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We construct gravitational modifications that go beyond Horndeski, namely theories with extended
nonminimal derivative couplings, in which the coefficient functions depend not only on the scalar field
but also on its kinetic energy. Such theories prove to be ghost-free in a cosmological background. We
investigate the early-time cosmology and show that a de Sitter inflationary phase can be realized as a pure
result of the novel gravitational couplings. Additionally, we study the late-time evolution, where we obtain
an effective dark energy sector which arises from the scalar field and its extended couplings to gravity. We
extract various cosmological observables and analyze their behavior at small redshifts for three choices of
potentials, namely for the exponential, the power-law, and the Higgs potentials. We show that the Universe
passes from deceleration to acceleration in the recent cosmological past, while the effective dark energy
equation-of-state parameter tends to the cosmological-constant value at present. Finally, the effective dark
energy can be phantomlike, although the scalar field is canonical, which is an advantage of the model.
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I. INTRODUCTION

Horndeski’s theory [1] is the most general single-scalar
tensor theory that has second-order field equations, for both
the metric and the scalar fields in four dimensions. It was
originally discovered in 1974, then rediscovered independ-
ently [2], and recently brought back to attention [3–5] (for a
review see [6]). The generality of the theory is reminiscent of
Lovelock’s theorem [7], and it comes as no surprise that
many of its terms, especially those that involve derivative
couplings of the scalar with curvature terms, come from a
dimensional reduction of higher dimensional Lovelock
theories [8]. Note that having second-order field equations
is crucial, in order to avoid Ostrogradski instabilities [9–11].
The advantage of Horndeski cosmological models is that

they are able to screen the vacuum energy coming from any
field theory, assuming that after this screening the space
should be in a de Sitter vacuum [12,13]. These models
allow us to understand the current accelerated expansion of
the Universe as the result of a dynamical evolution toward a
de Sitter attractor [14]. Thus, it was shown that Horndeski
models with a de Sitter critical point for any kind of
material content may provide a mechanism to alleviate the

cosmological constant problem [15]. The cosmological
scenario that results when considering the radiation and
matter content was also studied, and it was concluded that
their background dynamics is compatible with the latest
observational data.
Despite the huge interest in these theories, extensions of

Horndeski’s theory have also been recently discussed. In
[16] a new class of scalar-tensor theories was introduced,
going beyond Horndeski’s theory, where despite the fact
that the equations of motion contain higher derivatives,
they can be cast in a way that they contain only second-
order ones [17]. Additionally, these generalized theories
were shown to be free of ghost instabilities in the unitary
gauge [18], and later on this was also verified using the
Hamiltonian formalism [19–23], due to the existence of a
primary constraint which prevents the propagation of extra
degrees of freedom [23] (see also [24] and [25–27] for
additional descriptions). We mention that these extended
theories can also address the cosmological constant prob-
lem [28] via a self-tuning mechanism, similar to the
analysis done in the original Horndeski theory for the
so-called Fab Four theory [3,4] (the cosmological aspects
of the Fab Four have been explored in [29]). A detailed
analysis of the cosmological self-tuning and local solutions
in the context of beyond Horndeski theories has also been
explored in [30]. Recently, it was shown that the two
additional Lagrangian pieces, appearing in theories beyond
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Horndeski, could be reexpressed in a very elegant and
compact way, by allowing the potentials to also depend on
the kinetic term of the scalar field [28].
One interesting subclass of Horndeski theory, which has

been given much attention recently, includes the non-
minimal (kinetic) coupling of matter to gravity by inserting
derivative couplings between the geometry and the kinetic
part of the scalar field [31], which leads to interesting new
dynamical cosmological phenomena [32,33], including the
existence of an effective cosmological constant [34,35].
The nonminimal derivative coupling leads to cosmological
models with rich phenomenology, such as solutions con-
taining a big bang, expanding universes with no beginning,
cosmological bounces, eternally contracting universes, a
big crunch, and a big rip avoidance [33,36–42]. In
particular, it was shown that one is able to explain in a
unique manner both a quasi–de Sitter phase and an exit
from it without any fine-tuned potential [32]. Furthermore,
one can successfully describe the sequence of cosmological
epochs without any fine-tuned potential [43]. Using cou-
plings of this type, it was found that in the absence of other
matter sources or in the presence of only pressureless
matter, the scalar field behaves as pressureless matter and
its sound speed is vanishing [44]. These properties enable
the scalar field to be a candidate of cold dark matter. It was
also shown that if the kinetic term is coupled to more than
one Einstein tensor, then the equation of state is always
approximately equal to −1, independent from the potential
flatness, and hence the scalar may also be considered a
candidate for the inflaton. Tachyon models involving
nonminimal derivative coupling have also been explored
[45,46], while Chaplygin gas models in this framework
were studied in [47]. Moreover, the dynamics of entropy
perturbations in the two-field assisted dark energy model
with mixed kinetic terms was also studied in [48]. Recently
there has also been an investigation on how the derivative
coupling can mimic cold dark matter at the cosmological
level and also explain the flattening of galactic rotation
curves [49].
The inflationary context within this theory has been

extensively analyzed too. In the case of a power-law
potential, and using the dynamical system method, all
possible asymptotical regimes of the model were analyzed
[50]. It was shown that for sloping potentials there exists a
quasi–de Sitter asymptotic corresponding to an early infla-
tionary universe. In contrast to a standard inflationary
scenario, the kinetic-coupling inflation does not depend
on a scalar field potential and is only determined by the
coupling parameter. In addition to this, there is a unique
nonminimal derivative coupling of the Standard Model
Higgs boson to gravity which propagates no more degrees
of freedom than general relativity sourced by a scalar field,
reproduces a successful inflating background within the
Standard Model Higgs parameters, and, finally, does not
suffer from dangerous quantum corrections [51]. The

slow-roll conditions have been found [52], and the reheat-
ing temperature was obtained [53,54] (see also recent
analyses in [55] and [56]). Furthermore, the cosmological
perturbations originated at the inflationary stage were
studied and the consistency of the results with observa-
tional constraints coming from Planck 2013 data were
investigated [57]. Moreover, these scenarios exhibit a
gravitationally enhanced friction during inflation, where
even steep potentials with theoretically natural model
parameters can drive cosmic acceleration [58], while being
compatible with the current observational data mainly due
to the suppressed tensor-to-scalar ratio. Finally, the gravi-
tational production of heavy X particles of mass of the
order of the inflaton mass, produced after the end of
inflation, was also studied [59], where it was found that
this production is suppressed as the strength of the coupling
is increased.
A combined perturbation and observational investigation

