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We study several aspects of higher-order gravities constructed from general contractions of the Riemann
tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P.
Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation
modes on a maximally symmetric background in the presence of matter and to classify LðRiemannÞ
theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use
this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most
general cubic gravity constructed in a dimension-independent way and which does not propagate the
ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of fðLovelockÞ invariants, plus
the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized
Newton potential and the post-Newtonian parameter γ for general LðRiemannÞ gravities in arbitrary
dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study
the emission and propagation of gravitational radiation from sources for these theories in four dimensions,
providing a generalized formula for the power emitted. Finally, we review Wald’s formalism for general
LðRiemannÞ theories and construct new explicit expressions for the relevant quantities involved. Many
examples illustrate our calculations.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Higher-order gravities have attracted a considerable
amount of attention throughout the last few decades. The
reasons for this interest are manifold. On the one hand,
whatever the right ultraviolet completion of Einstein gravity
might turn out to be, the effective action of the theory is
expected to contain a series of higher-derivative terms
involving different contractions of the Riemann tensor
and its covariant derivatives. This is naturally what happens
in String Theory, which generically predicts the appearance
of infinitely many of these subleading terms.1 correcting the
Einstein-Hilbert (EH) action, e.g., Refs. [1–3].
Higher-curvature extensions of Einstein gravity have been

extensively considered in the context of cosmology. In that
case, thegoal is going beyond the standard Lambda cold dark
matter (Λ-CDM) model, e.g., providing explanations for
late-time accelerated expansion, dark matter, or inflation—
see, e.g., Refs. [4–7] for some reviews on the subject.
In the context of holography [8–10], higher-order

gravities have also played a prominent role. In particular,

they have been used as tools to characterize numerous
properties of strongly coupled conformal field theories
(CFTs), e.g., Refs. [11–19]. In some cases, they have even
been essential in the discovery of new universal results
valid for general CFTs—holographic or not [20–24].
Apart from these more or less well-delimited areas,

another approach entails the identification and study of
concrete classes of higher-order gravities which possess
particularly interesting properties. In some cases, they
mimic defining aspects of Einstein gravity [25–29]. In
others, they improve problematic characteristics of the
theory—e.g., by being renormalizable [30,31]. More gen-
erally, the systematic study of higher-order gravities pro-
vides a deeper understanding of Einstein gravity itself,
since it helps unveil what features of the theory are generic
and which ones are specific.
In this paper, we will explore several aspects of gravity

theories of which the Lagrangian density is an arbitrary
function of the Riemann tensor and the metric, i.e.,

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p
½LðRμνρσ; gαβÞ þ Lmatter�; ð1:1Þ

where we have included an additional term Lmatter to
account for possible additional minimally coupled matter
fields. Throughout the text, we shall refer to the class of
theories defined by (1.1) as LðRiemannÞ gravities. While
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(1.1) does not account for the most general higher-order
gravity conceivable,2 it does incorporate a broad class of
theories exhibiting very different features. Many aspects of
general LðRiemannÞ theories have been previously devel-
oped in several contexts, including black-hole mechanics,
linearized gravity, holography, and cosmology—see, e.g.,
Refs. [41–56] and references therein. We aim to develop
some more here. In particular, we will perform a general
and systematic study of the linearized spectrum of these
theories, which we will use to compute relevant physical
quantities such as the generalized Newtonian potential or
the power radiated by sources. In addition, our classifica-
tion will allow us to characterize some interesting pre-
viously unidentified theories. Finally, we will also study the
Wald formalism for general LðRiemannÞ providing new
explicit formulas for some of the relevant quantities
involved.3

A. Main results

The main results of the paper can be summarized as
follows:

(i) In Sec. II, we start by reviewing the fast-linearization
procedure on maximally symmetric backgrounds
(msb) presented in Ref. [29] and valid for general
theories of the form (1.1) in general dimensions.
This reduces the problem to the evaluation of the
corresponding Lagrangian density on a particular
Riemann tensor—constructed from the metric and
an auxiliary tensor—and the computation of two
trivial derivatives. We use this result to identify the
physical modes propagated by the metric and the
corresponding dynamical equations satisfied by
those modes in the presence of matter in (anti)-de
Sitter and flat space. Finally, we construct an
effective quadratic action from which the general
linearized equations can be derived.

(ii) In Sec. III, we classify all theories of the form (1.1)
according to the properties of their physical modes.
The categories include theories which do not propa-
gate an extra massive graviton but do incorporate
a dynamical scalar; theories in which the extra

graviton is present but the scalar is not; theories
with two massless gravitons and a massive scalar,
including generalized critical gravities, for which the
scalar is absent; and Einstein-like theories, i.e., those
that only propagate a massless graviton.

(iii) In Sec. IV, we use our method to linearize the
equations of motion of all theories contained in (1.1)
up to quartic order in curvature in arbitrary di-
mensions.

(iv) In Sec. V, we explain how to obtain the linearized
equations of a theory defined as a function of
arbitrary curvature invariants starting from the
linearized equations of each invariant. In particular,
we prove that theories constructed as general func-
tions of scalars of which the linear combinations do
not produce massive gravitons are also free of
those modes.

(v) In Sec. VI, we extend the construction of Einsteinian
cubic gravity (ECG) [29] to quartic order. The
resulting theories only propagate a massless graviton
on a msb in general dimensions, and they are defined
in a dimension-independent manner; i.e., the relative
couplings between the different invariants involved
are the same in all dimensions.

(vi) In Sec. VII, we construct the most general dimen-
sion-independent cubic theory of the form (1.1)
which is free of massive gravitons in general
dimensions—without imposing conditions on the
extra scalar mode. This theory, which we call new
ghost-free gravity, includes all the terms appearing
in the ECG action—see (6.1) below—plus all
fðLovelockÞ invariants up to cubic order, plus a
previously unidentified term which reads Y ≡
Rμ

α
ν
βRα

ρ
β
σRρ

μ
σ
ν − 3RμνρσRμρRνσ þ 2Rμ

νRν
ρRρ

μ.
Just like the ECG term, Y is nontrivial in four
dimensions. As opposed to it, this new term does
contribute to the denominator of the scalar mode
mass4 ms.

