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The recent detection of gravitational waves indicates that stellar-mass black hole binaries are likely to be a
key population of sources for forthcoming observations. With future upgrades, ground-based detectors could
detect merging black hole binaries out to cosmological distances. Gravitational-wave bursts from high
redshifts (z ≳ 1) can be strongly magnified by gravitational lensing due to intervening galaxies along the line
of sight. In the absence of electromagnetic counterparts, the mergers’ intrinsic mass scale and redshift are
degeneratewith the unknownmagnification factor μ. Hence, stronglymagnified low-mass mergers from high
redshifts appear as higher-mass mergers from lower redshifts. We assess the impact of this degeneracy on the
mass-redshift distribution of observable events for genericmodels of binary black hole formation fromnormal
stellar evolution, Pop III star remnants, or a primordial black hole population. We find that strong
magnification (μ ≳ 3) generally creates a heavy tail of apparently massive mergers in the event distribution
from a given detector. For LIGO and its future upgrades, this tail may dominate the population of intrinsically
massive, but unlensed mergers in binary black hole formation models involving normal stellar evolution
or primordial black holes. Modeling the statistics of lensing magnification can help account for this
magnification bias when testing astrophysical scenarios of black hole binary formation and evolution.
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I. INTRODUCTION

The characteristic gravitational waves emitted during the
inspiral, merger, and ringdown of a pair of black holes (BHs),
long ago predicted by general relativity, were recently
detected at LIGO [1,2]. This discovery conclusively demon-
strates that stellar-mass BH binaries exist, and hints towards a
substantial population of binaries with masses as large as
≃30 M⊙ or beyond [3]. In the near future a newgeneration of
ground-based detectors sensitive to lower strains (and pos-
sibly lower frequencies) will come online [4–7] and extend
our gravitational-wave (GW) reach to redshifts z≳ 1 and
unprecedently vast volumes of the cosmos. These prospects
make such BH mergers one of the most exciting and
important classes of events in all of astrophysics.
Binary mergers are standard sirens that reveal their

luminosity distance on an event-by-event basis [8,9].
The standard mass-redshift degeneracy of GW astronomy
is the statement that the frequency structure of gravitational
waveforms cannot separate intrinsic mass scales and red-
shifts. However, it is commonly assumed that a standard
cosmological model can break this degeneracy and reveal
both these quantities.1

In this work, we emphasize that magnification due to
gravitational lensing restores the mass-redshift degeneracy
for BH merger events. The lensing magnification toward a
given direction on the sky changes the luminosity distance
as compared to the average cosmological value to the same
redshift [10]. Moreover, for high-redshift mergers, there is a
non-negligible chance of strong lensing by intervening
galaxies along the line of sight.
A magnified BH merger produces a physically identical

response in a gravitational-wave detector to an unlensed
merger with a lower intrinsic redshift and larger intrinsic
mass scale, but otherwise identical dimensionless param-
eters (e.g., mass ratio and spin). Thus, lensing biases the
source redshifts and mass scales inferred using an assumed
cosmology, even though it does not alter the waves’
physical frequencies. We can trace this effect back to the
geometric scale-free nature of general relativity, which
implies that the gravitational-wave emission from black
hole systems with different total masses but identical
dimensionless parameters can be rescaled to a common
form due to the absence of a mass scale in the spectrum.
We a priori do not know whether an individual event has

been strongly lensed or not. Even when multiple images are
produced, due to the long time delays associated with
galaxy lenses (of the order of weeks to months), they will
trigger in the detector as separate events. The situation is
different for mergers with identifiable EM counterparts, and
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1We can alternatively accomplish this via electromagnetic
counterparts, but they are typically not expected to accompany
stellar-mass black hole mergers.
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hence redshifts, where only the inferred luminosity distance
is confused.
Several previous works have considered the astrophysi-

cal impact of GW lensing in other contexts. Lensing
induces scatter in the Hubble diagram for standard candles
or standard sirens [11–15], while strong lensing in par-
ticular can leave a tell-tale high-redshift tail in the neutron-
star merger population as would be seen by LIGO [16] and
the proposed Einstein Telescope (ET) [17]. Reference [18]
estimated the chances of obtaining a catalog of strongly
lensed double-compact mergers using the ET, for several
choices of binary masses. Lensing can potentially enable a
statistical constraint of the Hubble parameter H0, and
facilitate the identification of host galaxies and extraction
of source redshifts [19]. In the frequency band of space-
based detectors the gravitational length scale of the lens can
become comparable to the wavelength, and the resulting
diffractive distortions of waveforms might enable better
measurements of the lens parameters [20]. To our knowl-
edge, however, ours is the first study to expressly articulate
the degeneracy caused by the combination of lensing
magnification and the scale-free nature of gravity for BH
mergers at cosmological distances.
We explore the statistical signatures of strongly magni-

fied BH mergers with biased mass and redshift measure-
ments. The relatively small optical depth to strong lensing
suggests that such events are in general an insignificant
population. In particular, the chances that GW150914, the
first event detected, actually comes from a system of
component mass significantly lower than 30 M⊙ and from
a redshift significantly higher than z ¼ 0.9 are tiny given
plausible population models. However, strongly lensed
events can generally not be neglected if a large number
of chirping bursts are detected. We show that lensed events
can alter the shape of the distribution of detected events if
the intrinsic merger rate varies steeply with mass and
redshift, an effect analogous to the strong-magnification-
induced tail in galaxy or quasar luminosity functions [21–
23]. Both the increase in available comoving volume, and
astrophysical effects like the evolution of the star-formation
rate and metallicity, can generically skew the merger rates
for BH binaries at the median mass of a source population
at high redshifts. In particular, if the intrinsic merger rate
has a strong physical cutoff in mass and/or redshift, lensed
high-redshift events may in fact dominate over genuinely
massive mergers at lower redshifts. We demonstrate the
importance of this effect when testing astrophysical models
of BH binary production and evolution against forthcoming
observations.
We structure this paper as follows: In Sec. II, we

demonstrate the mass-redshift-magnification degeneracy
and quantify its size. In Sec. III, we present a model for
the probability distribution of the magnification due to
galaxies embedded in the large-scale structure of our
standard cosmology. In Sec. IV, we derive lensing’s effect

on the distribution of observable events, and then in Sec. V
we study this effect in the context of a number of plausible
astrophysical models of the BH binary population and its
evolution. For each scenario, we discuss the extent to which
lensing magnification complicates the interpretation of
population statistics. We conclude with a discussion of
future directions in Sec. VI, wherein we highlight the
potential of multiple imaging to disentangle the effects of
lensing from intrinsic variation of source populations, and
thus explore the intrinsic merger history of BH binaries.
Throughout this paper we assume a fiducial flat ΛCDM

cosmology with Ωm ¼ 0.27 and h ¼ 0.7. In all sensitivity
calculations, we use GW waveforms that were computed
according to the IMRPhenomC approximant [24]. We use
the definitions of the dimensionless characteristic strains
and noise amplitudes outlined in Ref. [25], and we also
employ rms characteristic strains which are directly related
to the root-mean-square (rms) signal-to-noise averaged
over all orbital inclinations and sky locations [26].