of the scenario of nonminimal derivative coupling between
a scalar field and curvature was performed in [60]. Using
Type Ia supernovae (SNIa), baryon acoustic oscillations
(BAO), and cosmic microwave background (CMB) obser-
vations, it was shown that, contrary to its significant effects
on inflation, the nonminimal derivative coupling term has a
negligible effect on the Universe acceleration, since it is
driven solely by the usual scalar-field potential. Therefore,
the scenario can provide a unified picture of early and late
time cosmology, with the nonminimal derivative coupling
term responsible for inflation, and the usual potential
responsible for late-time acceleration.
Finally, nonminimal derivative couplings to gravity have

also been explored in a variety of extended theories of
gravity. For instance, one can incorporate an additional
coupling to the Gauss Bonnet invariant, obtaining rich
cosmological behavior, with both decelerated and accel-
erated phases [61,62]. Additionally, a large class of scalar-
tensor models with interactions containing the second
derivatives of the scalar field but not leading to additional
degrees of freedom have also been extensively investigated
[63]. These models exhibit peculiar features, such as an
essential mixing of scalar and tensor kinetic terms, named
kinetic braiding, and possess a rich cosmological phenom-
enology, including a late-time asymptotic de Sitter state,
and a possible phantom-divide crossing, with neither ghosts
nor gradient instabilities. Finally, the nonminimal deriva-
tive coupling to gravity has also been investigated in the
context of the curvaton model [64], or in the framework of
N ¼ 1 four-dimensional new-minimal supergravity [65].
In this work we are interested in investigating a theory

that goes beyond Horndeski, based on a generalization of
nonminimal derivative coupling. In particular, we consider
the latter coupling and introduce an additional arbitrary
coefficient function of the field and its derivatives. We
mention that this class is not included in Horndeski theory,
since only specific combinations of it are allowed [2,66,67].
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This paper is outlined in the following manner. In Sec. II,
we present the action and deduce the gravitational field
equations. In Sec. III, we apply the developed formalism to
a spatially flat Friedmann-Robertson-Walker (FRW) back-
ground metric and present the modified Friedmann equa-
tions. The early-time cosmology is briefly analyzed in
Sec. IV, and the late-time evolution is considered in Sec. V.
In the latter, we study the full Friedmann equations and
focus on important observables, by considering three
well-known scalar potentials, such as the exponential,

the power-law, and the Higgs potentials. Finally, in
Sec. VI we discuss our results and conclude.

II. EXTENDED NONMINIMAL
DERIVATIVE COUPLING

In this work, we consider a generalized nonminimal
coupling of the scalar field derivative to gravity, by
introducing an additional arbitrary coefficient function of
the field and its derivatives. The action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
fgμν − ½β þ ζFðX;ϕÞ�Gμνg∇μϕ∇νϕ − VðϕÞ

�
þ Sm; ð2:1Þ

with gμν the metric, g ¼ detðgμνÞ, R the scalar curvature, β and ζ the derivative coupling parameters, VðϕÞ the scalar field
potential, X ¼ − 1

2
∇μϕ∇μϕ the scalar kinetic energy, and FðX;ϕÞ an arbitrary function. Note that in principle β can be

absorbed inside ζFðX;ϕÞ; however, we prefer to keep it separately in order to be able to reproduce at any stage the results
of the simple nonminimal derivative coupling by setting ζ to 0. Finally, we have included the usual matter action,
corresponding to a matter fluid of energy density ρm and pressure pm.
Variation of the action with respect to the metric leads to the field equations

1

16πG
Gμν −

1

2
∇μϕ∇νϕþ 1

4
gμν∇αϕ∇αϕþ β

2

�
−
1

2
gμνGαβ∇αϕ∇βϕþ 2Gðμλ∇νÞϕ∇λϕþ 1

2
R∇μϕ∇νϕ

−
1

2
Rμν∇αϕ∇αϕþ 1

2
gμν½ð□ϕÞ2 −∇α∇βϕ∇α∇βϕ − Rαβ∇αϕ∇βϕ� þ∇μ∇αϕ∇ν∇αϕ −□ϕ∇μ∇νϕ

þ Rμ
α
ν
β∇αϕ∇βϕ

�
þ ζ

2

�
1

2
ðXFGμν þ 2FPμ

α
ν
β∇αϕ∇βϕÞ þ F;X∇μϕ∇νϕGαβ∇αϕ∇βϕ

�

−
1

2
ϵμ

ασγϵν
βρ

γ½F∇β∇αϕ∇σ∇ρϕþ 2∇ðαF∇βÞϕ∇σ∇ρϕ −∇αϕ∇βϕ∇σ∇ρF� þ
1

2
VðϕÞgμν ¼ −

1ffiffiffiffiffiffi−gp δSm
δgμν

; ð2:2Þ

where Pμναβ is the double dual of the Riemann tensor defined as [68]

Pμν
αβ ≡ 1

4
δμνγδσλαβR

σλ
γδ ¼ Rμν

αβ − 2Rμ
½αδν β� þ 2Rν½αδ

μ
β� þ Rδμ½αδ

ν
β�; ð2:3Þ

and where ∇ðμϕRα
νÞ ¼ 1

2
ð∇μϕRα

ν þ∇νϕRα
μÞ. Additionally, variation of the action (2.1) with respect to ϕ provides the scalar

field equation of motion, namely

□ϕ − βGμν∇μ∇νϕ −
ζ

2
½2∇μðFGμν∇νϕÞ þ 2∇αðF;XGμν∇μϕ∇νϕ∇αϕÞ − F;ϕGμν∇μϕ∇νϕ� − Vϕ ¼ 0: ð2:4Þ

In this work we will consider the case where Fðϕ; XÞ ¼ X, which is adequate to capture the new features of the theories
beyond Horndeski at hand. Hence the coupling constant ζ has dimensions of inverse mass to the power of six while β has
dimensions of inverse mass to the power of two. Using the identity

ϵμαβγϵ
νκλρ ¼ −δνκλρμαβγ ð2:5Þ

and the fact that apart from the potential term the rest of the action is shift symmetric, we can now write our field equations
in the following elegant way:
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1