(vii) In Sec. VIII, we use the results in Secs. II and III to
compute the generalized Newton potential UDðrÞ
and the parametrized post-Newtonian (PPN) param-
eter γðrÞ for a theory of the form (1.1) in general
dimensions. We show that UDðrÞ takes the form of a
combination of generalized Yukawa potentials
which, for general D, we show to be given by
UD;YukawaðrÞ ∼ ðm=rÞD−3

2 KD−3
2
ðrÞ, where KlðxÞ are

modified Bessel functions of the second kind. We
unveil interesting differences with respect to the
four-dimensional case.

(viii) In Sec. IX, we use the results in Secs. II and III to
study the emission and propagation of gravitational

2Indeed, note that we shall not consider terms involving
covariant derivatives of the Riemann tensor here. In fact, even
that case would not encapsulate the most general theory if one
considers the affine connection Γρ

μν to be a dynamical field
independent from the metric—à la Palatini—since that setup
allows for even richer scenarios; see Refs. [32–37] and references
therein. Of course, similar comments apply if we introduce
extra fields besides the metric, as in the case of scalar-tensor
gravities—see, e.g., Refs. [38–40].

3Our conventions throughout the paper are as follows. We use
ð−;þ; � � � ;þÞ signature for the metric and the usual conventions
[57] for the Riemann and Einstein tensors. We set ℏ ¼ c ¼ 1 but
keep the gravitational constant κ ≡ 8πG explicit. Very often we
consider κ

1
D−2 and κ

1
2−D to be the natural length and mass scales,

respectively.

4Recall that none of the terms in the ECG action contributes to
the denominator of ms, which explains why there is no extra
scalar in ECG [29].
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radiation from sources in general four-dimensional
LðRiemannÞ theories. We obtain general formulas
for the radiative components of the different modes
as well as for the total power emitted by a source in
terms of the quadrupole moment and the scalar
radiation. We apply these results to a binary system
in a circular orbit.

(ix) In Sec. X, we give a detailed account of Wald’s
formalism and construct explicit expressions for
the relevant quantities involved for general
LðRiemannÞ theories. New results are obtained
for the symplectic structure ω and the surface
charge δQξ − ξ ·Θ.

(x) Finally, our Appendixes contain many examples
which illustrate the results in Secs. II, III, V,
and X.

II. LINEARIZED EQUATIONS
OF L(Riemann) THEORIES

In this section, we study the linearized equations of
general LðRiemannÞ theories on msb in arbitrary dimen-
sions. The full nonlinear equations of this class of theories
(1.1) read [45]

Eμν ≡ Pμ
σρλRνσρλ −

1

2
gμνL − 2∇α∇βPμαβν ¼

1

2
Tμν; ð2:1Þ

where we defined the object

Pμνσρ ≡
� ∂L
∂Rμνρσ

�
gγδ

and Tμν ≡ −
2ffiffiffiffiffijgjp δð ffiffiffiffiffijgjp

LmatterÞ
δgμν

ð2:2Þ

is the usual matter stress-energy tensor.
Our goal in this section is to review the fast-lineariza-

tion procedure presented in Ref. [29] and explain how it
can be used to characterize the spectrum of these theories,
which we will use in numerous applications throughout
the paper. In the first subsection, we linearize (2.1) up to
the identification of four constants a, b, c, and e. We argue
that those constants can be easily obtained from the
corresponding Lagrangian following some simple steps
that we detail. Then, we show that the general linearized
equations can in fact be written in terms of only three
physical parameters which can be easily obtained from a,
b, c, and e. These are nothing but the effective gravita-
tional constant κeff and the masses of the two extra modes
which appear in the linearized spectrum of generic
LðRiemannÞ theories, m2

g and m2
s . As we show, both in

(anti-)de Sitter and Minkowski backgrounds, the usual
massless graviton is generically accompanied by a mas-
sive ghostlike graviton of mass mg and a scalar mode of
mass ms. In Sec. II C, we obtain the matter-coupled wave
equations satisfied by these modes. We close the section

by constructing a quadratic effective action from which
the linearized equations can be obtained from the variation
of the metric perturbation.

A. Linearization procedure

Let us start giving a detailed account of the fast-
linearization method for general LðRiemannÞ theories
presented in Ref. [29].

1. First-order variations on a general
background metric

Consider a perturbed metric of the form

gμν ¼ ḡμν þ hμν; ð2:3Þ

where hμν ≪ 1 for all μ; ν ¼ 0;…; D − 1 and where ḡμν is
any metric. Our goal is to expand the field equations (2.1)
to linear order in hμν assuming that ḡμν is a solution of the
full nonlinear ones. For this purpose, it is useful to define
the tensor

Cμγσν
σρλη ≡ gσαgρβgλχgηξ

∂Pμγσν

∂Rαβχξ
; ð2:4Þ

where Pμνρσ was defined in (2.2). Now, using the identity
[45] � ∂L

∂gμν
�
Rρσγδ

¼ 2Pμ
ρσγRνρσγ; ð2:5Þ

it is possible to prove that the variations of L and Pμαβν

read, respectively,5

δL ¼ 2δgμνP̄μ
σρλR̄νσρλ þ P̄μσρλδRμσρλ; ð2:7Þ

δPμαβν ¼ 2δgλ½μP̄λ
α�βν þ 2δgρηC̄μαβν

ληστ R̄
λ
ρ
στ

þ C̄μαβν
λρστ ḡ

ληḡργ ḡσκḡτυδRηγστ; ð2:8Þ

where the bars mean evaluation on the background met-
ric ḡμν.