II. LENSING AND PARAMETER DEGENERACY

We adopt the geometrical optics approximation for
lensing, i.e., we assume that the propagating gravitational
waves have wavelengths that are much shorter than the
spatial length scales associated with the intervening lens.2

In this limit, lensing has two effects: deflection of null
geodesics by the lens’ gravitational field, and change of the
cross-sectional area of infinitesimal ray bundles (the latter
effect rescales the energy flux by a magnification factor
μ > 0, as in the case of electromagnetic waves). In
Appendix A, we demonstrate the validity of this approxi-
mation for the lensing of GWs from stellar-mass mergers
by foreground galaxies or clusters.
Let us assume that the background cosmology has a

distance-redshift relation dLðzÞ, where dL is the luminosity
distance. Now consider a binary merger with intrinsic mass
scale M that occurs at redshift z.3 Suppose the intervening
mass distribution lenses the GWs with a magnification
factor μ > 0. The strain amplitude is amplified by a factor
of

ffiffiffi
μ

p
.

If we are ignorant of the lensing magnification, we can
still fit the observed waveform to an inferred mass scale
~M ≠ M and an inferred source redshift ~z ≠ z (with all
dimensionless parameters, e.g., the mass ratio and the spin
parameter, unchanged). Since lensing does not affect
frequencies, and thus the redshifted mass scales of the
waveforms, we have the mass-redshift degeneracy

2The relevant length scale for a lensing potential is the
Schwarzschild length corresponding to the lens mass, not the
lens’s physical extent or Einstein radius [20].

3The mass scale M may be any chosen combination of
the component masses M1 and M2 [e.g., the chirp mass
ðM1M2Þ3=5=ðM1 þM2Þ1=5].
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~Mð1þ ~zÞ ¼ Mð1þ zÞ: ð1Þ

The observed quantity is the characteristic strain hcðfoÞ at
every observed frequency fo. It is given by [27]

hcðfoÞ ¼ ffiffiffi
μ

p
ffiffiffiffiffiffi
2G
c3

r
1þ z
πdLðzÞ

�
dE
dfs

�
1=2

fs¼foð1þzÞ;M
; ð2Þ

where ðdE=dfsÞfs;M is the radiation energy spectrum for a
source with an intrinsic mass scaleM, expressed in terms of
the intrinsic frequency fs ¼ foð1þ zÞ. We then have the
relation

1þ ~z
dLð~zÞ

�
dE
dfs

�
1=2

foð1þ~zÞ; ~M
¼ ffiffiffi

μ
p 1þ z

dLðzÞ
�
dE
dfs

�
1=2

foð1þzÞ;M
: ð3Þ

Since general relativity is a geometrical theory, the
vacuum Einstein equations are invariant under a rescaling
of all masses, along with an accompanying rescaling of the
spatial and temporal scales. This invariance guarantees that

1þ ~z
~M

�
dE
dfs

�
foð1þ~zÞ; ~M

¼ 1þ z
M

�
dE
dfs

�
foð1þzÞ;M

: ð4Þ

By substituting Eqs. (1) and (4) into Eq. (3), we observe
that a magnification μ is equivalent to a rescaling of the
luminosity distance, i.e.,

dLð~zÞ ¼ dLðzÞ= ffiffiffi
μ

p
: ð5Þ

Equations (1) and (5) together characterize the observa-
tional degeneracy between lensed and unlensed mergers.
Note that even though lensing does not physically alter the
wave frequency, it affects our estimation of both the mass
and redshift. This happens because we use the background
cosmology for parameter estimation, while the presence of
a lensing potential along the line of sight effectively alters
the cosmology in that direction.
This degeneracy is irresolvable for BH mergers without

any independent redshift estimates. We can break this
degeneracy for compact stellar mergers, such as those
involving neutron stars, by applying theoretical priors
on the masses or extracting redshifts from their EM
counterparts.
Figure 1 shows the waveforms from an equal-mass BH

binary merger with component massesM1 ¼ M2 ¼ 60 M⊙
at redshift z ¼ 0.5, and another merger with masses

FIG. 1. Illustration of the lensing-induced degeneracy. Top: The
solid and dashed thick black curves show the rms characteristic
strains for high- and low-mass mergers, respectively. These are
perfectly degenerate if the latter is magnified by a factor μ ¼ 10.
Also shown are the noise amplitudes for three stages of the LIGO
detectors [current (red), design (blue), and ultimate (green)] and
for the proposed Einstein Telescope (orange). Bottom: Wave-
forms corresponding to the two chosen mergers. If the lower-
mass merger (dashed) were magnified by a factor of μ ¼ 10, the
two waveforms would overlap.

FIG. 2. Top: Mapping between the intrinsic redshift z and
inferred redshift ~z for our fiducial cosmology. We show contours
of constant magnification μ (red solid lines) and constant ratio of
inferred and intrinsic masses ~M=M (blue dashed lines). Bottom:
The same plot with scales chosen to emphasize low redshifts.
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M1 ¼ M2 ¼ 76 M⊙ at redshift z ¼ 0.18. The characteristic
strainwaveforms are perfectly degenerate if the high-redshift
merger has a magnification of μ ¼ 10. The figure also shows
noise amplitudes for four different detectors as benchmarks:
(1) current LIGO (“current”) (2) LIGO at its design sensi-
tivity (“design”) (3) an optimal upgrade of LIGO using
accessible technologies (“ultimate”) [28], and (4) the pro-
posed ET (“einstein”) at its design capability [29].
Figure 2 illustrates the mapping between intrinsic and

inferred parameters as a function of the magnification. As
one example, the gravitational-wave event GW150914 [1]
could (in principle) be due to a BH pair with masses
≃15 M⊙ instead of ≃30 M⊙, if the merger occurred at
redshift z≃ 1.2 (instead of z≃ 0.1) and was magnified
by μ≃ 300. For low-redshift mergers, the error in the
estimated intrinsic masses is insignificant except for incon-
ceivably large magnifications. The situation changes at
high redshifts, where large but plausible magnification
factors [μ ∼Oð10Þ] can result in order-unity error in the
estimated intrinsic masses. For instance, an equal-mass
merger with component masses ≃15 M⊙ that occurs at
z≃ 4 can appear as a massive merger (masses ≃30 M⊙)
from z≃ 1.3, if it is magnified by a factor of μ≃ 10.
For a given detectorD, a GWevent magnified by a factor

of μ has a matched-filtering signal-to-noise ratio (SNR)

SDðM; z; μÞ≡ SDð ~M; ~zÞ ¼ ffiffiffi
μ

p
SDðM; zÞ; ð6Þ

where SDðM; zÞ is the SNR without lensing. We assume
that events with SNR lower than some threshold value
are not detected. Throughout, we use the conventional
threshold value for a single detector S0 ¼ 8 [25,30]. Hence,
another effect of large magnifications is to push undetect-
able or marginally detectable mergers above the (fixed)
detection threshold. Equation (6) implies that lensing
magnification extends a given detector’s redshift reach.
Figure 3 demonstrates this effect for several detectors.
To simplify our discussion, we only consider equal-mass
mergers, and always compute signal-to-noise ratios aver-
aged over all orbital orientations. Note also that if a massive
merger occurs at a sufficiently high redshift, the signal
tends to redshift out of the detectors’ frequency band.
This adversely impacts detectability, as illustrated by the
turnover of the threshold curves toward high masses.

