action to be reparametrization
invariant, although the results of this section do not depend
on that assumption. When reparametrization invariance is
enforced, the above action coincides with DeWitt’s elastic
body [20,21]

S[X] :—[1 ds/yd%ap(é,fij), (3:4)

where a = ,/—X"Xﬂ and f;; is the fleet metric f;; =
(9 + U, U)XXY, with U = X*/a being the four-
velocity field.

In this section we study some basic properties of the
action (3.3) and show that it can be expressed in the
form of the effective particle action (2.1). Doing so gives
definitions of P, and S,; identical to Dixon’s definitions
(1.2) [6].

We start by varying the action to determine the equations
of motion. With the exception of its dependence on ¢
(which does not affect the variation), the Lagrangian
density £ is a function of X through the metric field g,
and is also a function of vectors X* and X*.. This means we
can use the methods of Appendix A, specifically
Eq. (Al5a), to vary the action. We define the canonical
momentum density and stress density as

oL
P

" E@, (358_)
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)

L= (3.5b)

Then the variation with respect to X* is
5 = / " ds / BP,AX" + SIAXY]. (3.6)
S0 5

Note that, since the metric is treated as an external field, its
covariant variation Ag,,(X) = V,g,,6X* vanishes.
For the AX* term in Eq. (3.6), integration by parts gives

. a. (3.7

51 . D D'P”
/ dsP,AX" = — / ds —*8X* + [P,6X"]
D
S0 So

The last term in the above equation vanishes when we fix
the initial and final configurations X*(sy) and X*(s,); that
is, we set 6X*(sg) = 6X*(s;) = 0. We can similarly inte-
grate by parts for the X’j term, with the result

. DS .
/ ¢S AXY = - / A3 —L 86X+ + / d*¢n;Si6X+.
52 ’ s D¢ 0.7

(3.8)
where 7; is the outward-pointing vector field normal to the

boundary surface 0.%. The variation of the action with X*
fixed at sq and s, is then

58 = / " ds / &P, - S, 16X
So 7

+ / " ds / & [, S1)6X.
S0 0.7

Since 0X* is arbitrary, this gives the equations of motion
and boundary conditions

(3.9)

_ffpﬂ_g/iw =0 ((e.¥), (3.10a)

S, =0 ((€dS). (3.10b)
By integrating (3.10a) over the matter space .#, and using
the boundary (3.10b), we obtain a continuity equation for
the total momentum within the body.

The stress-energy tensor is defined by

2 0L
W=
V4 -9 8.9;41/

This can be rewritten in terms of the canonical momentum
and stress densities as

(3.11)

1 : |
T = —— (P*X" + SXY).

= (3.12)
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by using the chain rule (A15b) for G%. From Eq. (3.1) we
see that P* = —/hT*n, where h is the determinant of the
induced metric /;; = g, X";X*; on surfaces X(s) of constant
s. Also, n, is the future-pointing unit vector field normal
to X(s).

We now turn to the primary goal of this section: to show
that the continuous body action (3.3) can be written in the
form of the effective particle action (2.1). This requires
mapping the information about the congruence of geo-
desics to the tangent space of a point on a fiducial world
line. To prepare for this analysis, we first make a change of
notation by placing primes on coordinates and tensors
associated with the continuous body. In particular, we will
use X': R x . — 4 rather than X to denote the con-
gruence of world lines. For tensors associated with the
body, we place the prime on the indices: for example, the
(unnormalized) velocity, momentum density and stress
density are X", P, and SL,, respectively.

The fiducial world line will be denoted XH(s).
The fiducual worldline does not need to lie within the
material body. If it does, the spacetime point X*(s) (for a
given value of s) does not need to lie on the s = const
surface.

The introduction of the fiducual worldline adds a gauge
freedom to the system, in additional to the reparametriza-
tion invariance that is already present. In later sections we
will discuss how the gauge freedom can be fixed.

We make use of the bitensor and exponential map
formalism of Appendix B. We begin by defining the
exponential map from a point X#(s) on the fiducial world
line and a vector & in the tangent space at X*(s), to the
point X#'(s,¢) in the continuous body:

i

X'(5,) = exp(X(s).&(s.0)). (313
Here, &(s,¢) = —c*(X(s), X'(s,)) is the vector at X(s)
tangent to the geodesic y(u) connecting X(s) and X' (s, {),
affinely parametrized such that y(0) = X and y(1) = X'.
Note that the point X'(s, {) defined by the exponential map
depends on the geometry in a neighborhood of X(s). To
ensure that there is a unique geodesic connecting X(s) and
X'(s,{), the size of the body must be restricted by the
curvature and its derivatives at X (). The region to which it
is restricted is termed the “normal convex neighbor-
hood” (NCN).

With the placement of primes on the coordinates and
tensors associated with points in the continuous body, the
action (3.3) becomes

S[X] = / s / BELE, gy, X X1). (3.14)
S0 ;4

Equation (3.13) defines a change of variables in the action
from X¥ (s, ) to X*(s) and & (s, £). We can use Eq. (A7) to

044025-5
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write 5X* in terms of 5X* and the covariant variation A&,
The result,

SXK = KV 5X* + H¥ ,A&”, (3.15)
makes use of the Jacobi propagators, K¥ , and H* ,. The
Jacobi propagators are defined in terms of derivatives
of the exponential map. They depend on X*(s), &%(s, )
and the geometry in a neighborhood of x = X(s). They are
introduced in Appendix A and further developed in
Appendix B. Note that H¥ , is invertible in the NCN,
since there must be a one-to-one mapping between &*
and X*'.

