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We investigate the constraint ability of the gravitational wave (GW) as the standard siren on the
cosmological parameters by using the third-generation gravitational wave detector: the Einstein Telescope.
The binary merger of a neutron with either a neutron or black hole is hypothesized to be the progenitor of a
short and intense burst of γ rays; some fraction of those binary mergers could be detected both through
electromagnetic radiation and gravitational waves. Thus we can determine both the luminosity distance and
redshift of the source separately. We simulate the luminosity distances and redshift measurements from
100 to 1000 GWevents. We use two different algorithms to constrain the cosmological parameters. For the
Hubble constant H0 and dark matter density parameter Ωm, we adopt the Markov chain Monte Carlo
approach. We find that with about 500–600 GW events we can constrain the Hubble constant with an
accuracy comparable to Planck temperature data and Planck lensing combined results, while for the dark
matter density, GWs alone seem not able to provide the constraints as good as for the Hubble constant;
the sensitivity of 1000 GWevents is a little lower than that of Planck data. It should require more than 1000
events to match the Planck sensitivity. Yet, for analyzing the more complex dynamical property of dark
energy, i.e., the equation of state w, we adopt a new powerful nonparametric method: the Gaussian process.
We can reconstruct w directly from the observational luminosity distance at every redshift. In the low
redshift region, we find that about 700 GW events can give the constraints of wðzÞ comparable to the
constraints of a constant w by Planck data with type-Ia supernovae. Those results show that GWs as the
standard sirens to probe the cosmological parameters can provide an independent and complementary
alternative to current experiments.
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I. INTRODUCTION

The last two decades have witnessed rapid technological
advances in observational cosmology. Various observations
such as type-Ia supernova (SNIa) [1–4], the temperature
and polarization anisotropy power spectrum of the cosmic
microwave background (CMB) radiation [5,6], and weak
gravitational lensing [7] have all indicated a Universe with
an accelerated expansion. A possible explanation of this
cosmic acceleration is provided by the introduction of a
fluid with negative pressure called dark energy. A simple
dark energy candidate, i.e., the cosmological constant Λ
whose equation of state w ¼ −1 together with the cold dark
matter (CDM) (called the ΛCDM model) is now called the
standard model, fits the current observational data sets very
well. However, some problems still exist and should be
solved. For example, there is a strong tension between the
value of the Hubble constant derived from the CMB [6] and
the value from local measurements [8]. Moreover, under-
standing the physical property of dark energy, for example,

whether it is dynamical (w ≠ −1) or not, is one of the main
challenges of modern cosmology.
Though we can now measure the cosmological param-

eters precisely from various observations and we can further
improve the capabilities of those observational methods in
the future, we should note that all of the measurements are
through electromagnetic (EM) radiations. In 1986, Schutz
showed that it is possible to determine the Hubble constant
from gravitational wave (GW) observations, by using the
fact that GWs from the binary systems encode the absolute
distance information [9]. Thus the inspiraling and merging
compact binaries consisting of neutron stars (NSs) and black
holes (BHs) can be considered as standard candles, or
standard sirens. The name siren is due to the fact that the
GW detectors are omnidirectional and detect coherently the
phase of the wave, which makes them in many ways more
like microphones for sound than like conventional tele-
scopes. From theGW signal, we canmeasure the luminosity
distance dL directly, without the need of the cosmic distance
ladder: standard sirens are self-calibrating. Assuming other
techniques are available to obtain the redshift of a GWevent,
for example, we can measure the redshift through the
identification of an accompanying EM signal; we can get
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the dL − z (luminosity distance-redshift) relation. Thus we
can use the GW as an alternative source to constrain the
expansion history of the Universe and the cosmological
parameters and it can also be a cross-check to the EM
measurements.
On 11 February, 2016, the Laser Interferometer

