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In a recent paper, one of us studied spherically symmetric, asymptotically flat solutions of shape
dynamics, finding that the spatial metric has characteristics of a wormhole—two asymptotically flat ends
and a minimal-area sphere, or “throat,” in between. In this paper, we investigate whether that solution
can emerge as a result of gravitational collapse of matter. With this goal, we study the simplest kind of
spherically symmetric matter: an infinitely-thin shell of dust. Our system can be understood as a model
of a star accreting a thin layer of matter. We solve the dynamics of the shell exactly and find that, indeed,
as it collapses, the shell leaves in its wake the wormhole metric. In the maximal-slicing time we use for
asymptotically flat solutions, the shell only approaches the throat asymptotically and does not cross it in a
finite amount of time (as measured by a clock “at infinity”). This leaves open the possibility that a more
realistic cosmological solution of shape dynamics might see this crossing happening in a finite amount of
time (as measured by the change of relational or shape degrees of freedom).
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I. INTRODUCTION

Shape dynamics (SD) is a Hamiltonian theory which
describes gravity as the evolution of a three-dimensional
conformal geometry. In this description, four-dimensional
spacetime is not the fundamental dynamical object of the
theory and must be understood as an emergent concept.
Nonetheless, it can be useful to describe the behavior of
weakly backreacting “probes.” The utility of the spacetime
picture comes about from the relation of the two theories:
SD is equivalent to the Hamiltonian formulation of general
relativity (GR) [1] for solutions of the latter which possess a
complete “constant mean curvature” foliation. This slicing
condition fails at the global level, already for simple
examples: Schwarzschild’s spacetime does not possess a
complete CMC slicing. In [2], one of us found that,
respecting spherical symmetry and standard asymptotic
flatness conditions, a solution of the equations of SD could
be built which covers only the two nonsingular quadrants of
the Kruskal extension of Schwarzschild. The spatial metric
is that of a wormhole, possessing a “throat” (a minimal-area
sphere) and two asymptotic ends. At the throat the spatial
metric is smooth, but the spacetime metric has a defect.
This discrepancy is possible in spite of Birkhoff’s theorem,
because in SD it is the spatial conformal geometries that
need to be regular, whereas in GR it is the four-dimensional
spacetime geometry that needs to be well behaved. The

result of [2] has been extended to much more general static
solutions [3,4], and its feature of inversion-symmetry,
which is present also in these other solutions, has even
been proposed as the appropriate notion of horizon for
SD [4].
The result of [2] was nonetheless preliminary: the

assumption of spherical symmetry leaves no room for
degrees of freedom of the conformal geometry (the Cotton
tensor vanishes [5]). Moreover, [2] did not address the issue
of whether this solution would form from gravitational
collapse, i.e., whether it was physical or not. Here we
partially remedy both shortcomings in a minimal way, by
considering spherically symmetric matter sources, which
introduce genuine dynamical degrees of freedom for the
shell,1 and studying their gravitational collapse.
As was done in most recent works in SD [2,5,6], we

exploit the local equivalence between SD and GR in
CMC foliation to simplify the calculations. The input
from SD is limited to (i) insisting that the spatial
conformal geometries remain regular throughout evolu-
tion and (ii) neglecting any regularity requirement on the
spacetime metric.
There are other flaws in [2] which we are also not

going to address in this paper. The first is the assumption
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1Albeit, not genuine “shape” degrees of freedom: for those,
one would need to introduce more than one shell to form scale-
invariant ratios of their variables.
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of asymptotic flatness; according to the relational under-
pinnings of SD, the theory should be based on a closed
spatial manifold. The second is the boundary conditions at
infinity, which for finiteness and differentiability of the
action were found to match those of GR [7].
In SD they should be set by the physical behavior of
matter ‘at infinity’ [5], but thus far no general conditions
differing from GR have been found. The last is the use of
maximal-slicing time, which violates one of the relational
pillars on which shape dynamics rests: that time should be
derived from the change of physical (i.e., shape or con-
formally invariant) degrees of freedom [8]. Nonetheless,
there are arguments that show that, as far as the solution
exists, it will reliably represent a “background experienced”
spacetime for weakly back-reacting matter degrees of
freedom [9], and maximal-slicing time should approximate
the amount of change experienced by a clock far away from
the origin. In sum, the goal of the present paper is to study
whether the solution found in [2] can emerge as the result of
gravitational collapse, and therefore we postpone address-
ing these issues to further studies.
Differently from previous work, here we need to

couple matter—pressureless dust in particular—in a first
attempt to model gravitational collapse. The simplest
distribution of dust which respects spherical symmetry is
an infinitely thin sphere. The coupling of SD to matter is
borrowed (for phenomenological reasons) from GR, by
working, again, in the gauge in which the two theories
are equivalent. This is done in Sec. III. Before that, we
will solve the SD equations in vacuum in Sec. II, and
then insert those constructions where appropriate when
treating the full system coupled to dust. The full system
is described in Sec. IV, where the reduced phase space of
physical degrees of freedom is characterized, and the on-
shell orbits describing the evolution of the collapsing
shell are found. Section V contains an outlook of the
result.