16πG
Gμ

ν −
1

2
∇μϕ∇νϕþ 1

4
δμ

ν∇αϕ∇αϕþ β

2

�
−
1

2
δμ

νGαβ∇αϕ∇βϕþ 2Gðμλ∇νÞϕ∇λϕþ 1

2
R∇μϕ∇νϕ

−
1

2
Rμ

ν∇αϕ∇αϕþ 1

2
δμ

ν½ð□ϕÞ2 −∇α∇βϕ∇α∇βϕ − Rαβ∇αϕ∇βϕ� þ∇μ∇αϕ∇ν∇αϕ

−□ϕ∇μ∇νϕþ Rμ
ανβ∇αϕ∇βϕ

�
þ ζ

2

�
1

2
ðX2Gμ

ν þ 2XPμα
νβ∇αϕ∇βϕÞ þ∇μϕ∇νϕGαβ∇αϕ∇βϕ

�

þ 1

2
δνβργμασγ½X∇β∇αϕ∇σ∇ρϕþ 2∇ðαX∇βÞϕ∇σ∇ρϕ −∇αϕ∇βϕ∇σ∇ρX� þ

1

2
VðϕÞδμν ¼

1

2
Tμ

ν; ð2:6Þ

and

∇αJα ¼ Vϕ; ð2:7Þ

where

Jα ¼ ½gαβ − βGαβ − ζðXGαβ þ gαβGμν∇μϕ∇νϕÞ�∇βϕ:

ð2:8Þ

III. COSMOLOGICAL EQUATIONS

In this section we are interested in investigating the
cosmological implications of theories with extended non-
minimal derivative couplings. Hence, we focus on a
spatially flat FRW background metric of the form

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð3:1Þ

where t is the cosmic time, xi are the comoving spatial
coordinates, aðtÞ is the scale factor, and H ¼ _a=a is
the Hubble parameter (a dot denotes differentiation with
respect to t). Additionally, we consider the scalar field to
be homogeneous, that is ϕ ¼ ϕðtÞ. Finally, as usual, we
consider the matter sector to correspond to a perfect fluid.
In this case, the field equations (2.6) provide the two

Friedmann equations,

H2 ¼ 4πG

3ð1 − 12πGβ _ϕ2 þ 20πGζ _ϕ4Þ ½2VðϕÞ þ 2ρm þ _ϕ2�;

ð3:2Þ

2 _H þ 3H2 þ 4πGð2pm − 2V þ _ϕ2Þ
− 4πGβ _ϕ½ð3H2 þ 2 _HÞ _ϕþ 4Hϕ̈�
þ 4πGζ _ϕ3½ð2 _H þ 3H2Þ _ϕþ 8Hϕ̈� ¼ 0; ð3:3Þ

while Eq. (2.7) gives

ϕ̈þ 3H _ϕþ Vϕ þ 3βH½ð3H2 þ 2 _HÞ _ϕþHϕ̈�
− 6ζH _ϕ2½ð2 _H þ 3H2Þ _ϕþ 3Hϕ̈� ¼ 0. ð3:4Þ

As we can easily see, despite the appearance of higher
derivatives in Eq. (2.2), on the cosmological background

they disappear [16], and we only have to deal with up to
two derivatives. From the above expressions one can see
that the Friedmann equations (3.2) and (3.3) can be written
in the usual form, namely

H2 ¼ 8πG
3

ðρDE þ ρmÞ; ð3:5Þ

2 _H þ 3H2 ¼ −8πGðpDE þ pmÞ; ð3:6Þ

where we have defined an effective dark energy sector with
energy density and pressure,

ρDE ≡ ρϕ ¼
_ϕ2

2
þ VðϕÞ þH2 _ϕ2

�
9

2
β −

15

2
ζ _ϕ2

�
; ð3:7Þ

pDE ≡ pϕ ¼
_ϕ2

2
− VðϕÞ − β

_ϕ

2
½ð3H2 þ 2 _HÞ _ϕþ 4Hϕ̈�

þ ζ
_ϕ3

2
½ð2 _H þ 3H2Þ _ϕþ 8Hϕ̈�; ð3:8Þ

respectively. Therefore, in the scenario at hand, the dark
energy equation-of-state parameter is given by

wDE ≡ pDE

ρDE
: ð3:9Þ

One can straightforwardly see that, in terms of the dark
energy density and pressure, the scalar field evolution
equation (3.4) can be written in the standard form

_ρDE þ 3HðρDE þ pDEÞ ¼ 0: ð3:10Þ

Furthermore, the matter energy density and pressure satisfy
the standard evolution equation

_ρm þ 3Hðρm þ pmÞ ¼ 0: ð3:11Þ

Finally, we introduce the deceleration parameter q,
which is an indicator of the accelerated expansion and is
defined as

q ¼ d
dt

1

H
− 1; ð3:12Þ
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and thus negative values of q correspond to accelerating
evolution. Additionally, in order to allow for an easy
comparison between the observational and theoretical
results, instead of the time variable t we can use the
redshift z, defined as

1þ z ¼ 1

a
; ð3:13Þ

where we have normalized the scale factor aðzÞ so that its
current value is að0Þ ¼ 1. Thus, time derivatives can be
expressed as

d
dt

¼ −HðzÞð1þ zÞ d
dz

: ð3:14Þ

IV. EARLY-TIME COSMOLOGY

In order to examine the early-time behavior of the scenario
at hand we will neglect the matter content of the theory. We
are interested in exponential cosmological solutions, which
could describe the inflationary epoch. Note that since we
desire to study the pure effects of the novel, extended
nonminimal derivative couplings, we do not consider an
explicit potential, since it is well known that a potential term
can easily drive an exponential solution, with the best
example being a simple cosmological constant.
Using the metric (3.1) we examine whether the cosmo-

logical equations (3.2)–(3.4) admit solutions in which the
scale factor has an exponential dependence in time of the
form

aðtÞ ¼ e
1
2
H0t; ð4:1Þ

with H0 a constant. Inserting this in the first Friedmann
equation (3.2), and setting as usual 8πG ¼ 1, we can easily
see that the general solution for the scalar field has a linear
time dependence; thus we depict our solution for the scalar
field as

ϕðtÞ ¼ ϕ1tþ ϕ0; ð4:2Þ

where ϕ1;ϕ0 are integration constants, which will be
determined in the following, in order for the full system
of equations to be satisfied. Inserting this expression for the

scalar field in the Klein-Gordon equation (3.4) we deduce
that it is satisfied if