Gravitational Wave Observatory (LIGO) collaboration
reported the first direct detection of the gravitational wave
source GW150914 [10]. This indicates that the era of GW
astronomy and the multimessage cosmology is coming. In
the last decades, several papers have studied the possibility
of the GWas the standard siren [11–19]. Especially in [19],
the authors used the simulated GW signals alone to
constrain cosmological parameters even regardless of the
EM counterparts. Inspired by [14,16,20], we estimate the
constraint ability of cosmological parameters by the simu-
lated data of GWs using the Einstein Telescope (ET). The
ET is a third-generation ground-based detector of GWs
[21]. As proposed by the design document, it consists of
three colocated underground detectors, each with 10 km
arm and with a 60° opening angle. The ET is envisaged to
be ten times more sensitive in amplitude than the advanced
ground-based detectors, covering the frequency range of
1–104 Hz. We explore how accurately it might be possible
to measure the cosmological parameters such as the Hubble
constant H0, dark matter density parameter Ωm, and the
dark energy equation of state w.
In Ref. [14], with 1000 binary neutron star coalescences,

the authors used the Levenberg-Marquardt algorithm to
constrain the parameters ΩΛ, Ωm, and w. If w is the only
unknown parameter, it can be measured to an accuracy with
1 − σ errors of 1.4% with weak lensing. Yet, in Ref. [16],
the authors used the Fisher matrix approach also with
1000 GW events and combined the Planck CMB prior to
give constraints of Δw0 ¼ 0.079 and Δwa ¼ 0.261, which
are close to the detection ability of the SNAP type-Ia
supernovae project. Here w0 and wa are two parameters in
the equation of state of dark energy in the Chevallier-
Polarski-Linder (CPL) parametrization. In this paper, we
take two different algorithms to constrain the cosmological
parameters: the Markov chain Monte Carlo (MCMC) and
the Gaussian process (GP). For simplicity, we assume a flat
universe since the spatial curvature is constrained to be very
close to 0 with jΩKj < 0.005 [6]. For the Hubble constant
and the density parameter of dark matter, we adopt the
MCMC method [22] and see if it can also give similar
constraints as the Levenberg-Marquardt algorithm and the
Fisher matrix approach used by Refs. [14] and [16].
Especially, we want to see how many GW events we
can achieve with an accuracy comparable to the most recent
Planck results [6]. To study the dynamics of the dark energy
(i.e., the evolution of the equation of state), some papers
like [16] define the best pivot redshift zp. Thus it can
constrain w better since at zp the equation of state has the
minimal error. In this paper, we adopt a nonparametric

method, i.e., the Gaussian process [23], to reconstruct and
constrain the equation of state according to Eq. (4). We can
choose the redshift region with the best performance of the
reconstruction. Comparing with the method that defines the
best pivot redshift, we need not parametrize the equation of
state of dark energy and can directly choose the redshift
where w has the minimal error.
The outline of the paper is as follows. In Sec. II, we

introduce the basics of using GWs as standard sirens in the
potential ET observation. In Sec. III, we use MCMC and
GP methods to constrain the cosmological parameters
and to see how many GW events we can achieve with
an accuracy comparable to the Planck results. We give
discussions and conclusions in Sec. IV.

II. GRAVITATIONAL WAVE
AS STANDARD SIREN

A. The model setup

For a Friedmann-Robertson-Walker universe, the line
element reads

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð1Þ
where t is the cosmic time, aðtÞ is the scale factor whose
evolution depends on the matter and energy contents of the
Universe, and K ¼ þ1;−1, 0 corresponds to a closed,
open, and flat universe, respectively. We use the units in
which G ¼ c ¼ 1 throughout this paper. Then the lumi-
nosity distance can be written as

dL ¼
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>>>>>:
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where EðzÞ≡HðzÞ=H0, ΩK ≡ −K=ða0H0Þ2. With the
dark energy equation of state wðzÞ ¼ pðzÞ=ρðzÞ, the
Hubble parameter HðzÞ is given by Friedmann equation,

