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We analyze the dynamics of the intersecting D3-D30-brane system overlapping in 1þ 1 dimensions, in a
holographic treatment where N D3 branes are manifested as anti–de Sitter Schwartzschild geometry, and
the D30 brane is treated as a probe. We extract the thermodynamic equation of state from the set of
embedding solutions, and analyze the stability at the perturbative and the nonperturbative level. We review
a systematic procedure to resolve local instabilities and multivaluedness in the equations of state based on
classic ideas of convexity in the microcanonical ensemble. We then identify a runaway behavior which was
not noticed previously for this system.
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I. INTRODUCTION

Recently in [1], a surprising subtlety was identified in
a deceptively simple system of intersecting D branes.
Consider a system consisting of a D3 and a D30 brane
in type-IIB string theory, oriented according to

0 1 2 3 4 5 6 7 8 9

D3 ∘ ∘ ∘ ∘
D30 ∘ ∘ ∘ ∘

ð1:1Þ

and separated by a finite distance in the x9 direction.
Such a system preserves eight supercharges. The low

energy open string degrees of freedom can easily be
enumerated as consisting of
(1) an N ¼ 4 d ¼ 4 Uð1Þ gauge theory living on D3;
(2) an N ¼ 4 d ¼ 4 Uð1Þ0 gauge theory living on D30;
(3) two sets of hypermultiplets B and C, arising

from N ¼ 2 d ¼ 4 hypermultiplets, dimensionally
reduced to d ¼ 1þ 1 dimensions and charged as a
bifundamental under Uð1Þ × Uð1Þ0.

Explicit coupling between these states was worked out in
[2]. This system, consisting entirely of D3 branes in type-
IIB string theory, is manifestly self-dual under S-duality.
On the first pass, there appears to be no obstruction to

taking the zero slope limit α0 → 0 as long as one scales the
distance separating the D3 branes to be of order

Δx9 ¼ α0V ð1:2Þ

for some V with dimension of mass. This then should give
the mass of the B and C fields corresponding to the lowest
energy 330 strings.
As was pointed out in [1], this system exhibits a subtle

paradox. A state with a single quantum of the B or C fields
should exist as a Bogomol’nyi-Prasad-Sommerfield (BPS)
state in the spectrum of the theory, so its magnetic dual
must also exist as a BPS state in order to be consistent with
S-duality. Such a state should arise as a soliton of the field

theory at hand. However, the soliton in question does not
appear to exist; something must therefore be wrong with the
assumptions being made about the system.
The resolution proposed by [1] was that the zero slope

limit failed to achieve decoupling. The authors then argued
that a soliton does exist for a suitably modified effective
field theory which contains singularities, signaling the need
to include additional UV degrees of freedom. By consid-
ering full string theory as a UV completion, for instance,
the effective field theory can be regularized, and the soliton
can be constructed as the expected magnetic dual state.
Following the work of [1], a simple generalization in the

brane construction was considered in [3]. This construction
involved also scaling the angle between the D3 branes as
θ ∼ α0c, introducing a new scale c with dimension of mass
squared. This gave rise to a tower of states of which B and
C are the lightest [4]. In that setup, the decoupled theory
in the zero slope limit is perfectly sensible, and supports
the magnetic monopole soliton. One therefore learns that
one can complete the effective field theory of [1] more
economically than by invoking full string theory.
Taking the limit c → ∞ while keeping V fixed in the

construction of [3] essentially amounts to recovering the
naive zero slope limit considered in [1]. The techniques
employed in [3] were not particularly effective for studying
this limit, but in [5], we introduced another variation in the
setup where we replaced the D3 with a stack of N D30s, so
that we have as a gauge group UðNÞ ×Uð1Þ0. This allows
us to analyze the system in a strong coupling limit where
the N D3 branes are replaced by their AdS5 × S5 dual,
and the D30 is treated as a probe. We then considered the
magnetic soliton realized as a bion [6] melting into the
horizon along the lines of [7]. It is then possible to see how
in the c → ∞ limit, the magnetically charged bionic soliton
delocalizes and decouples as a normalizable state in the
c → ∞ limit.
The behavior of the D3=D30 intersection is so counter-

intuitive that we probably have not yet seen the last
word regarding this system. One direction which seems
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potentially interesting is to explore the thermodynamic
behavior of this model. An elegant way to approach this
issue incorporating the effects of interactions is to use gauge
gravity correspondence, treating the D30 brane as a probe,
along the lines of [5]. Working in finite temperature then
amounts to studying the embedding of a probe D30 brane in
an anti–de Sitter (AdS)-Schwartzschild background.
Problems of this type where a Dp0-brane probe is

embedded into finite temperature Dp-brane geometries
have been considered extensively. Most of these works
were in the context of exploring meson dynamics in
holographic QCD [8–15]. It was observed that these brane
embeddings undergo a phase transition in which they
penetrate the black hole horizon. This phase transition
was interpreted as “melting” of mesons, which was
supported by subsequent analysis of the spectrum of
fluctuations on the probe brane. The behavior near criti-
cality for the melting transition also has a rich structure
which was noticed even earlier in the context of domain
walls [16,17]. This analysis was carried out in various
combinations of Dp-brane background and Dp0-brane
probes, and the general behavior of the system is dimension
independent at least in a broad brush perspective.
In this class of problems, one generally enumerates the

classical solutions to the equation of motion corresponding
to static brane embedding configurations. The embeddings
are characterized by a control parameter corresponding to
quark mass, and have a definite order parameter corre-
sponding to the quark condensate. The static solutions
constrain the equation of state relating the quark condensate
to quark mass. Treating these parameters as thermodynamic
quantities, one can explore issues such as thermodynamic
stability and hydrodynamic limits. Indeed, these systems
generally exhibit instabilities and multivalued equations of
state as were observed, for instance, in [18–21].
The case of the D30-brane probe in the background of D3

branes oriented according to (1.1), however, is somewhat
special. This is the case that was singled out in Ref. [21] of
[10]. There are two concrete senses in which the D3=D30
system stands out. The brane embedding is characterized
by a scalar on the D30-brane world volume which happens
to saturate the Breitenlohner-Freedman m2 ≥ −1 [2]. As a
result, the operators corresponding to these fields have
scaling dimension

Δ ¼ d ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p

2
¼ 1 ð1:3Þ

which is degenerate for d ¼ 2 and m2 ¼ −1. This gives rise
to logarithmic factors in the scaling of the embedding
solution near the boundary, and exchanges the roles of
control and order parameters in the holographic dictionary as
we elaborate further below. Also, the holographic renorm-
alization procedure requires introducing an anomalous scale
which can affect certain physical observables [22].

