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Ultralight degrees of freedom coupled to matter lead to resonances, which can be excited when the
Compton wavelength of the field equals a dynamical scale in the problem. For binaries composed of a star
orbiting a supermassive black hole, these resonances lead to a smoking-gun effect: a periastron distance
which stalls, even in the presence of gravitational-wave dissipation. This effect, also called a floating orbit,
occurs for generic equatorial but eccentric orbits, and we argue that finite-size effects are not enough to
suppress it.
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I. INTRODUCTION

Massive scalars or pseudoscalars are a natural extension
of General Relativity and have been used in the Peccei-
Quinn theory or improvements thereof to solve the strong
CP problem, in scalar-tensor modifications of gravity, as
dark matter models, and in most cosmological models.
They arise as moduli and coupling constants in string
theory, and we now know that at least one scalar exists in
nature, namely, the Higgs boson. For reviews, see, for
example, Refs. [1,2].
Consider a massive scalar field φ of mass ms ¼ ℏμs,

coupled nonminimally to matter and described at linear
order by the Klein-Gordon equation sourced by a scalar
charge,

½□ − μ2s �φ ¼ αT : ð1Þ

The source T is the trace of the stress-energy tensor, and α
describes a scalar charge for matter. This equation describes
a wide range of situations [3–6].
Take a dynamical situation for which the source T is a

periodic function of time and describes, for example, a two-
body problem of characteristic frequency Ωp. It is then
clear that, for scalars with an “eigenmode” at ω ¼ mΩp, a
resonance will be excited by the periodic motion, withm an
integer. In Refs. [3,4], this was shown to be correct for a
system composed of a supermassive, spinning black hole
(BH) and a pointlike star, driven by gravitational- and
scalar-wave emission. The resonance occurs at ω ¼ mΩp ∼
μs and leads to the following:

(i) There is a surprising effect for BHs spinning above a
critical, μs-dependent threshold. Because of super-
radiance [7], matter can hover into “floating orbits”
for which the net gravitational energy loss at infinity
is entirely provided by the BH’s rotational energy.
Orbiting bodies remain floating until they extract
sufficient angular momentum from the BH, or until
perturbations or other effects disrupt the orbit.

(ii) There is a speedup in the inspiralling of the star,
when the resonance is nonsuperradiant. In other
words, for slowly spinning BHs, the orbiting star
“sinks” in, once it comes across the resonance.

Floating is, in this context, a nonperturbative effect due
to a resonance between the BH and the scalar field (more
precisely, induced by the massive term). Any resonant,
nonperturbative phenomenon is extremely (“nonperturba-
tively”) sensitive to perturbations of the conditions that give
rise to resonance. Several effects could suppress the
resonances, most notably eccentric orbits, finite-size
effects, and conservative self-force effects. The purpose
of this work is to compute accurately the resonance details
for eccentric orbits and to estimate whether finite-size
effects can destroy the resonances. We show that neither
eccentricity nor finite-size effects seem able to affect the
resonance significantly.

II. SETUP

We consider a stellar-mass compact object inspiralling
into a supermassive BH. For such extreme mass ratio
inspirals (EMRIs), generic scalar-tensor theories reduce to
massive or massless Brans-Dicke theory [4], and the field
equations for the scalar field at the first-order perturbation
are given by Eq. (1). Our main results are, to a large extent,
independent of the source term on the right-hand side, but
for concreteness, we focus on source terms of the form
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T ¼
Z

dτffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p mpδ
ð4Þðx − XðτÞÞ; ð2Þ

corresponding to the trace of the stress-energy tensor of a
point particle with mass mp, where gð0Þ is the background
(Kerr) metric and XðτÞ is the orbit of the particle.

A. Eccentric orbits in the equatorial plane
of a black hole

EMRIs in the eLISA band are expected to have orbital
eccentricities, of the order of ∼0.7 [8]. The orbital
inclination of the particle would increase (decrease) for
prograde (retrograde) orbits due to the emission of gravi-
tational waves, and the rate of change of the orbital
inclination is very small [9–16]. Thus, it is expected that
a typical EMRI has both an orbital eccentricity and an
orbital inclination. In this section, however, and for
simplicity, we focus on eccentric orbits on the equatorial
plane of the Kerr BH and investigate if the orbital
eccentricity affects resonance. We discuss the effect of
the orbital inclination on the resonance in Sec. IV.
When the particle moves on the equatorial plane of the

Kerr BH, the equations of motion are given by

r4
�
dr
dτ

�
2

¼ RðrÞ; ð3Þ

r2
�
dϕ
dτ

�
¼ a

Δ
PrðrÞ − ðaE − LÞ≡ ΦðrÞ; ð4Þ

r2
�
dt
dτ

�
¼ r2 þ a2

Δ
PrðrÞ − aðaE − LÞ≡ TðrÞ; ð5Þ

where E andL are the energy and the angular momentum of
the particle, RðrÞ¼½PrðrÞ�2−Δ½r2þðaE−LÞ2�, PrðrÞ ¼
Eðr2 þ a2Þ − aL, and Δ ¼ r2 − 2Mrþ a2.
Geodesics in the equatorial plane of the BH could be

specified by the constants of motion ðE;LÞ. For the case of
a bound orbit in the equatorial plane, one can use another
set of orbital parameters ðp; eÞ, where p is a semilatus
rectum and e is an eccentricity. Using two turning points of
the radial motion, the apastron ra, and the periastron rp,
ðp; eÞ can be defined through

rp ¼ p
1þ e

; ra ¼
p

1 − e
: ð6Þ

Solving RðrpÞ ¼ 0 and RðraÞ ¼ 0 in Eq. (3), one can
compute the set of the constants of motion ðE;LÞ in terms
of a given set of orbital parameters ðp; eÞ. It is worth noting
that for a bound orbit in the equatorial plane one can
compute two fundamental frequencies, Ωr and Ωϕ, as [17]

Ωr ¼ 2π

�
2

Z
ra

rp

dr
dt
dr

�
−1
; Ωϕ ¼ Ωr

π

Z
ra

rp

dr
dϕ
dr

: ð7Þ

We also note that the fundamental frequencies can be
expressed in elliptic integrals [18,19].