HðzÞ2 ¼ H2
0

�
ð1 −Ωm −ΩKÞ exp

�
3

Z
z

0

1þ wð~zÞ
1þ ~z

d~z

�

þ Ωmð1þ zÞ3 þ ΩKð1þ zÞ2
�
; ð3Þ

where Ωm;K are the matter and curvature density param-
eters today. Since we are mainly interested in the late
time evolution of the Universe, we can ignore the
radiation component. Combining Eqs. (2) and (3) and
writing DðzÞ ¼ H0ð1þ zÞ−1dLðzÞ as the normalized
comoving distance, we find that the equation of state
can be expressed as
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wðzÞ ¼ ½2ð1þ zÞð1þ ΩKD2ÞD00 − ð1þ zÞ2ΩKD03

− 2ð1þ zÞΩKDD02 þ 3ð1þΩKD2ÞD0�=
½3fð1þ zÞ2½ΩK þ ð1þ zÞΩm�D02

− ð1þΩKD2ÞgD0�: ð4Þ
Here a prime denotes the derivative with respect to
redshift. Thus we see that the equation of state of dark
energy is directly related to the luminosity distance at
every redshift z once we know ΩK and Ωm.
For our simulation we have to choose a fiducial

cosmological model. The exact values of the cosmological
parameters will not be essential in our simulations, because
we are just interested in the precision with which they can
be measured. However, for consistency with the current
experiment data Planck 2015 [6], we choose the cosmo-
logical parameters of the fiducial model as follows,

h0 ¼ 0.678; Ωm ¼ 0.308; ΩK ¼ 0; w ¼ −1; ð5Þ
here H0 ¼ 100h0 km s−1 Mpc−1. Then our work is to test
the precision with which we can recover those fiducial
values in Eq. (5) from a set of measured luminosity distance
and redshift.

B. The gravitational waves with short γ-ray bursts

Unlike current observations of the standard candles such
as SNIa [1–3], the chirping GW signals from inspiraling
compact binary stars (NS and BH) can provide an absolute
measure of the luminosity distance [9]. The GW amplitude
depends on the so-called chirp mass and the luminosity
distance, and the chirp mass can be measured from the
GW signal’s phasing; we can extract luminosity distance
from the amplitude.
Interferometers are sensitive to the relative difference

between two distances, so-called strain. In the transverse-
traceless (TT) gauge, the strain hðtÞ can be written as

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ; ð6Þ
where Fþ;× are the beam pattern functions, ψ is the polari-
zation angle, and (θ;ϕ) are angles describing the location of
the source in the sky, relative to the detector [16].hþ ¼ hxx ¼
−hyy, h× ¼ hxy ¼ hyx, which are the only two independent
components of the GW’s tensor hαβ in the TT gauge. The
corresponding antenna pattern functions of the ET are [16]

Fð1Þ
þ ðθ;ϕ;ψÞ ¼

ffiffiffi
3

p

2

�
1

2
ð1þ cos2ðθÞÞ cosð2ϕÞ cosð2ψÞ

− cosðθÞ sinð2ϕÞ sinð2ψÞ
�
;

Fð1Þ
× ðθ;ϕ;ψÞ ¼

ffiffiffi
3

p

2

�
1

2
ð1þ cos2ðθÞÞ cosð2ϕÞ sinð2ψÞ

þ cosðθÞ sinð2ϕÞ cosð2ψÞ
�
; ð7Þ

since the three interferometers have 60° with each other,
arranged in an equilateral triangle, the two others’ antenna

pattern functions areFð2Þ
þ;×ðθ;ϕ;ψÞ ¼ Fð1Þ

þ;×ðθ;ϕþ 2π=3;ψÞ
and Fð3Þ

þ;×ðθ;ϕ;ψÞ ¼ Fð1Þ
þ;×ðθ;ϕþ 4π=3;ψÞ, respectively.