The thermodynamics of the D3=D30 system have been
analyzed previously [23] although in that treatment, the
control parameter of the embedding was treated as being
fixed in defining the ensemble. The analysis of [23] was
primarily focused on establishing the existence of a robust
zero mode in the longitudinal electric fluctuations and its
implication for charge transport behaviors.
In this article, we reexamine the thermodynamics of

the D3=D30 system with emphasis on understanding the
thermodynamic stability issue of the quark condensate
order parameter. We explore the stability both at the
perturbative and the nonperturbative level, and argue that
the phase diagram of the system looks somewhat different
than what was suggested in [23]. For now, we focus
primarily on zero charge embeddings. The extension of
this analysis including charges and chemical potential is
reported in a separate publication.

II. D30 BRANE PROBING FINITE TEMPERATURE
ANTI–DE SITTER SPACE

In this section, we review the analysis of embedding D30
branes in the near horizon geometry of N D3 branes at
finite temperature. Similar analysis can be found exten-
sively in the literature, but it is useful to formulate it here to
make the notation and conventions explicit.
We begin by writing the supergravity solution corre-

sponding to a stack of N D3 branes at finite temperature in
type-IIB supergravity [24],

ds2 ¼ −H−1=2ð−fdt2 þ d~x2Þ þH1=2ðf−1dr2 þ r2dΩ2
5Þ
ð2:1Þ

with

H ¼ 1þ R4

r4
; R4 ¼ 4πgsNα02 ¼ λα02; ð2:2Þ

and

f ¼ 1 −
r4s
r4

: ð2:3Þ

By standard arguments, the temperature T and the horizon
radius rs are related by

T ¼ 1

πrs
ffiffiffiffiffiffiffiffiffiffiffiffi
HðrsÞ

p ¼ Us

π
ffiffiffi
λ

p : ð2:4Þ

We take the decoupling limit by sending α0 → 0 keeping
U≡ r=α0 and T fixed. This also keeps Us ¼ rs=α0 fixed
and finite.
At zero temperature, brane configuration oriented as

(1.1) and illustrated in Fig. 1 is a consistent static solution.
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We are interested in how such an embedding is deformed
when T is no longer 0.
We parametrize the six dimensions transverse to the N

D3 branes as

x4 ¼ r sin θ1 sin θ2 sin θ3 sin θ4 cos θ5; ð2:5Þ

x5 ¼ r sin θ1 sin θ2 sin θ3 sin θ4 sin θ5; ð2:6Þ

x6 ¼ r sin θ1 sin θ2 sin θ3 cos θ4; ð2:7Þ

x7 ¼ r sin θ1 sin θ2 cos θ3; ð2:8Þ

x8 ¼ r sin θ1 cos θ2; ð2:9Þ

x9 ¼ r cos θ1: ð2:10Þ

We can then treat

t; z ¼ x3; r; ϕ ¼ θ5 ð2:11Þ

as the world volume coordinates in static gauge for the
embedding, and denote

d4σ ¼ dtdzdrdϕr ð2:12Þ

and treat θ1, θ2, θ3, and θ4 as parametrizing the embedding.
We restrict our attention to configurations where the gauge
field on the world volume of D30 is trivial at first. The
system is invariant under SOð4Þ rotational invariance
acting on ðx6; x7; x8; x9Þ, and it turns out to be dynamically
consistent to set all but one of the four coordinates to 0.
This is equivalent to setting

θ2 ¼ θ3 ¼ θ4 ¼
π

2
ð2:13Þ

and treating θ ¼ π=2 − θ1 as the only relevant field
variable. Restricting to embeddings which are invariant
under translation in t and z directions, the resulting
effective action is

S ¼ 1

ð2πÞ3α02gs

Z
d4σ cosðθðrÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2fðrÞθ0ðrÞ2

q
:

ð2:14Þ

Note in particular that the dependence on warp factor H
dropped out completely from the action.1

In the zero slope limit, one sees that α0 scales out of the
action

SDBI ¼
1

ð2πÞ3gs

Z
d4Σ cosðθðUÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
U2 −

U4
s

U2

�
θ0ðUÞ2

s

ð2:15Þ

with

d4Σ ¼ dtdzdUdϕU: ð2:16Þ

For the purpose of finding the embeddings which
extremizes this action, it is convenient to scale Us out
by defining

u ¼ U
Us

ð2:17Þ

so that the action takes the form

S ¼ U2
s

ð2πÞ2gs

Z
d2xduu cosðθðuÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
u2 −

1

u2

�
θ0ðuÞ2

s

ð2:18Þ

where L is the volume of the x1 coordinate.
The task at hand now is to solve the equation of motion

obtained by varying (2.18) which is a nonlinear second
order differential equation for θðuÞ for u taking values in
the range 1 ≤ u ≤ ∞. For large values of u, θðuÞ
approaches 0 and one can show that the solution can be
parametrized in the form

θðuÞ ¼
�
c logðuÞ

u
þm

u

�
ð2:19Þ

where we denote dimensionless integration constants2 c
and m following the convention of [23]. Near u ¼ 1, we

4 2 2 4
X4,5

2

1

1

2

3

4

X9

FIG. 1. A schematic illustration of a flat brane embedding. This
embedding is static in the absence of the black hole. We are
interested in how this embedding is deformed when the black
hole is introduced.

1The warp factor is nonetheless relevant for the formula relating
temperature to horizon radius (2.4). The warp factor also enters in
the computation of quasinormal modes in Appendix B.

2This c is unrelated to the c parametrizing the tilt of D3 relative
to D30 in the notation of [5].
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impose the regularity condition which constrains c as a
function of m.
The actual solutions satisfying these boundary condi-

tions have to be obtained numerically. The general feature
of the solutions we obtained is illustrated in Fig. 2. There
are two different classes of solutions depending on whether
the brane penetrates the black hole horizon or not. The ones
which do not, known as Minkowski embeddings, are
illustrated in red. The ones which do, known as black
hole embeddings, are illustrated in blue. Each of these
solutions has a definite value of c and m. The set of ðc;mÞ
computed for these solutions is illustrated in Fig. 3.
There are a number of features that are worth noting in

Figs. 2 and 3. First,m is not single valued as a function of c.
Closely related is the fact that there is a maximum value
of c where dc=dm ¼ 0. Also, note that the embedding
exhibits a self-similar critical structure when the Mikowski
and black hole embeddings meet. This was a feature
originally noted [16,17] and further elaborated in the
context of the Dp=Dq system in [10,11]. It signals that
there is a first order “meson melting” phase transition near
the self-similar critical point. In this article, we have more

to say about the critical behavior at dc=dm ¼ 0 than at the
self-similar point.