β ¼ 2ð3H2
0ζϕ

2
1 − 2Þ

3H2
0

: ð4:3Þ

Substituting back to the Friedmann equations (3.2)
and (3.3), we obtain

ζ ¼ 2ð3H2
0 þ 4ϕ2

1Þ
3H2

0ϕ
4
1

: ð4:4Þ

Hence β and ζ are both positive, namely

β ¼ 4

H2
0

þ 1

ϕ2
1

; ð4:5Þ

ζ ¼ 2

ϕ4
1

þ 8

3H2
0ϕ

2
1

: ð4:6Þ

In summary, we can see that the scenario at hand easily
admits de Sitter solutions that can describe the inflationary
epoch of the Universe. In particular, for a given set of
coupling parameters β and ζ, one obtains the de Sitter
solution (4.1), with the scalar field evolving as in Eq. (4.2),
where the solution parametersH0 and ϕ1 are determined by
inverting Eqs. (4.5) and (4.6). The only requirement is the
obtained H0 and ϕ1 to be real numbers, and this constrains
the allowed ðβ; zÞ parameter space. For instance, note that
if one of β or ζ is zero, the system does not admit an
exponential solution unless there is a bare cosmological
constant. We stress that the above de Sitter solution has
been obtained without considering a potential term; i.e. it is
an effect of the extended nonminimal derivative coupling
terms considered in this work.
In general, at early times, where matter can be neglected,

we can express the deceleration parameter (3.12) using the
Friedmann equations (3.2) and (3.3) as

q ¼ −
_H
H2

− 1 ¼ 1

2
ð1þ 3wtotÞ; ð4:7Þ

where we have defined the “total” equation-of-state param-
eter of the Universe as

wtot ¼
_ϕ2

2
− VðϕÞ − β

_ϕ
2
½ð3H2 þ 2 _HÞ _ϕþ 4Hϕ̈� þ ζ

_ϕ3

2
½ð2 _H þ 3H2Þ _ϕþ 8Hϕ̈�

_ϕ2

2
þ VðϕÞ þH2 _ϕ2ð9

2
β − 15

2
ζ _ϕ2Þ

: ð4:8Þ

Hence, the condition for accelerated expansion can then be formulated as 1þ 3wtot < 0, or equivalently

_ϕf _ϕ½−3β _H þ 3ζð _H −H2Þ _ϕ2 þ 2� − 6Hϕ̈ðβ − 2ζ _ϕ2Þg þ 4VðϕÞ
_ϕ2½3H2ð3β − 5ζ _ϕ2Þ þ 1� þ 2VðϕÞ < 0; ð4:9Þ

COSMOLOGICAL MODELS IN MODIFIED GRAVITY … PHYSICAL REVIEW D 95, 044019 (2017)

044019-5



where for generality we have kept the potential term.
Hence, one can use this requirement in order to find more
general inflationary solutions, beyond the de Sitter one.

V. LATE-TIME COSMOLOGY

In the present section we investigate several cosmological
models in the framework of gravitational theories with an
extended nonminimal derivative coupling, focusing on the
late-time evolution. In particular, we are interested in
studying the full Friedmann equations (3.5) and (3.6), i.e.,
considering the matter sector as well, and we focus on
important observables such as the dark energy equation-of-
state parameterwDE defined in (3.9), and the dark-matter and
dark energy density parameters defined, respectively, as

Ωm ¼ 8πG
3H2

ρm; ΩDE ¼ 8πG
3H2

ρDE: ð5:1Þ

Additionally, concerning the scalar potential we will
consider three well-known cases, namely the exponential
potential [69–73]

VðϕÞ ¼ Λ0e−μϕ; ð5:2Þ

with Λ0 and μconstants, the power-law potential [74,75]

VðϕÞ ¼ V0ϕ
n; ð5:3Þ

with V0 and n constants, and the Higgs potential [76]

VðϕÞ ¼ V0 þ
1

2
M2ϕ2 þ λ

4
ϕ4; ð5:4Þ

where V0 is a constant, while the constant M2 < 0 may be
related to the mass of the Higgs boson by the relation
mH ¼ V 00ðvÞ, where v2 ¼ −M2=λ gives the minimum of the
potential.
In general, in the above cases, and in the presence of

matter, analytical solutions are impossible to be extracted,
and thus we resort to numerical elaboration of the cosmo-
logical equations. Thus, we evolve the equations using as
an independent variable the redshift z defined in (3.13).
In order to perform a numerical elaboration of the above

cosmological equations, it proves convenient to rewrite them
in a dimensionless way. In particular, we introduce the
dimensionless variables ðτ;h;Φ;vðΦÞ;β0;ζ0;r;PÞ, defined as

τ¼H0t; H¼H0h; ϕ¼
ffiffiffiffiffiffiffiffiffi
6

8πG

r
Φ; vðΦÞ¼8πG

3H2
0

VðΦÞ;

ð5:5Þ

β¼ β0
9H2

0

; ζ¼ 4πG
45H4

0

ζ0; ρm¼ 3H2
0

8πG
r; pm ¼ 3H2

0

8πG
P:

ð5:6Þ

Using these new variables, the generalized Friedmann equa-
tions (3.2) and (3.3), the scalar field equation (3.4), as well as
the matter conservation equation (3.11) take the form

da
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vðΦÞ þ rþ ðdΦ=dτÞ2
1 − β0ðdΦ=dτÞ2 þ ζ0ðdΦ=dτÞ4

s
a; ð5:7Þ

2
dh
dτ

þ 3h2 þ 3

�
P − vðΦÞ þ

�
dΦ
dτ

�
2
�
−
β0
3

dΦ
dτ

��
2
dh
dτ

þ 3h2
�
dΦ
dτ

þ 4h
d2Φ
dτ2

�

þ ζ0
5

�
dΦ
dτ

�
3
��

2
dh
dτ

þ 3h2
�
dΦ
dτ

þ 8h
d2Φ
dτ2

�
¼ 0; ð5:8Þ

d2Φ
dτ2

þ3h
dΦ
dτ

þ1

2

dvðΦÞ
dΦ

þβ0
3
h

��
2
dh
dτ

þ3h2
�
dΦ
dτ

þh
d2Φ
dτ2

�
−
2

5
ζ0h

�
dΦ
dτ

�
2
��

2
dh
dτ

þ3h2
�
dΦ
dτ

þ3h
d2Φ
dτ2

�
¼ 0; ð5:9Þ

dr
dτ

þ 3hðrþ PÞ ¼ 0; ð5:10Þ

respectively. Therefore, after solvingEqs. (5.8) and (5.9) fordh=dτ andd2Φ=dτ2, the cosmological field equations take the form

dΦ
dτ

¼ Π; ð5:11Þ

da
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðΦÞ þ rþ Π2

1 − β0Π2 þ ζ0Π4

s
a; ð5:12Þ
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dh
dτ

¼ 1

2fh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15g
× f−3Π2f2h2½10β0 − 9ζ0Pþ 9ζ0vðΦÞ� þ ð5β20 − 18ζ0Þh4 þ 15g − 15ðβ0h2 þ 3Þ½h2 þ P − vðΦÞ�
þ 9ζ0h2Π4ð3β0h2 þ 13Þ − 18ζ20h