II. VACUUM SPHERICALLY
SYMMETRIC SOLUTIONS

The constraints of shape dynamics, in the gauge
in which it is equivalent to maximal-slicing GR, are
[8,10,11]

H ¼ 1ffiffiffi
g

p
�
pijpij −

1

2
p2

�
−

ffiffiffi
g

p
R; Hi ¼ −2∇jpj

i;

C ¼ p; ð1Þ

where gij is the spatial metric, pij its conjugate momentum,
and p ¼ gijpij. These constraints need to be valid at all
times. The time evolution of the fields is generated by the
following equations:

_gij ¼
2Nffiffiffi
g

p
�
pij −

1

2
gijp

�
þ∇iξj þ∇jξi;
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ffiffiffi
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�
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2

ffiffiffi
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p gij
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�

−
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j −
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�
þ ffiffiffi

g
p ð∇i∇jN − gijΔNÞ

þ∇kðpijξkÞ − pik∇kξ
j − pkj∇kξ

i; ð2Þ

which depend on a lapse function N and a shift vector ξi.
The latter is fixed by our choice of coordinates, while the
former is fixed by the requirement of preservation in time
of the conformal constraint C ≈ 0. This gives rise to the
so-called lapse-fixing equation:

1

2

ffiffiffi
g

p
NR − 2

ffiffiffi
g

p
ΔN þ 3

2

pijpijffiffiffi
g

p N ¼ 0: ð3Þ

Using the notation of [5], the most generic spherically
symmetric metric and momentum can be written as

gij ¼ diagfμ2; σ; σsin2θg;

pij ¼ diag

�
f
μ
;
s
2
;

s
2sin2θ

�
sin θ; ð4Þ

where μ, σ, f, and s are functions of the radial coordinate r
only. There is an analogue ansatz for the shift vector:
ξi ¼ ðξðrÞ; 0; 0Þ.

A. Solution of the constraints

Replacing the ansatz (4) in the constraints (1), we get

σ2μs2 þ 4f2μ3 − 4fσμ2sþ 12σμσ00

− 12σσ0μ0 − 3μðσ0Þ2 − 12σμ3 ¼ 0

μf0 −
1

2
sσ0 ¼ 0; μf þ sσ ¼ 0; ð5Þ

where ′ refers to the radial derivative ∂
∂r. The last equation

can be solved algebraically, s ¼ − μ
σ f, and after replacing

this expression for s in (5), it is easy to see that the
diffeomorphism constraint can be written as a total deriva-
tive, μffiffi

σ
p ðf ffiffiffi

σ
p Þ0 ¼ 0. The solution of this equation is

f ¼ Affiffiffi
σ

p ; ð6Þ

where A is an integration constant (meaning that it is
spatially constant but can, in principle, still be a function
of time). Finally, with a little work one can check that the
Hamiltonian constraint can be rewritten as
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where the term ðf0 þ 1
2
f σ0

σ Þ is identical to the diffeomor-
phism constraint and, therefore, vanishes on-shell. The
remaining term is a total derivative, and we can solve
the equation by introducing a new integration constant m
(the −4 factor is introduced for convenience),

ðσ0Þ2ffiffiffi
σ

p
μ2

− 4
ffiffiffi
σ

p
−

f2ffiffiffi
σ

p ¼ −8m: ð8Þ

Replacing the solution (6), we get a relation between σ
and μ, and since the latter appears without derivatives, the
easiest thing is to solve with respect to μ:

μ2 ¼ ðσ0Þ2
A2

σ − 8m
ffiffiffi
σ

p þ 4σ
: ð9Þ

We found a solution to all our constraints which
apparently holds for any choice of the remaining free
function σðrÞ. This is a reflection of radial diffeomorphism
invariance. In fact, notice how grr ¼ μ2 is homogeneous of
degree two in σ0: the expression μ2dr2 ∝ ðσ0drÞ2 appearing
in the metric is explicitly invariant under changes of radial
coordinate. However, the choice of σðrÞ is not completely
arbitrary. If we require regularity of the conformal geom-
etry, there are obstructions to the values that σ can take. In
fact, by inspecting (9), we can see how the right-hand side
is not guaranteed to be positive. It relies on the following
fourth-order polynomial of χ ¼ ffiffiffi

σ
p

=m:

PðχÞ ¼ C2 − 2signðmÞχ3 þ χ4; C ¼ A
2m2

: ð10Þ

See [5] for a detailed discussion of the roots of P. Here
we only need to observe that if C ¼ 0 P is positive when
χ > 2.