B. Energy fluxes

Expanding the scalar field in scalar spheroidal harmonics
and Fourier transforming,

φðt; rÞ ¼
X
l;m

Z
dωeimϕ−iωt Xlmωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ a2
p SlmðθÞ; ð8Þ

one can rewrite the Klein Gordon equation in the form

�
d2

dr2�
þ Vs

�
XlmωðrÞ ¼

Δ
ðr2 þ a2Þ3=2 Tlmω; ð9Þ

where [20]

Vs ¼
�
ω −

ma
r2 þ a2

�
2

−
Δ

ðr2 þ a2Þ4 ½λsðr
2 þ a2Þ2

þ 2Mr3 þ a2ðr2 − 4Mrþ a2Þ� − μ2sΔ
r2 þ a2

;

λs is the eigenvalue of the scalar spheroidal harmonics
SlmðθÞ [4], and

Tlmω ¼ −αmpS�lm

Z
∞

−∞
dt

eiωt−imϕðtÞ

ðdt=dτÞ δðr − rðtÞÞ; ð10Þ

for eccentric and equatorial orbits, where S�lm ¼ S�lmðπ=2Þ.
To solve the wave equation, we choose two independent

solutions Xrþ
lmω and X∞

lmω of the homogeneous version of
Eq. (9), satisfying the boundary conditions1 [3,4]

X∞;rþ
lmω ∼ eik∞;rþ r� as r → ∞; rþ; ð11Þ

where kþ ¼ ω −ma=ð2MrþÞ, k∞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2s

p
and

dr�=dr ¼ ðr2 þ a2Þ=Δ. Here, we take the Kerr geometry
written in Boyer-Lindquist coordinates, and rþ is the
location of the event horizon in those coordinates.
Equation (9) can be solved by the Green’s function

method

1The asymptotic behaviors of the radial function Xlmω for
r → ∞ and r → rþ can be found by analyzing that of the
potential function, Vs → k2∞ (Vs → k2þ) for r → ∞ (r → rþ).
See, for example, Sec. V of Ref. [21].
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Xlmω ¼ X∞
lmω

W

Z
r�

−∞
dr0�Tlmωðr0Þ

Δ
ðr02 þ a2Þ3=2 X

rþ
lmωðr0Þ

þ Xrþ
lmω

W

Z
∞

r�
dr0�Tlmωðr0Þ

Δ
ðr02 þ a2Þ3=2 X

∞
lmωðr0Þ;

where W is the Wronskian of the two homogeneous
solutions, W ¼ Xrþ

lmωdX
∞
lmω=dr� − X∞

lmωdX
rþ
lmω=dr�.

The inhomogeneous solution has the asymptotic form at
infinity as

Xlmωðr → ∞Þ ¼ eik∞r�

W

Z
∞

rþ
dr0Tlmωðr0Þ

Xrþ
lmωðr0Þ

ðr02 þ a2Þ1=2 ;

≡ ~Z∞
lmωe

ik∞r� : ð12Þ

For eccentric and equatorial orbits, the source function
Tlmω has a discrete frequency spectrum, and hence ~Z∞

lmω is
given by [17]

~Z∞
lmω ¼

X∞
k¼−∞

Z∞
lmkδðω − ωmkÞ; ð13Þ

where ωmk ¼ mΩϕ þ kΩr and

Z∞
lmk ¼ −

αΩrS�lm
2πW

Z
2π=Ωr

0

dteiωmkt
e−imϕðtÞ

ðdt=dτÞ
Xrþ
lmωðrðtÞÞ

ðrðtÞ2 þ a2Þ1=2 :

Similarly, at the horizon,

Xlmωðr → rþÞ ¼
e−ikþr�

W

Z
∞

rþ
dr0Tlmωðr0Þ

X∞
lmωðr0Þ

ðr02 þ a2Þ1=2 ;

≡ ~Zrþ
lmωe

−ikþr� ; ð14Þ

where

~Zrþ
lmω ¼

X∞
k¼−∞

Zrþ
lmkδðω − ωmkÞ; ð15Þ

and

Zrþ
lmk ¼ −

αΩrS�lm
2πW

Z
2π=Ωr

0

dteiωmkt
e−imϕðtÞ

ðdt=dτÞ
X∞
lmωðrðtÞÞ

ðrðtÞ2 þ a2Þ1=2 :

The scalar energy fluxes through a sphere at infinity and
at the horizon are given by

�
dE
dt

�
∞

t
¼

X
l;m;k

ωmk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
mk − μ2s

q
jZ∞

lmkj2; ð16Þ

�
dE
dt

�
rþ

t
¼

X
l;m;k

ωmk

�
ωmk −

ma
2Mrþ

�
jZrþ

lmkj2: ð17Þ

In scalar-tensor theories, the equations for gravitational
perturbations about the Kerr background are reduced to a
differential equation for the Weyl scalar Ψ4 [4], which
satisfies the Teukolsky equation [21]. One can separate the
differential equation into radial and angular parts using the
Fourier-harmonic decomposition,

Ψ4 ¼
1

ðr − ia cos θÞ4
X
l;m

Z
dωeimϕ−iωtRlmωðrÞSlmωðθÞ;

where SlmωðθÞ is the spin-2 spheroidal harmonics [4]. The
separated radial equation takes the form

�
Δ2

d
dr

�
1

Δ
d
dr

�
þ Vg

�
RlmωðrÞ ¼ T lmω; ð18Þ

where

Vg ¼
K2 þ 4iðr −MÞK

Δ
− 8iωr − λg;