III. THERMODYNAMICS AND HOLOGRAPHY
OF THE D3=D30 SYSTEM

In this section, we elaborate on the thermodynamic
and holographic interpretations of embedding solutions
illustrated in Figs. 2 and 3.
First, it should be noted that all embeddings illustrated

in Figs. 2 and 3 are asymptotically AdS3 × S1. The world
volume degrees of freedom on the D30 brane have a
holographic interpretation as a field theory in 1þ 1
dimensions.
The embedding field θðUÞ is associated to an operator of

dimension Δ ¼ 1 to be associated with quark bilinear ψ̄ψ
via the standard holographic dictionary which needs to be
stated with some care because Δ is degenerate. Let us
elaborate on this matter further.
To interpret the system holographically, it is awkward

to scale out Us since the holographic dictionary should
be independent of Us. Let us therefore parametrize the
asymptotic behavior of the θðUÞ in the form

θðUÞ ¼ C logðU=U�Þ
U

þM
U

ð3:1Þ

where once again adapting the notation of [23], C and M
have dimension of mass, whereas U� is an arbitrary scale
with dimension of mass which one must introduce in order
to make sense of the argument of the logarithm. An astute
reader should notice at this stage that there is some
ambiguity in how M is defined since changing U� has
the effect of shifting M. It is therefore essential to under-
stand if and how U� affects physical observables (or not).
Several related issues arise in the discussion below and we
do due diligence to track these issues.
We begin by recalling the standard formulation of the

holographic dictionary (see e.g. [25] for a review) that

Zbulk½CðxÞ� ¼ he
R

ddxCðxÞOðxÞiboundary ð3:2Þ

where the left-hand side of the equality describes a path
integral for bulk fields such as θðUÞ carried out in such a
way that θðUÞ asymptotes to

θðUÞ ∼ CðxÞ logðU=U�Þ
U

ð3:3Þ

as the boundary is approached by taking U → ∞. This path
integral and boundary condition as formulated is indepen-
dent of U�. One might formulate the right-hand side for the
θðUÞ field to take the form

Zbulk½CðxÞ� ¼
Z

½DθðU; xÞ�CðxÞe−SDBI½θðU;xÞ� ð3:4Þ

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

X4,5

X9

FIG. 2. Black hole embedding illustrated in blue and
Minkowski embeddedings illustrated in red.

0.1 0.2 0.3 0.4 0.5

m

c

0.5

1.0

1.5

2.0

FIG. 3. ðc;mÞ for Minkowski (red) and black hole (blue)
embeddings of the D30 probe. Each dot corresponds to numerical
solutions we found with initial conditions for θðUÞ specified
either at the horizonU ¼ Us for the black hole embeddings, or by
fixing θ0ðUÞ at θðUÞ ¼ π=2 for the Minkowski embeddings.

WILLIAM COTTRELL et al. PHYSICAL REVIEW D 95, 044022 (2017)

044022-4



where SDBI is the action given in (2.15), and the boundary
condition for θðUÞ is referenced implicitly in the specifi-
cation of the measure. One can apply the saddle point
approximation to identify the dominant contribution to this
path integral, which simply amounts to evaluating the
action for the solution to the equations of motion enumer-
ated in Figs. 2 and 3. As is typical in these computations,
however, the action formally diverges, and a renormaliza-
tion is required to define the bulk side of the correspon-
dence unambiguously. For the D3=D30 system, this
was worked out explicitly in (6.2)–(6.4) of [22]. We are
simply instructed to add the holographic renormalization
counterterm

SCT ¼ 1

ð2πÞ2gs

Z
d2xU2

�
−
1

2

þ 1

2

�
1 −

1

logðU=UCTÞ
�
θðUÞ2

�����
U¼UUV

: ð3:5Þ

With this counterterm included,

Zbulk½CðxÞ� ¼
Z

½DθðU; xÞ�CðxÞe−ðSDBI½θðU;xÞ�þSCT½θðU;xÞ�Þ

ð3:6Þ

where UUV is the ultraviolet cutoff scale, whereas UCT is a
new scale that is required in order to make the logarithm
appearing in the counterterm make sense. This expression
is finite in the UUV → ∞ limit. However, the dependence
on UCT which characterizes the renormalization scheme
survives and should a priori be treated as independent of
U� and Us. A useful feature to isolate in the holographic
dictionary is the prescription to extract the expectation
value of the operator dual to θðUÞ. This is to be derived by
varying the logarithm of Z½CðxÞ� with respect to CðxÞ. By
manipulating SDBI þ SCT, one finds that

hOðxÞi ¼ −
1

ð2πÞ2gs
ðMðxÞ − CðxÞ logðU�=UCTÞÞ: ð3:7Þ

It is also useful to infer the values of ðC;MÞ for the
solutions enumerated in Figs. 2 and 3 which are para-
metrized in terms of ðc;mÞ. By simply relating (2.19) to
(3.1), we find that

C ¼ Usc; M ¼ Usðm − c logðUs=U�ÞÞ: ð3:8Þ

In terms of ðc;mÞ, we can write

hOðxÞi ¼ −
1

ð2πÞ2gs
Usðm − c logðUs=UCTÞÞ ð3:9Þ

whose significance is the fact that the dependence on U�
has dropped out. However, the dependence on Us and UCT
remains.
At this point, we can also compute the free energy by

evaluating the action with time compactified on a circle of
radius 1=2πT,

GðC; TÞ ¼ −T logðZ½C�Þ; ð3:10Þ

or by computing

GðC; TÞ ¼ −
L

ð2πÞ2gs

Z
C

0

dC0ðMðCÞ − C0 logðU�=UCTÞÞ

¼ −
LU2

s

ð2πÞ2gs

Z
c

0

dc0ðmðcÞ − c0 logðUs=UCTÞÞ

ð3:11Þ

which gives an equivalent U� independent result. Since U�
is essentially unphysical, it is convenient to set U� ¼ UCT
so that

hOðxÞi ¼ 1

ð2πÞ3gs
M ð3:12Þ

for the remainder of this paper.
We are also now in the position to display thermody-

namic data such as the equation of state MðC; TÞ and the
free energy GðC; TÞ for various fixed values of T=UCT.
Few examples are illustrated in Fig. 4.
It is also straightforward to infer a quantity such as

SðC; TÞ ¼ −
∂G
∂T

����
C

¼ LUs

ð2πÞ2gs

�
2

Z
c

0

mðcÞdc0 − cm −
1

2
c2
�

ð3:13Þ

which happens to be independent of UCT and plot it as a
function of T with C fixed. We illustrate that in Fig. 5. This
is essentially equivalent to what is illustrated in Fig. 3(d) of
[23] except that we do not find any evidence of the dotted
part of their graph. This view is supported also from the
structure of equation of state illustrated in Fig. 3 which has
exactly two, not three, branches as c approaches 0. We
elaborate further on this point below.