4Π6 þ 2hΠð6ζ0Π2 − 5β0Þv0ðΦÞg; ð5:13Þ

dΠ
dτ

¼ð5β0Π2−3ζ0Π4−15Þv0ðΦÞ−6hΠ½−5β0P−2Π2ð5β0−3ζ0Pþ3ζ0vðΦÞÞþ9ζ0Π4þ5β0vðΦÞþ15�
2fh2½5β0þð5β20−18ζ0ÞΠ2−9β0ζ0Π4þ6ζ20Π6�−5β0Π2þ3ζ0Π4þ15g ; ð5:14Þ

which must be solved together with Eq. (5.10) after the equation of state P ¼ PðrÞ of matter has been imposed. The initial
conditions for the system (5.11)–(5.14) are aðτ0Þ ¼ a0, hðτ0Þ ¼ h0,Φðτ0Þ ¼ Φ0, andΠðτ0Þ ¼ Π0, respectively. Furthermore,
in terms of the dimensionless variables the deceleration parameter (3.12) becomes

q ¼ d
dτ

�
1

h

�
− 1; ð5:15Þ

while the dark energy equation-of-state parameter reads as

wDE ¼ Π2 − vðΦÞ − β0
9
Π½ð2 dh

dτ þ 3h2ÞΠþ 4h dΠ
dτ � þ ζ0

15
Π3½ð2 dh

dτ þ 3h2ÞΠþ 8h dΠ
dτ �

Π2f1þ h2½β0 − ζ0Π2�g þ vðΦÞ : ð5:16Þ

Finally, the dimensionless time-redshift relation (3.14)
becomes

d
dτ

¼ −ð1þ zÞhðzÞ d
dz

: ð5:17Þ

A. Exponential potential

Let us start the analysis by considering the exponential
potential (5.2), namely

VðϕÞ ¼ Λ0 exp ð−μϕÞ; ð5:18Þ

with Λ0 and μ the potential parameters. In terms of the
dimensionless variables introduced in (5.5), the above
exponential potential takes the form

vðΦÞ ¼ λ0 exp ð−μ0ΦÞ; ð5:19Þ

where

λ0 ¼
8πG
3H2

0

Λ0; μ0 ¼
ffiffiffiffiffiffiffiffiffi
6

8πG

r
μ: ð5:20Þ

In the following we consider the time evolution of a dust
matter fluid; namely we assume that P ¼ 0, and hence the
redshift dependence of the auxiliary matter energy density
is given by r ¼ ð1þ zÞ3. In this case, the dimensionless
cosmological equations (5.11), (5.13), and (5.14) become

dΦ
dz

¼ −
Π

ð1þ zÞh ; ð5:21Þ

dh
dz

¼ −
� ð1þ zÞ−1h−1
2fh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15g

�
× f−3Π2½2h2ð10β0 þ 9ζ0λ0e−μ0Φ þ ð5β20 − 18ζ0Þh4 þ 15� − 15ðβ0h2 þ 3Þðh2 − λ0e−μ0ΦÞ
þ 9ζ0h2Π4ð3β0h2 þ 13Þ − 18ζ20h

4Π6 − 2hΠð6ζ0Π2 − 5β0Þμ0λ0e−μ0Φg; ð5:22Þ

dΠ
dz

¼ ð5β0Π2 − 3ζ0Π4 − 15Þμ0λ0e−μ0Φ þ 6hΠ½−2Π2ð5β0 þ 3ζ0λ0e−μ0ΦÞ þ 9ζ0Π4 þ 5β0μ0λ0e−μ0Φ þ 15�
2ð1þ zÞhfh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15g ; ð5:23Þ

respectively. Additionally, the parameter of the dark energy equation of state (3.9) reads as
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wDE ¼ fΠ2½1þ h2ðβ0 − ζ0Π2Þ� þ λ0e−μ0Φg−1
�
Π2 − λ0e−μ0Φ −

β0
9
Π
��

−2ð1þ zÞh dh
dz

þ 3h2
�
Π − 4ð1þ zÞh2 dΠ

dz

�

þ ζ0
15

Π3

��
−2ð1þ zÞh dh

dz
þ 3h2

�
Π − 8ð1þ zÞh2 dΠ

dz

��
: ð5:24Þ

A crucial observation is that according to the above
expression, wDE could acquire values below −1 too, and
thus the phantom regime can be exhibited. This is an
advantage of the scenario at hand, since such a behavior is
obtained although the scalar field is canonical, that it is a
pure result of the extended, gravitational couplings.
In order to study the cosmological evolution of the dust

universe in the presence of the exponential potential we
integrate the system of Eqs. (5.21)–(5.23) numerically.
We choose the potential parameters as λ0 ¼ 0.36, and
μ0 ¼ −1.05, while for the initial conditions we set
hð0Þ ¼ 1, Φð0Þ ¼ 1, and Πð0Þ ¼ 0.1. We are interested
in studying the effect of the parameters β0 and ζ0 that

determine the novel, extended nonminimal derivative
coupling, on the cosmological evolution, restricting the
analysis at late times, i.e., at the redshift range 0 ≤ z ≤ 1.
In Fig. 1, we depict the evolution of the Hubble function,

of the scalar field, of the deceleration parameter, and of
the dark energy equation-of-state parameter, in terms of the
redshift, for various values of β0 and ζ0. As we can see, the
Hubble function, represented in the top left figure, is a
monotonically increasing function of the redshift, indicating
an expansionary cosmological evolution, while in the red-
shift range 0 ≤ z ≤ 0.1 it remains almost constant. Its
variation is not affected significantly by the change of the
numerical values of the coupling parameters. Moreover, the
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FIG. 1. Evolution of the dimensionless Hubble function (top left), of the dimensionless field (top right), of the deceleration parameter
(bottom left), and of the dark energy equation-of-state parameter (bottom right), as a function of the redshift, for cosmology with
extended nonminimal derivative coupling in the case of the exponential potential (5.18) and for dust matter. The initial conditions have
been chosen as hð0Þ ¼ 1, Φð0Þ ¼ 1, and Πð0Þ ¼ 0.1, while the parameters of the exponential potential have been fixed as μ0 ¼ −1.05
and λ0 ¼ 0.36. Concerning the coupling parameters β0 and ζ0, we choose β0 ¼ 1.90 and ζ0 ¼ 1 (solid curve), β0 ¼ 2.68 and ζ0 ¼ 2
(dotted curve), β0 ¼ 3.29 and ζ0 ¼ 3 (short dashed curve), and β0 ¼ 3.79 and ζ0 ¼ 4 (dashed curve), respectively.
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dimensionless scalar field, depicted in the top right figure, is a
monotonically decreasing function of the redshift, and
therefore an increasing function of the cosmological time.
Note that the scalar field behavior is strongly affected by
variations of the numerical values of β0 and ζ0. The
deceleration parameter, shown in the bottom left figure,
starts with high positive values; however, acceleration arises
quickly, with q crossing zero at a redshift z ≈ 0.35. The
variations of the coupling parameters have a small influence
on the deceleration parameter behavior. Finally, the param-
eter wDE of the dark energy equation of state, presented in
the bottom right figure, starts with values of the order of
wDE ≈ 0.4–0.5 at z ¼ 1, it reaches zero at z ≈ 0.5, and it tends
to−1 at z ¼ 0, indicating that the dark energy sector behaves
like a cosmological constant at present. Similar to the case of
the dimensionless Hubble parameter, the changes in the
numerical values of the parameters β0 and ζ0 have a small
influence on wDE evolution.