B. Solution of the equations of motion

The equations of motion require previous calculation of
the lapse from Eq. (3). Under the assumption of spherical
symmetry (which for a scalar function like the lapse is just
N ¼ NðrÞ), the lapse-fixing equation reduces to

�
4fs
μσ

−
4f2

σ2
−
4μ0σ0

μ3σ
þ 4σ00

μ2σ
−
ðσ0Þ2
μ2σ2

−
4

σ
−
s2

μ2

�
N

−
�
8μ0

μ3
þ 8σ0

μ2σ

�
N0 þ 8N00

μ2
¼ 0: ð11Þ

The solution is then N ¼ c1N1 þ c2N2, a linear combina-
tion of the two linearly independent solutions, which are

N1 ¼
σ0

2μ
ffiffiffi
σ

p ; N2 ¼
σ0

2μ
ffiffiffi
σ

p ⨍ μ3

ðσ0Þ2 dr; ð12Þ

where the symbol ⨍ refers to the principal value integral,
which is needed because its argument contains the term

μ3

ðσ0Þ2 ¼
jσ0j

ðA2

σ − 8m
ffiffiffi
σ

p þ 4σÞ3=2 ; ð13Þ

which diverges when σ approaches a zero of P (which has
to be an extremum of σ [5]). This divergence has opposite
sign on the two sides of the extremum (the left and right
limits are opposite), and the degree of divergence is the
same, so that the following quantity is finite,

⨍ r2

r1

μ3dr
ðσ0Þ2 ¼ lim

ϵ→0

�Z
~r−ϵ

r1

μ3dr
ðσ0Þ2 þ

Z
r2

~rþϵ

μ3dr
ðσ0Þ2

�
; ð14Þ

where ~r ∈ ðr1; r2Þ is the point where σ has its extremum.
Once we have the lapse, we can calculate the equations

of motion for the metric, the first of Eqs. (2). Using the
spherical symmetry ansatz, we get that the _gθθ and _gϕϕ
equations are identical and completely fix the shift vector:

ξi ¼ δriðfN þ _σÞ=σ0: ð15Þ

Replacing the above solution of ξi in the _grr equation
(as well as the solutions of the ADM constraints), we find
that they depend nontrivially on the lapse. Fortunately,
replacing the solution of the lapse-fixing equation (12), we
find that the two principal-value integrals never appear
explicitly—they always have an r derivative acting on
them, and we can use the fact that

∂r⨍ μ3dr
ðσ0Þ2 ¼

μ3

ðσ0Þ2 ; ∂r⨍ σ3=2μ3drðσ0Þ2 ¼ σ3=2μ3

ðσ0Þ2 ð16Þ

to simplify the expression. The equation then reduces to

−96 _mσ3=2 þ 6Að2 _Aþ c2Þ ¼ 0: ð17Þ

In order for the above equation to hold for any choice of
σðrÞ the only possibility is that

c2 ¼ −2 _A; _m ¼ 0: ð18Þ

We fixed one of the two integration constants present in
the lapse, c2. c1 cannot be fixed because the system is
reparametrization invariant, which implies the freedom to
specify the value of the lapse at a point. Moreover, we
discovered a conserved quantity: the integration constant
m. This quantity has the significance of “mass energy,” and
it is conserved because the system is spherically symmetric,
so it cannot radiate its energy away in the form of
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gravitational waves, and a form of conservation of energy
similar to what holds in field theory on Minkowsi space-
time holds. The quantity m is actually what the Misner-
Sharp mass reduces to in vacuum [5,12].
The equations of motion for the momenta, the second of

Eq. (2), are identically satisfied if one imposes the con-
ditions (18), and therefore add no further information. We
have then been able to solve exactly both the constraint
equations and the equations of motion in vacuum. This is a
significant result that can be exploited to build dynamically
meaningful solutions of shape dynamics, for example, by
using some localized spherically symmetric distribution of
matter, which leaves most of space empty.

III. COUPLING A THIN SHELL OF DUST

A thin spherically symmetric shell of dust is just the
continuum limit of a homogeneous distribution of particles
on a sphere, each one of which move radially with the same
speed. One can deduce the appropriate contribution of such
a source to the constraints of shape dynamics from that of a
point particle.

A. New form of the constraints

The Hamiltonian and diffeomorphism constraints of
ADM gravity coupled to a massive point particle are

H ¼ δð3Þðxi − yiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijpipj þm2

0

q
;

Hi ¼ δð3Þðxi − yiÞpi; ð19Þ

where yi are the coordinates of the particle, pi its
momentum and m0 its rest mass. The above constraints
can be straightforwardly derived from the standard
Einstein–Hilbert action coupled to a point particle. Note
that pi is included as a cotangent vector, and this arises
from minimal coupling. It is not hard to show that the
constraints above are first class.
Now take a uniform distribution of point particles on the

surface of a sphere of radius RS, and take the continuum
limit. The constraints become

H ¼
ffiffiffi
h

p
ρðRSÞδðr − RSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrp2

r þm2
0

q
;