5Observe that throughout the paper we choose fRμνρσ ; gγδg
to be the fundamental variables in L. As explained in
Refs. [45,58], all expressions obtained using these variables
are consistent with alternative elections such as fRμ

νρσ; gαβg or
fRρσ

μνg. In particular, using the identities analogous to (2.5)
obtained in Ref. [45] for the different elections of variables, it
is possible to show that (2.7) and (2.8) are correct independ-
ently of such election. For example, if we choose fRρσ

μνg,
Eqs. (2.7) and (2.8) can be written as

δL ¼ P̄ρλ
μνδR

μν
ρλ ; δPμαβν ¼ 2δgλ½μP̄λ

α�βν þ C̄μαβν
λρστ ḡ

ληḡργδRκυ
ηγ :

ð2:6Þ
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2. Maximally symmetric background

Since we are interested in the linearized version of (2.1)
on an arbitrary msb ðM̄; ḡμνÞ, we will from now on assume
that ḡμν satisfies

R̄μναβ ¼ 2Λḡμ½αḡβ�ν ð2:9Þ

for some constant Λ. Obviously, the explicit expressions
of P̄μαβν and C̄μαβν

σρλη will depend on the particular
Lagrangian L considered. Observe, however, that when
these objects are evaluated on a msb, the resulting
expressions can only contain terms involving combina-
tions of ḡμν, ḡμν, and δνμ. In addition, as it is clear from

(2.2) and (2.4), Pμνρσ and Cαβγδ
μνρσ inherit the symmetries

of the Riemann tensors appearing in their definitions.
This forces P̄μαβν to be given by

P̄μαβν ¼ 2eḡμ½βḡν�α; ð2:10Þ

where the value of the constant e depends on the theory.
Similarly, C̄μαβν

σρλη is fully determined by three tensorial
structures, namely,

C̄σρλη
μαβν ¼ a½δ½σμ δρ�α δ½λβ δη�ν þ δ½λμ δ

η�
α δ

½σ
β δ

ρ�
ν �

þ b½ḡμβḡαν − ḡμνḡαβ�½ḡσλḡρη − ḡσηḡρλ�
þ 4cδ½σðτḡρ�½λδη�ϵÞδτ ½μḡα�½βδϵν�; ð2:11Þ

where the only theory-dependent quantities are in turn
the constants a, b, and c.

3. Background embedding equation

Imposing ḡμν to solve the field equations (2.1) with
Tμν ¼ 0, one finds

L̄ðΛÞ ¼ 4eðD − 1ÞΛ: ð2:12Þ

This is a relation between the background scale Λ defined
in (2.9) and all the possible couplings appearing in the
higher-order Lagrangian LðRiemannÞ. Another equation
relating e and Λ can be obtained using (2.9) and (2.10).
This reads in turn

dL̄ðΛÞ
dΛ

¼ P̄μνρσ2ḡμ½ρḡσ�ν ¼ 2eDðD − 1Þ; ð2:13Þ

which, along with (2.12), produces the nice expression

Λ
dL̄ðΛÞ
dΛ

¼ D
2
L̄ðΛÞ: ð2:14Þ

This is the algebraic equation that needs to be solved
in order to determine the possible vacua of the theory, i.e.,
the allowed values of Λ as functions of the scales and

couplings appearing in LðRiemannÞ.6 Remarkably,
Eq. (2.14) is also valid for theories involving general
covariant derivatives of the Riemann tensor. Indeed,
the most general higher-order gravity can be written
as LðRμνρσ;∇αRμνρσ;∇β∇αRμνρσ;…Þ. Now, maximally
symmetric spaces have a covariantly constant Riemann
tensor, so the derivatives of the Riemann do not have any
effect on the background embedding equation. Therefore,
Eq. (2.14) applies equally in such cases.

4. Linearization procedure

With the information from the previous items, we are
ready to linearize (2.1). The result of a long computation in
which we make use of (2.2)–(2.11) reads

1

2
EL
μν ¼ þ½e − 2ΛðaðD − 1Þ þ cÞ þ ð2aþ cÞ□̄�GL

μν

þ ½aþ 2bþ c�½ḡμν□̄ − ∇̄μ∇̄ν�RL

− Λ½aðD − 3Þ − 2bðD − 1Þ − c�ḡμνRL ¼ 1

4
TL
μν;

ð2:15Þ

where the linearized Einstein and Ricci tensors and the
linearized Ricci scalar read, respectively,7

GL
μν ¼ RL

μν −
1

2
ḡμνRL − ðD − 1ÞΛhμν; ð2:16Þ

RL
μν ¼ ∇̄ðμj∇̄σhσ jνÞ −

1

2
□̄hμν −

1

2
∇̄μ∇̄νhþDΛhμν − Λhḡμν;

ð2:17Þ

RL ¼ ∇̄μ∇̄νhμν − □̄h − ðD − 1ÞΛh: ð2:18Þ

The above equations are quartic in derivatives of the
perturbation for generic higher-derivative theories, as
expected. The problem is hence reduced to the evaluation
of a, b, c, and e for a given theory, something that can be
done using (2.2), (2.4), (2.10), and (2.11). However, this is
a very tedious procedure in general, which involves the
computation of first and second derivatives of LðRiemannÞ
with respect to the Riemann tensor. The method presented
in Ref. [29] allows for an important simplification of this
problem. The procedure has several steps which we
explain now:

6For example, for the Einstein-Hilbert action L ¼ R − 2Λ0,
(2.14) imposes Λ0 ¼ ðD − 1ÞðD − 2ÞΛ=2. For Gauss-
Bonnet with a negative cosmological constant L ¼ Rþ
ðD − 1ÞðD − 2Þ=L2 þ L2λGB=ððD − 3ÞðD − 4ÞÞX4, one finds
the well-known relation −L2Λ ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4λGB
p Þ=ð2λGBÞ; see,

e.g., Ref. [17].
7Here, we use the standard notation h≡ ḡμνhμν. Also, indices

are raised and lowered with ḡμν and ḡμν, respectively.
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(1) Consider an auxiliary symmetric tensor kμν
satisfying

kμμ ¼ χ; kμαkαν ¼ kμν; ð2:19Þ

where χ is an arbitrary integer constant smaller than
D which we will leave undetermined throughout the
calculation. Note that the indices of kμν are raised
and lowered with gμν and gμν, as usual.