IV. PHYSICAL INTERPRETATION OF
D3=D30 THERMODYNAMICS

In the previous section, we outlined the general features
of the D3=D30 system which can be presented in the
thermodynamic context. The control and order parameters,
ðC;MÞ, play a role very similar to mechanical parameters
ðP;VÞ, magnetic parameters ðH;MÞ, etc., up to a sign
which arises from conventions which are set for historical
reasons.
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There are two notable features about the equation of state
and the subsequent thermodynamics summarized in the
previous section. One is the fact that the scale UCT affects
the equation of state which is physically observable. The
other is the fact that the equation of state exhibits

multivaluedness and regions of instability. This latter issue
is somewhat familiar from previous consideration of black
hole thermodynamics [18–21]. It is generally stated that the
van der Waals model of liquid-gas phase transition is a
prototype for understanding these issues. Nonetheless, in
the context of the van der Waals model, it was the order
parameter as a function of the control parameter, VðPÞ,
that was multivalued, whereas in the case of the D3=D30
system, it is exactly the opposite.3 Another apparent para-
dox stems from the fact that the susceptibility

χθ ¼
dC
dM

ð4:1Þ

characterizing this system is explicitly dependent on UCT
whereas dynamical features such as the poles of quasi-
normal modes at fixed control parameter C are manifestly
independent of UCT. The goal of this section is to clarify
these issues.
Let us begin by recalling the classical thermodynamic

perspective on stability. A useful quantity to consider is the

T

C

C L

1 2 3 4 5 6 7

1

2

3

4

5

6

7

4 2 gs S

FIG. 5. SðC; TÞ as a function of T for fixed C. This curve turns
out to not depend on UCT.

0.1 0.2 0.3 0.4 0.5

C
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0.5

0.0

0.5

1.0

1.5

2.0

M

Us

C

Us

0.8

0.6

0.4

0.2

0.0

4 2 gs G

L Us
2

0.1 0.2 0.3 0.4 0.5

C

Us

0.5

M

Us

C

Us

0.8

0.6

0.4

0.2

0.0

4 2 gs G

L Us
2

0.0

0.5

1.0

1.5

2.0

0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 4. MðC; TÞ and GðC; TÞ as a function of C for logðUs=UCTÞ ¼ −2 (top) and logðUs=UCTÞ ¼ 2 (bottom).

3For an illuminating discussion of this very issue, see [26].
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effective potential of the order parameter obtained by
Legendre transforming the free energy

FðMÞ ¼ GðCÞ þ L
ð2πÞ2gs

CM

����
G0ðCÞ¼−M

: ð4:2Þ

One can also compute FðMÞ in terms of the equation of
state

FðMÞ ¼ L
ð2πÞ2gs

Z
M
dM0CðM0Þ: ð4:3Þ

Plotted as a function of M with fixed values of
logðUs=UCTÞ, they take the form illustrated in Fig. 6.
For all of these figures, M → ∞ corresponds to the
Minkowski branch, and FðMÞ approaches a constant,
reflecting the fact that the area under the curve CðMÞ is
finite.
The free energy FðMÞ is an important physical quantity

characterizing the effective thermodynamic behavior of the
order parameter M. If a system with free energy FðMÞ is
brought to contact with a reservoir with which the M-ness
is freely exchanged, the system achieves equilibrium when
M minimizes the potential

FeffðMÞ ¼ FðMÞ − L
ð2πÞ2gs

CextM ð4:4Þ

where Cext is the control parameter conjugate to M of the
reservoir. One of course recognizes

GðCextÞ ¼ FðMÞ − L
ð2πÞ2gs

CextM

����
F0ðMÞ−Cext¼0

ð4:5Þ

as the conjugate Gibbs free energy when the M that
minimizes FeffðMÞ is substituted into FeffðMÞ. From that
point of view, it is natural to associate the susceptibility

χθ ¼
ð2πÞ2gs

L
F00ðMÞ ¼ dC

dM
ð4:6Þ

as parametrizing the stability of the system. The suscep-
tibility χθ is dependent on UCT.
Let us now take a closer look at the form of FðMÞ

illustrated in Fig. 6 and make several observations.
(1) FðMÞ is multivalued over some range of M.
(2) The susceptibility χθ at M ¼ 0 (as well as other

values of M) changes as Us=UCT is varied, and can
get negative, signaling an instability, for instance for
large positive values of logðUs=UCTÞ.

(3) The effective action FeffðMÞ is not concave every-
where and does not have global stable minima when
Cext is nonvanishing.

Let us address each of these observations more carefully.

A. Multivaluedness of FðMÞ
This issue is not too serious. The fact that there are

multiple branches for some fixed value ofM (and T) simply
reflects the fact that there are multiple thermodynamic
states corresponding to these order and fixed parameters.
However, in thermodynamics, one focuses on the dominant
state in the ensemble, which is the one with the lowest free
energy. So in reading Fig. 6, one should simply trace the
branch with the smallest FðMÞ for any fixed value of M,
regardless of the discontinuities that might result.