B. Power-law potential

Let us now investigate the cosmological evolution in the
extended nonminimal derivative coupling gravitational

theory in the presence of a simple power-law potential
of the form (5.3), namely

VðϕÞ ¼ V0ϕ
n; ð5:25Þ

where V0 and n are constants. Hence, using the dimension-
less variables introduced in (5.5), the dimensionless form of
the power-law potential writes as

vðΦÞ ¼ u0Φn; ð5:26Þ

where

u0 ¼
6n=2

3H2
0

ð8πGÞ1−n=2V0: ð5:27Þ

In the case of the dust universe, namely imposing that
P ¼ 0, the dimensionless cosmological equations (5.11),
(5.13), and (5.14) become

dΦ
dz

¼ −
Π

ð1þ zÞh ; ð5:28Þ

dh
dz

¼ −
� ð1þ zÞ−1h−1
2fh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15g

�
× f−3Π2½2h2ð10β0 þ 9ζ0u0ΦnÞ þ ð5β20 − 18ζ0Þh4 þ 15� − 15ðβ0h2 þ 3Þðh2 − u0ΦnÞ
þ 9ζ0h2Π4ð3β0h2 þ 13Þ − 18ζ20h

4Π6 þ 2hΠð6ζ0Π2 − 5β0Þnu0Φn−1g; ð5:29Þ

dΠ
dz

¼ −
ð5β0Π2 − 3ζ0Π4 − 15Þv0ðΦÞ − 6hΠf−2Π2½5β0 þ 3ζ0vðΦÞ� þ 9ζ0Π4 þ 5β0u0Φn þ 15g
2ð1þ zÞhfh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15g ; ð5:30Þ

respectively. Additionally, the dark energy equation-of-state parameter (3.9) writes as

wDE ¼ fΠ2½1þ h2ðβ0 − ζ0Π2Þ� þ u0Φng−1
�
Π2 − u0Φn −

β0
9
Π
��

−2ð1þ zÞh dh
dz

þ 3h2
�
Π − 4ð1þ zÞh2 dΠ

dz

�

þ ζ0
15

Π3

��
−2ð1þ zÞh dh

dz
þ 3h2

�
Π − 8ð1þ zÞh2 dΠ

dz

��
: ð5:31Þ

Similar to the exponential potential case, we can see that
wDE can acquire values of the phantom regime, which is an
advantage of the scenario at hand.
In order to study the cosmological evolution of the dust

universe in the presence of the power-law potential we
integrate the system of Eqs. (5.28)–(5.30) numerically. We
choose the potential parameters as n ¼ 1=4 and u0 ¼ 1.05;
for the initial conditions we set hð0Þ ¼ 1, Φð0Þ ¼ 1, and
Πð0Þ ¼ 0.1; and similar to the exponential potential of the
previous subsection we restrict our analysis at late times,
namely at the redshift range 0 ≤ z ≤ 1.
As in the previous case, in Fig. 2 we depict the evolution

of the Hubble function, of the scalar field, of the decel-
eration parameter, and of the dark energy equation-of-state

parameter, in terms of the redshift, for various values of the
coupling parameters β0 and ζ0.
The evolution of the Hubble function, presented in the

top left graph, shows that the universe is expanding, with
the Hubble function monotonically increasing with the
redshift, while at z ≈ 0.2 and below the Hubble function
becomes almost a constant. The behavior of the Hubble
function is relatively strongly affected by changes in the
values of the coupling parameters β0 and ζ0, with the effect
being stronger at higher redshifts. The dimensionless scalar
field Φ, depicted in the top right graph, is a monotonically
decreasing function of the redshift, and at high redshifts it
also presents a strong dependence on the numerical values
of β0 and ζ0. The deceleration parameter, presented in the
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bottom left graph, has positive values of the order of q ¼ 1
at z ¼ 1; however, acceleration is obtained at a redshift
z ≈ 0.5. Finally, the dark energy equation-of-state param-
eter, presented in the bottom right graph, has values of the
order of wDE ≈ 0.3–0.4 at z ¼ 1, it reaches zero at redshifts
z ≈ 0.6–0.7, and it tends to −1 at z ¼ 0, implying that the
dark energy sector behaves like a cosmological constant
at present. We mention that both q and wDE exhibit a
relatively strong dependence on the numerical values of β0
and ζ0.

C. Higgs potential

As a final case we investigate the cosmological implica-
tions of theories with extended nonminimal derivative
coupling, in the presence of theHiggs potential (5.4), namely

VðϕÞ ¼ V0 þ
1

2
M2ϕ2 þ λ

4
ϕ4; ð5:32Þ

where V0 is a constant, and where the constantM2 < 0 can
be related to the Higgs mass by the relation mH ¼ V00ðvÞ,

with v2 ¼ −M2=λ the minimum of the potential. Moreover,
based on the determination of mH from accelerator experi-
ments one can infer for the Higgs self-coupling constant a
value of the order of λ ≈ 1=8 [77]. In terms of the dimension-
less variables (5.5) the above Higgs-like potential becomes

vðΦÞ ¼ v0 −
1

2
m2Φ2 þ 1

4
ΛΦ4; ð5:33Þ

where

v0¼
8πG
3H2

0

V0; m2¼ 2

�
M
H0

�
2

; Λ¼ 12λ

8πGH2
0

: ð5:34Þ

In the following paragraphs we study separately the cases of
dust and radiation, respectively.