(2) Define the following “Riemann tensor”8,

~RμνσρðΛ; αÞ≡ 2Λgμ½σgρ�ν þ 2αkμ½σkρ�ν; ð2:20Þ

where α and Λ are two parameters. Observe that
~RμνσρðΛ;αÞ does not correspond—or more pre-
cisely, it does not need to correspond—to the
Riemann tensor of any actual metric in general,
even though it respects the symmetries of a true
Riemann tensor. An exception occurs when
α ¼ 0, as ~RμνσρðΛ; 0Þ becomes the Riemann tensor
of a msb of curvature Λ associated to a metric
gμν ¼ ḡμν as defined in (2.9).

(3) Evaluate the higher-derivative Lagrangian (1.1)
on ~RμνσρðΛ; αÞ; i.e., replace all Riemann tensors
appearing in LðRiemannÞ by the object defined
in (2.20). This gives rise to a function of Λ
and α,9

LðΛ; αÞ≡ LðRμνρσ ¼ ~RμνρσðΛ;αÞ; gγδÞ: ð2:21Þ

(4) The values of a, b, c, and e can be obtained from the
expressions

∂L
∂α
����
α¼0

¼ 2eχðχ − 1Þ; ð2:22Þ

∂2L
∂α2

����
α¼0

¼ 4χðχ − 1Þðaþ bχðχ − 1Þ þ cðχ − 1ÞÞ;

ð2:23Þ

as can be proven using the chain rule along with
Eqs. (2.2), (2.4), (2.10), and (2.11). Interestingly,
since a, b, c, and e do not depend on χ and they
appear multiplied by factors involving different
combinations of this parameter, we can identify
them unambiguously for any theory by simple
inspection. Once LðΛ; αÞ and its derivatives are
computed, we just need to compare the resulting

expressions with the rhs of (2.22) and (2.23) to
obtain a, b, c, and e.10,11

(5) Replace the values of a, b, c, and e in the general
expression (2.15).

This procedure is obviously simpler than computing
P̄μνρσ and C̄μναβ

ληστ explicitly using their definitions (2.2) and
(2.4). Indeed, the most difficult step is the evaluation of
LðΛ; αÞ, which simply involves trivial contractions of gμν
and kμν for any theory. The function LðΛ; αÞ is a sort of
“prepotential” containing all the information needed for the
linearization of a given higher-derivative theory of the form
(1.1) on a msb.
We will apply this method in various sections of the

paper—e.g., see Sec. IV for the linearization of general
quartic theories and Sec. V for theories constructed as
functions of curvature invariants. Appendix A contains a
detailed application of our linearization procedure to quad-
ratic theories and to a particular Born-Infeld-like theory.
Let us mention that in Refs. [51,52,59], a more refined

method than the naive brute-force linearization of the full
nonlinear equations was also introduced for general
LðRiemannÞ theories. This incorporates decompositions
similar to the ones in (2.10) and (2.11) but still requires the
somewhat tedious explicit evaluation of P̄μνρσ and C̄αβγδ

μνρσ for
each theory considered.
We close this subsection by mentioning that our lineari-

zation method reproduces all the particular cases previously
studied in the literature. These include quadratic gravities
[27,51,59–61], quasitopological gravity [19,62], fðRÞ [23],
and general fðLovelockÞ theories [63].

B. Equivalent quadratic theory

The linearized equations (2.15) of any higher-order
gravity of the form (1.1) characterized by some parameters
a, b, c, and e can always be mapped to those of a quadratic
theory of the form

8The associated “Ricci tensor” and “Ricci scalar” are ~Rμν ¼
ΛðD − 1Þgμν þ αðχ − 1Þkμν and ~R ¼ ΛDðD − 1Þ þ αχðχ − 1Þ,
respectively.

9Note that in this evaluation, indices are still lowered with gμν,
and not with some combination of gμν and kμν.

10Observe that we only need LðΛ; αÞ up to α2 order; i.e.,
from LðΛ;αÞ¼LðΛÞþ ½2χðχ−1Þe�αþ½2χðχ−1Þðaþbχðχ−1Þ
þcðχ−1ÞÞ�α2þOðα3Þ, we can read off the values of all the
relevant constants.

11Equivalently, they can be obtained through direct evaluation
of the following formulas,

e ¼ 1

2χðχ − 1Þ
∂L
∂α
����
α¼0

; a ¼
�

1

4χðχ − 1Þ
∂2L
∂α2

����
α¼0

�����
χ¼1

;

c ¼
�

1

ðχ − 1Þ
�

1

4χðχ − 1Þ
∂2L
∂α2

����
α¼0

− a

������
χ¼0

;

b ¼ 1

χðχ − 1Þ
�

1

4χðχ − 1Þ
∂2L
∂α2

����
α¼0

− a − cðχ − 1Þ
�
;

where jχ¼1 means taking the limit limχ→1 in the corresponding
expression, etc.

ASPECTS OF GENERAL HIGHER-ORDER GRAVITIES PHYSICAL REVIEW D 95, 044010 (2017)

044010-5



Lquadratic ¼ λðR − 2Λ0Þ þ αR2 þ βRμνRμν þ γX4; ð2:24Þ

where X4 ¼ RμνρσRμνρσ − 4RμνRμν þ R2 is the dimension-
ally extended four-dimensional Euler density, also known
as the Gauss-Bonnet term. Indeed, the parameters λ, α, β,
and γ of the equivalent quadratic theory can be obtained in
terms of a, b, c, and e through

λ ¼ 2e − 4Λ½aþ bDðD − 1Þ þ cðD − 1Þ�;
α ¼ 2b − a; β ¼ 4aþ 2c; γ ¼ a: ð2:25Þ

Similarly, the cosmological constant Λ0 can be trivially
related to the parameters appearing in (1.1) through
Λ0 ¼ −LðRμνρσ ¼ 0Þ=ð2λÞ.
Notice that the mapping from (1.1) to (2.24) is surjective

but not injective; i.e., all LðRiemannÞ theories are mapped
to some quadratic theory, but (infinitely) many of them are
mapped to the same one. Observe also that the existence of
this mapping is a consequence of the fact that the linearized
equations of any theory come from its action expanded at
quadratic order in hμν—see Sec. II D. This means that the
most general quadratic theory, namely, (2.24), already

contains all the possible kinds of terms produced in the
action at order Oðh2Þ of any LðRiemannÞ theory. Observe,
however, that the fact that the parameters a, b, c, and e for a
given theory can be related to those appearing in (2.24)
does not immediately help in identifying the values of those
parameters for a given theory. The mapping was explicitly
performed for general cubic theories in Ref. [59].