III. MAGNIFICATION PROBABILITY

We can model compact binary mergers as point sources
to an excellent degree of accuracy. If we assume a uniform
distribution of binary mergers on the source plane at a
source redshift z, a random merger has a probability

dP ¼ dPðμ; zÞ
d ln μ

d ln μ ð7Þ

of being magnified by a factor close to μ, where the factor
multiplying d ln μ on the rhs is a probability density
function (PDF). This satisfies the usual normalization
condition when integrated over all possible values of μ.
To a very good approximation, the mean magnification is
unity; i.e., the total solid angle is conserved [31,32].
Mathematically,

hμi≡
Z þ∞

0

d ln μ
dPðμ; zÞ
d ln μ

μ ¼ 1: ð8Þ

The PDF in the weak-lensing regime has been studied by
Refs. [33–36]. Those do not include strong lensing
by isolated virialized clumps, which is responsible for
significantly biasing the mass and distance estimates.
Previous studies used ray-tracing through simulated large-

scale structure to study the full magnification PDF covering
both the weak- and strong-lensing regimes. The results
exhibit an asymptotic power-law tail at large magnifications,
i.e., dP=dμ ∼ μ−3. This tail is a generic feature of the
point source being located near the fold caustics of a single
lens plane [10]. Moreover, the tail’s amplitude grows rapidly
with source redshift [37,38]. The stellar component located
in galactic cores can also greatly enhance the strong-
magnification probability when compared to the case of
dark-matter-only halos [39]. The resolution of these studies
does not permit the inclusion of microlensing by stars.
However, we anticipate that microlensing is unimportant
for GW magnification since the relevant wavelengths are

FIG. 3. Effect of magnification on the detection limit
(SNR ¼ 8) for equal-mass BH mergers as a function of the
intrinsic component mass M and intrinsic source redshift z. For
LIGO, we study three sensitivities: current (red), design (blue),
and ultimate (green). We also show the possible detection limit
for the proposed Einstein Telescope: einstein (orange). For each
detector, we show results for three values of the magnification:
μ ¼ 1 (solid), μ ¼ 3 (dashed), and μ ¼ 10 (dotted). The cyan dot
shows the parameters for GW150914.
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larger than typical stellar Schwarzschild radii [20]. In any
case, galaxy lenses’ contribution to the strong-lensing optical
depth dominates that of stellar microlenses for sources at
cosmological distances.
Instead of performing ray-tracing simulations, we pro-

vide a recipe to fit the source magnification PDF (Fig. 4),
which allows for efficient computation. Appendix B details
our fitting formula, which fits the weak-lensing part around
μ ¼ 1 to Fig. 7 of Ref. [38] for each source redshift z, and
matches the high-magnification tail onto the optical depth
for μ > 10 from Fig. 2 of Ref. [39] (the latter includes the
contribution of stellar mass.). Our method leads to higher
probability for strong lensing μ > 2 than Ref. [38] (a few
times increase for z > 2 and even larger for z < 2).
However, it is unlikely to be a significant overestimation
of the reality, as the large-μ tail is calibrated to the baryonic
enhancement found by Ref. [39].
It should not be taken for granted that our fit gives the

true lensing rate with high accuracy for all magnifications.
While our fit tracks the power-law tail and precisely
reproduces the μ > 10 optical depth of Ref. [39], it differs
from the numerical results of Ref. [38] at the 40% level in
the weak-lensing regime, i.e., 0.9 < μ < 1.1 for z > 2, and
has even larger uncertainties at lower source redshifts.
Besides, our fit can overestimate the probability in the
highly demagnified part of the distribution. Nevertheless,
since appreciable biases in the mass and redshift estimates
arise only due to large magnifications, i.e., μ≳ 3 (see
Fig. 2), uncertainties in the weak-lensing magnification do
not impact our main conclusions. We note that our formula
is properly normalized, and self-consistently satisfies
Eq. (8). As a check, we also fit the large-magnification
tails to the results of Ref. [38], which are systematically
lower than those of Ref. [39] due to their neglect of the
stellar contribution, and found that our major results were

indistinguishable from those obtained by directly applying
the numerical PDFs of Ref. [38].
Extremely large magnification factors arise when the

source approaches a caustic of the lens mapping, where it
produces a close pair of images (the magnification is
formally divergent at the caustic). At such locations, the
effects of diffraction smear out the lens mapping [40] and
terminate the power-law tail in the magnification PDF.
Appendix A shows that this truncation occurs at μ≳ 103.
Given the minuscule probability for such high values, we
can safely ignore this effect in the rest of our calculations.

IV. STATISTICAL EFFECTS OF LENSING

Astrophysical models of stellar binary evolution predict
the differential rate density d2nðM; zÞ=ðdMdtsÞ, namely the
BH-BH merger rate per unit comoving volume and unit
proper time ts at redshift z and at an intrinsic mass scaleM.4

We briefly outline the procedure to convert this rate density
into an observed one, and study the impact of lensing and
detector sensitivity.
First, let us ignore the effects of lensing. A GW detector

detects mergers from any redshift z along its past light cone,
measured with respect to its local proper time t. Proper time
intervals at the detector and source redshifts are related by
dt ¼ ð1þ zÞdts. We use the expression for the comoving
volume in a flat ΛCDM cosmology to obtain an observed
differential rate

d3NðM; zÞ
dMdzdt

¼ d2nðM; zÞ
dMdts

4πcχ2ðzÞ
ð1þ zÞH0EðzÞ

; ð9Þ

where c is the speed of light, χðzÞ is the comoving distance
out to redshift z, and EðzÞ is the Hubble expansion rate at
redshift z in units of the current value,H0. For a flat ΛCDM
cosmology

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ 1 − Ωm

q
and ð10Þ

χðzÞ ¼ c
H0

Z
z

0

dz0

Eðz0Þ : ð11Þ

In a homogenous cosmology, the comoving distance χðzÞ
is related to the luminosity distance dLðzÞ by χðzÞ ¼
dLðzÞ=ð1þ zÞ. The factor of 4πcχ2ðzÞ=ðð1þ zÞH0EðzÞÞ
in Eq. (9) is an effective comoving volume per unit redshift
interval, which connects the intrinsic and observed rate
densities.5 With increasing source redshift z, a larger
comoving distance permits access to a greater volume;

FIG. 4. Magnification probability distribution dP=d ln μ pro-
duced by parametric fit Eq. (B1). Point source is assumed. From
bottom to top, respectively, we show a number of representative
source redshifts z ¼ 1, 2, 3, 10. PDFs measured by Ref. [38] from
dark-matter-only simulation are over-plotted in dashed curves,
compared to which our fit accounts for enhancement of strong
lensing by baryonic components according to Ref. [39].

4We primarily discuss BH-BH binary mergers within the band
of ground-based detectors. For simplicity, we only consider
equal-mass mergers with M being the mass of either binary
component. Note that extreme values of mass ratio degrade the
signal-to-noise ratio.