λg is the eigenvalue of the spin-2 spheroidal harmonics
SlmωðθÞ, and T lmω is the source term derived from the
energy-momentum tensor of the point particle.
From the asymptotic behaviors of the potential function

Vg for r → ∞ and r → rþ, the asymptotic forms of the
solutions of the radial equation are derived as [21]

Rlmωðr → ∞Þ≡ ~Z∞
lmωΔ2e−ikþr� ;

Rlmωðr → rþÞ≡ ~Zrþ
lmωr

3eiωr� : ð19Þ

Since the source term T lmω becomes discrete in ω for
eccentric and equatorial orbits, ~Z∞

lmω and ~Zrþ
lmω are given by

~Z∞
lmω ¼

X∞
k¼−∞

Z∞
lmkδðω − ωmkÞ;

~Zrþ
lmω ¼

X∞
k¼−∞

Zrþ
lmkδðω − ωmkÞ: ð20Þ

The gravitational energy fluxes through a sphere at
infinity and at the horizon are given by

�
dE
dt

�
∞

t
¼

X
l;m;k

1

4πω2
mk

jZ∞
lmkj2; ð21Þ

�
dE
dt

�
rþ

t
¼

X
l;m;k

αlmðωmkÞ
4πω2

mk

jZrþ
lmkj2; ð22Þ

where
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αlmðωÞ ¼
256ð2MrþÞ5kþðk2þ þ 4~ϵ2Þðk2þ þ 16~ϵ2Þω3

jCSj2
;

with ~ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
=ð4MrþÞ and CS is the Starobinsky

constant given by [22]

jCSj2¼ ½ðλgþ2Þ2þ4aωm−4a2ω2�½λ2gþ36aωm−36a2ω2�
þð2λgþ3Þð96a2ω2−48aωmÞþ144ω2ðM2−a2Þ:

C. Orbital evolution

As explained in Sec. II A, for equatorial orbits, the
constants of motion of the particle, ðE;LÞ, depend on a
semilatus rectum p and an orbital eccentricity e, i.e., E ¼
Eðp; eÞ and L ¼ Lðp; eÞ. The orbital evolution of the
particle dp=dt and de=dt can be estimated by the following
relation:

dE
dt

¼ ∂E
∂p

dp
dt

þ ∂E
∂e

de
dt

;
dL
dt

¼ ∂L
∂p

dp
dt

þ ∂L
∂e

de
dt

: ð23Þ

Using balance arguments for the energy and the angular
momentum, one can compute the rate of change of the
constants of motion dE=dt and dL=dt due to the gravita-
tional and the scalar fluxes, which are computed in Sec. II B.
Inverting the above equations, one can find dp=dt
and de=dt. For circular orbits, dp=dt ¼ ð∂E=∂pÞ−1dE=dt
since de=dt ¼ 0. For sufficiently large p, the gravitational
fluxes reduce the orbital radius and the orbital eccentricity.
However, the orbital eccentricity can increase (de=dt > 0)
near the last stable orbit (LSO), which is the boundary
between stable and unstable orbits [15,17,23–25]. Thus,
while critical orbits such that de=dt ¼ 0 near the LSO are
possible, the condition dp=dt ¼ 0 is harder to meet.
Floating orbits, with dp=dt ¼ de=dt ¼ 0, might be possible
if dE=dt ¼ 0 and dL=dt ¼ 0 when the gravitational fluxes
are entirely compensated by the scalar fluxes due to super-
radiance for a wide range of scalar-field masses [3,4].

III. RESULTS

We have solved the above equations with an independent
code and recovered to within numerical accuracy the results
reported in Refs. [3] and [4] for the case of circular orbits.
Our numerical code was developed in Ref. [15] to compute
the total gravitational energy flux for eccentric orbits; we
truncate the mode sum at l ¼ 7 to compute the flux. When
computing the scalar energy flux at the horizon for
l ¼ m ¼ 1, we sum over the k-modes, in order to achieve
convergence at a few decimal places.
In Table I, we list orbital radius at resonance in a circular

orbit and the corresponding height of scalar energy flux at
the horizon for l ¼ m ¼ 1 and the n ¼ 0mode, and we find
results from the independent code are consistent with that
in Table I of Ref. [3] and Table II of Ref. [4]. We note that

these resonances occur when frequencies of waves are
close to the mass μs as [26]

ωres ¼ μs

�
1 −

�
μsM

lþ 1þ n

�
2
�
1=2

; n ¼ 0; 1;…: ð24Þ

We also note that the height of the scalar flux at resonance
is almost same at least for the first few overtone modes [3].

A. Eccentric orbits

The possibility of the existence of floating orbits, i.e.,
orbits for which the evolution is dominated by super-
radiance, was demonstrated for circular orbits [3]. It was
also argued, but not calculated, that a small eccentricity
would not affect the results.
In this section, we consider the case of eccentric orbits on

the equatorial plane of the BH to examine if a floating is
possible for massive scalar field. As a code check to
compute the scalar energy flux for eccentric orbits, we

TABLE I. Location of the resonance and corresponding height
of the scalar flux hdE=dtirþlmk normalized by α2M2μ2 for
q ¼ 0.99, l ¼ m ¼ 1, and n ¼ 0. The point particle is orbiting
on a circular geodesic. Note that the location (height) of the
resonance agrees with that in Table I of Ref. [3] and Table II of
Ref. [4] around seven (four) decimal places.