C. Physical modes

As we just reviewed, EL
μν depends on four constants a, b,

c, and e as well as on the background curvature Λ. For a
given theory, the four constants can be computed using the
procedure explained in Sec. II A, from which one can
obtain the full linearized equations through (2.15). In this
subsection, we will explore how (2.15) can be further
simplified using the gauge freedom of the metric perturba-
tion and used to characterize the additional physical modes
propagated by the metric in a general theory of the
form (1.1).
Let us start with the following observation. If we

parametrize a, b, and c in terms of three new constants
m2

g, m2
s , and κeff as

a ¼ ½4eκeff − 1�=½8ΛðD − 3Þκeff �;
b ¼ ½ð4eκeff − 1ÞðD − 1Þm2

sm2
g þ 2ð3 − 2Dþ 2ðD − 1ÞDeκeffÞm2

gΛ

þðD − 3ÞΛðDm2
s þ 4ðD − 1ÞΛÞ�=½16ΛðD − 3Þκeffm2

gðD − 1Þðm2
s þDΛÞ�;

c ¼ −½ð4eκeff − 1Þm2
g þ ðD − 3ÞΛ�=½4ΛðD − 3Þκeffm2

g�; ð2:26Þ

it is possible to rewrite (2.15) in terms of four different parameters, namely, κeff , m2
s , m2

g, and Λ. Indeed, one finds

EL
μν ¼

1

2κeffm2
g

�
½m2

g þ 2Λ − □̄�GL
μν þ

�ðD − 2Þðm2
g þm2

s þ 2ΛÞ
2ðm2

s þDΛÞ
�
ΛḡμνRL

þ
�ðD − 2Þðm2

g −m2
s − 2ðD − 1ÞΛÞ

2ðD − 1Þðm2
s þDΛÞ

�
½ḡμν□̄ − ∇̄μ∇̄ν�RL

�
¼ 1

2
TL
μν; ð2:27Þ

so the dependence on e disappears, while that on κeff gets
factorized out from all terms. While (2.15) is more useful
when computing the linearized equations of a particular
theory—because we know a simple procedure to obtain a,
b, c, and e—Eq. (2.27) is more illuminating from a
physical point of view. Indeed, as we will see in a moment,
κeff will be the effective Einstein constant12 while m2

g and
m2

s will correspond, respectively, to the squared masses of
additional spin-2 and scalar modes.
It is straightforward to invert the relations (2.26) to

obtain the values of such physical quantities in terms of a,
b, c, and e. One finds

κeff ¼
1

4e − 8ΛðD − 3Þa ; ð2:28Þ

m2
s ¼

eðD − 2Þ − 4Λðaþ bDðD − 1Þ þ cðD − 1ÞÞ
2aþDcþ 4bðD − 1Þ ;

ð2:29Þ

m2
g ¼

−eþ 2ΛðD − 3Þa
2aþ c

: ð2:30Þ

Let us stress that if we consider a theory consisting of a
linear combination of invariants—like the one in (4.2)
below—the values of a, b, c, and e of that theory can be
simply computed as the analogous linear combination of
the parameters for each of those terms. However, that is not

12Equivalently, κeff ≡ 8πGeff where Geff is the effective
Newton constant.
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the case for κeff, m2
s , and m2

g, since they are not linear
combinations of a, b, c, and e. Hence, in order to
determine these quantities for a given linear combination
of invariants, the natural procedure should be obtaining

the total values of a, b, c, and e first and then using
(2.28)–(2.30) to compute the corresponding values of
κeff , m2

s , and m2
g. For example, for a general quadratic

theory of the form

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ þ κ

ð4−DÞ
D−2 ðα1R2 þ α2RμνRμν þ α3RμνρσRμνρσÞ

�
; ð2:31Þ

the values of κeff , mg, and ms read, respectively,

κeff ¼
κ

1þ 4Λκ
2

D−2ðα1DðD − 1Þ þ α2ðD − 1Þ − 2α3ðD − 4ÞÞ ; ð2:32Þ

m2
s ¼

ðD − 2Þ þ 4ðD − 4ÞΛκ 2
D−2ðα1DðD − 1Þ þ α2ðD − 1Þ þ 2α3Þ

2κ
2

D−2ð4α1ðD − 1Þ þ α2Dþ 4α3Þ
; ð2:33Þ

m2
g ¼

−1 − 4Λκ
2

D−2ðα1DðD − 1Þ þ α2ðD − 1Þ − 2α3ðD − 4ÞÞ
2κ

2
D−2ðα2 þ 4α3Þ

; ð2:34Þ

which we obtained using (2.28)–(2.30) and the values of a,
b, c, and e which appear in Table II. During the remainder
of this section, we will write all expressions in terms of κeff ,
m2

s , and m2
g, which will make the presentation clearer.

Nonetheless, all equations can be converted back to the
language of a, b, c, and e using the above relations.
The discussion proceeds slightly differently depending

on whether we consider anti-de Sitter (AdS)/de Sitter (dS)
or Minkowski as the background space-time, so we will
consider the two cases separately. Let us start with the first.