As a functional of X*#(s) and & (s, {), the variation of the
action is

w:/ﬁg/&%m—%mﬂﬁW+mAw
50 S ’

+ / " ds / ¢ SL (K (6X* + HY (AL,
S0 0.7
(3.16)

where we have used the results from Eq. (3.9).
Extremization of S with respect to £* yields the equations
of motion

Py - S, B, =0 (€ (3.17a)

S JHY =0 (( €05). (3.17b)
The propagator H , is invertible in the NCN, so these
equations are clearly equivalent to the equations of motion
obtained by extremizing the action with respect to X*
[Egs. (3.10) with primes on the spacetime indices].

The variation of the action with respect to the fiducial
world line X* must be handled with care, since 6X* on the
boundary 0.% is not independent of §X in the bulk .. To
isolate 60X in Eq. (3.16), we must convert the surface term
to a volume integral. This yields

/ d%;[-ﬁ,,m’a +SLK ] =0 ((es) (3.18)
5

for the equation of motion that comes from extremization of
S with respect to X*. This equation is a combination of the

equations (3.17). To see this, we first multiply Eq. (3.17a)

-1 ,
by H*, K" 4 and integrate over the matter space .. We then
integrate by parts on the term S;,;iK”/ 4 The boundary term

vanishes by virtue of Eq. (3.17b) (multiplied by HI“U/K”/ p)-
The remaining volume integral is precisely the equation of
motion (3.18).

The analysis above shows that the equations of motion
obtained by varying X* and &* are not independent; this is a
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consequence of the fact that X# and & constitute a larger set
of variables than X# . The variables X* and & contain a new
gauge freedom, not present in the original variables X*',
which is the freedom to choose the fiducial world line.
The action (3.14) can be written explicitly in terms of the
new variables X* and &. To show this, we first use the
general variation (3.15) to expand the derivatives of X* as

X7 = k¥ X+ g & (3.19)

X' = H¥ &2 (3.19b)
As a functional of X*(s) and &%(s,{), the Lagrangian
density from Eq. (3.14) becomes

L= L gy, K¥ X+ HY E B %) (3.20)
where the argument of g,/ (X’) is written in terms of X(s)
and &(s,{) using the exponential map (3.13). Next, we
make use of the parallel propagator ¢*, defined in
Appendix B. Since the Lagrangian density £ is a scalar,
it depends only on scalar combinations of its arguments.
Furthermore, it is a property of the propagator that con-
tractions between contravariant and covariant indices are
preserved; i.e. A¥ 9w ¢ By = A”’Bﬂ/. Therefore, we see
that the Lagrangian density can be written as

L= ‘C(é‘v Yap> gaﬂ’Kﬂ/ﬂXﬁ + ga/,t'Hﬂ//ifﬁv ga,u’H”/ﬂgfii)'

(3.21)
The action for the continuous body is
S
S[x, & = / dsL.
So
= / s / BCLE, Gupr I KY 5 X7
S0 7
o g1 & g 1Y 3.22
+ 9" Y & " HY pE7). (3.22)

with the Lagrangian defined by L = [, d&*¢L.

The Lagrangian density (3.21) is constructed entirely
from tensor fields defined in the tangent spaces of points
X*(s) along the fiducial world line. Hence, the action (3.22)
describes an effective particle with world line X*(s),
carrying internal degrees of freedom described by the
vectors &“(s). The effective particle interacts nonlocally
with the geometry in a neighborhood of the world line; this
dependence is contained in the tensors g“”/H"/ s and
g“ﬂ/K’" s In Egs. (B7) we show the series expansions for
g"M/H”' 4 and g"ﬂ/K"/ﬂ. Expressed in this way, g"ﬂ/H"//g and
g"’M:K”/ 5 depend on the Riemann tensor and its derivatives
evaluated along the fiducial world line.
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The effective particle action (3.22) takes the form of

Eq. (2.1) with the correspondences:

wr < &%(0). (3.23a)

¢A <~ {ga[)” Rm//)m vaR;wpm . '}’ (323b)
where the dots denote higher order derivatives of the
Riemann tensor. Note that the index / now represents
the continuous labels ¢7, as well as the discrete spacetime
index a. This requires us to replace certain partial deriv-
atives with functional derivatives; for example, L /Oy,
becomes 5L /6E({). Furthermore, a repeated index I must
include an integral over the matter space ..

The momenta as defined in Egs. (2.4) are

P,= a.L = / dCKY Py, (3.24a)
oX* p
7,(0) = O‘iL =H' P,. (3.24b)
5¢ (€)

These results are most easily derived with the Lagrangian
density written in the form of Eq. (3.20). We also note the
result

oL
— g Sy
55"’

(3.25)

satisfied by the momentum density. From the definition
(2.11), the spin is

Sy =2 / B, G = 2 // oy (3.26)

Using d¥, = —ny Vi d’¢, our earlier result that
Py = V' n,/T’;l/,, and the definition &* = —¢%, we see
that the above definitions for momentum and spin coincide
with Dixon’s definitions in Egs. (1.2).