5This is related to the comoving volume element of Ref. [41],
with an extra factor accounting for the change in proper time.
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on the other hand, redshifting of the source-frame rate ∝
ð1þ zÞ−1 decreases the effective volume per unit proper
time at the observer. As Fig. 5 shows, the net result is that a
major fraction of the observed events within the horizon
would occur around z ∼ 1�2 in the absence of any intrinsic
redshift evolution, with a total available effective comoving
volume of a few hundred cubic gigaparsec.
Let us now add a finite probability for large lensing

magnification. As we discussed in Sec. II, we cannot access
the mergers’ intrinsic parameters, and therefore the direct
observable is the differential rate with respect to the inferred
quantities ~M and ~z,

d3Nð ~M; ~zÞ
d ~Md~zdt

¼
Z

d ln μ
dPðμ; zÞ
d ln μ

×
d3NðM; zÞ
dMdzdt

���� ∂ðM; zÞ
∂ð ~M; ~zÞ

����
μ

: ð12Þ

The conversion between the intrinsic and extrinsic param-
eters leads to a factor of the Jacobian of the map defined by
Eqs. (1) and (5), which evaluates to���� ∂ðM; zÞ

∂ð ~M; ~zÞ

����
μ

¼ ð1þ ~zÞd0Lð~zÞ
ð1þ zÞd0LðzÞ

dLðzÞ
dLð~zÞ

; ð13Þ

where the primes indicate differentiation with respect to the
arguments.
We can compute a cumulative event rate by integrating

Eq. (12) further over redshift ~z and mass ~M. For a detector/
detector-network D, the observed cumulative rate for BHs
that appear heavier than Mmin is

dND

dt
ð ~M > MminÞ ¼

Z þ∞

Mmin

d ~M
Z

d~zΘðSDð ~M; ~zÞ − S0Þ

×
Z

d ln μ
dPðμ; zÞ
d ln μ

d3NðM; zÞ
dMdzdt

×

���� ∂ðM; zÞ
∂ð ~M; ~zÞ

����
μ

: ð14Þ

Note that the above equation includes a detectability cut
through its requirement that the signal-to-noise ratio
SDð ~M; ~zÞ exceeds a threshold S0. This form has the
advantage that the detector-specific SNR SDð ~M; ~zÞ is
disentangled from the intrinsic merger rate and the mag-
nification PDF, since it only depends on the inferred
parameters ~M and ~z. A practical consequence is that while
different detectors probe different areas in the ð ~M; ~zÞ-plane,
the lensed fraction of any given ð ~M; ~zÞ bin is independent
of the detector.
The above formalism is applicable to any general

differential rate density of BH-BH mergers, d2nðM; zÞ=
ðdMdtsÞ. Given our sparse knowledge of this quantity, we
do not attempt to suggest a precise rate that corresponds to
reality. Rather, our strategy is to survey a variety of
possibilities with qualitatively different behaviors, and to
identify in each case the possible effects of lensing
magnification on the observed differential rate.
Before we consider specific models of the rate density in

the literature, we will demonstrate some features of the
cumulative rate in Eq. (14), both generally and within a toy
model for the evolution of the merger rate that we tune to
emphasize the effects of lensing.
Consider a case where the intrinsic rate d2nðM; zÞ=

dMdts varies mildly with redshift, but is sharply cut off
beyond a certain mass Mmax. Mergers with higher masses,
~M > Mmax, can still show up due to strong lensing.
Suppose we can approximate the luminosity distance by
a power law dLðzÞ ∝ ð1þ zÞγ (valid at cosmological red-
shifts). The observed differential rate for heavy mergers,
i.e., those with ~M > Mmax, is roughly

d2N

d ~Mdts
∼
Z

d ln μ
dPðμ; zÞ
d ln μ

d3N
dMdzdt

���� ∂ðM; zÞ
∂ð ~M; ~zÞ

����
μ

: ð15Þ

Suppose further that the relevant magnifications are large
enough that dP=d ln μ ∝ μ−2. The Jacobian factor may be
simply approximated as M= ~M at fixed μ,

ðM= ~MÞμ ∼
1þ ~z
1þ z

∼
�
dLð~zÞ
dLðzÞ

�
1=γ

∼ μ−1=ð2γÞ: ð16Þ

Therefore, the observed differential rate scales as

d2N

d ~Mdts
∝ μ−2−1=ð2γÞ ∝ ðM= ~MÞ4γþ1: ð17Þ

In the above estimate, we substitute for M the maximum
mass where the intrinsic rate cuts off. This crude estimate
suggests a power-law tail of apparently massive events with
an index 4γ þ 1. For redshifts in the range 3 < z < 8, the
power-law exponent of the luminosity distance is γ ≈ 1.5,
and hence the cumulative count dNð> ~MÞ=dt decays

FIG. 5. The redshift distribution of effective comoving volume
dVeffðzÞ=dz ¼ 4πcχ2ðzÞ=ðð1þ zÞH0EðzÞÞ for the fiducial
ΛCDM cosmology.
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as ~M−6. In any practical scenario, the intrinsic merger rate is
redshift dependent and the detectors have a threshold
sensitivity. Therefore the observed differential rate departs
from the simple power law that we derived above.
We now consider a toy model within which we relax the

above simplifying assumptions. In this model, a copious
number of stellar-mass BH binaries merge efficiently
enough at high redshifts so that the majority of their mass
is in single BHs by z≃ 2. At lower redshifts, the merger
rates are low enough that current ground-based detectors do
not see a significant number of unlensed events.
We express the intrinsic differential merger rate

density as

d2nðM; zÞ
dMdts

¼ dnðzÞ
dts

dPðM; zÞ
dM

; ð18Þ

where dnðzÞ=dts is the normalization, and dPðM; zÞ=dM is
the probability distribution for the merger mass M at
redshift z. We assume that the normalization starts out at
a large value at z ¼ 20, and remains constant up to
z ≈ zend ¼ 2.3, when merger activity dies off gradually
over a half-width of Δz ∼ 0.4. We use the form

dnðzÞ
dts

¼
�
dn
dts

�
0

1

2

�
1þ tanh

�
z − zend
Δz

��
: ð19Þ

We choose an initial normalization ðdn=dtsÞ0 ¼
100 Gpc−3 yr−1.
The probability distribution function dPðM; zÞ=dM is

more complicated. We initialize it to a log-normal distri-
bution with a peak at M ¼ 12 M⊙, and a width ∼6 M⊙
at z ¼ 20 (this translates into a small mass fraction
ΩBH ≃ 3 × 10−8 residing in initial BHs). We use a merger
tree to model the distribution’s evolution through a series
of hierarchical mergers; i.e., we randomly and repeatedly
replace two existing BHs with one new BH (with the
appropriate mass).6 In general, the merging BHs have
unequal masses, but the mass-ratio distribution does not
have significant weight at extremely small values (say,
M<=M> ≲ 0.1). We simplify our analysis by assuming
equal-mass mergers with either component containing half
the total mass. We do not model the inspiral time scale per
merger, but rather assume that the overall merger rate is
statistically given by Eq. (19). Note that such a hierarchical
merger history is typical of scenarios of Pop III remnants
[42,43], where BHs concentrate in the cores of galaxies
due to assembly or dynamical friction.
We find that the resulting PDF for merger masses can

be well fit by a log-normal distribution that shifts toward
larger masses with decreasing redshift, i.e.,

dPðM; zÞ
dM

¼ 1ffiffiffiffiffiffi
2π

p
σðzÞM exp

�
−
½lnðM=MðzÞÞ�2

2σ2ðzÞ
�
; ð20Þ

with σðzÞ and MðzÞ measured from the simulated hierar-
chical merger tree. The upper and lower panels in Fig. 6
show the redshift distribution of all BH mergers on the
observer’s past light cone (i.e., all mergers detectable by a
perfectly noiseless detector) and the normalization of the
rate density, respectively.
We next incorporate a detector sensitivity and the

lensing magnification of Sec. III. As we discussed after
Eq. (14), these inputs pick out the range of observable
intrinsic merger parameters. Figure 7 shows the results
for the detectors that we considered in Sec. II. The
results show that when the detector has a poor redshift
reach (such as current LIGO), only highly magnified
early mergers are detectable. The number of observed
events rises quickly with any improvement to the
detector sensitivity (Fig. 7). As a consequence of the
parameter degeneracy that we highlighted in Sec. II,
these mergers would be misinterpreted as heavy sys-
tems from the recent Universe (Fig. 8). Even though
this model is purely illustrative, it suggests that if
LIGO or its upgrades observe a profusion of high-mass
mergers (M ≳ 40 M⊙) and a dearth of low-mass ones
(M ≲ 20 M⊙), it could be explained by hierarchical
merger activity starting from low-mass seeds
(M ≃ 10 M⊙) at very high redshift and ending around
z ∼ 1–2.