μsM p=M hdE=dtirþlmk

0.35 1.528190558897 −0.05224
0.3 1.785039383463 −0.07522
0.25 2.100162438607 −0.09686
0.2 2.535003020406 −0.11998
0.15 3.189395564600 −0.14673
0.1 4.334005383932 −0.18276
0.01 21.40209871393 −0.48819

10-18
10-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102

 5  10  15  20  25  30  35  40

<
dE

/d
t>

p/M

μsM=0.01,α=0.01,e=0.1 <dE/dt>GW

<dE/dt>s(l=m=1,k=1)
<dE/dt>s(l=m=1,k=0)

<dE/dt>s(l=m=1,k=-1)

FIG. 1. Comparison of the total gravitational energy flux with
the modal scalar energy flux at the horizon for l ¼ m ¼ 1, n ¼ 0,
and k ¼ −1, 0 and 1 when q ¼ 0.99, μsM ¼ 0.01, α ¼ 0.01, and
e ¼ 0.1 as a function of p=M. For these parameters, floating
orbits are possible for k ¼ 0 and k ¼ 1 modes. The location and
height of the peak and αcrit for l ¼ m ¼ 1 and n ¼ 0 when
q ¼ 0.99, μsM ¼ 0.01, and e ¼ 0.1 are shown in Table II.
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have compared the energy flux with the one at the leading
post-Newtonian order in Ref. [27] and found our results are
consistent for the case of eccentric orbits and the massless
scalar field.
In Fig. 1, we compare the total gravitational energy flux

with the modal scalar energy flux at the horizon for
l ¼ m ¼ 1, n ¼ 0, and k ¼ −1, 0 and 1 when q ¼ 0.99,
μsM ¼ 0.01, α ¼ 0.01, and e ¼ 0.1. In the figure, we find

three peaks in the scalar energy flux at the horizon
corresponding to k ¼ −1, 0 and 1 modes from left to right
and find that floating would be possible for k ¼ 0 and 1
modes. In Table II, we also show the location, the height of
the peak and the critical value of α for a floating orbit to be
possible. We fix l ¼ m ¼ 1, n ¼ 0, q ¼ 0.99 but vary μsM,
k-mode and the orbital eccentricity. We note that αcrit in the
table is smaller than current bounds on α for most of the

TABLE II. Location of the resonance and corresponding height of the scalar flux hdE=dtirþlmk normalized by α2M2μ2 for q ¼ 0.99,
l ¼ m ¼ 1, n ¼ 0, and μsM ¼ 0.01 (left) and μsM ¼ 0.1 (right), for different eccentricities e ¼ 0.1, 0.3, 0.5, 0.7. Floating is possible
when α ≥ αcrit. Note that, for scalar-tensor theories, αcrit is well below current observational constraints for μs considered in the
table [28], for eccentricities e ¼ 0.1, 0.3, for example.

μsM ¼ 0.01, e ¼ 0.1 μsM ¼ 0.1, e ¼ 0.1

k p=M hdE=dtirþlmk αcrit p=M hdE=dtirþlmk αcrit

−1 8.242523541258 −1.76 × 10−3 2.7 × 10−1 2.839923283436 −2.88 × 10−3 2.1
0 21.20401320483 −4.83 × 10−1 1.7 × 10−3 4.305965992343 −1.79 × 10−1 1.2 × 10−1

1 32.91726003574 −3.23 × 10−3 6.9 × 10−3 6.276878840413 −1.47 × 10−3 5.5 × 10−1

2 43.13183105281 −2.90 × 10−5 3.7 × 10−2 8.266969425163 −9.35 × 10−6 3.6

μsM ¼ 0.01, e ¼ 0.3 μsM ¼ 0.1, e ¼ 0.3

k p=M hdE=dtirþlmk αcrit p=M hdE=dtirþlmk αcrit

−1 7.905366743932 −1.74 × 10−2 1.0 × 10−1 2.803173882219 −2.73 × 10−2 7.7 × 10−1

0 19.61872491985 −4.37 × 10−1 2.2 × 10−3 4.082557893784 −1.48 × 10−1 1.5 × 10−1

1 30.32848410888 −2.62 × 10−2 3.1 × 10−3 5.840894042062 −1.29 × 10−2 2.3 × 10−1

2 39.69597854286 −2.05 × 10−3 5.7 × 10−3 7.645226999507 −7.62 × 10−4 5.2 × 10−1

μsM ¼ 0.01, e ¼ 0.5 μsM ¼ 0.1, e ¼ 0.5

k p=M hdE=dtirþlmk αcrit p=M hdE=dtirþlmk αcrit

−2 3.275859034959 −2.35 × 10−3 2.1 2.279085908451 −2.91 × 10−2 1.2
−1 7.186228834473 −5.92 × 10−2 7.2 × 10−2 2.718468024771 −7.20 × 10−2 5.5 × 10−1

0 16.44444756364 −3.43 × 10−1 4.0 × 10−3 3.642199037923 −7.10 × 10−2 3.1 × 10−1

1 25.14958830109 −5.76 × 10−2 3.4 × 10−3 4.976678396309 −3.15 × 10−2 2.3 × 10−1

2 32.82315053092 −1.19 × 10−2 3.9 × 10−3 6.406282378036 −5.84 × 10−3 3.0 × 10−1

3 39.78070525112 −2.87 × 10−3 5.0 × 10−3 7.796703239499 −1.07 × 10−3 4.4 × 10−1

4 46.22083593805 −7.66 × 10−4 6.6 × 10−3 9.122695729626 −2.13 × 10−4 6.8 × 10−1

μsM ¼ 0.01, e ¼ 0.7 μsM ¼ 0.1, e ¼ 0.7

k p=M hdE=dtirþlmk αcrit p=M hdE=dtirþlmk αcrit

−3 2.619283616278 −8.22 × 10−3 1.8 2.222813399026 −3.19 × 10−2 1.3
−2 3.304721553556 −2.39 × 10−2 6.6 × 10−1 2.334121278153 −3.19 × 10−2 1.2
−1 5.959339601600 −1.65 × 10−1 6.5 × 10−2 2.562147431415 −1.62 × 10−2 1.4
0 11.67081477895 −1.88 × 10−1 1.2 × 10−2 3.011985219663 −3.10 × 10−3 2.2
1 17.37784942139 −7.11 × 10−2 7.1 × 10−3 3.722402383987 −2.04 × 10−2 5.5 × 10−1