The equations of motion for the effective particle, as
derived in Sec. II, must be generalized to account for the
fact that the index / now includes the continuous labels £*.
The variation of the action, from Eq. (2.5), becomes

s . oL
58 = / "ds <PaAX“ b V,R,,00X" +
S0

HUpc

6 a 6 a
+/5ﬁd3g[nam§ + 5 5§QA<§D (3.27)

After integration by parts, we obtain the generalization of
Eq. (2.9):
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S1 oL
58 = / ds< + o VaRyup +

Hvpo

+ R X° / 7 d3Cﬂ'ﬂ§”> 5X?
3 o _ D % a

/ ds/ e ( 55“ D <5E§>>Af
d a2¢ (2= ) age,
+/ S/d/ C(”’ﬁéf;) :

The equations of motion obtained by extremizing S with
respect to £%(¢) are

(3.28)

o oL D (6L

=7 7\ 5 . 3.29
e = g DE (5553-) e (3.2%2)
oL
n,-@zo (€ ds). (3.29b)
These equations generalize the effective particle

Eq. (2.10b). They are equivalent to Eqs. (3.17).
The equation of motion that comes from extremization of
S with respect to the fiducial particle world line X* is

oL

3R VQRWM + .-

fo’a = _Raﬂpg}.{ﬂ/ d3C§pﬂa
7 HUpo
(3.30)

This equation generalizes the effective particle Eq. (2.10a).
It is equivalent to Eq. (3.18). As shown before, Eq. (3.30) is
redundant; it can be derived from Egs. (3.29).

We have shown that the continuous body, described by
the action (3.14), can be interpreted as an effective single
particle with action (3.22). This result still holds when the
Lagrangian density depends on higher-order spatial deriv-
atives of X*. In that case, the formulas for converting
derivatives of X* into derivatives of &* and bitensors are
more complicated. Nevertheless, it is still true that the final
Lagrangian density can be written in terms of a X*(s),
&%(s,¢) and their derivatives, in combinations that depend
on the geometry in a neighborhood of the fiducal world
line. In terms of a series expansion, the dependence on
geometry appears as the Riemann tensor and its derivatives
evaluated at X*(s).

We can also generalize the action (3.14) by allowing for
further dependence on X’ through some exterior fields. This
would not change the main result—we simply use the
parallel propagator to express these fields in terms of
tensors defined along the fiducial world line.

IV. GAUGE CONDITIONS

In this section we assume the action (3.3) for the
continuous  body is  reparametrization  invariant

044025-7



S.P. LOOMIS and J. DAVID BROWN

(RP-invariant). A reparametrization § = F(s,{) consists
in replacing the coordinates X* with X* such that
X*(3,¢) = X#(5.¢). In this case, the action can be written
in the form (3.4) for an elastic body [21].

A natural way to remove the gauge freedom for the
continuous body is to choose the “proper time gauge”
X* X W= —1. With this condition, the separation ds
between neighboring constant s surfaces coincides with
the proper time interval measured along each of the
world lines.

The effective particle action (3.22) inherits RP-invari-
ance from the continuous body (3.3). Recall the change of
variables from X* to X* and &, defined by the exponential
map, Eq. (3.13). RP-invariance consists in replacing the

vector £%(s, &) with &(3,¢) such that

X'(3.) = oxp (X(5). E(5.0)- (4.1)
Note that the reparametrization § = F(s,{) only changes
the parametrization of the particle world lines. It does not
affect the parametrization of the fiducial world line.
See Fig. 1.

The fiducial world line can be chosen arbitrarily.
This freedom appears as a gauge symmetry for the
effective particle action (3.22), in addition to the
RP-invariance. This gauge symmetry can be identified
by varying the action,

5S:/ds/ d3g“< 55,)5)(”’,
% OXH

where X depends on 6X% and 8&% through the exponen-
tial map (3.13). Using the results of Appendix B, we find
5X* = K* ,6X* + H” ,A&*. This shows that the action is
invariant, 6§ = 0, for any variation satisfying

(4.2)
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A& = of KM 5X°. (4.3)

This invariance holds independent of the equations of
motion.

For the effective particle, the reparametrization
invariance (4.1) and fiducial world line invariance (4.3)
are independent symmetries, each requiring their own
conditions for gauge fixing. RP-invariance is characterized
by 1 real function of 4 real parameters. World line
invariance is characterized by 4 real functions of 1 real
parameter.

There are many ways to fix RP-invariance for the
effective particle. We will consider two different condi-
tions, namely, the “proper time” gauge and the “normal”
gauge. For the fiducial world line invariance, it is generally
convenient to impose X*X 4 = —1. This partially fixes the
gauge by setting the fiducial world line parameter equal to
proper time. The remaining freedom in the fiducial world
line is removed by imposing a center of mass condition. We
show that for a specific definition of the center of mass, the
center of mass condition is related to a spin supplementary
condition.

The proper time gauge for an effective particle is an
approximation to the conditions X* X w = —1, where X# is
defined in terms of X* and £* by the exponential map. In
our examples in the next sections, we will take this
approximation to third order in e, where we suppose
|E|/¢ < € for any relevant length scale #. For example,

¢ would include the radius of curvature ~1/+/|R|. This
condition allows for convergence of series expansions in &.

We also impose \2| /a < €. This second condition requires
the relative motions of the particles to be much less than the
speed of light (so that vibrational energy is not comparable
to the total mass-energy).

FIG. 1.