Following [16], we define a coalescing binary with
component masses m1 and m2, M ¼ m1 þm2 as the total
mass, η ¼ m1m2=M2 as the symmetric mass ratio, the
chirp mass as Mc ¼ Mη3=5, and the observed chirp mass
Mc;obs ¼ ð1þ zÞMc;phys. Below, Mc always denotes the
observed chirp mass. We also ignore the spin because we
mostly consider the binary NS, in which case the phase of
the waveform is computed in the post-Newtonian formal-
ism [24] up to 3.5 PN. Following [16,20], we also apply the
stationary phase approximation to compute the Fourier
transform HðfÞ of the time domain waveform hðtÞ,

HðfÞ ¼ Af−7=6 exp½ið2πft0 − π=4þ 2ψðf=2Þ − φð2.0ÞÞ�;
ð8Þ

where the Fourier amplitude A is given by

A ¼ 1

dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þð1þ cos2ðιÞÞ2 þ 4F2

× cos2ðιÞ
q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5π=96

p
π−7=6M5=6

c : ð9Þ

The constant t0 denotes the epoch of the merger; ι is the
angle of inclination of the binary’s orbital angular momen-
tum with the line of sight. The definitions of the functions ψ
and φð2.0Þ can be found in [16,20].
Measuring the redshift associated to a GWevent is one of

the biggest challenges when using the GW as the standard
siren. Several methods have been proposed for this issue,
such as the galaxy catalogue proposed by Schutz [9],
neutron star mass distribution [25], and the tidal deforma-
tion of neutron stars [26]. In this paper, we take a more
widely used method as in [14–16]: through the identifica-
tion of an accompanying EM signal, namely, the electro-
magnetic counterpart of the GW event. The binary merger
of a NS with either a NS (BNS) or BH (BHNS) is
hypothesized to be the progenitor of a short and intense
burst of γ rays (SGRB) [27]. An EM counterpart like the
SGRB can provide the redshift information if the host
galaxy of the event can be pinpointed. Moreover, SGRBs
are likely to be strongly beamed phenomena, which allow
one to constrain the inclination of the compact binary
system, breaking the distance-inclination degeneracy. The
expected rates of BNS and BHNS detections per year for
the ET are about the order 103–107 [21]. However, only a
small fraction (∼10−3) is expected to satisfy the constraint
that the GW events can be accompanied with the obser-
vation of a SGRB due to the narrow beaming angle. If we
assume the detection rate is in the middle range around
Oð105Þ, we can expect to seeOð102Þ events with the SGRB
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per year. So, the ET is likely to detect enough GW sources
to perform precision cosmology study, even under the
assumption of the EM signal counterpart.

III. COSMOLOGICAL PARAMETERS
ESTIMATION

In this section, we simulate many GW detections
according to the predicted rates and distributions, and
record the values and errors of luminosity distances and
redshifts. We constrain the cosmological parameters by
simulating many catalogues of BNS and BHNS systems.
For the Hubble constant and the dark matter density
parameter, we take the MCMC approach. As for the dark
energy equation of state, we adopt a new nonparametric
approach, the GP, to reconstruct it.

A. Simulate the gravitational wave detections

Following [20], the NS mass distribution is chosen to be
uniform in the interval [1,2]M⊙; hereM⊙ is the solar mass.
The black hole mass is chosen to be uniform between
[3,10] M⊙. Note that the chirp mass of a black hole in the
first detection of a GW by LIGO is found to be a higher
value of about 30 M⊙. In fact a lager mass can improve the
signal-to-noise ratio (SNR) of the GW detection and lead to
smaller errors of the distance measurements [see Eq. (9)].
In this paper, we still assume a conservative distribution
of black hole mass given by [28]. The ratio between
BHNS and BNS events is taken to be 0.03, as predicted
for the Advanced LIGO-Virgo network [29]. The redshift
distribution of the sources as observed on Earth takes the
form [16]