B. Susceptibility and its dependence on UCT

This is an extremely important yet subtle issue. Taken at
face value, it implies that the susceptibility and therefore
the thermodynamic stability depends on UCT. For example,
in Fig. 6, we see for logðUs=UCTÞ ¼ 2 that FðMÞ is
concave down indicating instability at C ¼ M ¼ 0.
On the other hand, it is generally established that the

thermodynamic stability can be inferred from the presence
or absence of poles of quasinormal modes in the upper
half of the complex ω plane [27]. The quasinormal mode
analysis, however, does not depend on the holographic
renormalization counterterm. As such, it would appear that
thermodynamic stability is independent of UCT. But this is
in direct contradiction with what we stated in the previous
paragraph.
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FIG. 6. FðMÞ for logðUs=UCTÞ taking values −2 (left), 0 (center), and 2 (right). For all of these cases, FðMÞ asymptotes to a constant
value 0 as M is taken to infinity.
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The eventual resolution of this apparent tension can be
understood as susceptibility being dependent on UCT but
not the stability. But there are a number of subtleties
involved in arriving at this conclusion which we describe in
this subsection.
The issue boils down to mapping out the allowed

range of values in enumerating the renormalization
schemes which UCT is parametrizing. On the other hand,
χθðM ¼ 0Þ depends on UCT and as such can also be
considered as parametrizing the renormalization schemes.
The susceptibility χθðM ¼ 0Þ however is a quantity that is
easy to measure. UCT, on the other hand, is an abstract
quantity appearing in the counterterm which can only be
inferred by measuring some physical quantity [such as
χθðM ¼ 0Þ] and using its relationship to UCT. The choice
to parametrize the renormalization scheme with χθ at
M ¼ 0 is an arbitrary choice. Any other M can be used
as a reference. The situation is analogous to the relation
between renormalized coupling in MS scheme and physical
coupling inferred from scattering at some definite energy.
The former is the analogue of UCT whereas the latter is the
analogue of χθðM ¼ 0Þ.
The question then is the following: what constitutes the

appropriate range of parameters to enumerate a distinct
renormalization scheme? Should it be 0 ≤ UCT ≤ ∞, or
−∞ ≤ χθðM ¼ 0Þ ≤ ∞? To the extent that χθðM ¼ 0Þ is
the physical parameter, it would seem natural to treat the
latter as parametrizing physically distinct renormalization
schemes. We adopt that point of view in this paper. There is
a possibility that extrapolation beyond infinite χθðM ¼ 0Þ
would admit interpretation along the lines of dualities
where one extrapolates beyond infinite coupling, but do
not pursue that possibility in this paper.
This implies however that the behavior illustrated in

Figs. 4 and 6 for logðUs=UCTÞ ¼ 2 where the χθðM ¼ 0Þ
is negative signaling instability corresponds to pushing
χθðM ¼ 0Þ beyond infinity and should be excluded from
our analysis. At M ¼ 0, one can explore the full range of
0 < χθðM ¼ 0Þ < ∞ by lettingUs=UCT vary. Susceptibility
at M ¼ 0 for this system is always positive.
This however does not imply that the system is always

stable or that the stability analysis is completely unrelated
to the quasinormal mode analysis. To see this, suppose
we set the temperature Us ¼ UCT so that the equation of
state is given by what is illustrated in Fig. 3. For every
0 < C < Cmax, there is a subleading branch of solutions
where

dC
dM

< 0: ð4:7Þ

One can see the same thing by looking at an unstable
stationary point in the potential illustrated in Fig. 6 which is
appropriately tilted by the inclusion of the −CextM term as
is illustrated in Fig. 7. One expects to find a corresponding

pathology in the spectrum of quasinormal modes for the
fluctuations around such unstable background solutions,
but how can one understand its appearance short of doing
an explicit computation?
One way to see that a crossover into unstable behavior is

taking place is to focus on the state4 at C ¼ Cmax where
χθ ¼ dC=dM ¼ 0. Recall that for every point on Fig. 3
there is a corresponding solution θðUÞ which extremizes
the action (2.15). If we parametrize these solutions for fixed
value of M by θMðUÞ, then at M ¼ Mcrit corresponding to
C ¼ Cmax, it follows that

ψðUÞ ¼ d
dM

θMðUÞ
����
M¼Mcrit

; ð4:8Þ

ψðUÞ is a gapless quasinormal mode with ω ¼ k ¼ 0. The
fact that a gapless mode is appearing precisely when the
susceptibility χθ ¼ 0 strongly suggests that an unstable
pole would appear upon continuing to the branch where the
susceptibility is negative. This crossover across χθ ¼ 0 is
different from crossing over χθ ¼ ∞ which we discussed
earlier in the context of placing a bound on UCT.
By a similar token, for a sufficiently large negative value

of logðUs=UCTÞ, we encounter a point in the unstable
branch where χθ reaches negative infinity. This can be seen
in Fig. 4 where the tangent of MðCÞ is horizontal. For
logðUs=UCTÞ ¼ −2, this point corresponds to the switch
back point in the black hole embedding branch illustrated
on the leftmost figure of Fig. 6. This issue is somewhat
academic, however, since the switch back point is already
subdominant in the saddle point approximation as can be
seen in Fig. 6.
The critical point ðC;MÞ ¼ ðCmax;McritÞ, on the other

hand, is a dominant saddle point and as such the resulting
critical behavior giving rise to a new channel for dissipating
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FIG. 7. FeffðMÞ ¼ FðMÞ − CextM with C=Us ¼ 0.1.

4Note that the position Cmax is independent of UCT since a
change of UCT can only shift χ−1θ by a finite amount.
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energy in the hydrodynamics limit near that point is a real
physical feature of this model, at least at the perturbative
level. This critical point can also be seen to correspond to
the point in Fig. 5 where T ¼ Tmin takes on a minimal
value. The entropy S plotted as a function of T in Fig. 5 is
double valued. From the thermodynamic point of view, the
dominant branch, however, is naturally the one with greater
entropy. So, the black hole embedding dominates, and
the Minkowski embedding is the subdominant one. For
T > Tmin, the system naively seems to be perfectly stable
and well behaved. At T ¼ Tmin, there is a critical behavior.
The phase structure implied by these features is consistent
with the d ¼ 0 slice of the phase diagram illustrated in
Fig. 4 of [23]. This however raises one obvious question. If
at T ¼ Tmin we encounter a critical behavior, where does
the system equilibrate to for T < Tmin? In order to address
this issue, we need to go beyond the scope of perturbative
stability analysis, and consider the global issues. We
discuss that issue in the next subsection.
The apparent quantitative mismatch in the dependence of

UCT between susceptibility and quasinormal mode spec-
trum can also be seen in the computation of correlators in
the real-time formalism. The retarded Greens function is
computed using the prescription given in Eq. (3.15) [28],

GRðkÞ ¼ −2F ðk; zÞjzB ¼ ffiffiffiffiffiffi
−g

p
gzzf−kðzÞ∂zfkðzÞ; ð4:9Þ

for a suitably normalized ingoing wave fðzÞ, where
z ∼ 1=u. However, strictly speaking, F is divergent for
our model and a counterterm is needed to render this
expression finite.
One can understand the origin of this divergence as

arising from computing the two point function of the
operator whose dimension is Δ so that at short distance,
it scales as