Each figure shows the fiducial world line X(s) and the world line for a generic particle X' (s, {) in the body. The dots on the

fiducial world line indicate the parameter values for X(s). In the left figure, the particle world lines are parametrized by s; in the right
figure, the particle world lines are parametrized by 5. The spacetime point X'(1,¢) = exp(X (1), £(1,{)) in the left figure coincides with

the spacetime point X'(2,¢) = exp(X(2),(2,¢)) in the right figure. The dashed line in each figure is the geodesic that defines the

exponential map.
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Using Egs. (3.19) and (B7), we have

. I 1 ,
guX' = (55 ~ R~ gR”5/15;5> X

1 oa
+ <5/L} - gRacfﬂé)é + 0(64)

oea 1 1
= X“ a—*Ra e — - R” ..
+¢& M eke T g™ s
1
R O(e"). #4)
which gives
.. v ova v £ &2 :
XXy =X X"+ 2X8 +& — Rigie =3 R, o,
1
= 3 Ryt + O(e)- =

The occurrence of X and £ as indices on the Riemann
curvature tensor indicates contraction of those indices with
the specified vectors. We now partially fix the fiducial
world line by setting X, X* = —1. Then the proper time
gauge condition X' X = —1 yields

1
(4.6)

. o o2 4
2X,8 +& — Ryege — nggég

to third order in e.

An alternative to the proper time gauge is the “normal
gauge”, in which we simply suppose the vectors (s, {)
inhabit the subspace normal to some timelike vector field
V%(s) defined along the world line, that is,

Va(5)€%(s.{) = 0. (4.7)
The vector field can be a defined in various ways; for
example, V* might equal four-velocity U* or the momen-
tum P%.

With XX « = —1, three degrees of freedom remain to be
fixed for the fiducial world line. Two options are a “center
of mass” condition and or a “spin supplementary” con-
dition V8% = 0. We will consider a natural formulation of
the center of mass condition which is equivalent to a spin
supplementary condition up to quadrupole order, though
further multipole corrections exist.

The center of mass at parameter time s can be defined as
the Frechet-Karcher mean of the surface X(s). Specifically,
X(s) is the center of mass of X(s) if it minimizes the
function [22]

) = /yd%w(g)a(y,x'(s,c)), (48)

PHYSICAL REVIEW D 95, 044025 (2017)

where w({) can be any density defined on .#. Essentially,
this definition tells us that the center of mass minimizes a
weighted average of the squared distance between itself and
every other point on the surface. It may be the case that the
point x = X(s) that minimizes f(y) does not lie on the
surface X(s).

The most useful form of the center of mass condition is
found by setting 0, f = 0 at the minimum. With the relation
(B3) this yields E, = 0, where

%z/fwg
S

defines the center of mass

One natural choice for the density weight is
w=Vhn"n" T,,, where n* is the unit vector field
normal to the surface X(s) of constant s and 4’ is the
determinant of the induced metric on X(s). This w is the
energy density relative to a fleet of observers at rest in X(s).
If we choose the normal gauge, then X(s) is (a subset of)
the surface of geodesics passing through X(s) which are
normal to V, at X(s). This gauge choice has been
considered by Costa and Natario [5], but using different
definitions of P, and S than those used in this paper. They
showed that with the normal gauge (with their definitions of
spin and momentum), the center of mass condition =, = 0

(4.9)

with w = —V/1 2% n¥ T,y is exactly equivalent to a spin
supplementary condition V,S% = 0. We produce a similar
result for our definitions of P,, S,; and w.

The quickest way to derive the result is by using the

series expansion of H“”/n"'. If we differentiate the normal
gauge condition (4.7) with respect to ¢, we see that it

satisfies the property V,£% = 0. We also have nﬂ/Xf;I =0

-1 , ,
everywhere on X(s). Using the identity H*,H" , = &, and
the result (3.19b), we can write ”y’%xﬁ/ =0 as

/ —1 / /
(HY gny)(H® X" ) = HY yn, &% = 0. (4.10)

This means that H”/an”/ is parallel to V,. Next, set

H" ;n, = AV, and write

1 -1 -1 i
¢nyny =A*H HP ¢V )V, Vs (411)
Using the series expansion (B6) and n”'nﬂ/ = —1 we have
1 1 )72
A = 1 - nggvg - EV§Rng.}: + O(€ )
1 1 4

Now we can calculate
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~1 ’ —1 1 —1 11 -1 ’
Haﬂ/l’lﬂ = Haﬂ/gyy ny = Ha”/gﬂy (I‘Iﬂl/l‘ﬂL ﬂ)l’lil. (413)

Using the results above for H* pny and the expansion (B6b)
from Appendix B, we have

—1 ’ 1 1
Haﬂ/l/lﬂ = <gaﬁ +§Ra§ﬁ§ +EV§Ra§ﬁ§ + 0(64)>

1 1
X (1 -+ nggvg -+ EV§RV§V§ + 0(6‘4)) V/}

1 1
=V gl//aﬂ (Rﬂchgf + Ev5Rﬁ§V§) + 0(64).