PðzÞ ∝ 4πd2CðzÞRðzÞ
HðzÞð1þ zÞ ; ð10Þ

where dC is the comoving distance, which is defined as
dCðzÞ≡

R
z
0 1=Hðz0Þdz0, and RðzÞ describes the time evo-

lution of the burst rate and takes the form [30,31]

RðzÞ ¼
8<
:

1þ 2z; z ≤ 1
3
4
ð5 − zÞ; 1 < z < 5

0; z ≥ 5:

ð11Þ

Since it is expected that SGRBs are strongly beamed [32–
34], a coincident observation of the SGRB implies that the
binary was orientated nearly face on, i.e., ι ≈ 0. In fact the
maximal inclination is about ι ¼ 20°; however, averaging
the Fisher matrix over the inclination ι and the polarization
ψ with the constraint ι < 20° is approximately the same as
taking ι ¼ 0 [20]. Therefore, when we simulate the GW
source we can take ι ¼ 0 and the Fourier amplitude A in
Eq. (9) will not then depend on the polarization angle ψ .
The performance of a GW detector is characterized by

the one-side noise power spectral density ShðfÞ (PSD). We
take the noise PSD of the ET to be the same as in [16]. The

combined SNR for the network of three independent
interferometers is then

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðρðiÞÞ2
vuut ; ð12Þ

where ρðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hHðiÞ;HðiÞi

q
; the inner product is defined as

ha; bi ¼ 4

Z
fupper

flower

~aðfÞ ~b�ðfÞ þ ~a�ðfÞ ~bðfÞ
2

df
ShðfÞ

; ð13Þ

where ~aðfÞ and ~bðfÞ are the Fourier transforms of the
functions aðtÞ and bðtÞ. The upper cutoff frequency is
dictated by the last stable orbit, fupper ¼ 2fLSO, where
fLSO ¼ 1=ð63=22πMobsÞ is the orbit frequency at the last
stable orbit, and Mobs ¼ ð1þ zÞMphys is the observed total
mass [16]. We also take the lower cutoff frequency
flower ¼ 1 Hz. In line with the SNR threshold currently
used at LIGO/Virgo analysis, a GW detection is claimed
only when the three ET interferometers have a network
SNR of ρnet > 8.0. Since we ignore the spin of the BH, the
BNS or BHNS systems can be characterized by nine
parameters [20]. With the assumption of associated
SGRBs, the location of the GW source can be pinpointed
by observation of its EM counterpart. Furthermore,
Ref. [35] showed that the mass parameters can be accu-
rately inferred and do not have considerable correlations
with other parameters. Thus in the amplitude Eq. (9), we
are left with the set of parameters fι;ψ ; dLg. Using the
Fisher information matrix, we can estimate the instrumental
error on the measurement of the luminosity distance.
Suppose that the error on dL is uncorrelated with the errors
on the remaining GW parameters; we can find that [16,20]

σinstdL
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	∂H
∂dL ;

∂H
∂dL



−1

s
: ð14Þ

As H ∝ d−1L , we can get σinstdL
≃ dL=ρ, where ρ is the

combined SNR of the ET. Note here that though we have
set ι≃ 0 when we simulate the GW source, this is an ideal
situation. When we estimate the practical uncertainty of the
measurement of dL, we should take into account the
inclination. To account for the correlation between dL
and ι, we note that the maximal effect of the inclination on
the SNR is a factor of 2 (between ι ¼ 0° and ι ¼ 90°).
To give an estimation of the ability of constraining
cosmological parameters using the GW standard siren at
least, we double the estimate of the error on the luminosity
distance [20]