GðkÞ ¼ hOðxÞOð0Þi ∼ 1

x2Δ
ð4:10Þ

which then in momentum space takes the form

GðkÞ ∼ 1

kd−2Δ
ð4:11Þ

for large k. The issue arises when d − 2Δ ≤ 0 so that this
correlation function does not decay at large k. This is the
case in our example because d − 2Δ ¼ 0. So strictly
speaking, one expects the two point function to scale for
large k as [22]

GðkÞ ∼ logðk2=μ2Þ ð4:12Þ

for some scale μ. We are however interested in the small k
behavior when the system is at finite temperature.
The two point function should then admit a spectral

decomposition

GðkÞ ¼
Z

ds
ρðsÞ
k2 þ s

ð4:13Þ

where by power counting, we know that ρðsÞ must
asymptote to a constant at large s. The integral over s,
however, does not converge and must be regulated, for
instance, by adding a term

GðkÞ ¼
Z

ds

�
ρðsÞ
k2 þ s

−
ρðsÞ

Λ2 þ s

�
¼ a0 þ a2k2 þ a4k4 þ… ð4:14Þ

The term added is a contact term in that it is independent
of k. It only affects the a0 term in the small momentum
expansion of GðkÞ. The scale UCT and μ arises from these
considerations, which does affect the two point function
and therefore the susceptibility, but does not affect the
pole structure ofGðkÞ.5 Nonetheless, both the susceptibility
and the quasinormal mode spectrum knows when the
system is perturbatively unstable, and exhibits the appro-
priate symptoms.

C. Nonperturbative stability of the D3=D30 system

In this section, we discuss the subject of how the unstable
states relax to the true equilibrium state. This issue requires
consideration beyond the perturbative analysis, but the
subject is not an unfamiliar one. The same issue arises in
the phase structure of liquid-gas transitions in the van der
Waals model. Let us see how that applies to the D3=D30
system under consideration.
It is a fundamental fact of statistical mechanics that the

set of accessible states parametrized by the order param-
eters forms a convex set. A nice historical review of this
basic notion can be found in [26]. If one is working at
fixed temperature T, in a system with a single order
parameterM, the region bounded by the curve FðMÞ must
be convex, or equivalently, F00ðMÞ > 0. But sometimes, as
is the case here, by working out the equations of state for
what one believes is the dominant thermodynamic con-
figuration, one finds regions where F00ðMÞ is negative,
signaling an instability. For our system, this can be seen
very explicitly in Fig. 6 where FðMÞ is concave down for
large values ofM. Equivalently, one can see regions where
dC=dM is negative in the equation state illustrated in
Figs. 3 and 4.
The standard procedure when this happens is to observe

that the system can achieve a state with lower free energy
for fixed M by being in a heterogeneous coexistence state.
A coexistence of two states gives rise to a configuration
with ðM;FðMÞÞ interpolating between the pair of states.
As a result, the maximal extension of the space of states

5The issue of subtle contribution from contact terms was also
discussed in (2.12)–(2.14) of [29].
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allowed by considering coexistence states is precisely the
convexification of FðMÞ achieved by supplementing FðMÞ
with “ruled surfaces” in the terminology of [26].
This is exactly what happens to the equation of state in

the van der Waals system. We illustrate the standard
diagram displaying a collection of isothermal PðVÞ curves
in Fig. 8. The point to note is the fact that (1) there are
regions where −dP=dV < 0 signaling instability, and
(2) that this gives to a modified equation of state by
allowing coexistence states. It should also be emphasized
that (3) the region of phase diagram modified by allowing
coexistence regions (shaded blue region in Fig. 8) is strictly
greater than the region where the system exhibits apparent
instability (shaded red region in Fig. 8).
How do these ideas apply to the D3=D30 system? From

the equation of state illustrated in Figs. 3 and 4 whereCðMÞ
is rapidly approaching 0 as M is increased, it follows that
FðMÞ must approach a constant value (set to 0 for
convenience in Fig. 6). As soon as this potential is slightly
tilted in response to nonvanishing external control param-
eter Cext as is illustrated in Fig. 7, the displaced local
minima are no longer global minima and the system is
susceptible to decay via tunneling into a runaway behavior
towards largeM. IfCext is taken to be larger thanCmax, even
the local minima disappear and the potential does not have
any stationary points. (The situation is a little different
when some net charge is introduced to the D30-brane world
volume. We elaborate further on this case in a separate
publication.)
From the point of view of convexifying FðMÞ, we see

that the result is to say

FðMÞ ¼ FðM ¼ 0Þ ¼ constant ð4:15Þ

which is even more susceptible to runaway behavior when
C is nonvanishing.
What appears to be happening is that the d ¼ 0 slice of

the phase diagram illustrated in Fig. 4 of [23] degenerated
completely and that at finite C, the system is completely
unstable at the nonperturbative level.
What this means, presumably, is that the classical treat-

ment is predicting its own thermodynamic demise and that
some configuration not presently accounted for will modify
the equation of state to provide the stable, equilibrium state
for this system. Such corrections, however, must arise from
string or quantum corrections and are expected to scale
nontrivially with respect to gS andN. It is possible that such
corrections would also give rise to the branch drawn with
dotted lines in Fig. 3(d) of [23].
Alternatively, the D3=D30 system is intrinsically

unstable. At this moment, we do not have any reason to
rule out that possibility.
In this article, we took the boundary of AdS5 × S5 to be

flat and infinite in volume. It would be interesting to repeat
this analysis treating the boundary to be an S3 of finite size.
In that case, the entire system undergoes a Hawking-Page
transition [30], giving rise to a qualitatively new behavior
also for the D30-brane embedding. It is somewhat unex-
pected, however, for thermodynamic stability of a system to
rely on the finite volume issue. In any case, it would be very
interesting to understand all the different ways in which the
runaway behavior seen in this system can be stabilized.