Hi ¼ δri
ffiffiffi
h

p
ρðRSÞδðr − RSÞpr; ð20Þ

where hab is the metric induced on the sphere by gij, and
ρðRSÞ is a scalar function to be determined [without weight:
the additional weight 1=3 is provided by the delta func-
tion δðr − RSÞ].
To determine ρðRSÞ, we have to ask that changing

the radius of the sphere does not change the number of
particles n,

Z
dθdϕdr

ffiffiffi
h

p
ρδðr − RSÞ ¼ ρðRSÞ

Z
dθdϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
hðRSÞ

p
¼ 4πn; ð21Þ

which fixes ρðRSÞ. Now we can rescale the momentum
npr ¼ PS, and the rest mass nm0 ¼ M of the single particle
into the momentum and the mass of the whole shell, so
that n drops out of the equations. Now we can integrate
over dθdϕ,

Z
Hdθdϕ ¼ 4πδðr − RSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grrP2

S þM2

q
;Z

Hidθdϕ ¼ 4πδriδðr − RSÞPS; ð22Þ

and the three constraints (5) are modified by the addition of
the thin shell into

−
1

6σμ2
½σ2μs2 þ 4f2μ3 − 4fσμ2sþ 12σμσ00 − 12σσ0μ0

− 3μðσ0Þ2 − 12σμ3� ¼ δðr − RSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
S

μ2
þM2

s
;

μf0 −
1

2
sσ0 ¼ −

PS

2
δðr − RSÞ; μf þ sσ ¼ 0: ð23Þ

B. Jump conditions

After solving with respect to s, the maximal-slicing
constraint, s ¼ − μ

σ f, we can rewrite the second constraint
in (23) as

μffiffiffi
σ

p ðf ffiffiffi
σ

p Þ0 ¼ −
1

2
PSδðr − RSÞ: ð24Þ

The above equation has the form

F0ðrÞ ¼ GðrÞδðr − r0Þ≡Gðr0Þδðr − r0Þ; ð25Þ

in any open set which does not include r0 the solution
to such an equation is FðrÞ ¼ const. But because of the
delta function on the right-hand side, we cannot assume
the continuity of F. In fact, integrating the equation from
r ¼ 0 to r, one gets

FðrÞ − Fð0Þ ¼ Gðr0ÞΘðr − r0Þ þ const; ð26Þ

where

ΘðxÞ ¼
�
0; x < 0

1; x > 0

is the Heaviside distribution. Alternatively, we can
write
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FðrÞ ¼ F−Θðr0 − rÞ þ FþΘðr − r0Þ;
Fþ − F− ¼ Gðr0Þ: ð27Þ

So (24) is solved by

fðrÞ ¼ A−ffiffiffi
σ

p ΘðRS − rÞ þ Aþffiffiffi
σ

p Θðr − RSÞ; ð28Þ

with the “jump condition”

Aþ − A− ¼ −
σ

1
2ðRSÞ

2μðRSÞ
PS: ð29Þ

For the Hamiltonian constraint, we should look at Eq. (23)
and check which terms on the left-hand side can be
divergent at r ¼ RS. f and s are not derived, and therefore
they can contribute at most with a theta function, but not
give any Dirac delta. μ and σ have to be continuous because
they are components of the metric. Therefore, their first
derivatives, μ0 and σ0, can be at most discontinuous but not
divergent, like f and s. The second derivatives, μ00 and σ00,
however, can be divergent if the first derivatives are
discontinuous. The only second derivative that appears is
that of σ, so we can write

singular part of

�
2σ00

μ

�
¼ −δðr − RSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
S

μ2
þM2

S

s
: ð30Þ

So we have to assume that σ is continuous, its first
derivative has a jump, and its second derivative produces
a Dirac delta term. The prototype of one such function is

yðrÞ ¼ y1ðrÞ þ ðy2ðrÞ − y2ðRSÞÞΘðr − RSÞ; ð31Þ

where y1ðrÞ and y2ðrÞ are continuous functions. Taking its
second derivative,

y00 ¼ y001 þ y002Θðr − RSÞ þ 2y02δðr − RSÞ
þ ðy2 − y2ðRSÞÞδ0ðr − RSÞ; ð32Þ

a distribution of the form zðrÞδ0ðr − RSÞ is not simply
zðRSÞδ0ðr − RSÞ: with a smearing it is easy to show that
it is equivalent to the distribution −z0ðrÞδðr − RSÞþ
zðRSÞδ0ðr − RSÞ, and in our case zðRSÞ ¼ limr→RS

ðy2ðrÞ−
y2ðRSÞÞ ¼ 0. Then the above equation reads

y00 ¼ y001 þ y002ðrÞΘðr − RSÞ þ y02ðRSÞδðr − RSÞ: ð33Þ

In terms of y, it is easy to see that the divergent
term in y00ðrÞ can be written as y02ðRSÞδðr − RSÞ ¼
ðlimr→Rþ