σinstdL
≃ 2dL

ρ
: ð15Þ
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Furthermore, the luminosity distance is also affected by an
additional error σlensdL

due to the weak lensing. As in [14,16],
we assume σlensdL

=dL ¼ 0.05z. Thus, the total uncertainty on
the measurement of dL is taken to be

σdL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσinstdL

Þ2 þ ðσlensdL
Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2dL
ρ

�
2

þ ð0.05zdLÞ2
s

: ð16Þ

As the current errors of spectroscopic redshift determi-
nation are negligible compared to the errors in the lumi-
nosity distance, we can ignore the errors of the redshift
measurement by means of the EM observations. Thus,
combining the fiducial model in Eq. (5), the redshift
distribution in Eq. (10), and the luminosity distance
uncertainty in Eq. (16), we can simulate the measurements
of the redshifts with the luminosity distances for the GW
events of the BNS or BHNS. The basic steps are as follows.
We first simulate the redshift measurements according to
the redshift distribution. At every simulated redshift, we
can calculate the fiducial value of the luminosity distance
according to Eqs. (2) and (5). Then we randomly sample
the mass of the neutron star, the mass of the black hole, and
the position angle θ in the three parameter intervals: [1,2]
M⊙, [3,10] M⊙, and [0,π], respectively (we need not
consider the other two angles ϕ and ψ since the SNR is
independent of them). Note that here we set the ratio of the
possibility to detect the BHNS and BNS events ≃ 0.03.
Then we calculate the combined SNR of each set of the
random sample, and confirm that it is a GW detection if
ρnet > 8.0. For every confirmed detection, we simulate the
luminosity distance measurement dmea

L from the fiducial
value of dfidL and the error σdL in Eq. (16). We sample
the luminosity distance measurements according to the
Gaussian distribution dmea

L ¼ N ðdfidL ; σdLÞ. Thus we simu-
late both the redshift and the luminosity distance measure-
ments. As we have stated before, we can expect about
102 GW sources with the SGRB per year. We vary the
observed number of sources from 100 up to 1000 to see that
with how many events we can constrain the cosmological
parameters as precisely as the current Planck results. An
example simulating data from the fiducial model with 1000
observed events is shown in Fig. 1.

B. Constrain the Hubble constant and
the dark matter density parameter

To constrain h0 and Ωm, we set them to be two free
parameters and other parameters are fixed according to
Eq. (5). For a set of N simulated data points, χ2 is given by

χ2 ¼
XN
i¼1

�
d̄iL − dLðz̄i; ~ΩÞ

σ̄idL

�2
; ð17Þ

where z̄i, d̄iL, and σ̄idL are the ith redshift, luminosity
distance, and error of luminosity distance of the simulated

observational data sets. ~Ω presents the set of cosmological
parameters.
We adopt the MCMC method to find the likelihood

of each parameter. As shown in Fig. 2, we find that
with about 500–600 GW events we can constrain the
Hubble constant with an accuracy comparable to Planck
temperature data and Planck lensing combined results [6].
As for the dark matter density parameter, the GW data
alone seem not able to provide a constraint as good as
for the Hubble constant; the sensitivity of 1000 GW
events is a little lower than that of Planck data. It should
require more than 1000 events to match the Planck
sensitivity.

C. Constrain the equation of state of dark energy

Next we turn to study the ability of the standard siren to
infer the nature of dark energy. Unlike those works in
Refs. [16,20] that define a pivot point, here we adopt a
new nonparametric method, the GP, to reconstruct wðzÞ in
the whole redshift region. Here we should note that this
method has some advantages and also disadvantages. The
first advantage is that we can study the nature of the dark
energy in the whole redshift region. Once having recon-
structed the luminosity distance, we can use it to recon-
struct wðzÞ at each redshift point as we want. Secondly, we
can simply set wðzÞ as a function of redshift z, and need
not parametrize the equation of state like the CPL form.
Thus we can constrain the equation of state more directly
and model independently. However, the GP reconstruction
method has some shortcomings. Since we use only the
simulated data of the luminosity distance, the errors of the
reconstructed DðzÞ heavily depend on the quality of those
simulated data. Moreover, we should reconstruct the
DðzÞ’s derivatives up to second order, and then combine
its derivatives to give the final reconstructed wðzÞ. We
can see below that the errors of wðzÞ become large in the