FIG. 6. (Physical) redshift distribution (normalized) of all BH-
BH mergers on the observer’s past light cone (upper panel), and
the redshift evolution of the source-frame merger rate density
(lower panel), for the illustrative model of high-z mergers we
consider in Sec. IV.

6Note that late-time mergers involve very massive BHs,
and hence are out of the frequency band of ground-based
observatories.
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V. ASTROPHYSICAL MODELS OF THE BLACK
HOLE BINARY POPULATION

In this section, we use the methods of Sec. IV to study
the population of lensed BH mergers in several channels of
binary BH production that have been proposed in the
literature. The exact form of the populations in various
channels differ, but when compared to our toy model, all
the channels tend to produce a substantial number of
mergers in LIGO’s band without the help of lensing.
Hence, our expectation is that strongly lensed events will
contribute to (and in some cases, even dominate) the tail of
the observed merger mass distribution, rather than comprise
its entirety as in our toy model. This heavy-mass tail would
be analogous to the observed excess of very luminous
quasars compared to theoretical expectations [44].
We consider models with binary black holes that

originate from, respectively, the standard populations of
Population I and II stars (metal-rich and metal-poor stars,
henceforth Pop I and II stars), hypothesized Population III
stars (primordial stars that are extremely metal deficient,
henceforth Pop III stars), and a relic primordial population.

A. Mergers from Pop I and II binaries

Binaries of Pop I and II massive stars evolving in
isolation in low stellar-density environments have been

proposed as progenitors for the majority of stellar BH-BH
mergers in general, and GW150914 in particular (see, e.g.,
Refs. [45,46]; note, however, that no BH heavier than
20 M⊙ has been seen in x-ray binaries with reliable mass
measurements [47,48]). In such scenarios, the binary BH
merger rate at z ¼ 2�5 is larger than the local value due to
(a) the higher star-formation rate and (b) the increased
abundance of massive stars due to the lower metallicity in
star-forming environments.
Typical models predict a rapid decay in the merger mass

function at the high mass end [45,46]. Below we compare
two different models. One is parametrized by intrinsic
differential merger rate densities in the form of a Schechter
distribution

d2nðM; zÞ
dMdts

¼ dnðzÞ
dts

ΘðM −McutÞ
M⋆ðzÞΓð1þ γðzÞÞ

�
M −Mcut

M⋆ðzÞ
�

γðzÞ

× exp

�
−
M −Mcut

M⋆ðzÞ
�
; ð21Þ

whereMcut andM⋆ðzÞ are cutoff and characteristic masses,
respectively. We let the characteristic mass scale M⋆ðzÞ
evolve with redshift as

M⋆ðzÞ ¼ 3 M⊙ðð1þ zÞ=ð1þ 1.5ÞÞ0.5; ð22Þ

FIG. 7. Distribution of true mass M and true redshift z for detectable BH-BH mergers d3N=ðdtd lnMd ln zÞ½yr−1� for the illustrative
model of high-z mergers discussed in Sec. IV. From left to right, unlensed detection thresholds for four different sensitivities are
overplotted with the same color coding as Fig. 3.

FIG. 8. Distribution of inferred mass ~M and inferred redshift ~z for BH-BH mergers d3N=ðdtd ln ~Md ln ~zÞ½yr−1� for the illustrative
model of high-z mergers we consider in Sec. IV. The case with lensing (middle) is compared to the case without lensing (left). The rate
enhancement by lensing is also shown (right). Each of the four detectors considered in Fig. 3 cuts off the region according to the
threshold curves overplotted, with the same color coding adopted as before.
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which givesM⋆=M⊙ ¼ 1.9, 2.7, and 3.6 at z ¼ 0, 1, and 3
respectively. We apply a low-mass cutoff at Mcut ¼ 5 M⊙,
and set the power index to γðzÞ ¼ 6. With these values, the
distribution peaks at M=M⊙ ¼ 18, 24, and 32, with rms
values ΔM=M⊙ ¼ 5, 7, and 10, at z ¼ 0, 1, and 3
respectively. These parameters are reasonably compatible
with the numerical results of Ref. [45], and are consistent
with our intuition that more massive BHs form from
massive stars at high redshifts due to the lower environ-
mental metallicities.
At each redshift, we normalize the rate density dn=dtsðzÞ

to match an earlier study Ref. [45], or the dashed curve of
Fig. S5 of Ref. [46], which predicts a local merger rate
density of ∼36 Gpc−3 yr−1 (compare to the current
LIGO-Virgo constraint 2–53 Gpc−3 yr−1 [49]) and a peak
of merger activity at z ∼ 4–6.
For a second model, we directly use the numerical

output for mass distribution and redshift evolution from
the latest population synthesis simulation [46,50] per-
formed with the STARTRACK code [51,52].7 The new
simulation has improved upon earlier ones by calibrating
to recent observational constraints on the physics of
massive binary evolution (see Ref. [50] for details). In
particular, the new simulation assumes that the masses of

remnant BHs are limited to ∼50 M⊙ according to
improved modeling of the physics involved in pair-
instability pulsation supernovae (PPSN) [53,54] and
pair-instability supernovae (PSN) [55–57], and that these
effects are important in low-metallicity environments
Z < 10%Z⊙.
In reality, an abrupt cutoff in BH mass in such a complex

stochastic process may seem contrived. Scatter in the
remnant BH mass is expected when a progenitor star of
given mass goes supernova. To mimic such scatter we thus
introduce to the simulation data a log-normal random
fluctuation with variance 0.04 dex to all binary masses,
which smoothes the sharp PPSN/PSN cutoff to a plausible
width of ∼10 M⊙ [58]. By manually mitigating the hard
cutoff we are conservative about the relative importance of
the magnification tail at the high-mass end close to the
cutoff threshold. In practice we find this smoothing does
not significantly alter the absolute rate or shape of the high-
mass tail induced by lensing.
The lower panel of Fig. 9 compares the normalization

dnðzÞ=dts as a function of redshift between the earlier
model of Ref. [45] and the latest results of Refs. [46,50].
For the latter, a higher local merger rate density
∼200 Gpc−3 yr−1 is predicted and the peak of merger
activities shifts to z≃ 2.
The top two rows of Fig. 10 show the distribution of

intrinsic masses and redshifts of all detectable mergers for
the two models. As in Fig. 7, all the detected mergers that
lie beyond the threshold are strongly lensed. Figure 11 plots
the distribution in the plane of observed parameters, along
with the ratio between the rates in the cases with and
without lensing for each bin (when interpreting Fig. 11,
note that each detector cuts off the plot at its individual
threshold). We observe from the rightmost plot of Fig. 11
that the lensed fraction can be dominant for high BH
massesM ≳ 60 M⊙. In our first model without PPSN/PSN,
very massive systems exist at high redshifts, and magni-
fication bias is only relevant at intermediate redshifts
0.1 < z < 1. In our second model, ultramassive systems
are forbidden by PPSN/PSN, and magnification bias is
present for a wide range of redshifts. With the aid of
lensing, LIGO is sensitive to a number of early mergers at
z ∼ 2�5, and can thus offer an insight into binary evolution
in the early Universe. Since lensed and unlensed events are
not distinguishable on an event-by-event basis without
electromagnetic counterparts, one may only study the
merger distribution with respect to the inferred parameters
Eq. (12), as shown in Fig. 11.
Figure 12 plots the projection of the distribution

along the observed-mass axis. We see that lensing
induces an “ankle” in the mass distribution at masses
M ≃ 60 M⊙ − 80 M⊙, which would be nontrivial to
explain with a simple merger mass function without
lensing. The effect is most pronounced for LIGO,
which is luminosity limited, but may or may not be

FIG. 9. (Physical) redshift distribution (normalized) of all
BH-BH mergers on the observer’s past light cone (upper panel),
and the redshift evolution of the source-frame merger rate density
(lower panel), for different progenitor scenarios we discuss in
Sec. V: (1) Pop I and II population synthesis from Ref. [45] (blue
solid), (2) population synthesis from Ref. [46,50] (red dashed),
(3) hierarchical coalescence of Pop III remnants (magenta
dotted), and (4) binary mergers from a primordial BH population
(brown dash-dotted).