1. (Anti-)de Sitter background

When studying the physical modes propagated by the
metric perturbation on an AdS/dS background, it is

customary and very convenient to work in the transverse
gauge, in which13

∇̄μhμν ¼ ∇̄νh: ð2:35Þ

Imposing this condition, many terms in (2.27) cancel
out. Let us now expand the metric perturbation into its
trace and traceless parts, which we denote by h and hhμνi,
respectively,14

hμν ¼ hhμνi þ
1

D
ḡμνh: ð2:36Þ

Doing the same with the field equations (2.27), we find

EL
hμνi ¼ þ 1

2
TL
hμνi ¼

1

4m2
gκeff

�
½□̄ − 2Λ�½□̄ − 2Λ −m2

g�hhμνi − ∇̄hν∇̄μi□̄h

þ
�
m2

gðm2
s þ 2ðD − 1ÞΛÞ þ Λðð4 − 3DÞm2

s − 4ðD − 1Þ2ΛÞ
ðm2

s þDΛÞ
�
∇̄hν∇̄μih

�
; ð2:37Þ

EL ¼þ 1

2
TL ¼ −

�ðD − 1ÞðD − 2ÞΛðm2
g − ðD − 2ÞΛÞ

4κeffm2
gðm2

s þDΛÞ
�
½□̄ −m2

s �h: ð2:38Þ

The second is the equation of motion of a free scalar field of massms, while the first is an inhomogeneous equation for hhμνi
as it involves also h. In order to obtain an independent equation for the traceless part, we define another traceless tensor,

13The metric decomposition performed in this section is similar to the one considered in Ref. [60].
14In this section, we denote the trace and traceless parts of rank-2 tensors Pμν linear in hμν as P≡ ḡμνPμν and Phμνi ≡ Pμν − 1

D ḡμνP,
respectively. In the case of the equations of motion, one can use the same notation, i.e., EL ≡ ḡμνEL

μν, TL ≡ ḡμνTL
μν—and similarly for the

traceless part—because Ēμν ¼ T̄μν ¼ 0. Observe, however, that RL ¼ ðgμνRμνÞL is not the trace of RL
μν, but rather

RL ¼ ḡμνRL
μν − hμνR̄μν ¼ ḡμνRL

μν − ðD − 1ÞhΛ.
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tμν ≡ hhμνi −
∇̄hμ∇̄νih

ðm2
s þDΛÞ ; ð2:39Þ

where we have implicitly assumed that m2
s ≠ −DΛ. After

some manipulations, it can be seen that tμν satisfies the
equation

1

2κeffm2
g
ð□̄ − 2ΛÞð□̄ − 2Λ −m2

gÞtμν ¼ TL;eff
hμνi ; ð2:40Þ

where we have defined the effective energy-momentum
tensor

TL;eff
hμνi ≡ TL

hμνi þ
½□̄þ ðD − 4ÞΛ −m2

g�∇̄hμ∇̄νiTL

ΛðD − 1ÞðD − 2Þðm2
g − ðD − 2ÞΛÞ :

ð2:41Þ
Now, observe that the object

tðmÞ
μν ≡ −

1

m2
g
ð□̄ − 2Λ −m2

gÞtμν ð2:42Þ

satisfies the equation of the usual massless graviton,
namely,

−ð□̄ − 2ΛÞtðmÞ
μν ¼ 2κeffT

L;eff
hμνi ; ð2:43Þ

but with a nonstandard coupling to matter. On the other
hand, using (2.42) and (2.43), it is easy to see that the tensor

tðMÞ
μν ≡ tμν − tðmÞ

μν ¼ 1

m2
g
ð□̄ − 2ΛÞtμν ð2:44Þ

satisfies instead

ð□̄ − 2Λ −m2
gÞtðMÞ

μν ¼ 2κeffT
L;eff
hμνi : ð2:45Þ

Hence, we identify tðMÞ
μν with a massive traceless spin-2 field

with mass mg. Observe that the coupling to matter of this
mode has the wrong sign, which reflects its ghostlike
behavior. Note that, apart from being a ghost, this mode is
also tachyonic whenever m2

g < 0. The same occurs for the
scalar when m2

s < 0.
In sum, using definitions (2.39), (2.42), and (2.44), we

can decompose the metric perturbation hμν as

hμν ¼ tðmÞ
μν þ tðMÞ

μν þ ∇̄hμ∇̄νih
ðm2

s þDΛÞ þ
1

D
ḡμνh; ð2:46Þ

where h, tðMÞ
μν , and tðmÞ

μν satisfy (2.38), (2.45), and (2.43) and
represent, respectively, a scalar mode of mass ms; a
ghostlike spin-2 mode of mass mg, which we will often
refer to as a “massive graviton” throughout the text; and a
massless graviton.

2. Minkowski background

If we set Λ ¼ 0 in (2.38), this equation would lead us to
conclude that T ¼ 0. This inconsistency is a reflection of
the fact that the transverse gauge cannot be used in flat
space-time. The usual choice is in this case the so-called de
Donder gauge, given by

∂μhμν ¼
1

2
∂νh: ð2:47Þ

In this gauge, the linearized field equations (2.27) in a
Minkowski background can be written as

EL
μν ¼ −

1

4κeff
□̄ĥμν ¼

1

2
TL
μν; ð2:48Þ

where we have defined

ĥμν ≡ hμν −
1

2
ημνh −

1

m2
g

�
□̄hμν −

1

2
∂μ∂νh

�

þ
�
m2

gðD − 2Þ þm2
s

2ðD − 1Þm2
gm2

s

�
½ημν□̄ − ∂μ∂ν�h: ð2:49Þ

Using the gauge condition (2.47), it is easy to see that ĥμν is
transverse, i.e.,

∂μĥ
μν ¼ 0: ð2:50Þ

Naturally, ĥμν is the usual spin-2 massless graviton, as it
satisfies the linearized Einstein equation (2.48). However,
there are more degrees of freedom (dof). In particular, we
find that the metric can be decomposed as

hμν ¼ ĥμν −
1

D − 2
ημνĥþ 1

D − 1
ðm−2

g −m−2
s Þ∂hμ∂νiĥ

þ tμν þ
2

DðD − 2Þ ημνϕþ 1

ðD − 1Þm2
s
∂hμ∂νiϕ;

ð2:51Þ

where tμν is traceless and ϕ is a scalar field. These objects
satisfy the equations

−ð□̄ −m2
sÞϕ ¼ 2κeffTL; ð2:52Þ

ð□̄ −m2
gÞtμν ¼ 2κeff

�
TL
hμνi þ

1

ðD − 1Þm2
g
∂hμ∂νiTL

�
:

ð2:53Þ

Hence, even though we have proceeded in a different way
as compared to the Λ ≠ 0 case, we have found the same
physical modes: we have a massless spin-2 graviton ĥμν, a
massive one tμν, and a scalar ϕ, the masses of the last two

being the same as the ones we found for tðMÞ
μν and h in the (A)
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dS case. Note, however, that, even though the dof and the
masses are the same, the metric decomposition as well as the
coupling of the fields to matter are different—compare
(2.38) and (2.45) with (2.52) and (2.53) and (2.46) with
(2.51). This can be understood as a consequence of the fact
that the gauge which is convenient for (A)dS (2.35) differs
from the de Donder one (2.47) utilized for Minkowski.