0 1 2 3 4 5
0

20

40

60

80

Redshift z

d L
G

pc

FIG. 1. An example catalogue with 1000 observed events of
redshift, luminosity distance, and the error of the luminosity
distances from the fiducial model.
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high-z region. On the other hand, note that the errors of the
mock data of dL or D are very small in the low redshift
region (Fig. 1). So, we just focus on the low redshift
region where the reconstruction can be performed very
well. Anyway, we want to use a new nonparametric
method to reconstruct the equation of state from the
simulated data, and check its ability of constraining
wðzÞ in the low redshift region.
The GPs allow one to reconstruct a function and

its derivatives from data without assuming a parametri-
zation for it. We use the GPs in Python [23] to derive
our GP reconstruction results. The distribution over
functions provided by the GP is suitable to describe
the observed data. At each point z, the reconstructed
function fðzÞ is also a Gaussian distribution with a
mean value and Gaussian error. The functions at different
points z and ~z are related by a covariance function
kðz; ~zÞ, which only depends on a set of hyperparameters
l and σf. Here l gives a measure of the coherence length
of the correlation in the x-direction and σf denotes
the overall amplitude of the correlation in the y-direction.
Both of them are optimized by the GP with the
observed data set. In contrast to actual parameters, the
GP does not specify the form of the reconstructed
function. Instead it characterizes the typical changes of
the function.
The different choices of the covariance function may

affect the reconstruction to some extent. The covariance
function usually takes the squared exponential form
as [23]

kðz; ~zÞ ¼ σf
2 exp

�
−
ðz − ~zÞ
2l2

�
: ð18Þ

But it is not always a suitable choice. Here we take the
Matérn (ν ¼ 9=2) covariance function

kðz; ~zÞ ¼ σf
2 exp

�
−
3jz − ~zj

l

�

×

�
1þ 3jz − ~zj

l
þ 27ðz − ~zÞ2

7l2

þ 18jz − ~zj3
7l3

þ 27ðz − ~zÞ4
35l4

�
; ð19Þ

according to the analysis made in [36], where they
considered various assumed models and many realizations
of mock data sets for a test and concluded that the Matérn
(ν ¼ 9=2) covariance function can lead to more reliable
results than all others when applying GP to reconstruc-
tions using D measurements. The detailed analysis and
description of the GP method can be found in [23,36],
where the authors studied the use of the GP method to
reconstruct dark energy dynamics from supernovae data.
Some of the GP’s applications can also be found in [37]
and in our previous works [38–40].
Using Eq. (4), we transform the reconstruction of

distance DðzÞ and its derivatives to obtain the constraint
of wðzÞ for the cases with different numbers of GW events.
We compare our results with Planck 2015. The results are
shown in Fig. 3 for the cases with N ¼ 700, 800, 900, and
1000, respectively. Since we use only the fz; dLg data sets
to reconstruct the equation of state wðzÞ, which is depen-
dent on z, while we compare it with the constant w
constrained by Planck data combined with type-Ia super-
novae, the reconstructed errors of wðzÞ in our results are of
course larger than the errors in the Planck results with a
constant w in the high-z region. However, as shown in
Fig. 3, we can see that 700 GW events can give the same
constraint accuracy to wðzÞ as Planck in the low redshift
region. Thus, the GWs can be an alternative source to study
the dynamics of the dark energy. It can be expected that
with a better data analysis method, combining the GWs
with the traditional EM data, the cosmological parameters
can be constrained more precisely.
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FIG. 2. Sixty-eight percent confidence level (C.L.) (red line) and the best fit (red dot) forH0 (left) andΩm (right) for a variable number
of GW events with EM counterpart. The fiducial model is shown as the dashed line. For a comparison, the blue shaded area is the
68% C.L. constrained by the Planck temperature data combined with Planck lensing in the current Planck 2015 results.
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IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the gravitational wave as the
standard siren to constrain the cosmological parameters.
Gravitational waves from coalescing binaries directly
encode the luminosity distance. The redshift z of the
sources can be determined with great accuracy through
the electromagnetic counterparts. The candidate electro-
magnetic signal is the short γ-ray burst that is supposed to
be the aftermath of the binary system with at least one
neutron star. We used the ET design to study the constraint
ability on the cosmological parameters by simulating
binary systems of NS NS and NS BH that have an
accompanying EM signal. We estimated the instrumental
error on the luminosity distance by using the Fisher matrix
approach. We also added the weak lensing errors to the
instrumental error. Combing the redshift distribution with
the fiducial model, we simulated the luminosity distance
measurements from 100 up to 1000 GW events.
For the Hubble constant and the dark matter density