7For simplicity, we compute the signal-to-noise ratio assuming
equal-mass mergers and taking the component mass to be half of
the binary mass.
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important for the ET. The lensing-induced tail’s number
count is too low to be detectable in a reasonable time
frame with current LIGO’s sensitivity, but are measurable
after a few years of operation at design or ultimate
sensitivities.

B. Mergers from Pop III stars

Pop III stars are a hypothesized generation of massive
and short-lived stars that could have thrived in metal-free
environments around z ∼ 10 [59]. Moreover, it has been
proposed that Pop III stars of masses 25 < M=M⊙ < 140

or M=M⊙ > 260 end their lives in massive BHs [60].
The distribution of these massive BHs is open to specu-
lation, but it is reasonable to expect that a significant
fraction reside in binaries, either due to their parent stars’
distribution [61], or due to their evolution towards the
center of their galactic potential under dynamical friction
and subsequent capture [42]. In this section, we consider
the GW signature due to the hierarchical merger of these
ancient binaries (a process that is reminiscent of our toy
model in Sec. IV). Note that merger scenarios involving
Pop III remnants have also been studied in Refs. [62,63].

FIG. 10. Distribution of true mass M and true redshift z for detectable BH-BH mergers d3N=ðdtd lnMd ln zÞ½yr−1�. From top to
bottom we plot results for models (1)–(4) in the order they are introduced in Fig. 9. From left to right, unlensed detection thresholds for
four different sensitivities are overplotted with the same color coding as Fig. 3.
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The analysis in Ref. [64] fixes the normalization
dnðzÞ=dts using a merger tree simulation that is tuned
to produce the right mass in supermassive BHs, assuming
that Pop III remnant BHs account for some fraction fMBH
of this mass (with the rest contributed by gas accretion). In
the following, we assume fMBH ¼ 0.01, and infer the
intrinsic merger rate density (see lower panel of Fig. 9)

from Ref. [64] for stellar mass seeds (left panel of
Fig. 2 therein). We start with a log-normal distribution
for initial seed masses centered at 15 M⊙, with a
width of 6 M⊙ (as earlier, this corresponds to a BH mass
budget ΩBH ≃ 3 × 10−8). We fit the evolved mass distri-
bution dPðzÞ=dM to a log-normal distribution at each
redshift.

FIG. 11. Distribution of inferred mass ~M and inferred redshift ~z for BH-BH mergers d3N=ðdtd ln ~Md ln ~zÞ½yr−1�. From top to bottom
we plot for models (1)–(4) in the order they are introduced in Fig. 9. The case with lensing (middle) is compared to the case without
lensing (left). Rate enhancement by lensing is also shown (right). Each of the four detectors considered in Fig. 3 cuts off the region
according to the threshold curves overplotted, with the same color coding adopted as before.
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Figure 10 shows that lensing magnification brings a
significant number of mergers from z > 2 (especially early-
stage mergers between low-mass seeds) above the detection
threshold for LIGO and its upgrades. However, these
lensed mergers are buried under a population of detectable
late-stage high-mass mergers from around z ∼ 1�2 (as
shown in Fig. 11). The lensed events dominate only at high
masses ~M > 40 M⊙ at ~z > 5, or at low masses ~M <
40 M⊙ at ~z < 0.2; the event rate is undetectably low in
both ranges. We can also see this in the cumulative mass
distribution in Fig. 12, which decays smoothly toward high
masses M ≳ 100 M⊙ and shows no sign of magnification
bias. This is due to a combination of the log-normal tail of
high-mass mergers at given z and an increase of individual
BH mass on average as hierarchical merging progresses,
which is to be contrasted with the Schechter cutoff and a
suppression of recent high-mass mergers in Sec. VA.
In general, an extended heavy tail in the intrinsic mass
distribution can wash out the strongly lensed contribution.
Note also that the merger activity as predicted in Ref. [64]
finishes late (z ∼ 1). Were this to end earlier, magnification
bias would become more important.

C. Mergers of primordial BHs

A relic population of black holes from the primordial
Universe is a third possibility that has been considered
for the origin of massive BH mergers [65–67]. We evaluate
the GW signal from mergers within this model, but do not
speculate about the origin of the relics. Proposals in the
literature include direct collapse from horizon-scale peaks
in the cosmological density field during radiation domi-
nation [68], or collapse due to the reduction in pressure
support during cosmological phase transitions [69].
The model in Ref. [65] invokes the following assump-

tions: (a) primordial BHs with masses M ≃Oð10Þ ×M⊙
account for a substantial fraction of dark matter in the
present Universe and (b) the BHs form close binaries in
dense, low-velocity minihalo environments via dynamical
capture, and quickly merge within one Hubble time.
Since this process is most efficient in subgalactic mass

dark-matter halos whose comoving abundance does not
significantly evolve after z ∼ 10 in the ΛCDM cosmology,
we can assume a stationary merger rate density dnðzÞ=dts.
Its exact value depends on the mass fraction of primordial
BHs and the efficiency of dynamical capture. To facilitate
comparison with other scenarios, we choose a value of

FIG. 12. Cumulative rate of detectable BH-BH mergers dN=dt with mass scale larger than M per decade of observation, for model
(1)–(4) as introduced in Fig. 9, respectively. The same color coding as Fig. 3 is adopted for different detector sensitivities. We compare
between the lensed distribution (solid), the unlensed distribution (dashed), and strongly lensed events with μ > 3 (dotted).
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20 Gpc−3 yr−1. This is the merger rate visible to a detector
that is limited to a local volume.
Since only a small fraction of primordial BHs form

binaries and merge, the merger mass distribution dPðMÞ=
dM may be assumed to be stationary. Its specific form is
open to speculation: if primordial BHs formed in a narrow
redshift-range, we expect this to be a peaked distribution.
In order to explain GW150914, we consider a log-normal
distribution centered at M0 ¼ 25 M⊙,

PPBHðMÞ ¼ 1ffiffiffiffiffiffi
2π

p
σlnMM

exp
�
−
½lnðM=M0Þ�2

2σ2lnM

�
; ð23Þ

with a width parameter σlnM ¼ 0.18, corresponding to a
small width of ΔM ∼ 10 M⊙. If the width were much
larger, we would expect LIGO to have preferentially
detected mergers more massive than 30 M⊙.
Due to the relatively narrow BH mass distribution, the

lensingmagnification significantly extends the redshift reach
of LIGO and its upgrades (as can be seen in the lower row of
Fig. 10). Figure 11 shows that lensed events dominate the
high-mass end of the inferred mass distribution over a wide
range of inferred redshifts. If the mass distribution were
much wider, the high magnification tail would be washed
out. Note, however, that the total detectable number of high-
mass events is low for even design or ultimate LIGO
sensitivities, as can be seen in Fig. 12. This is due to the
assumption of a constant normalization for the rate with
redshift (as noted earlier, the normalization is fixed to match
the inferred rate from GW150914). In such a scenario, the
ET can measure the lensing-induced tail and probe the
intrinsic BH mass distribution.