D. Quadratic action

As pointed out in Sec. II B, the linearized equations (2.27)
come from terms of order Oðh2Þ in the action, which means
that the structure of the linearized equations for the most
general LðRiemannÞ is already captured by the most general
quadratic theory. Expanding the action of a higher-order
gravity to Oðh2Þ is not trivial in general. However, we can
use the expression for the linearized equations (2.27) to find
an action that yields these equations when varied with
respect to hμν. The easiest possibility is

S2 ¼ −
1

2

Z
M

dDxhμνEL
μν: ð2:54Þ

Using (2.27) and integrating by parts several times, we find
the effective action

S2 ¼
Z
M

dDx
4κeff

×

�ðD − 2Þ½m2
g þ ðD − 2Þðm2

s þ ðD − 1ÞΛÞ�
2ðD − 1Þm2

gðm2
s þDΛÞ ðRLÞ2

−
�
hμν þ 2GLμν

m2
g

�
GL

μν

�
: ð2:55Þ

As pointed out in Ref. [51], where an analogous action was
found, Eq. (2.55) is manifestly invariant under “gauge”
transformations hμν → hμν þ ∇̄μξν þ ∇̄νξμ as follows from
the invariance of the linearized Einstein tensor and Ricci
scalar under such transformations.

III. CLASSIFICATION OF THEORIES

In this section, we will classify all gravity theories of the
form (1.1) according to the properties of their physical
modes. Indeed, depending on the values of the parameters
a, b, c, and e, we will divide them into five classes15:

1) theories without massive gravitons, i.e., those for which
the additional spin-2 mode is absent but the spin-0 one is
dynamical; 2) theories without a dynamical scalar, i.e.,
those for which the additional graviton is dynamical but the
spin-0 mode is absent; 3) theories with two massless
gravitons and a massive scalar, i.e., those for which the
extra graviton is massless—a property which to some
extent cures its problematic behavior; 4) generalized criti-
cal gravities, i.e., those which belong to the previous
category and, in addition, have no additional spin-0 mode;
and, finally, 5) Einstein-like theories, i.e., theories for
which the only mode is the usual massless graviton.16 A
summary of the different cases can be found in Table I, and
various examples of particular theories belonging to each
class are provided in Appendix B. Let us note in passing
that boundary conditions can be sometimes used to remove
spurious modes from the spectrum of certain higher-order
gravities—see Ref. [65]. We shall not discuss this issue
here. Finally, let us also mention that related analyses were
previously performed in the absence of matter in
Refs. [29,51,59].

A. Theories without massive graviton

The ghostlike massive spin-2 mode tðMÞ
μν found in the

previous section can be removed from the linearized
spectrum of the theory by imposing m2

g ¼ þ∞. In terms
of the parameters characterizing a given higher-derivative
theory as described in Sec. II, such a condition will be
satisfied whenever

2aþ c ¼ 0: ð3:1Þ

When this condition holds, the linearized equations (2.27)
become

EL
μν ¼

1

2κeff

�
GL

μν þ
� ðD − 2Þ
2ðD − 1Þðm2

s þDΛÞ
�

× ½ðD − 1ÞΛḡμν þ ḡμν□̄ − ∇̄μ∇̄ν�RL

�
: ð3:2Þ

Observe that (3.1) has the effect of making the □̄GL
μν

term—responsible for the appearance of the extra spin-2
graviton—disappear. As a consequence, even though (3.2)

TABLE I. Classification of theories according to their spectrum on a msb.

m2
g ¼ 0 0 < m2

g < þ∞ m2
g ¼ þ∞

0 ≤ m2
s < þ∞ Massless gravitonsþ scalar General case No massive graviton

m2
s ¼ þ∞ Critical No dynamical scalar Einstein-like

15Or six, if we count the general case in which m2
g is finite and

different from zero, and 0 ≤ m2
s < þ∞.

16In principle, one could also impose more exotic conditions
like κeff ¼ 0, which would remove all propagating modes; see,
e.g., Ref. [64].
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still contains quartic derivatives of hμν, the equations do
become second order when we choose the transverse gauge
∇̄μhμν ¼ ∇̄νh, as it can be immediately checked from (3.2)
using (2.17)—or alternatively from (2.37) taking the limit
m2

g → þ∞ there.
On AdS/dS backgrounds—the extension to Minkowski

is straightforward—Eq. (3.1) imposes tðMÞ
μν ¼ 0, so the

metric decomposition becomes now

hμν ¼ tðmÞ
μν þ ∇̄hμ∇̄νih

ðm2
s þDΛÞ þ

1

D
ḡμνh; ð3:3Þ

where h and tðmÞ
μν still satisfy (2.38) and (2.43), respectively.

Observe that using (2.38) and (3.3) along with the trans-

verse gauge condition (2.35), it is possible to show that tðmÞ
μν

is transverse in the vacuum,

∇̄μtðmÞ
μν ¼ 0: ð3:4Þ

Notice also that after imposing (2.35), we still have some
gauge freedom, because a gauge transformation hμν →

hμν þ 2∇̄ðμξνÞ for any vector ξμ satisfying ∇̄μ∇̄ðμξνÞ ¼
∇̄ν∇̄μξ

μ preserves (2.35). This allows us to impose addi-
tional conditions on hμν. In particular, we can choose

tðmÞ
0μ ¼ tðmÞ

μ0 ¼ 0; ð3:5Þ

so that only the spatial components tðmÞ
ij , i; j ¼ 1;…; D − 1

are nonzero. Then, this tensor has DðD − 1Þ=2 compo-
nents, but we have also

∇̄itðmÞ
ij ¼ 0; ḡijtðmÞ

ij ¼ 0; ð3:6Þ

which follow from (3.4) and the tracelessness of tðmÞ
μν ,

respectively. These are ðD − 1Þ þ 1 ¼ D constraints, so the

number of polarizations of tðmÞ
μν is DðD − 3Þ=2, just like for

the usual Einstein graviton. Of course, the trace h provides
an additional degree of freedom, so these theories propa-
gate ðD − 1ÞðD − 2Þ=2 physical dof in the vacuum.