1. Cosmological evolution of a dust fluid

In the case of the dust matter sector, namely for P ¼ 0,
the dimensionless cosmological equations (5.11), (5.13),
and (5.14) become
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FIG. 2. Evolution of the dimensionless Hubble function (top left), of the dimensionless field (top right), of the deceleration parameter
(bottom left), and of the dark energy equation-of-state parameter (bottom right), as a function of the redshift, for cosmology with
extended nonminimal derivative coupling in the case of the power-law potential (5.25) and for dust matter. The initial conditions have
been chosen as hð0Þ ¼ 1, Φð0Þ ¼ 1, and Πð0Þ ¼ 0.1, while the parameters of the potential have been fixed as n ¼ 1=4 and u0 ¼ 1.05.
Concerning the coupling parameters β0 and ζ0, we choose β0 ¼ 1.90 and ζ0 ¼ 1 (solid curve), β0 ¼ 2.68 and ζ0 ¼ 2 (dotted curve),
β0 ¼ 3.29 and ζ0 ¼ 3 (short dashed curve), and β0 ¼ 3.79 and ζ0 ¼ 4 (dashed curve), respectively.
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dΦ
dz

¼ −
Π

ð1þ zÞh ; ð5:35Þ

dh
dz

¼ −
� ð1þ zÞ−1h−1
2fh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15g

�

×

�
−3Π2

�
2h2

�
10β0 þ 9ζ0

�
v0 −

1

2
m2Φ2 þ 1

4
ΛΦ4

��
þ ð5β20 − 18ζ0Þh4 þ 15

�

− 15ðβ0h2 þ 3Þ
�
h2 −

�
v0 −

1

2
m2Φ2 þ 1

4
ΛΦ4

��
þ 9ζ0h2Π4ð3β0h2 þ 13Þ − 18ζ20h

4Π6

þ 2hΠð6ζ0Π2 − 5β0Þð−m2Φþ ΛΦ3Þ
�
; ð5:36Þ

dΠ
dz

¼ −f2ð1þ zÞhfh2½5β0 þ ð5β20 − 18ζ0ÞΠ2 − 9β0ζ0Π4 þ 6ζ20Π6� − 5β0Π2 þ 3ζ0Π4 þ 15gg−1

×

�
ð5β0Π2 − 3ζ0Π4 − 15Þð−m2Φþ ΛΦ3Þ − 6hΠ

�
−2Π2

�
5β0 þ 3ζ0

�
v0 −

1

2
m2Φ2 þ 1

4
ΛΦ4

��

þ 9ζ0Π4 þ 5β0

�
v0 −

1

2
m2Φ2 þ 1

4
ΛΦ4

�
þ 15

��
; ð5:37Þ

respectively. Moreover, the dark energy equation-of-state parameter (3.9) reads as
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FIG. 3. Evolution of the dimensionless Hubble function (top left), of the dimensionless field (top right), of the deceleration parameter
(bottom left), and of the dark energy equation-of-state parameter (bottom right), as a function of the redshift, for cosmology with
extended nonminimal derivative coupling in the case of the Higgs-like potential (5.32) and for dust matter. The initial conditions have
been chosen as hð0Þ ¼ 1, Φð0Þ ¼ 1, and Πð0Þ ¼ 0.1, while the parameters of the exponential potential have been fixed as v0 ¼ 0.99,
m ¼ 0.1, λ ¼ 0.1. Concerning the coupling parameters β0 and ζ0, we choose: β0 ¼ 1.90 and ζ0 ¼ 1 (solid curve), β0 ¼ 2.68 and ζ0 ¼ 2
(dotted curve), β0 ¼ 3.29 and ζ0 ¼ 3 (short dashed curve), and β0 ¼ 3.79 and ζ0 ¼ 4 (dashed curve), respectively.

COSMOLOGICAL MODELS IN MODIFIED GRAVITY … PHYSICAL REVIEW D 95, 044019 (2017)

044019-11



wDE ¼ fΠ2½1þ h2ðβ0 − ζ0Π2Þ� þ vðΦÞg−1
�
Π2 − vðΦÞ − β0

9
Π
��

−2ð1þ zÞh dh
dz

þ 3h2
�
Π − 4ð1þ zÞh2 dΠ

dz

�

þ ζ0
15

Π3

��
−2ð1þ zÞh dh

dz
þ 3h2

�
Π − 8ð1þ zÞh2 dΠ

dz

��
: ð5:38Þ

Similar to the previous cases, we can see that wDE can
acquire values of the phantom regime, which is an
advantage of the scenario at hand.
In order to study the cosmological evolution of the dust

universe in the presence of the Higgs-like potential we
integrate the system of Eqs. (5.35)–(5.37) numerically. We
choose the potential parameters as v0 ¼ 0.99,m ¼ 0.1, and
λ ¼ 0.1, and for the initial conditions we set hð0Þ ¼ 1,
Φð0Þ ¼ 1, and Πð0Þ ¼ 0.1; similar to the previous sub-
sections we restrict our analysis at late times, namely at the
redshift range 0 ≤ z ≤ 1.
In Fig. 3 we depict the evolution of the Hubble function,

of the scalar field, of the deceleration parameter, and of the
dark energy equation-of-state parameter, in terms of the

redshift, for various values of the coupling parameters β0
and ζ0.
The Hubble function, presented in the top left graph,

is a monotonically increasing function of the redshift,
and it becomes almost a constant in the redshift range
0 ≤ z ≤ 0.1. The dimensionless scalar field Φ, presented
in the top right graph, is a monotonically decreasing
function of z. For the considered range of parameters,
the deceleration parameter q, presented in the bottom left
graph, acquires a value q ≈ 0.6 at z ¼ 1, and it decreases
monotonically with respect to the redshift, crossing the
q ¼ 0 line at redshifts of the order of z ≈ 0.5–0.6, while
tending to the value −1 at present. Finally, the dark energy
equation-of-state parameter, depicted in the bottom right
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FIG. 4. Evolution of the dimensionless Hubble function (top left), of the dimensionless field (top right), of the deceleration parameter
(bottom left), and of the total equation-of-state parameter (bottom right), as a function of the redshift, for cosmology with extended
nonminimal derivative coupling in the case of the Higgs-like potential (5.32) and for radiation fluid. The initial conditions have been
chosen as hð0Þ ¼ 1, Φð0Þ ¼ 1, and Πð0Þ ¼ 0.1, while the parameters of the exponential potential have been fixed as v0 ¼ 0.99,
m ¼ 0.1, and λ ¼ 0.1. Concerning the coupling parameters β0 and ζ0, we choose β0 ¼ 1.897 and ζ0 ¼ 1 (solid curve), β0 ¼ 2.683 and
ζ0 ¼ 2 (dotted curve), β0 ¼ 3.286 and ζ0 ¼ 3 (short dashed curve), and β0 ¼ 3.794 and ζ0 ¼ 4 (dashed curve), respectively.
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graph, has a value wDE ≈ 0.2 at z ¼ 1, and it tends to −1 at
z ¼ 0, implying that the dark energy sector behaves like a
cosmological constant at present.