S
y0ðrÞ − limr→R−

S
y0ðrÞÞδðr − RSÞ. Then the jump

condition for σ00 can be written as

σ00 ¼
	
lim
r→Rþ

S

σ0ðrÞ − lim
r→R−

S

σ0ðrÞ


δðr − RSÞ

þ regular part: ð34Þ

This (times 2=μ) is the only divergent part of Eq. (30), and
therefore we can identify it with the right-hand side,

lim
r→Rþ

S

σ0 − lim
r→R−

S

σ0 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
S þM2

Sμ
2ðRSÞ

q
; ð35Þ

to produce our second jump condition.
When the shell is added, the lapse-fixing equation (3)

gains a right-hand side of the form − P2
SN

2μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS2=μ2þM2

p
δðr − RSÞ. Then Eq. (11) gains a singular part which
depends only on the highest-order derivatives appearing
in the equation, namely N00 and σ00. The equation is

singular part of ðNσ00 þ 2N00σÞ ¼ P2
SNδðr − RSÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS2 þM2μ2

p : ð36Þ

Just like σ, the second derivative of N has to be singular,
so its first derivative has to be discontinuous and N itself
continuous. This new jump condition is redundant: it is
automatically satisfied by replacing the solution (12) of the
lapse-fixing equation in vacuum, and the jump condition
for the derivative of σ. The equations of motion (4) for
the metric do not get any matter source, and therefore are
identical to the vacuum case. The ones for the momenta do
get a source term of the form

singular part of
�
_f − ξf0

μ

�
¼ P2

SNδðr − RSÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS2 þM2μ2

p ; ð37Þ

and, again, do not add any independent condition as they
are solved by the jump in the derivative of σ. Notice how
the latter equation implies that the first derivative of f is
singular, and therefore f itself has to be discontinuous.
The jump conditions make the metric, the lapse, and the

shift continuous but with discontinuous radial derivative.
The momentum is instead discontinuous (but bounded).
These discontinuities coincide with Israel’s junction con-
ditions [13], which amount to prescribing the continuity of
the spacetime metric, while the extrinsic curvature of the
world sheet of the shell has a discontinuity at the location of
the shell, whose amount is specified by a surface energy-
momentum tensor (see [14] for another derivation of
Israel’s junction conditions in the Hamiltonian formalism).
While discusing junction conditions, let us point out that
one should be careful not to confuse two different notions
of extrinsic curvature that intervene in the present dis-
cussion. On one hand, we have the extrinsic curvature of
the spacelike CMC slicing that we use to set up the
canonical system in this paper, which determines the
ADM momentum pij. On the other hand there is
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the extrinsic curvature Kab of the timelike world sheet of
the thin shell, which is the one that satisfies the jump
conditions in Israel’s framework. We want to point out that,
although Kab is completely determined by the canonical
data gij, pij and the ADM equations of motion, the relation
between Kab and canonical data is nontrivial.
It is convenient, at this point, to define some quantities

which will appear in all the jump conditions below,

lim
r→Rþ

S

σ0 ¼ γ; lim
r→R−

S

σ0 ¼ κ; σðRSÞ ¼ ρ2: ð38Þ

No matter which diffeomorphism gauge we choose, around
r ¼ RS, σðrÞ can be written as

σ ¼ ρ2 þ ðr − RSÞγΘðr − RSÞ þ ðr − RSÞκΘðRS − rÞ
þO½ðr − RSÞ2�: ð39Þ

Then, from the expression above, it is easy also to deduce
that

lim
r→Rþ

S

_σ ¼ 2ρ_ρ − γ _RS; lim
r→R−

S

_σ ¼ 2ρ_ρ − κ _RS: ð40Þ

We are now in position to demand the continuity of μ. Its
expressions inside and outside of the shell do not coincide,

μ ¼

8>><
>>:

jσ0j
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
−
σ − 8m−

ffiffiffi
σ

p þ 4σ
q

; r < RS

jσ0j
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
þ
σ − 8mþ

ffiffiffi
σ

p þ 4σ
q

; r > RS

; ð41Þ

and we have to demand that the left and right limit of μ
coincide,

lim
r→Rþ

S

μðrÞ ¼ lim
r→R−

S

μðrÞ; ð42Þ

that is,

jκjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
A−
2ρ2



2
− 2m−

ρ þ 1

r ¼ jγjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
Aþ
2ρ2



2
− 2mþ

ρ þ 1

r : ð43Þ

This is a new equation we have to take into account,
together with the jump conditions above, which, in the new
notation, can be written as

γ − κ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
S þM2

Sμ
2ðRSÞ

q
: ð44Þ

We can completely eliminate γ and κ from the two jump
conditions (43) and (44): using Eq. (29) into Eq. (44),

κ

jμðRSÞj
−

γ

jμðRSÞj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAþ − A−Þ2

ρ2S
þ 1

4
M2

S

s
; ð45Þ

by taking twice the square of the above equation, we can
make it independent of the signs of κ and γ,

�
κ2

μ2ðRSÞ
þ γ2

μ2ðRSÞ
−
ðAþ − A−Þ2

ρ2S
−
1

4
M2

S

�
2

¼ 4κ2γ2

μ4ðRSÞ
:

ð46Þ

Now, using the definition of μðrÞ at r ¼ RS,8>>><
>>>:

γ2

μ2ðRSÞ
¼

	Aþ
ρ


2

− 8mþρþ 4ρ2

κ2

μ2ðRSÞ
¼

	A−

ρ


2

− 8m−ρþ 4ρ2
; ð47Þ

we end up with the following “on-shell condition”:

�
AþA−

ρ2
− 4ðmþ þm−Þρþ 4ρ2 −

1

8
M2

S

�
2

¼
�
A2þ
ρ2

− 8mþρþ 4ρ2
��

A2
−

ρ2
− 8m−ρþ 4ρ2

�
: ð48Þ

C. Symplectic structure

In order to discuss the dynamics of the system, we need
to know which of the reduced-phase-space variables are
canonically conjugate to each other. In other words, we
need to calculate the symplectic form. By definition, the
conjugate variables of the extended phase space are gij
and pij, as well as RS and PS. Therefore, the presymplectic
potential is

θ ¼
Z

dr dθ dϕpijδgij þ 4πPSδRS; ð49Þ

restricting it through spherical symmetry and integrating in
dθdϕ:

θ ¼ 4π

Z
∞

0

drð2fδμþ sδσÞ þ 4πPSδRS: ð50Þ

Now we may impose the maximal-slicing constraint
μf ¼ −sσ, and the solution to the diffeomorphism con-
straint (28),

θ ¼ 4π

Z
∞

0

dr

�
2fδμ −

μf
σ
δσ

�
þ 4πPSδRS

¼ −4π
Z

∞

0

dr
2μffiffiffi
σ

p δðf ffiffiffi
σ

p Þ þ 4πPSδRS: ð51Þ
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Now, using Eq. (29), we observe that the first term in the
last equation cancels the second term:

− 4π

Z
∞

0

dr
2μffiffiffi
σ

p δðf ffiffiffi
σ

p Þ

¼ −8π
Z

∞

0

μffiffiffi
σ

p δ½A−ΘðRS − rÞ þ AþΘðr − RSÞ�

¼ −8π
�
δA−

Z
RS

0

dr
μffiffiffi
σ

p þ δAþ

Z
∞

RS

dr
μffiffiffi
σ

p
�

þ 8π

�
ðAþ − A−Þ

μðRSÞffiffiffiffiffiffiffiffiffiffiffiffi
σðRSÞ

p δRS

�

¼ −8π
�
δA−

Z
RS

0

dr
μffiffiffi
σ

p þ δAþ

Z
∞

RS

dr
μffiffiffi
σ

p
�

− 4πPSδRS: ð52Þ

Therefore, the symplectic potential reduces to

θ ¼ −8π
�
δA−

Z
RS

0

μdrffiffiffi
σ

p þ δAþ

Z
∞

RS

μdrffiffiffi
σ

p
�
: ð53Þ

IV. THIN SHELL IN AN ASYMPTOTICALLY
FLAT NONEXPANDING REGION

So far, we have kept everything as general as possible.
We now need to specialize to a particular model by fixing
some of the integration constants.

A. Boundary conditions

The manifold we are studying has two boundaries: one at
r → ∞ (asymptotic infinity) and one at the origin r → 0. At
infinity, as we discussed in the Introduction, we have to set
Aþ ¼ 0, in order to be consistent with [2]. This might not
be entirely physically justified from the perspective of
SD [5]. Here we are focused on determining whether the
gravitational collapse of our thin shell of dust can generate
the solution of [2], and therefore we impose those same
conditions at infinity, which in [7] are motivated with the
request of a well-defined variational principle in the
presence of anisotropies. Moreover, it should be noted
that these are the standard asymptotically flat conditions in
GR [15,16], and it is a difficult exercise to find alternatives,
even in the SD case [7].
Regarding the inside of the shell, we cannot assume

A− ¼ 0 because that would trivialize the dynamics (if Aþ ¼
A− ¼ 0 then PS ¼ 0). But we cannot assume A− ≠ 0 for
the entire interior either, because the metric would then
develop a singularity, or a “piercing”-like defect (see [5]).
We have then to assume that there is some other matter
inside the shell, whose expansion compensates A− and puts
the effective value of the integration constant A at the origin
to zero. A realistic model of such matter could be, for
example, a homogeneous-density star which accretes our

thin shell as an additional layer. The price to pay is that m−
inside the shell cannot be put to zero either; otherwise, we
would be assuming the existence of some kind of matter
with nonzero momentum but vanishing mass energy. We
thus set m− as a free parameter of our model. We will
ignore the dynamics of this conjectured matter near the
origin, and concentrate on the exterior of the shell. The
integration constants mþ and m− are conserved quantities
which characterize our solutions as freely adjustable
parameters of the model. The only thing we assume about
them is their positivity, because they are related to the
Misner-Sharp mass, and its positivity follows from the
dominant energy condition when Aþ ¼ 0 [5].2

B. Phase space

Equation (53), using the isotropic gauge μ ¼ ffiffiffi
σ

p
=r,

becomes

θ ¼ 8π logRSδðAþ − A−Þ þ exact form; ð54Þ

and, recalling Eq. (29), Aþ−A− ¼−1
2
PSRS, we get (mod-

ulo an exact form) θ¼−4πPS logRSδRS−4πRS logRSδPS,
which gives the following canonical symplectic form,

ω ¼ δθ ¼ 4πδPS ∧ δRS; ð55Þ

so, in this gauge, PS and RS are canonically conjugate.