(4.14)

where y? = g% + Lvevs,

Now set w = VA’ n”’n”'Tﬂry/ = —n”/Pﬂ/, where the sec-
ond equality follows from the results of Sec. III, to obtain

-1
R
5 5
-1
=2 / &CHP ' E HY g Py (4.15)
;4

-1
Here we utilize the result Hﬁ#/n”fﬁ = n”/oﬁ,aﬁ =
n”/aﬂ/ =0, derived from the relations in Appendix B
and the fact that o, is tangent to X(s) and therefore
-1
orthogonal to n*. Now replacing H” M/n’" with the expan-
sion in Eq. (4.14) and using the definition of spin from
Egs. (3.24b) and (3.26), we find that the center of mass
satisfies

_ 2
S = /7 d3élwé‘a = V/}S/ia - g‘l/ﬁy V(SR]//)&; Op”a/f + 0(64)'

(4.16)

Here,

awzﬂww&wmm (4.17)

is an octupole moment in the sense that it is an integral over
a density field with three position vectors. It is not clear to
us how this term relates to the gravitational or reduced
multipoles. In any case, Eq. (4.16) shows that the center of
mass condition Z, = 0 with appropriately chosen weight w
is equivalent to a spin supplementary condition up to
second order in €, with an octupole correction at third order.

PHYSICAL REVIEW D 95, 044025 (2017)
V. EXAMPLE: DUST

An extremely simple example of a continuous body is a
cloud of dust. This is a special case of an elastic body
Eq. (3.4) with the Lagrangian density £ = —ap, where
p(C. fij) = p({) is independent of the fleet metric f;;.
Thus, for the dust cloud, there is no interaction energy
between particles.

With the definition a = \/—X"/)‘(ﬂ/, the dust cloud

action is
S[X'] :—/Sl ds/ By /-X X, (5.0)
S0 7

The equations of motion are given in (3.10), with primes
placed on the spacetime indices. In this case the stress density

SL, =0L/ 8Xﬁ»/ vanishes, so the equations of motion reduce
to 703// = 0. The momentum density is P, = 9L/ oxX" =
pU,, where U, (s,0) = X1/ —X"'X v is the four-velocity
of the particle with label {'. Therefore the equations of

motion for the dust cloud imply U = 0; as expected, each
dust particle follows a geodesic.

We now use the exponential map to write the action in
terms of a fiducial world line X*# and vectors &“. From
Eq. (4.5) we have

NEGI= \/——}P{I—U-E—%(lJrUE)
x X 2
X (fopt® & —Ryeye) + <R

3 ez

1
+ _RU§U§;§ + 0(64)}

. (5.2)

where we have used the abbreviations U? = X%/v —X? and

&= Zea /V'—X?. The action is given to third order in ¢ by
inserting (5.2) into (5.1).
The canonical momenta conjugate to X* and &* are

1 *x
P(l = / dSC’p{U{l + E (f[)’n'éjﬂ 60 _RUané')
S
+ (1 +U- 2)faﬂ§ﬂ - Ra:fUcf + 0(63)} (53)
and
1 *x
Ty = P{ U, + 7 Uo(f 505 £ —Rycue)
* * 2
+(L+U-&)f —gRUf:ag + O<€3>}a (5.4)

respectively. The equations of motion (2.10) are
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Rauve

e [

1
+ RaU:f.f - ERUéUg;a =+ O<€3)} (55)
and
Ty = pV—X* (1+UE)R —l—é—lR .
@ aWUET 3 we)e
1 1 ,
+ gRaUUAf;Zj - ERUanéj;a +O(€’) ¢. (5.6)

Equation (5.5) follows from Eq. (5.6). To show this, we

—1 ,
multiply Eq. (5.6) by H*;K* 5 and integrate over the matter
space .. We can make use of the relations

—1

/ 1
HaﬂrKﬂﬁ = Gaﬁ = 5/0; — —Ra§ﬂ§ + 0(63)

: (5.7)

which follow from Eqs. (B5) and (B7) of Appendix B. The
calculation leading from (5.6) to (5.5) uses the first and
second Bianchi identities.

The spin for the dust cloud, from the definition (2.11), is

1 P
Sup =2 / P d3<5p{§[aUm +58aUp(Fopl” & —Rucue)

+(1+U‘2)§af/iaf f «Rpzve + Ole )}
(5.8)

One can show by direct calculation that the spin S,; and
the momentum P, from (5.3) satisfy the MPD
equations (2.15).

We now apply gauge conditions to analyze geodesic
deviation. First, we use proper time to parametrize the

fiducual world line, so that V.—X? = 1. With this choice we

have U = X* and af*" = foa. Applying the proper time
gauge (4.6), the momentum (5.4) becomes

The equation of motion (5.6) reduces to
ro—pdR 2R
1 1 N
+§RaXX.f;§_6RX§X§;a+O(€ )p. (5.10)

Finally, we can fix the fiducial world line to be a geodesic;

this implies U* = X = 0. The equation of motion (5.10)
together with the definition (5.9) yields

PHYSICAL REVIEW D 95, 044025 (2017)

E_ZR 4R
o3 EXEX T 3 aenk
4 1
2 _ngng;{l

(5.11)

Applying the first and second Bianchi identities simplifies
this to

ga = RaXXf + 2Ra.fX.f - v(fRX)aXf + 0(63) (512)
which matches previous derivations of the geodesic
deviation equations to second order [23,24].