2 22.51088131787 −2.74 × 10−2 6.0 × 10−3 4.575213626904 −1.69 × 10−2 3.8 × 10−1

3 27.19777750961 −1.18 × 10−2 5.7 × 10−3 5.456882888116 −7.46 × 10−3 3.7 × 10−1

4 31.55015003696 −5.50 × 10−3 5.8 × 10−3 6.322137823944 −3.02 × 10−3 4.1 × 10−1

5 35.64267125415 −2.74 × 10−3 6.1 × 10−3 7.158618790970 −1.25 × 10−3 4.8 × 10−1

6 39.52621783532 −1.43 × 10−3 6.5 × 10−3 7.964837713480 −5.37 × 10−4 5.6 × 10−1

7 43.23691276357 −7.69 × 10−4 7.1 × 10−3 8.742549001569 −2.41 × 10−4 6.7 × 10−1

8 46.80140470393 −4.26 × 10−4 7.8 × 10−3 9.494295209388 −1.12 × 10−4 8.0 × 10−1

9 50.23999749459 −2.41 × 10−4 8.7 × 10−3 10.22262002496 −5.35 × 10−5 9.6 × 10−1
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cases, and hence the orbital eccentricity would not reduce
the resonance effect significantly.

B. Finite-size effects on resonance

In this section, we would like to estimate finite-size
effects on these superradiant resonances. A proper treat-
ment is too complex and outside the scope of our work.
Instead, we will estimate finite-size effects by modeling an
extended body as made up of a collection of pointlike
noninteracting particles. Such simplification is not new
[29–32]; however, one needs to exercise extra care in this
context. If the swarm of particles is to describe a compact
object, then one needs to impose that the radial and angular
extent is kept finite at all times. There are at least two
different ways to realize this idea and restriction.
In Sec. III B 1, we deal with particles on a circular orbit.

These particles mimic a body which is extended in the
angular direction but pointlike in the radial direction. In
Sec. III B 2, we drop the assumption that the particles
composing the body are on a circular orbit and consider
instead particles in eccentric orbits around the equatorial
plane of a Kerr BH. Generically, the proper distance
between these two particles varies substantially, and the
swarm of particles would not mimic a compact, rigid body.
However, for particles with the same fundamental frequen-
cies and (slightly) different orbital parameters, i.e., in
“isofrequency pairing” [33], then the proper distance
between the particles is finite and varies only slightly
and in a controlled way as time goes by. These are therefore
a good model also for an extended body.

1. Particles in a circular orbit

Let us first start with a body which is pointlike in the
radial direction and composed of 2N þ 1 identical pointlike
particles of mass μ=ð2N þ 1Þ in a circular orbit around a
Kerr BH of mass M. We set the orbit of the jth particle as

ϕjðtÞ ¼ Ωϕtþ
j

2N þ 1
δ; j ¼ 0;�1;�2;…;�N; ð25Þ

where Ωϕ¼
ffiffiffiffiffi
M

p
=ða ffiffiffiffiffi

M
p þr3=20 Þ. We choose δ ¼ arcsin

ðμ=r0Þ, in order to model the typical size of a stellar-mass
compact star in a circular orbit around a Kerr BH. Note in

the limit N → ∞ the group of the particles represents a
circular arc with the angular size δ. (For the case δ ¼ 2π,
i.e., a ring, see Sec. 6.1 of Part II in Ref. [29].)
The source term of the field equations takes the form

Tlmω ¼ Tð0Þ
lmωfðm;NÞ; ð26Þ

where

fðm;NÞ ¼ 1

2N þ 1

Xj¼N

j¼−N
eim

j
2Nþ1

δ;

¼ 1

2N þ 1

�
1þ 2

Xj¼N

j¼1

cos

�
j

2N þ 1
mδ

��
;

≤ 1; ð27Þ

and Tð0Þ
lmω is the source term of a single particle.

The condition fðm;NÞ ≤ 1 means that in general there
are phase cancellations when we take into account the
finite-size effects by using a group of particles in a circular
arc. In other words, for a given total mass of the object,
point particles radiate the most [29–32]. Note, however,
that the cancellation is in general very small since
δ ¼ arcsin½ðμ=MÞðM=r0Þ� ≪ 1. Figure 2 shows numerical
values for 1 − fðm;NÞ for δ ¼ 10−5, 10−7. We find that
1 − fðm;NÞ < 10−10 for m ≤ 3, N ≤ 1010 and δ ≤ 10−5.
Moreover, the cancellation affects both the scalar and
gravitational channels equally. Thus, the suppression is
under control, and this type of finite-size effects cannot
suppress floating or the resonances.

2. Particles in isofrequency orbits

Let us now consider an object which is of finite extent in
both the radial and azimuthal directions. As a simple toy
model, take two particles which are in isofrequency pairing
[33] for eccentric orbits around the equatorial plane of a
Kerr BH.
In an isofrequency pairing situation, two different orbits

can have the same fundamental frequencies near the last
stable orbit, satisfying the conditions,

rð1ÞðtÞ ≠ rð2ÞðtÞ; ϕð1ÞðtÞ ≠ ϕð2ÞðtÞ;
Ωð1Þ

r ¼ Ωð2Þ
r ; Ωð1Þ

ϕ ¼ Ωð2Þ
ϕ ; ð28Þ

where ΩðjÞ
r (ΩðjÞ

ϕ ) is the radial (azimuthal) frequency of the
jth particle and j ¼ 1, 2.
Figure 3 shows contours for Ωr in the ðΩϕ; eÞ parameter

space when q ¼ 0.9, where e is the eccentricity of the orbit
defined through r ¼ p=ð1þ e cos χÞ and χ is the relativ-
istic anomaly parameter. (See also Figs. 1 and 3 in
Ref. [33].) This figure suggests that one can find isofre-
quency orbits of which the orbital parameters are very
similar, pð1Þ ∼ pð2Þ and eð1Þ ∼ eð2Þ, in the region close to the