2. Cosmological evolution of a radiation fluid

For completeness, in this subsection we investigate the
case where the matter fluid corresponds to radiation, a case
which is useful for early and intermediate stages of the
universe evolution. In particular, we consider an equation of
state of the form pm ¼ ρm=3, and thus the dimensionless
matter density and pressure scale with respect to the redshift
according to rðzÞ ¼ ð1þ zÞ4 and PðzÞ ¼ ð1þ zÞ4=3,
respectively. Moreover, we restrict our analysis at intermedi-
ate times; that is, we focus on the redshift range 10 ≤ z ≤ 25.
In Fig. 4, we depict the evolution of the Hubble function,
of the scalar field, of the deceleration parameter, and of the
total equation-of-state parameter of the Universe, in terms
of the redshift, for various values of the coupling parameters
β0 and ζ0.
As we can see, the Hubble function, presented in the top

left graph, is a monotonically increasing function of the

redshift. In the considered redshift range the scalar field,
shown in the top right graph, obtains constant values. The
deceleration parameter, plotted in the bottom left graph, is
positive, with a slight increase from q ¼ 1 at z ¼ 25 to
q ¼ 1.05 at z ¼ 10, indicating a decelerating behavior, as
expected. Finally, the total equation of the state of the
Universe, depicted in the bottom right graph, is positive,
with values of the order of w ≈ 0.33, indicating a radiation-
dominated expansion. We mention that all quantities, apart
from the scalar field, do not have a strong dependence
on the change of the numerical values of the coupling
parameters β0 and ζ0, and hence the corresponding indi-
vidual theories would not be easily distinguishable.

3. The unified picture of the evolution of the Universe
in theories with extended nonminimal derivative
coupling, in the presence of the Higgs potential

Finally, to conclude the investigation of the cosmological
implications of theories with extended nonminimal deriva-
tive coupling, in the presence of the Higgs potential, we
present a unified picture of the evolution of the Universe for
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the redshift range z ∈ ð0; 25Þ. The variations of the Hubble
function, of the dimensionless scalar field, of the deceler-
ation parameter, and of the parameter of the dark energy
equation of state are plotted in Fig. 5, respectively.
To obtain a unified picture of the evolution of theUniverse

in the presence of a gravitational theory with extended
nonminimal derivative coupling, and in the presence of a
Higgs-type potential, we take for the redshift z the range from
0 to 25. We further assume that in the range z ∈ ½5; 25� the
matter content of the Universe can be described (at least
approximately) by a radiation-type equation of statep ≈ ρ=3.
At the redshift z ≈ 5 the Universe enters in the matter
dominated era, with p ≈ 0. In the present simplified model
the transition from the radiation dominated era to the matter
dominated stage is smooth, with all physical, geometrical,
and thermodynamical quantities continued at the z ¼ 5
transition redshift. The Hubble function and the scalar field
Φ, represented in the upper panels of Fig. 5, are monoton-
ically increasing and decreasing functions of the redshift
for the entire period. The evolution of the Hubble function is
not significantly influenced by the variation of the model
parameters. The scalar fieldΦ is approximately a constant in
the redshift range z ∈ ð3; 25�, and its numerical values are
strongly dependent on the model parameters. For redshifts
z < 3 the scalar field starts to increase, reaching itsmaximum
value at z ¼ 0. In the range z ∈ ½0; 2Þ the variation of the
field is basically independent on the model parameters. The
deceleration parameter, depicted in the bottom left panel of
Fig. 5, is approximately constant and positive in the redshift
range z ∈ ð5; 25�, with numerical values of the order of
q ≈ 1. After the beginning of the matter dominate phase at
z ¼ 5, the deceleration parameter increases, indicating a
further deceleration of the Universe. But at z ≈ 2, the
Universe enters in an accelerating phase, and at z ¼ 0 the
Universe experiences an exponential, de Sitter–type expan-
sion, with q ¼ −1. The parameter wDE of the dark energy
equation of state (bottom right panel of Fig. 5) shows a
similar dynamics. wDE is approximately constant in the
reshift range z ∈ ð3; 25�, with wDE ≈ 0.30. At z ≈ 3, wDE
begins to decrease rapidly, and reaches the value wDE ¼ −1
at z ¼ 0, indicating that at this redshift the Universe is
dominated by the effective dark energy generated by the
extendednonminimal derivative coupling in thepresence of a
Higgs-type scalar field potential. The cosmological evolu-
tions of both q and wDE are basically independent on the
variation of the numerical values of the model parameters.

VI. CONCLUSIONS

In this work we considered gravitational modifications
that go beyond Horndeski; namely we presented theories
with extended nonminimal derivative coupling, in which
the coefficient functions depend not only on the scalar field
but on its kinetic energy too. Such theories prove to be
ghost-free in a cosmological background, and hence it is
interesting to examine their cosmological implications. We
first analyzed the cosmology of these novel gravitational

modifications at early times, neglecting the matter sector,
and we showed that a de Sitter inflation can be realized
even in the absence of a potential term or of an explicit
cosmological constant, and hence it is a pure result of the
extended gravitational couplings.
Additionally, we studied the behavior of these cosmo-

logical scenarios at late times, where we obtained an
effective dark energy sector arisen from the scalar field
and its extended couplings to gravity. We extracted various
cosmological observables such as the Hubble function, the
deceleration parameter, and the dark energy equation-of-
state parameter, and we numerically investigated their
evolution at small redshifts, for three choices of potentials,
namely for the exponential, the power-law, and the Higgs
potentials. As we showed, in all cases the Universe passes
from deceleration to acceleration in the recent cosmological
past, while the effective dark energy equation-of-state
parameter tends to the cosmological-constant value at
present, in agreement with observations. Moreover, we
showed that the phantom regime can be accessible too,
which is an advantage of the scenarios since it is obtained
despite the scalar field being canonical; i.e., it results purely
from the novel, extended gravitational couplings.
The above features indicate that theories with an extended

nonminimal derivative could be a good candidate for the
description of early and late time universes. Hence one could
proceed tomore detailed analyses. In particular, one could use
observational data from SNIa, BAO, and CMB in order to
constrain the coefficient functions, aswell as thenewcoupling
parameters. Additionally, one could perform a complete
dynamical analysis, in order to bypass the nonlinearities of
the equations, and extract the global behavior at asymptoti-
cally late times. Moreover, one should analyze the perturba-
tions in a thorough way, in order to extract the values for
inflation-related observables such as the spectral index and the
tensor-to-scalar ratio. Furthermore, the issue of the influence
of the scalar degree of freedom in local gravity is an open
problem; however, it lies beyond the scope of the present
work. Itwould be interesting to examinewhether there are any
issues related to the fifth force, as it has been done previously
on the original Horndeski theory [78,79]. Finally, it could be
interesting to apply extended nonminimal derivative cou-
plings to biscalar theories, such as those proposed recently in
[80–83]. These investigations lie beyond the scope of the
present work and are left for future projects.
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