C. Exact solution of the constraints

So we set Aþ ¼ 0. Then in the region outside the shell,
we can use “isotropic” coordinates, μ2 ¼ σ

r2, so that the
metric outside is conformal to the Euclidean metric:

ds2 ¼ μ2½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�: ð56Þ

Using this gauge, Eq. (9) can be treated as a differential
equation for σ,

ðσ0Þ2
A2
þ
σ − 8mþ

ffiffiffi
σ

p þ 4σ
¼ σ

r2
; ð57Þ

and, using Aþ ¼ 0, we can integrate this equation as

�
2

ffiffiffi
σ

p
− 2mþ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ − 2mþ

ffiffiffi
σ

pp
2mþkþ

�2

¼
�

r
2mþ

��1

; ð58Þ

where kþ is a positive integration constant. Solving for σ,

σ ¼ m2þ
4

� ffiffiffiffiffiffi
kþ

p �
r

2mþ

��1
2 þ 1ffiffiffi

k
p

þ

�
2mþ
r

��1
2

�
4

; ð59Þ

2Although the condition is borrowed from the spacetime
picture, it should be valid in the appropriate limits.
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an explicit calculation immediately shows that the above
expression is identical whichever sign we choose (modulo a
transformation kþ → 1=kþ), so we can write

σ ¼ m2þ
4

��
kþr
2mþ

�1
2 þ

�
2mþ
kþr

�1
2

�
4

: ð60Þ

The minimum of σ is always 4m2þ, which is where
ffiffiffi
σ

p
=mþ

reaches the only zero of the polynomial Pð ffiffiffi
σ

p
=mþÞ. This

minimum is at the coordinate radius r ¼ 2mþ=kþ. The
integration constant kþ has the only role of rescaling the
coordinate r by a constant factor, and it is therefore an
effect of a residual radial diffeomorphism redundancy.
We can fix this redundancy by imposing σ →r→∞r

2, which
means kþ ¼ 4.

D. Solution of the jump conditions

The solution (60) is valid outside of the shell. Inside the
shell, σ will be different, because A− ≠ 0. However, in this
region we cannot analytically solve Eq. (9) in isotropic
gauge. Whatever the solution turns out to be, it will depend
on one integration constant k−. We need to satisfy two
conditions, Eq. (43), imposing the continuity of μ (which,
because we are working in isotropic gauge, implies also the
continuity of σ), and Eq. (44). The two equations depend on
the left- and right- derivatives of σ at the shell, κ and γ,
which are in turn determined by the two integration
constants k− and kþ. We can assume that k− has been
solved by one of the two equations (43) and (44), and the
other independent condition will be Eq. (48), which, after
imposing Aþ ¼ 0 and A− ¼ 1

2
RSPS (valid in isotropic

gauge), is

�
−4ðmþ þm−Þρþ 4ρ2 −

1

8
M2

S

�
2

¼ ð4ρ2 − 8mþρÞ
�
R2
SP

2
S

4ρ2
− 8m−ρþ 4ρ2

�
: ð61Þ

The equation above depends on RS through ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
σðRSÞ

p
.

To further reduce the number of parameters, we express
everything in units of mþ,

RS ¼ mþR; PS ¼ mþP;

m− ¼ mþα; MS ¼ mþM; ð62Þ

then Eq. (61) becomes

M4

64
þ ð2Rþ 1Þ4

R2

�
ðα − 1Þ2 −M2

ð4R2 − 4αRþ 1Þ
16ð2Rþ 1Þ2

�

¼ ð1 − 2RÞ2R2

ð2Rþ 1Þ2 P2: ð63Þ

In Fig. 1, we plot the on-shell curves P vs R, for any
possible choice of rest massM and for a set of choices of α.
Notice that the constant α, on physical grounds, should be
smaller than one (and larger than zero), as the ADM mass
inside the shell should be smaller than outside.
We conclude this section with an analysis of the

Hamiltonian vector flow in reduced phase space
ðRS; PSÞ. Consider Eq. (61) as a condition on mþ: if we
take into account the definition of ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