10-12

10-11

10-10

 1  100  10000  1e+06  1e+08  1e+10

1-
f(

m
,N

)

N

δ=10-5 m=1
m=2
m=3

10-16

10-15

10-14

 1  100  10000  1e+06  1e+08  1e+10

1-
f(

m
,N

)

N

δ=10-7 m=1
m=2
m=3

FIG. 2. Plots for 1 − fðm;NÞ when δ ¼ 10−5 and 10−7 from
left to right. Finite-size effects along the ϕ direction are, for all
purposes, negligible since 1 − fðm;NÞ < 10−10 for m ≤ 3, N ≤
1010 and δ ≤ 10−5. Note that fðm;NÞ approaches 1 if one of m,
N, and δ approaches zero.
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curve along which the Jacobian matrix of the transforma-
tion ðp; eÞ ↔ ðΩr;ΩϕÞ becomes singular.
Since

rðjÞðtÞ ¼ rðjÞðtþ nTrÞ; j ¼ 1; 2;

ϕðjÞðtÞ ¼ Ωϕtþ ΔϕðjÞðtÞ; ð29Þ

where Tr ¼ 2π=Ωr and ΔϕðjÞðtÞ is the oscillating part of
ϕðjÞðtÞ with the period Tr, rð1ÞðtÞ − rð2ÞðtÞ and ϕð1ÞðtÞ −
ϕð2ÞðtÞ might be constant in the time-averaged sense, if
isofrequency orbits have very similar orbital parameters.

In Table III, we show examples of isofrequency orbits for
q ¼ 0.7, 0.9, and q ¼ 0.99. In the table, we choose the
difference of orbital parameters for two particles to be as
small as 1 − pð2Þ=pð1Þ ∼ 10−7 and 1 − eð2Þ=eð1Þ ∼ 10−6. We
still need to show that the distance between the two
particles on these orbits is bounded from above by values
that can mimic a compact star. This study is shown in
Fig. 4, where we show the distance between the two
particles as a function of time. This distance in fact is
limited to values bounded from above by the length scale of
mass μ ¼ ðμ=MÞM ∼ 10−5M. Thus, isofrequency orbits
can be used to investigate some of finite-size effects from
two particles.
In Table IV, we compute the height of the resonant scalar

flux when q ¼ 0.99, l ¼ m ¼ 1, and k ¼ 0. We find that
the relative difference in the flux for two particles in
isofrequency orbits, hdEð1Þ=dtirþlmk and hdEð2Þ=dtirþlmk, is
comparable to that in the orbital parameters p and e, ∼10−6.
We define two notions of total energy flux, intended to
describe an object with fixed total mass. The “averaged
flux” is computed as the average of the fluxes of
the first and second particles, i.e., ðhdEð1Þ=dtirþlmkþ
hdEð2Þ=dtirþlmkÞ=2. The “total” flux, on the other hand, is
computed using the source term

Tlmω ¼ Tð1Þ
lmω þ Tð2Þ

lmω

2
; ð30Þ

where TðjÞ
lmω is the source term of the jth particle with j ¼ 1,

2. The relative difference in the scalar flux for the total
and averaged flux is around 10−10 or better, which is
∼ð1 − eð2Þ=eð1ÞÞ2 and might be understood from Eq. (17).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.235 0  0.05  0.1  0.15  0.2

e

MΩφ

q=0.9 MΩr

0.055

0.05
0.045

0.035
0.025
0.015

FIG. 3. Contours for Ωr in the ðΩϕ; eÞ parameter space for
q ¼ 0.9. There seems to exist isofrequency orbits for
MΩϕ ≳ 0.21. In the figure, the line MΩϕ ¼ 0.235 intersects
theMΩr ¼ 0.015 curve at e ∼ 0.2 and 0.58; the two intersections
are therefore an example of isofrequency orbits. More precise
values of orbital parameters for isofrequency orbits are shown in
Table III.

TABLE III. Examples of isofrequency orbits for q ¼ 0.7, 0.9, and 0.99. Note 1 − pð2Þ=pð1Þ ∼ 10−7, 1 − eð2Þ=eð1Þ ∼ 10−6,

1 − Ωð2Þ
ϕ =Ωð1Þ

ϕ ∼ 10−15, and 1 − Ωð2Þ
r =Ωð1Þ

r ∼ 10−13. Note also that the high precision of the parameter values is necessary for the
orbital frequencies to agree in the 13 digits. This order of accuracy is necessary because, near the separatrix, small changes in the orbital
parameters can result in comparatively large changes in the frequencies. The total energy flux refers to expression and intends to describe
the total flux from a particle with fixed mass (and equal to the masses of the individual particles 1 and 2).