V. DISCUSSIONS

In this article, we analyzed the embeddings of the
D30-brane probe in Schwarzschild AdS5 geometry and
studied their thermodynamic interpretations, with emphasis
on the order parameter and control parameter dual to the
brane probe embedding psuedoscalar field θðU; xÞ. We
described the subtle relationship between the anomalous
scale UCT introduced in the holographic renormalizatoin
procedure, thermal susceptibitliy χθ, and spectrum of
quasinormal modes.
The resulting analysis of the theromdynamic stability

revealed that while the system is perturbatively stable for
some range of parameters, it is unstable at the nonpertur-
bative level almost everywhere. The full implication of this
instability is not completely clear to us at the moment.
It should be noted that our consideration was limited to
treating the branes in the probe approximation. Perhaps
gravitational backreaction will stabilize the system,
although properly addressing this issue is a tall order for
an intersecting brane system. It is also possible that a
satisfactory resolution will require going beyond the semi-
classical treatment of these systems.
The original goal of this study was to find some relation

between subtle features of the thermodynamics of the
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FIG. 8. Typical equation of state PðVÞ for various fixed T
illustrating thermodynamic instability, coexistence of states, and
the critical point. As T is varied, regions of instability where
−dP=dVjT < 0 appear and are shaded in red. This causes the
system to undergo a first order phase transition where the
equation of motion is modified by the ruled coexistence line,
illustrated in black. The coexistence region is generally larger
than the unstable region. So the local instability in the red shaded
region affects the equilibrium configuration of all points in the
ðP; VÞ region inside the blue shaded region.
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D3-D30-brane system and the subtle features discussed
recently by Mintun et al. [1]. At the moment, the only
connection we see is the fact that some of the pathologies
are due to low codimension physics in both instances. We
hope to provide more insight into this issue in the future.
Finally, let us comment that the intersecting D3=D30

system could also prove to be useful as a probe of the
region behind the horizon in the context of entanglement
entropy where the degrees of freedom crossing the horizon
are in the open string sector [31]. Just like in other attempts
to probe behind the horizon such as [32,33], we expect the
sensitivity of probe dyanmics behind the horizon physics
to be highly suppressed. Nonetheless, perhaps something
can be gained by using an open string probe instead of a
closed string probe.

ACKNOWLEDGMENTS

We are grateful to A. Buchel, S. Coppersmith, S. Gubser,
V. Hubeny, M. Kruczenski, D. Mateos, and W. Taylor
for discussions and M. Pillai for collaboration during the
early stage of this work. We also thank the referee for a
constructive review which dramatically improved the scope
and the content of this manuscript.

APPENDIX A: MORE ON EMBEDDINGS

In this appendix, we offer an alternative parametrization
of the equation of motion (2.15) where we map the problem
to dynamics of a particle rolling down a potential. This
formulation is useful for visualizing the solutions and for
providing assurance that all solutions are accounted for.
The procedure to convert (2.15) into the classical

potential problem form essentially involves the same
steps one takes to convert the Nambu-Goto action to the
Polyakov action form. This can be done by introducing
an auxiliary world volume parameter τ and a Lagrange
multiplier λðτÞ and rewriting the effectively one-
dimensional form of (2.15) asZ

dτ
1

2
UðτÞ cosðθðτÞÞ½λðτÞ−1ðU0ðτÞ2

þ ðUðτÞ2 −U4
sUðτÞ−2Þθ0ðτÞ2Þ þ λðτÞ�: ðA1Þ

Solving for the Lagrange multiplier and setting τ ¼ U
recovers (2.15). On the other hand, imposing as the gauge
condition

λðτÞ ¼ U2 −U4
sU−2

U2
s

U cos θ; ðA2Þ

setting

U2 ¼ U2
s cosh s; ðA3Þ

and rescaling τ ¼ Usσ will scale out Us, leading to

L ¼ U2
s

Z
dσ

1

2
_s2 þ 1

2
s2 _θ2 þ 1

2
sinh2 s cos2 θ ðA4Þ

where s, θ, and σ are dimensionless, and the dot denotes the
derivative with respect to σ. In the form (A4) the problem is
essentially that of a particle whose positions are para-
metrized by 1 < s < ∞ and −π=2 < θ < π=2 rolling along
a potential

Vðs; θÞ ¼ −
1

2
sinh2 s cos2 θ: ðA5Þ

Reparametrization invariance further implies that the sol-
ution should correspond to a trajectory with vanishing
Hamiltonian

H ¼ 0: ðA6Þ
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FIG. 9. The trajectory of Fig. 10 in the ðs; θÞ plane. The
horizontal axis is logðsÞ and the vertical axis is θ=π. The horizon
corresponds to the left edge at logðsÞ ¼ 0.
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FIG. 10. Some generic solutions to the embedding equation of a
D30 brane in a finite temperature AdS5 × S5 background. The full
embedding is cylindrically symmetric with respect to rotation
around the X9 axis. The black disk represents the region behind
the event horizon.
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A large class of solutions arises as a trajectory of a
particle rolling up, turning around, and rolling back
down the potential in ðs; θÞ coordinates (A5) which we
illustrate in Fig. 9. These are the wormhole embed-
dings in the terminology of [16,17]. In the original
ðX4;5; X9Þ coordinates, they look like an embedding
illustrated in Fig. 10. In the large X region, these
correspond to having both a brane and an antibrane
along the lines of [6,34] and are not the solutions we
are looking for.
The only other possibility is for the trajectory in the

ðs; θÞ plane to hit the boundary of the region on which

the space is defined, i.e. s ¼ 1 for arbitrary θ, or
θ ¼ π=2 for arbitrary s. These solutions are referred
to as the black hole and the Minkowski embeddings,
respectively. These trajectories are specified uniquely
by giving the starting position of the trajectory along
the boundary of the ðs; θÞ plane because the quadratic
term in the equation of motion inferred from (2.15)
degenerates there.
The trajectory resulting from these initial conditions is

illustrated in Fig. 11. The same solutions in the original
ðX4;5; X9Þ coordinates are illustrated in Fig. 2. The trajec-
tories starting at the s ¼ 1 boundary are the black hole
embedding, and the trajectories starting at θ ¼ π=2 are the
Minkowski embeddings.