Geodesic deviation is often studied in terms of the nth
order Jacobi fields J%, each of which is associated with a
finite differential equation linear in J§ and only including
lower-order Jacobi fields. We can generalize to our three-
dimensional congruence of geodesics, representing Jacobi

fields with spatial derivatives of the vector £* evaluated
at ¢l

S, =650, (5:60)- (5.13)
The equations of motion for the first- and second-order
Jacobi fields can be computed from the first and second
spatial derivatives of (5.12), respectively, evaluated at ¢j).
This yields

‘;El = Rai{i{/s]?’ (5.14a)
JE = Ry I+ 2V R o I
i XXpTij B x)x07 6 )
+ 4R"/»zy7€iJ§> (5.14b)

which are the three-dimensional analogues of the tradi-
tional geodesic deviation equation and Bazanski’s equation
[25], respectively. These results are exact (requiring no
further expansion in ¢) because all O(e?) terms vanish
when their first and second spatial derivatives are evaluated
at &

Alternatively, instead of applying the proper time gauge
and fixing the fiducial world line to be a geodesic, we can
choose the normal gauge U,£* = 0 and the center-of-mass
condition E, = 0. For dust, the center of mass with density

weight w = Vh'n*n/' T, is

=, = / Beppe. (5.15)
S

where y = —n, U is the relativistic gamma factor
between the dust particles and the observers at rest in
%(s). The series expansion for y can be computed using
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Eqgs. (3.19a), (5.7), and the results for H"'anﬂ/ from Sec. IV.
To second order, we find

y=1 +%faﬂ§*“ gﬁ +0(e?). (5.16)

Under these gauge conditions, the spin becomes

* * 1
Sap = Z/y d3§ﬂ{(1 + U &)&uf py& _ERUfUéé[aUﬂ]

2
_gé[aRﬂ]fo_F O(€4>} (517)

To order €2, the spin has the familiar form for the angular
momentum of a system about its center of mass; roughly,
Sqp 1s a sum over particles of the “cross product” between
the position vector &, and the relative momentum vector

depf ﬂ},é; (projected orthogonal to the four-velocity U, of
the fiducial world line).
Taking the inner product of S,; with U? yields

1
UP S, — g/y d*EpéRyepe + O(e*) = 0. (5.18)

This is precisely the center of mass condition Z, = 0 with
&, written in terms of spin as in Eq. (4.16). It has the form
of a spin supplementary condition with octupole correction.

VI. DISCUSSION

In Sec. II we generalized the result of Steinhoff [13], to
show that “effective particle” actions of the form (2.1)
always yield the MPD equations. These actions make no
explicit reference to a body frame or angular velocity, and
the spin is defined directly in terms of the internal structure
of the effective particle.

We define continuous bodies in terms of a congruence of
world lines in Sec. III, and show how a continuous body
can be expressed as an effective particle. The momentum
and spin for this effective particle are exactly equivalent to
Dixon’s definitions for the momentum and spin of extended
bodies.

The MPD equations are often considered to be “incom-
plete”, requiring the addition of a spin supplementary
condition. By starting with the action principle for a
continuous body, written as an effective particle, we see
clearly that the fiducial particle world line is a gauge degree
of freedom. The equations of motion, and the MPD
equations in particular, are “complete” in the sense of
providing an unambiguous description of the evolution of
the physical system. They are incomplete only in the sense
that gauge conditions are needed to specify the evolution of
the gauge variables. In Sec. IV we defined the center of
mass of the continuous body and fixed the effective particle
world line to coincide with the center of mass. With the

PHYSICAL REVIEW D 95, 044025 (2017)

chosen center of mass density weight w, we showed that
this gauge condition can be written as a spin-supplementary
condition with higher-order corrections.

Note that the action (3.3) depends on the position X*
through the metric tensor, which is treated as a fixed field.
Treating the metric as a dynamical variable can provide a
new direction for the study of gravitational self-force.
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APPENDIX A: COVARIANT VARIATIONS AND
THE EXPONENTIAL MAP

Consider a tensor y; that lives in the tangent space at a
point x in a manifold .#. The variation Sy; = w} — y; is
the difference between y; and another tensor, y}, which is
(in some sense) close to ;. If y/ lives in a nearby tangent
space at point x’, then Sy; is not a tensor. We define the
difference between ) and y; as a tensor by parallel
transporting v to the tangent space at x, then subtracting.
This difference is Ay, = dy; +17,0xG’,y;, where
6x = x’ — x. This leads us to define the covariant variation

A=06+T7,0x°G, (A1)
acting on tensors. Here, G”; is an operator acting on tensor
indices. Specifically, G"; are representations of the Lie
algebra of the general linear group GL(4) acting on the
tensor space [15]. In particular, for contravariant and
covariant vectors y* and y,, we have

Gyt = Sy, (A2a)
Gaﬂlllﬂ = _5jdxl//ﬂ (A2b)

The G’s satisfy the commutation relations
[Ga[% Gﬂv] = 5ZGQI/ - 517Gﬂﬂ (A3)

for the Lie algebra of GL(4).

For a given point x € /4 and a vector £ € T M, let
Yxe(u) be the affinely parametrized geodesic satisfying
7+£(0) = x and 7, -(0) = &. Define the exponential map as
exp(x,&) =7,£(1). In component form, we abbreviate
x# = exp” (x, &), where x*' are the coordinates of the point
x'. Primed indices are also used to denote tensors in the
tangent space at x’.
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The variation of the exponential map is

Ox*
o&”

Sxt —6

ox
aa+

55" (A4)

As discussed above, 6% is not a tensor whenever the
variation of the base point x is nonzero. Using the definition
(A1), and Eq. (A2), we have

, ox* Oxt Oxt
o= ——T19,& |ox* A o A
ox <8x“ 98 < >5x + 96 £, (AS)
The coefficients of 6x* and A&* are
: ax"/
= ﬁ
Kﬂa - a a aﬂg 85}/ (A6a)
/ Ox
HV (= —. A6b

These are bitensors, meaning that they depend on two
points x and x/, and they have indices that exist in the
tangent spaces of both points.