Particle p e Ωϕ Ωr

q ¼ 0.7
1 3.766722938624189 0.2975030800 0.1434056675641245 0.01911124760358406
2 3.766723332045377 0.2975033800 0.1434056675641251 0.01911124760358707

q ¼ 0.9
1 2.611725453072030 0.3042415800 0.2262564780998919 0.02295175692922458
2 2.611725688880757 0.3042418000 0.2262564780998936 0.02295175692922107

q ¼ 0.99
1 1.589088238938912 0.1500695000 0.3462538810780511 0.03074999999991420
2 1.589088366169729 0.1500697000 0.3462538810780511 0.03074999999994144

q ¼ 0.99
1 1.613113257400407 0.2001356000 0.3513484864560137 0.02759999999997237
2 1.613113879695717 0.2001364000 0.3513484864560137 0.02760000000000239

q ¼ 0.99
1 1.645757921740747 0.2499991000 0.3581407568703343 0.02372999999999663
2 1.645758096747798 0.2499993000 0.3581407568703343 0.02373000000000163

q ¼ 0.99
1 1.651030264567800 0.2569858000 0.3592171900983110 0.02314659423260921
2 1.651030530178192 0.2569861000 0.3592171900983119 0.02314659423261100

q ¼ 0.99
1 1.686790961340073 0.3000463000 0.3663311475282926 0.01947000000000027
2 1.686791148229671 0.3000465000 0.3663311475282926 0.01946999999999805

ULTRALIGHT SCALARS AND RESONANCES IN BLACK- … PHYSICAL REVIEW D 95, 044016 (2017)

044016-7



Another issue concerns the extension to N particles in
isofrequency orbits: there is no guarantee that isofrequency
orbits exist for N-particle systems when N ≥ 3 (see, for
example, Figs. 1 and 3 in Ref. [33]). We may, however, deal

with N-particle systems by considering ΩðiÞ
ϕ ¼ ΩðjÞ

ϕ ,

ΩðiÞ
r ∼ΩðjÞ

r , pðiÞ ∼ pðjÞ, and eðiÞ ∼ eðjÞ with 0 < jxðiÞðtÞ −
xðjÞðtÞj⪅10−5M where i; j ¼ 1; 2;…; N, which can be
found not only in the region near the LSO but also farther
away.

In fact, one can find such quasi-isofrequency orbitswhen
pð1Þ ≤ p ≤ pð2Þ. If we define a semilatus rectum p as

pði;jÞ ¼ pð1Þ þ 2j − 1

2i
ðpð2Þ − pð1ÞÞ; ð31Þ

where i is a positive integer and 1 ≤ j ≤ 2i−1, we can find
corresponding orbital eccentricity eði;jÞ, which gives

eð1Þ≤eði;jÞ≤eð2Þ, 1 − eði;jÞ=eði0;j0Þ ≲ 10−6, 1 −Ωði;jÞ
ϕ =Ωði0;j0Þ

ϕ
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 0  200  400  600  800  1000

|→ x 1
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(t
)|
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q=0.99, p/M~1.65103, e~0.25698
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FIG. 4. Differences in the evolution of xðtÞ (left), rðtÞ (middle), and ϕðtÞ (right), with periods Tr ¼ 2π=Ωr, for q ¼ 0.99 in Table III. A
bounded value of 0 < jxð1ÞðtÞ − xð2ÞðtÞj⪅10−5M for the difference in position between both particles indicates that the two particles stay
in the length scale of mass μ ∼ 10−5M.

TABLE IV. Resonance and corresponding height of the scalar flux hdE=dtirþlmk normalized by α2M2μ2 for q ¼ 0.99 and l ¼ m ¼ 1
and k ¼ 0. Orbital parameters p and e are same as those in Table III. The relative difference in the scalar fluxes for two particles in
isofrequency orbits, hdEð1Þ=dtirþlmk and hdEð2Þ=dtirþlmk, is comparable to 1 − pð2Þ=pð1Þ and 1 − eð2Þ=eð1Þ. The averaged scalar flux is the

average of the fluxes of the first and the second particles. The total scalar flux is computed using the source term ðTð1Þ
lmω þ Tð2Þ

lmωÞ=2,
where TðjÞ

lmω is the source term of the jth particle with j ¼ 1, 2. The relative difference between the scalar flux for the total and averaged
flux is around 10−10 or better, which is ∼ð1 − eð2Þ=eð1ÞÞ2 and might be understood from Eq. (17).

μsM Particle p=M e hdE=dtirþlmk

0.3524737301

1 1.589088238938912 0.1500695000 −1.495119411 × 10−2

2 1.589088366169729 0.1500697000 −1.495114123 × 10−2

Averaged − − −1.495116767 × 10−2

Total − − −1.495116767 × 10−2

0.3578874552

1 1.613113257400407 0.2001356000 −2.048602473 × 10−3

2 1.613113879695717 0.2001364000 −2.048527379 × 10−3

Averaged − − −2.048564926 × 10−3

Total − − −2.048564926 × 10−3

0.3651257594

1 1.645757921740747 0.2499991000 −6.931053164 × 10−4

2 1.645758096747798 0.2499993000 −6.931127856 × 10−4

Averaged − − −6.931090510 × 10−4

Total − − −6.931090510 × 10−4

0.3662751106

1 1.651030264567800 0.2569858000 −1.134720947 × 10−3

2 1.651030530178192 0.2569861000 −1.134733177 × 10−3

Averaged − − −1.134727062 × 10−3

Total − − −1.134727062 × 10−3

0.3738869266

1 1.686790961340073 0.3000463000 −4.014255970 × 10−3

2 1.686791148229671 0.3000465000 −4.014260470 × 10−3

Averaged − − −4.014258220 × 10−3

Total − − −4.014258220 × 10−3

RYUICHI FUJITA and VITOR CARDOSO PHYSICAL REVIEW D 95, 044016 (2017)

044016-8



≲10−15, and 1 − Ωði;jÞ
r =Ωði0;j0Þ

r ∼ 10−13. If we define semi-
latus rectum p as pð0;1Þ ≡ pð1Þ when ði; jÞ ¼ ð0; 1Þ and
pð0;2Þ ≡ pð2Þ when ði; jÞ ¼ ð0; 2Þ, the total number of par-
ticles for 0 ≤ i ≤ imax is given asN ¼ 2imax þ 1.We note, for
the N particle, the difference in semilatus rectums for
neighboring particles is given as ðpð2Þ − pð1ÞÞ=ðN − 1Þ.
We compute the scalar flux for the N particle using the
source term