σðRSÞ
p

, it turns
into an eight-order equation for mþ. Let us write it as
Fðmþ; RS; PS;M;m−Þ ¼ 0. Its solution gives the ADM
energy mþ as a function of the dynamical variables RS and
PS (as well as the constant parameters m− and M). This is
the Hamiltonian generator of evolution in maximal-slicing
time. If all we are interested in are the equations of
motion of RS and PS in this time variable, we can avoid
having to explicitly solve F ¼ 0. We can instead differ-
entiate F with respect to all of the dynamical variables,
∂F
∂mþ

dmþ þ ∂F
∂RS

dRS þ ∂F
∂PS

dPS ¼ 0, which implies that
∂mþ∂RS

¼ − ∂F
∂RS

= ∂F
∂mþ

j
F¼0

and ∂mþ∂PS
¼− ∂F

∂PS
= ∂F
∂Pþ

j
F¼0

. Then the

Hamiltonian equations of motion generated by mþ are

FIG. 1. Plots of the on-shell surface (63) in the space
R ∈ ½0;∞Þ, P ∈ ð−∞;∞Þ, M ∈ ½0;∞Þ, and for certain fixed
values of α ¼ m−=mþ ∈ ½0; 1Þ. The three variables R, P and M
have been compactified by taking their arctan. The red curves
represent the constant-M cross sections, which are on-shell
curves in the phase space R, P. Notice how all the curves
“bounce” on the P ¼ �∞ boundary of phase space at R ¼ 1=2.
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_RS ¼ −
∂F
∂PS

� ∂F
∂Pþ

�
−1
����
F¼0

;

_PS ¼
∂F
∂RS

� ∂F
∂mþ

�
−1
����
F¼0

; ð64Þ

which, before replacing the solution F ¼ 0, are two
perfectly tractable functions of RS, PS, and mþ.
Equation (64) allows us to study the Hamiltonian vector

flow in phase space. In particular, we can check its behavior
at the “throat” RS → mþ=2 without having to solve F ¼ 0.
It turns out that the vector flow vanishes at the throat:

_RS⟶
RS→mþ=2

0; _PS⟶
RS→mþ=2

0: ð65Þ

The limits before are the same irrespective of the direction
they are taken from. so, as expected, in maximal-slicing
time the shell “freezes” at the throat. One can also prove
that it takes an infinite amount of maximal-slicing time for
the shell to reach the throat by explicitly integrating the
vector flow. Maximal-slicing time has no intrinsic physical
meaning: one of the fundamental relational underpinnings
of SD is that time should be abstracted from the change of
physical (i.e., shape) degrees of freedom. In this sense,
maximal slicing time is associated with the change in the
DOFs of a clock far away from the origin.

V. OUTLOOK AND CONCLUSIONS

We are now in a position to give at least partial answers
to the questions we set forth at the beginning. First, does the
“wormhole”-like line element found in [2] emerge from
the gravitational collapse of spherically symmetric matter?
Under the same assumptions of asymptotically flat boun-
dary conditions (i.e., pij → r−2 ⇒ Aþ ¼ 0) at infinity, the
answer is clearly positive. The line element given by the
areal radius (60) outside of the shell when kþ ¼ 4 is
identical to that of Ref. [2], so, as it collapses, the shell
leaves in its wake the wormhole line element.
The “on-shell” relation (63) produces, for any value of

M ¼ MS
mþ

and α ¼ m−
mþ
, a curve in the P-R space, which

reaches the boundary of phase space P → �∞ at R ¼ 1
2
,

that is, RS ¼ mþ
2
. This value of RS coincides with the throat

of the wormhole line element with mass mþ. This result
implies that the collapsing shell does not reach the throat
in a finite maximal-slicing time. This time parameter

coincides with the experienced reading of a clock of an
inertial observer at infinity. The preliminary conclusion is
that the shell ‘freezes’ at the throat and cannot be observed
to cross it. However, as we know, maximal-slicing time can
at best be an infinitely thin layer of York time (the time
parameter of CMC slicings). Whether the shell crosses the
throat or not thus has to be postponed for the study of
gravitational collapse in a cosmological setting (in which
we take into account a cosmological constant, a nonzero
York time and a compact spatial manifold).
If this behavior does arise as a limit of the cosmological

setting, at this point we would offer a tentative interpre-
tation: the ratios of scales in a closed spacetime (total
volume, cosmological constant, and MS mass) may only
allow for a given (nonzero) minimum areal radius (as it
only allows for a maximum one). Thus either the system
undergoes a bounce, or the shape degrees of freedom
around the throat asymptotically (in time) freeze with
respect to other local shape degrees of freedom. In either
case, the dynamical behavior seems to be nonsingular.
For the moment, we can study the on-shell curves of (63)

and observe that they continue past the point R ¼ 1
2
where

they reach the boundary of phase space. The solution
curves fall into two topologically distinct kinds: the closed
and the open ones. The former are closed loops which
touch the boundary of phase space at two points. They
correspond to the cases in which the shell does not have
enough kinetic energy to reach infinity, and recollapses
back. Interestingly, this behavior is observed on both sides
of the throat R ¼ 1

2
, so the shell recollapses also when it is in

the region beyond the throat. The other kind of curves are
the open ones, which reach the asymptotic boundary
R → ∞, and the other asymptotic infinity at R → 0.
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