parameter, we used the MCMC method to derive their
likelihoods. We found that with about 500–600 GWevents
we can constrain the Hubble constant with an accuracy
comparable to Planck 2015 results. As for the dark matter
density parameter, the GW data alone seem not able to
provide constraints as good as for the Hubble constant; the

sensitivity of 1000 GW events is a little lower than that of
Planck data. It should require more than 1000 events to
match the Planck sensitivity. With 1000 GW events, our
results agree with those in Ref. [16]: Δh0 ∼ 5 × 10−3 and
ΔΩm ∼ 0.02. In order to study the dynamics of dark
energy, we adopted a new nonparametric method
Gaussian process to reconstruct the equation of state of
dark energy. For the feature of this method, we focused on
the constraint in the low redshift region. We found that
about 700 GW events can give constraints of wðzÞ
comparable to those of the constant w by Planck data
with type-Ia supernovae. With 1000 GW events, we can
constrain wðzÞ with an error of ΔwðzÞ ∼ 0.03 in the low
redshift region. Our method is more powerful and gives a
better constraint than that of Ref. [16] using ET-GW
observations and the future baryon acoustic oscillation
(BAO) and supernova observations of the Joint Dark
Energy Mission (JDEM) project, especially in the low
redshift region. Yet, Ref. [16] uses the Fisher matrix
method and CPL parametrization and gives a constraint of
Δw0 ∼ 0.077 and Δwa ¼ 0.445 using ET-GW observa-
tions and a comparable result using the JDEM BAO and
supernova. Those results show that the GW as a standard
siren to probe the cosmological parameters can provide an
independent and complementary alternative to current
experiments. Moreover, the GP method is a powerful
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FIG. 3. Reconstructions of wðzÞ from the simulated data sets with a variable number of GW events. The shaded blue regions are the
68% C.L. of the constraint. The fiducial value w ¼ −1 is shown as the red dashed line. For a comparison, we add the two red lines that
bound the 68% C.L. of the constraint of the constant equation of state w from the Planck data combined with the type-Ia supernovae.
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method and can give a better constraint when it is
employed to study the dynamics of dark energy. It is
expected that by combining more data sets, including the
EM and GW data, the GP method could play an important
role in constraining cosmological parameters in the future.
Here we mention that the detection calibration and selec-

tion biasesmay have influences on the distancemeasurement.
At present, the calibration constitutes about 10% absolute
error in advanced LIGO distancemeasurements. This may be
reduced by the time of ET observation. Furthermore, the
selection biases such as the SNR cut and the assumptions
inherent in the burst rate [Eq. (11)] should also somehow
affect the accuracy of the measurements. In this paper, we
follow a traditional way to handle these issues. For the burst
rate bias, as suggested by Ref. [16], we do not expect that it
can produce a noticeable influence on the results.
Observing an electromagnetic counterpart is not the only

method to measure the redshift associated to a GW event.

The other ways to get the redshift information can be found
in [9,25,26]. In addition, the spin of the BH can also help us
estimate the GW’s parameters. It is expected that by
combining GW data with other astronomical observations
such as supernovae, and adopting a better data analysis
approach, the cosmological parameters could be con-
strained more precisely than the current situation. We leave
this for future studies.
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