Tlmω ¼ 1

N

Ximax

i¼0

X
j

Tði;jÞ
lmω; ð32Þ

where Tði;jÞ
lmω is the source term of the particle with the orbital

parameters pði;jÞ and eði;jÞ.
In Fig. 5, the absolute values of the relative difference in

the scalar flux for the N particle and that for total are shown
as a function of N when q ¼ 0.99, l ¼ m ¼ 1, k ¼ 0, and
0 ≤ imax ≤ 10, i.e., 2 ≤ N ≤ 1025. The explicit value of the
total scalar flux is shown in Table IV. We choose the total
flux as a fiducial value for the comparison since the relative
difference in the flux between that and the average estimate
with the orbital parameters pð1;1Þ and eð1;1Þ, which is the
center of the N particle along the radial direction, is ∼10−11
or smaller. Since this difference is smaller than the relative
difference in the orbital parameters of the N particle
ð1 − eð2Þ=eð1ÞÞ2, the finite-size effects along the radial
direction are not enough to suppress floating or the
resonance.

IV. CONCLUSION AND DISCUSSION

We have considered a stellar-mass compact star orbiting
a supermassive BH in scalar-tensor theories. In Refs. [3,4],
it was shown that a floating, circular orbit is possible due to

resonances excited when the orbital period becomes com-
parable to the mass of the scalar field. In this paper, we have
extended the analysis in Refs. [3,4] to eccentric orbits and
to a group of test particles to investigate whether resonances
due to the coupling of the scalar field to matter in EMRIs
are affected by the orbital eccentricity and finite-size effects
of the orbiting star, modeled by the group of particles. We
have found that these effects do not reduce the resonance
significantly.
From Tables I and II, it is found that, for a given μs,

scalar fluxes for the case of a circular orbit are comparable
to those for the case of a low eccentric orbit with k ¼ 0. As
the orbital eccentricity and jkj increase, however, there
appears an order of magnitude difference in fluxes for
circular and eccentric orbits for a given μs. This might be
understood as follows: the scalar energy fluxes are com-
puted through Eqs. (16) and (17), which require the
Wronskian and the integration in time for the asymptotic
amplitudes Z∞

lmk and Zrþ
lmk. Since the Wronskian is com-

puted from the two homogeneous solutions of the
Klein-Gordon equation and is independent of the radial
coordinate, its value for an eccentric orbit for a given set of
q, l,m, n, μs and resonant frequency is the same as that of a
circular orbit. Thus, the main difference in the scalar flux
calculation between circular and eccentric orbits at reso-
nances for a given μs lies in the integration to find Z∞

lmk and
Zrþ
lmk. Noting the integration becomes zero for circular

orbits when k ≠ 0, we may find that the integration for
eccentric orbits when k ≠ 0 is an order of magnitude
smaller than that for circular orbits when k ¼ 0 for a given
μs. The same argument carries over to inclined orbits, and
one therefore expects that orbital inclination does not
reduce the resonance significantly.
We have also considered a collection of point particles,

which were intended to mimic extended bodies and finite-
size effects on the resonance. We found that finite-size
effects along the azimuthal direction do induce a phase
cancellation, but the cancellation is very small and typically
unimportant. Since the cancellation affects both the scalar
and the gravitational flux equally, we expect that finite-size
effects along the azimuthal direction are not enough to
suppress floating or resonance. We then considered par-
ticles in quasi-isofrequency orbits, that are an extension of
isofrequency orbits [33], to take into account finite-size
effects along the radial and azimuthal directions. Again, we
found that this type of finite-size effects is very small and is
below the relative difference in orbital parameters of
particles. Thus, we expect that finite-size effects modeled
by a collection of particles are not enough to suppress
floating or resonance.
The spin of the orbiting particle is another ingredient that

should be considered to investigate finite-size effects on the
resonance. The orbits of a spinning particle can be chaotic
[34–41], and one might not be able to deal with the system
in the frequency domain. At linear order in the spin of the
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FIG. 5. The absolute values of the relative difference in the
scalar flux for the N particle and that for total are shown as a
function of N when q ¼ 0.99, l ¼ m ¼ 1, k ¼ 0, and
0 ≤ imax ≤ 10, i.e., 2 ≤ N ≤ 1025. The explicit value of the
scalar total flux is shown in Table IV.
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particle, however, it is possible to define frequencies of the
orbit and spin precession for simple cases [42,43]. For
generic orbits, it is not clear if one can define frequencies of
the orbit and spin precession, although there still exist three
constants of motion [44]. Reference [45] suggests solving
the evolution of the orbit and the spin of the particle using
the osculating geodesic method [46], making it possible to
define the frequencies of the orbit and spin precession at
each geodesic [45]. In this case, however, the frequencies of
the orbit and spin precession oscillate in time, and the time
scale of the oscillation is comparable to that of orbits. If the
amplitudes of the oscillation in the frequencies are larger
than the width of the resonance in the frequency, floating
may not be possible or may not last long enough to
distinguish it from nonfloating orbits.
In summary, we computed the scalar and gravitational

energy flux to investigate whether floating is possible for
eccentric orbits or for extended bodies. These fluxes are the
time-averaged dissipative part of the first-order self-force
that would induce deviations from the geodesic motion at
the first order in the mass ratio of the system [47–49]. The
conservative self-force is the remaining part of the self-
force which is free from dissipation in the system. When
one considers the motion taking into account the first-order
conservative self-force, one may define orbital frequencies
in the “conservative” effective spacetime [50]. Those
frequencies might not coincide with resonant frequencies

even if orbital frequencies in geodesic motion coincide with
a resonant frequency. It is therefore important to solve the
self-force equation in scalar-tensor theories [51] and to
compute the self-force to investigate the stability of floating
orbits. These issues are left for future works.
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