VI. DISCUSSION

In this paper we pointed out an intrinsic observational
degeneracy between the masses and redshifts of binary BH
mergers and their lensing magnifications in case that no
electromagnetic counterparts, and hence redshifts, are
available. Even though BH mergers are standard sirens,
this prevents gravitational-wave observers from determin-
ing lensing magnifications on an event-by-event basis.
Traditional astrophysical sources from the high-redshift
universe, such as galaxies, quasars, and supernovae, do not
suffer from this ambiguity because their electromagnetic
spectra contain absolute scales that are set by nongravita-
tional physics.
If we use a standard cosmology for parameter estimation,

the distribution of observed BH mergers in mass and
redshift will differ from the intrinsic distribution. In
particular, apparently high-mass mergers from low red-
shifts may be artifacts of lensing magnification. This effect
is particularly important if BH mergers originate from
standard stellar evolution, or from a low-mass primordial
population.

Due to incompleteness originating from detector thresh-
olds, it is not possible in general to deconvolve the effects
of a given magnification PDF and recover the intrinsic
event distribution. However, given a theoretical model of
the merger mass distribution and its evolution, one can
forward-model the effect of cosmic magnification by
convolving with the appropriate PDF, and compare the
resulting distribution to that of observed events.
In this paper we have focused solely on the observed

distribution, but in general we might be able to identify
strongly lensed events through their multiplicity. Quite
generically, multiple images exist in the regime of strong
magnifications. The typically good angular resolution of
astronomical surveys enables separation of the angular
positions of multiple images on the sky. This is unlikely to
be an option for GW observations, whose angular locali-
zation is too coarse to achieve the arcsecond precision
needed for resolving the multiple images due to galaxy
lenses. Due to the burst nature of the sources and the
excellent temporal resolution of the observations, it is more
likely that we can identify multiple images of mergers
through their mutual time delay. Since multiple images
produced by galaxy lenses are typically separated by time
delays of weeks to months, those that are sufficiently bright
will be detected as separate GW chirps. We expect that we
can identify (with high statistical significance) events
whose arrival directions and reconstructed dimensionless
parameters are consistent, but whose apparent mass scales
and redshifts are related by a consistent magnification ratio.
Even in this case, we cannot uniquely pin down the
absolute source redshift and mass scale due to the unknown
absolute magnification scale. Nevertheless, a sample of
multiply imaged mergers identified in this way could
constrain the properties of strong gravitational lenses,
and conceivably offer a path toward estimating and
correcting for the population of lensed black hole mergers.
We will present a detailed study of some of these prospects
in a forthcoming publication.

ACKNOWLEDGMENTS

We thank John Miller for sharing the noise curve for a
possible ultimate upgrade to LIGO, Tobias Baldauf for
insightful discussions about lensing statistics, and Neil
Cornish and Aaron Zimmerman for very helpful comments
on an earlier version of this manuscript. We are especially
thankful to Krzysztof Belczynski for sharing with us the
results of the latest population synthesis simulation per-
formed with the STARTRACK code. L. D. is supported at the
Institute for Advanced Study by NASA through Einstein
Postdoctoral Fellowship Grant No. PF5-160135 awarded
by the Chandra X-ray Center, which is operated by the
Smithsonian Astrophysical Observatory for NASA under
Contract No. NAS8-03060. T. V. acknowledges support
from the Schmidt Fellowship and the Fund for
Memberships in Natural Sciences at the Institute for

EFFECT OF LENSING MAGNIFICATION ON THE … PHYSICAL REVIEW D 95, 044011 (2017)

044011-13



Advanced Study. K. S. gratefully acknowledges support
from the Friends of the Institute for Advanced Study. The
research of K. S. is supported in part by a Natural Sciences
and Engineering Research Council of Canada (NSERC)
Discovery Grant.

APPENDIX A: WAVE EFFECTS AT HIGH
MAGNIFICATION

In this appendix, we consider the question of whether
geometrical or ray optics describes gravitational lensing of
GWs by galaxy lenses. The approximation breaks down
when distinct rays intersect, which naturally occurs when
sources approach caustics on the source plane [40]. Large
magnifications μ generally occur in this region of param-
eter space. Since the results in the body of the paper
depend on the cross section for strong lensing or large μ,
we need to verify whether geometrical optics holds over
this domain.
Previous studies of lensing of GWs from supermassive

BH binaries have shown that wave effects kick in at
μ≳Oð10Þ where there is significant weight in the mag-
nification PDF, and hence lead to observable effects in the
waveforms (see Refs. [19,20,70]). In this appendix, we will
show that GWs from stellar-mass BH binaries are typically
at higher frequencies and thus are lensed geometrically
over the domain of the magnification PDF.
The usual treatment starts by deriving the diffraction

integral for a scalar-valued wave traversing multiple lens
planes under the paraxial approximation [71]. The
geometrical-optics approximation reduces the diffraction
integral to the lens equation with multiple deflections.
Since our primary aim here is to check the validity of our
magnification PDFs for stellar-mass BH binaries, we adopt
the following simplifying strategy. (a) We know that large
magnifications (μ ≳ 10) typically occur when the source is
close to the fold caustic of a single lens plane (as can
be seen from the asymptotic power law for the PDF
dP=dμ ∼ μ−3 in Figs. 4 and 13). (b) We check for wave
effects in such single-plane lensing, and show that for GWs
from stellar-mass binary black hole, geometrical optics
holds until μ ≳ μmax ≫ 10 (if μmax ≲ 10, we have to
consider multiplane lensing). (c) We then show that the
cumulative probability Pðμ ≳ μmaxÞ ≪ 1.
We follow the derivation in Ref. [10] for wave effects

in single-plane lensing. Under the thin-lens approxima-
tion, the observed amplitude obeys a Fraunhofer diffrac-
tion equation; i.e., it is an integral over the entire lens
plane with each point, x, weighted by a factor
exp ½ifϕðxÞ�. Here, ϕðxÞ is the dimensionless Fermat
potential (scaled time delay), and f is the dimensionless
numerical factor

f ¼ 2πν

c
χðzsÞχðzdÞ

½χðzsÞ − χðzdÞ�
�
ξ0
Dd

�
2

; ðA1Þ

where ν is the observed frequency, ξ0 is a physical length
scale on the lens plane, zs and zd are the source and lens
redshifts, respectively, and χðzÞ is the comoving distance
to redshift z.
For a numerical estimate, we choose ξ0 to be the Einstein

radius for a singular isothermal lens with velocity dispersion
σ2v, which equals 4πðσ2v=c2ÞðχðzsÞ − χðzdÞÞ=χðzsÞ (this is
only for obtaining a numerical estimate; the lenses respon-
sible for the results in Sec. III are not singular isothermal
lenses). Substitution into the above equation yields

f ¼ 32π3ν

c

�
σv
c

�
4 χðzdÞ
χðzsÞ

�
1 −

χðzdÞ
χðzsÞ

�
χðzsÞ

¼ 1.11 × 109 ×

�
χðzdÞ=χðzsÞ½1 − χðzdÞ=χðzsÞ�

0.25

�

×

�
ν

100 Hz

��
σv

161 km s−1

�
4

×

�
χðzsÞ

χðzs ¼ 2Þ ¼ 5.27 Gpc

�
: ðA2Þ

The factor f is numerically large; typically, we can expand
the time delay as a quadratic function around normal image
locations and evaluate aGaussian integral to get the observed
amplitudes. When the source is at a caustic, the quadratic
term vanishes and the magnification is formally infinite. If
the caustic is a fold, the time delay behaves as a cubic
function of image location, and the effective magnification is
corrected to an Airy function along the lensing map’s trivial
direction (see Sec. 7.3 of Ref. [10]). The maximum magni-
fication is