Using this notation, the variation of the exponential map
becomes

Sxt = KH 6x% + H (A& (A7)
We use this result in the main text to compute results
(3.19a) and (3.19b).

The definitions of H*, and K*, as the vertical and
horizontal derivatives of the exponential function were, to
our knowledge, first given in [23], though Dixon employs
similar definitions in [9]. H and K are often called the
Jacobi propagators and were first discovered in the context
of Synge’s world function & [6].

Next, consider a tensor function T'(x,y;) on the tensor
bundle. That is, T(x, ;) depends on the point x € .# and
tensor arguments ;. Both T and y; exist in the tangent
space of x. The variation of T is

oT oT
oxe 4 s
ax“ +(9 1"/8% v

6T = (A8)
When 6x* is not zero, neither 67 nor Sy, are tensors. Using
the covariant variation (A1), we have

T T
AT = <g 415,60 ——— 0

a Fg/)G o’WI) ox“*

+o— Ay

G (A9)

Each of the factors on the right-hand side of this equation is
covariant. Note that the first two terms in parenthesis give
the traditional definition of the covariant derivative,
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oT

V. =—
a 8(1

+195,G,T. (A10)

When T depends on y;, V,T is not covariant. Covariance
requires the third term in parenthesis above, which arises
from the parallel transport of y as the base point x is varied.

It would be a misnomer to call V, the “covariant
derivative”: we shall opt here to call it by its other
traditional name, the Levi-Civita derivative. The covariant
derivative is defined by

DT
=V, T - 8_T
Dx* Oy

FZ/)G/){TWI‘ (Al 1)

With this notation, the covariant variation of 7" becomes

DT oT

AT =
Dx" o,

(A12)

We also use the shorthand notation D,T = DT /Dx*. It is
worth noting that when y; is the contravariant vector &%, the
covariant derivative D,, corresponds to the vertical deriva-
tive V,, defined by Dixon and 0/0w; = 0/0E* corre-
sponds to the horizontal derivative V,, [8,26]. The notation
DT/ Dx* for the covariant partial derivative is adopted from
Vines [19].

For the case where T has no explicit dependence
on x [that is, T =T(y;)], Eq. (A8) becomes 6T =
(0T /Ow;)Sw;. We can derive a “chain rule” for the
generators G”, by considering the passive coordinate
transformations x* = x* + 6x%. Note that, in this context,
Ox* denotes the difference between coordinate values, using
two different coordinate systems, at a single point in the
manifold .Z. Elsewhere in this appendix, 6x* denotes the
difference between coordinates values, using a single
coordinate system, for two distinct points of /.

Under the passive coordinate transformation, 7" and
transform as

T = —0,6G?yT, (A13a)
Sy = —0,6x'G gy, (A13b)
Using these results in the relation 67 = (0T /0w ;)
and noting that 0,6x” is arbitrary, we have
or
G T = —G%y;. Al4
B v pYI ( )

In this paper we often consider the case T = T (¢4, y;),
where ¢, = ¢,(x) is a field defined on the manifold, and
w;(s) is a tensor function defined solely along a world line
x* = X%(s). In this case the results (A9) and (A14) become
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oT oT
AT = —A¢p, + — Ay, Al5a
B Pa B,y Y ( )
oT oT
G*T = —G“ + —G%yy, Al5b
T = o0, sPa o, AT ( )

respectively.

The results (A15) are applied in the main text to the
effective particle Lagrangian, which is a spacetime scalar,
by evaluating these relations at the spacetime point x =
X(s) on the particle world line. In particular, the variation
of the action Eq. (2.5) and the property (2.13) of the
Lagrangian are obtained from Egs. (Al5). The results
(A15) are also applied to the Lagrangian density for the
continuous body by evaluating them at the spacetime point
x = X(s,{). See for example the variation of the action in
Eq. (3.6) and the calculation leading to the stress-energy
tensor (3.12).

Now suppose that 7' (x, ;) is a tensor function on the
tensor bundle defined by T (x,y;) = To(Ppa(x,v) wi),
where ¢4 (x, y) are also functions on the tensor bundle. By
applying Eq. (A15a) to T, and Eq. (A12) to T; and ¢4, we
find the chain rules

DT, 0T, Dé,
Dx% - 6¢A Dx? (A16a)
O _omob, 0T o

= + )
Oy Opy Oy Oy

These results are used in Appendix B.

Finally, suppose we have two independent variations A
and A, acting on a general tensor 7' (x, ;). The covariant
variation A, corresponds to a change in x* by §;x* and A,
corresponds to the change §,x*. Explicitly, we have A; =
01 +17%,00x" and A, =36, +17,0,x". In general these
variations will not commute. Rather,

(A1, Ay] = [6) +T7,6,x7G’,, A,

= 5] Az + ngél.xaGpo.Az — (1 <> 2) (A17)

where (1 <> 2) denotes the previous terms with indices 1
and 2 exchanged. Note that A, is a scalar operator—it
carries no tensor indices—so it commutes with the gen-
erator G”,. Thus, we have

G2, 80T = A5(GF,T)

= 6,(G*,T) +T%,6,G, G, T.  (AlS)

With this result it is straightforward to obtain

PHYSICAL REVIEW D 95, 044025 (2017)
(A1, Ay] = 6,8, 4 6,([7,6,x'G*)

+T5,0%,61x6,0°GH GG — (1 < 2).  (A19)
(The variation 9, in the second term on the right acts only
on the factor in parenthesis.) Terms such as 6,7, yield
derivatives of Christoffel symbols. The terms G*,G, are
simplified using the commutation relations (A3). The final

result is

(A1, Ay] = [6y,65] + T, ([0, 6,]x%)GH,

+ R® 013 6,x* G, (A20)
where R°,,, is the Riemann tensor. Note that the first two
terms on the right-hand side are the covariant extension of
the operator [5;, 6,].