APPENDIX B: RETARDED GREEN FUNCTION
AND QUASINORMAL MODE FOR

THE θðUÞ= 0 BACKGROUND

In this appendix, we outline the computation of the
retarded Green function for the θðUÞ fluctuation using the
prescription of [28]. We start by generalizing (2.15) to
include momentum and energy and write

SDBI ¼
1

ð2πÞ2gs

Z
d2xdUU cosðθðUÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ fU2Þθ0ðUÞ2 þ λðfk2 − ω2Þ

U2
θðUÞ2

s
: ðB1Þ

In order to compute the retarded Green function, we need
to expand θðUÞ to quadratic order around a solution to
the equation of motion. This is quite complicated for
generic solution θ0ðUÞ, but is tractable for the trivial
solution θ0ðUÞ ¼ 0. For that case, the linearized action
reads

Slin ∼
1

2
UðU2fθ0ðUÞ2 − θðUÞ2 þ λðfk2 − ω2Þ

fU2
θðUÞ2Þ:

ðB2Þ

The equation of motion resulting from this action can be
written in a canonical form in terms of

θðxÞ ¼ ðx − 1Þ1=2yðxÞ; x ¼ U2 − U2
s

U2 þU2
s

ðB3Þ

with

ω ¼ Uswffiffiffi
λ

p ; k ¼ Usqffiffiffi
λ

p ðB4Þ

so that the equation of interest is expressed as

0 ¼ y00ðxÞ −
�

1

1 − x
−
1 − iw=2

x

�
y0ðxÞ

þ
�
k2 − w2 þ 2

8ðx − 1Þ þ −2q2 þ w2 − 2

8x

þ k2

8ðxþ 1Þ þ
w2

16x2

�
yðxÞ: ðB5Þ

For nonzero q2, this equation has four singular points at
x ¼ 0, x ¼ 1, x ¼ −1, and x ¼ ∞, and as such is not
analytically tractable. But when q2 ¼ 0, the singularity at
x ¼ −1 goes away, and one arrives at a hypergeometric
equation solved by

yðxÞ ¼ c1ð−1Þ−iw
4 x−

iw
4
2F1

�
1

2
−
�
1

4
þ i
4

�
w;

�
1

4
−
i
4

�
w

þ 1

2
; 1 −

iw
2
; x

�

þ c2ð−1Þiw4 xiw
4
2F1

�
1

2
−
�
1

4
−
i
4

�
w;

�
1

4
þ i
4

�
w

þ 1

2
;
iw
2
þ 1; x

�
: ðB6Þ

0.4

0.2

0.0

0.2

0.4

0 2 4 6 8 10 12 14

FIG. 11. The trajectories of Fig. 2 in the ðs; θÞ plane. The
horizontal axis is logðsÞ and the vertical axis is θ=π.
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One of the solutions satisfies the infalling boundary condition at the horizon and the other is outgoing. We can then
find the large U asymptotics in the ingoing solution and find it to be of the form

θðUÞ ¼ A logðU=UsÞ þ B ðB7Þ
where

A ¼ 2
ffiffiffi
2

p
e
πw
4 Γð1 − iw

2
Þ

Γð1
2
− ð1

4
þ i

4
ÞwÞΓðð1

4
− i

4
Þwþ 1

2
ÞUs;

B ¼ −
ffiffiffi
2

p
e
πw
4 Γð1 − iw

2
Þðψ ð0Þð1

2
− ð1

4
þ i

4
ÞwÞ þ ψ ð0Þðð1

4
− i

4
Þwþ 1

2
Þ þ 2γ þ logð2ÞÞ

Γð1
2
− ð1

4
þ i

4
ÞwÞΓðð1

4
− i

4
Þwþ 1

2
Þ Us ðB8Þ

from which we infer that

GRðwÞ ¼
B
A
− logðUs=UCTÞ ðB9Þ

with

B
A
¼ 1

2

�
−ψ ð0Þ

�
1

2
−
�
1

4
þ i
4

�
w

�

− ψ ð0Þ
��

1

4
−
i
4

�
wþ 1

2

�
− 2γ − logð2Þ

�
: ðB10Þ

We see that the poles of the retarded Green function are
encoded in the poles of the ψ0ðxÞ function and are
independent of UCT, but the Green function itself is
dependent onUCT through momentum independent contact
terms as is shown in (B9).

APPENDIX C: HOLOGRAPHIC DICTIONARY
AND THE EFFECTIVE ACTION FOR THE

ORDER PARAMETER

In this article, the holographic dictionary (3.2) and (3.6),D
e
R

ddCðxÞOðxÞ
E
boundary

¼ Zbulk½CðxÞ�

¼
Z

½DθðU; xÞ�CðxÞe−ðSDBI½θðU;xÞ�þSCT½θðU;xÞ�Þ; ðC1Þ

played a critical role in providing an interpretation of brane
embeddings in the bulk of space time in terms of field
theory observables. The dependence on control parameter/
boundary condition CðxÞ is somewhat implicit in the path
integral expression on the rightmost side of (C1). In this
appendix, we provide a formal path integral manipulation
to make this explicit, as well as derive a formal path integral
expression for the effective action for the field of the
expectation value of the operator MðxÞ ∼ hOðxÞi corre-
sponding to the bulk field θðU; xÞ.
The trick is to introduce an MðxÞ as an auxiliary field

which when integrated out reproduces the original path
integral as follows:

Zbulk½CðxÞ�

¼
Z

½DθðU; xÞ�½DMðxÞ�

× e
−ðS½θðUÞ�þ 1

ð2πÞ3gs

R
d2xðUUVθðUUV ;xÞ

logðUUV=U��ÞMðxÞ−CðxÞMðxÞÞÞ ðC2Þ

where we are working in the path integral with cutoff at
U ¼ UUV to regularize the contribution of the counterterm
although we take the UUV → ∞ limit in the end. The
auxiliary field lives only at U ¼ UUV. The presence of the
holographic counterterms guarantees that this limit is
smooth. Because a logarithm is involved, we have intro-
duced yet another scale U�� although the dependence on
this scale drops out in the UUV → ∞ limit. It is clear that
integrating out MðxÞ imposes the boundary condition and
reproduces (C1).
The expression (C2) is useful for a variety of reasons.

First, note that functionally differentiating with respect
to CðxÞ pulls down an MðxÞ. In that sense, we
immediately associate MðxÞ with the expectation value
hOðxÞi.
We can also read off a path integral expression for the

effective action of MðxÞ easily as follows:

e
− 1

ð2πÞ2gs
Γ½MðxÞ�

¼
Z

½DθðU; xÞ�e−ðS½θðUÞ�þ 1

ð2πÞ2gs

R
d2xðUUVθðUUV ;xÞ

logðUUV=U��ÞMðxÞÞÞ
:

ðC3Þ

In this expression, the term linear in MðxÞ is imposing a
boundary condition for the path integral over θðU; xÞ. It is
also clear that Γ½MðxÞ� and W½CðxÞ� ¼ − logðZ½CðxÞ�Þ are
related by the standard Legendre transform at the leading
order in saddle point approximation, whose correction can
be computed systematically [35].
The effective action Γ½MðxÞ� is a complicated expression

which includes terms with arbitrary orders of MðxÞ and its
derivatives. But it is formally defined unambiguously in
(C3) and can be computed systematically as an expansion
in MðxÞ and its derivatives.
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