μmax ¼ 4πf1=3
���� ð1−κÞ
T ·ATA ·T

����
1=3

Q2; Q≈0.5357; ðA3Þ

where κ, A, and T are the dimensionless surface-mass
density, Jacobian of the lens map, and tangent to the critical

FIG. 13. Large-μ tail of parametric fit Eq. (B1). From bottom to
top we plot for representative source redshifts z ¼ 1, 2, 3, 10.
Leading approximation for asymptotic behavior using Eq. (B5) is
shown in dashed curves. Higher-order corrections account for the
remaining discrepancies.
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curve, respectively. Substituting in the value of f from
Eq. (A2), we obtain

μmax ¼ 3.74 × 103×

���� ð1 − κÞ
T · ATA · T

����
1=3

×

�
χðzdÞ=χðzsÞ½1 − χðzdÞ=χðzsÞ�

0.25

�
1=3

�
ν

100 Hz

�
1=3

×

�
σv

161 km s−1

�
4=3

�
χðzsÞ

5.27 Gpc

�
1=3

: ðA4Þ

The dimensionless factors are of order unity, except near
cusps, which generically form a small (i.e., measure-zero)
subset of the caustics. Themagnifications quoted in the body
of the paper are well below this limit. In fact, none of the
results from the numerical simulations have statistics in this
regime. Ifweuse our fitting formula fordP=d ln μ [Eq. (B1)],
events above μmax have a cumulative probability of 4 × 10−10

for the highest source redshift we considered (zs ¼ 20).
Thus, essentially all the observable strong-lensing events that
contribute to the degeneracy in themain text are described by
the geometrical approximation.8

We can also easily check that this conclusion is insensitive
to details of the source and lens modeling. From Eq. (A4),
GWs with ν ∼ 10−6 Hz have a threshold μmax of Oð10Þ
(which would result in a measurable rate of lensed events
with wave effects). These GWs would be out of the LIGO
band, and hencewould not be detectable using ground-based
interferometers. The use of the singular isothermal lens
model for numerical estimates is not crucial too—assuming
a different κmodel for galaxy lenseswill not bias theEinstein
radius ξ0 inEq. (A1) bymore than an order ofmagnitude, and
the maximum magnification in Eq. (A3) depends only
sublinearly on ξ0.
An exception to the discussion above is microlensing by

stars, where the Einstein radius ξ0 is small compared to that
of galaxy or cluster lenses (and hence 1≲ μmax ≪
μmax;gal ≃ 3.7 × 103). This can lead to interesting wave
effects in the lensing of GWs from stellar-mass binary
black hole (see Refs. [72,73]), but these effects do not
change the degeneracy that is the subject of this paper.
One last caveat is that the scalar-wave treatment above

neglects nontrivial couplings to background space-time
curvature that are specific to spin-two metric waves, i.e.,
GWs [74]. By the equivalence principle, curvature coupling
describes wavelength-dependent corrections to gravita-
tional-wave propagation of Oð½c=ð2πνRcÞ2�hBÞ, where ν
is the wave frequency, hB is the amplitude of the back-
ground metric fluctuation, and Rc is the spatial scale over
which the background metric varies. As we have seen
above, even in the absence of the curvature coupling,

diffraction corrects ray optics at Oð1=fÞ, where f is the
dimensionless constant in Eq. (A1). The constant f can be
written as f ∼ ð2πν=cÞRg, where Rg is the deflector’s
typical gravitational radius, which is smaller than but at
most equal to Rc. Therefore, diffractive corrections domi-
nate over the effects of curvature coupling, and since the
former are negligible for the GWs of interest, we are
justified in neglecting the latter.

APPENDIX B: FIT FOR THE
MAGNIFICATION PDF

We propose a fit for the source magnification PDF in the
form of a log-normal distribution convolved with a heavy-
tailed kernel

dPðμÞ
d ln μ

¼ Fðμ; t0; λ; δÞ ¼ Aðt0Þ
Z þ∞

0

dt exp

�
λ

tþ t0
− 2t

�

×
1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðln μ − δ − tÞ2

2σ2

�
: ðB1Þ

Weshall focus on the special choice λ ¼ 5, whichweobserve
provides a good fit of the realistic magnification PDF.
Apart from the parameter λ, the function has a couple of
free parameters: σ characterizes the width of the log-normal
distribution, δ is a shift parameter, and t0 controls the
relative size of the heavy tail. We demand that dP=d ln μ≡
Fðμ; t0; λ; δÞ is a properly normalizedprobability distribution
for the magnification factor μ, i.e.,

R
d ln μFðμ; t0; λ; δÞ ¼ 1.

This fixes the normalization factor Aðt0Þ to

Aðt0Þ ¼
�Z þ∞

0

dt exp

�
λ

tþ t0
− 2t

��
−1
: ðB2Þ

The further requirement of unit mean magnification
hμi ¼ R

d ln μμFðμ; t0; λ; δÞ ¼ 1 uniquely fixes the shift
parameter δ in terms of t0 and σ,

e−δ ¼ Aðt0Þ
Z þ∞

0

dt exp

�
λ

tþ t0
− 2t

�
etþσ2

2 : ðB3Þ

We now show that the semianalytical form Eq. (B1) repro-
duces the correct high-magnification tail dP=d lnμ∝ μ−2.
In the limit of large μ, the log-normal function can be
replaced by a narrow Dirac-delta function

1ffiffiffiffiffiffi
2π

p
σ
e−ðln μ−δ−tÞ2=ð2σ2Þ → δDðt − ln μ − δÞ; ðB4Þ

so that the t-integral becomes

8Note that point-source magnifications are regulated by an
integration over the brightness profile for extended sources (we
treat binary black holes as point sources of GWs).
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Fðμ; t0; λ; δÞ → Aðt0Þμ−2 exp
�

λ

ln μþ δþ t0
− 2δ

�

≈ Aðt0Þμ−2eλ= ln μ: ðB5Þ

Numerically, jδj ≪ 1 and t0 ∼Oð1Þ. For sufficiently
large μ, the ln μ dependence is unimportant, and the
distribution asymptotes to a power law ∼μ−2. See Fig. 13
for a comparison with the μ−2 law. Since δ and t0 drop out of
the asymptotic form as long as they are small, t0 can be
uniquelymatched to a strong-lensingoptical depth τðμ > μ0Þ
through

Aðt0Þ ¼ c0=τðμ > μ0Þ; ðB6Þ

where we define the constant c0, which depends
on μ0 as

c0 ¼
Z þ∞

μ0

dμ
μ
exp

�
λ

ln μ
− 2 ln μ

�
: ðB7Þ

We choose the threshold magnification to be μ0 ¼ 10
in order to match the numerical optical depth of
Ref. [39]. This determines t0 as a function of the
source redshift z. We also obtain a smooth fit for σ and
δ as a function of z by matching the weak-lensing
portion to the result of Ref. [38]. In Table I, we list the
numerical values for these parameters for a number of
source redshifts.
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