Now suppose x is a point on a world line, x = X(s), so
the tensors T, ¢, and y; depend on the parameter s. Let
5, = 8s(d/ds), where &s is infinitesimal. Then &,x* =
X%6s and A, = 8s(D/Ds), where D/Ds is the covariant
derivative along the world line. We can also drop the
subscripts from 6; and A;. The result (A20) now gives
the commutator of a general covariant variation A with the
covariant derivative D/Ds. Since § and d/ds commute, we
have

D .
{A,—] = R ,,;6X°X/Gr . (A21)

Ds

This result is used in the variation of the Lagrangian
in Sec. I

APPENDIX B: BITENSORS AND SYNGE’S
WORLD FUNCTION

Synge’s world function is closely related to the exponen-
tial function. Given two points x and x’, take the geodesic
Yo (u) affinely parametrized so that y, (0) = x and
Y« (1) = x’. Then Synge’s world function is defined as [27]

1

1 dyfctx’dyix’
o) =5 [ g )

du du ’

(B1)

which is one-half the squared distance of the geodesic
connecting x and x". Obviously, this function is well-defined
only when x and x’ are close enough that they are connected
by one geodesic. In this paper we consider the approximation
of small bodies and assume that this is the case for any
spacelike-separated x and x” in the world tube W of our body.

When taking derivatives of o, we omit semicolons
following the standard notation, and as before use primed
indices for derivatives with respect to x' and unprimed
indices for x. It can be seen that Synge’s world function
satisfies the formulae [28]
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o%(x,x') = —}'/fc“x,(O), (B2a)
o (x,x') = 74 (1), (B2b)
6”/0',4/ = 0%, = 20, (B2c)
(7};,6”/ = Ggaﬁ =0, (B2d)
O'Z/,Gl/ = 0,0, =0y (B2e)

Based on (B2a) and the definition of the exponential
map, we see that x'(x, £) and o(x,x’) are related by
& = —o"(x,x'). (B3)
We can treat each side of this equation as a tensor function
of x* and &* by writing &* = —c%(x, X'(x, £)). This allows
us to apply the covariant variation (A12) and get
A& = —(0% + 6% K" 5)8xF — oy HY sAEP (B4)
where we have used the chain rule (A16). Matching
coefficients gives —GZ,H"'ﬂ = g and 0% + aaﬂ/K"'ﬂ =0,
which imply

’ -1,/

K¥, = —O'ﬂﬂdﬂa, (B5a)

7 -1,

HY = -0, (B5b)
The symbol —1 over the matrices indicates matrix inver-
sion. Equations (B5b) and (B5a) are Dixon’s original
definitions for H and K [6].

We can use the Jacobi propagator H and its inverse to
transfer indices on bitensors into a single tangent space, so
that we can sensibly define series expansions for bitensors.
In Riemann normal coordinates, the components of
E%(x,x’) are (by definition) equal to the coordinates of
the point x’. Thus, in Riemann normal coordinates, we have
HV , = 5’0’,/. (This equality is by components, and is
obviously not a tensor equation.) As such, the coefficients
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of a series expansion mediated by H and its inverse can be
found from the Taylor expansion of the same tensor field in
Riemann normal coordinates. For example, in this paper we
use the following expansion for the metric tensor and its
inverse:

! ! 1
HY HY 3,00 (¥) = Gap(x) = 5 Ragpe (x)

1
~ ¢ Ragpec(x) + O(¢?),  (B6a)
-1 -l 1
9 (V) = f91(5) + LR ()
- )
+ gR rfﬁg;g(x) + O(e?). (B6b)

These follow from the familiar expansions for the metric
and its inverse in Riemann normal coordinates [29]. Here, &
appears as an index in the Riemann curvature tensor,
indicating contraction of that index with £%. The coeffi-
cients in the H-series expansion of a tensor field are the
Veblen extensions of that tensor field [30].

Another important bitensor is the parallel propagator
¢“ o(x,x'). This bitensor parallel propagates contravariant
indices from T,.# to T,/ along the geodesic y, .
Because the metric is parallel propagated, we have
G ()¢ od’ p= ¢V (x). Tt follows that g% parallel prop-
agates covariant indices from T, to T .4 . We also have
the relations g%, g”'/; = 5;’ and g’"ag“y/ = 5’:: , so that ¢“,
and ¢, can inversely propagate contravariant and covar-
iant indices from 7. to T 4, respectively.

We can also use the parallel propagator to define series

expansions for bitensors. In this paper we use the expan-
sions [19]

, 1 1
9wl p = 8 = o R = 15 Rgpze + O(€"),  (BTa)
1 /4 0 1 a 1 o 4
9K’ 5 =85 =5 R — ¢ Rigpee + O(e")  (BTD)

for the Jacobi propagators.
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