B. Theories without dynamical scalar

The condition for the absence of the scalar mode is
naturally given by m2

s ¼ þ∞. In terms of the parameters a,
b, c, and e, this reads

2aþDcþ 4bðD − 1Þ ¼ 0: ð3:7Þ

The linearized equations of motion (2.27) become in that
case

EL
μν ¼

1

2κeffm2
g

�
½m2

g þ 2Λ − □̄�GL
μν

þ ðD − 2Þ
2ðD − 1Þ ½ðD − 1ÞΛḡμν − ḡμν□̄þ ∇̄μ∇̄ν�RL

�
:

ð3:8Þ

The metric decomposition simplifies to

hμν ¼ tðmÞ
μν þ tðMÞ

μν þ 1

D
ḡμνh; ð3:9Þ

where the trace of the metric perturbation is simply
determined by the matter stress tensor through the
expression

h ¼ 2κeffm2
g

ðD − 1ÞðD − 2ÞΛðm2
g − ðD − 2ÞΛÞT

L: ð3:10Þ

The massless and massive gravitons satisfy the same
equations as in the general case, i.e., Eqs. (2.43) and
(2.45), respectively.

C. Theories with two massless gravitons

As we saw, tðMÞ
μν is a ghost. In order to remove this

instability, the simplest solution is to consider theories in
which it is absent. Another possibility is to set mg ¼ 0,
namely, impose its mass to be zero like for the usual
graviton. The condition to be satisfied is in this case

−eþ 2ΛðD − 3Þa ¼ 0: ð3:11Þ

From (2.28), we learn that (3.11) also imposes the effective
Einstein constant to diverge, κeff ¼ þ∞. This inconsis-
tency is artificial and comes from a wrong identification of
κeff in this case. In fact, the effective gravitational constant
must be defined now as

κ̂eff ≡m2
gκeff ¼ −

1

4ð2aþ cÞ ; ð3:12Þ

which remains finite when we impose (3.11). Then, the
equation for the trace reads

�ðD − 1ÞðD − 2Þ2Λ2

2κ̂effðm2
s þDΛÞ

�
½□̄ −m2

s �h ¼ TL: ð3:13Þ

On the other hand, we cannot decompose the traceless
perturbation tμν into two independent fields. Instead, it
fulfills the equation

1

2κ̂eff
ð□̄ − 2ΛÞ2tμν ¼ TL;eff

hμνi ; ð3:14Þ

with a metric decomposition given now by
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hμν ¼ tμν þ
∇̄hμ∇̄νih

ðm2
s þDΛÞ þ

1

D
ḡμνh: ð3:15Þ

D. Critical gravities

Critical gravities [27] are theories in which the extra
graviton is massless and, in addition, the scalar mode is
absent, i.e., it satisfiesm2

s ¼ þ∞. As shown in Ref. [27] for

the quadratic case in D ¼ 4, the energies of both tðmÞ
μν and

tðMÞ
μν become zero for this class of theories. We can easily
check this statement from the quadratic action (2.55).
Specifying for the critical gravity case, it reads

S2 ¼
Z
M

dDx
4κ̂eff

�ðD − 2Þ2
2ðD − 1Þ ðR

LÞ2 − 2GLμνGL
μν

�
: ð3:16Þ

Now, in the vacuum, the field equations imply that h ¼ 0,
so that RL ¼ 0, and ð□ − 2ΛÞ2hhμνi ¼ 0. There are sol-
utions, corresponding to the usual massless graviton, which
are annihilated by ð□ − 2ΛÞ, and they have GL

μν ¼ 0.
Therefore, for these solutions, the Lagrangian as well as
its derivatives vanish on shell. In particular, the
Hamiltonian vanishes, since it is constructed from the
Lagrangian and its first derivatives, so the gravitons have
zero energy. However, there are additional logarithmic
modes which are not annihilated by ð□ − 2ΛÞ, but by
the full operator ð□ − 2ΛÞ2 instead, and these modes do
carry positive energy [27].
The conditions to be imposed for this class of theories

are (3.11) and (3.7) as well as the redefinition of the
Einstein constant in (3.12). Then, the traceless part of the
metric satisfies

1

2κ̂eff
½ð□̄ − 2ΛÞ2hhμνi − ∇̄hν∇̄μi□̄h� ¼ TL

hμνi; ð3:17Þ

while the trace is determined by matter,

h ¼ −
2κ̂eff

ðD − 1ÞðD − 2Þ2Λ2
TL: ð3:18Þ

E. Einstein-like theories

When both the massive graviton and the scalar mode are
absent, we are left with a theory of which the only
propagating degree of freedom is a massless graviton.
The conditions m2

g ¼ m2
s ¼ þ∞ can be expressed as

2aþ c ¼ 4bþ c ¼ 0: ð3:19Þ

The linearized equations of motion drastically simplify and
become identical to those of Einstein gravity with an
effective Einstein constant,

EL
μν ¼

1

2κeff
GL

μν ¼
1

2
TL
μν: ð3:20Þ

The metric decomposition is very simple now,

hμν ¼ tðmÞ
μν þ 1

D
ḡμνh; ð3:21Þ

with tðmÞ
μν satisfying (2.43) and h being again completely

determined by matter,

h ¼ 2κeff
ΛðD − 1ÞðD − 2ÞT

L: ð3:22Þ

Hence, according to the discussion in Sec. III A, the only
propagating mode is the transverse and traceless part of
the metric perturbation, which carries DðD − 3Þ=2 dof,
like in Einstein gravity. Let us stress at this point that
throughout the text, we use the labels Einstein-like and
Einsteinian with different meanings. By Einstein-like
theories, we mean theories for which the extra modes
are absent and the only dynamical field at the linearized
level is the usual massless graviton of general relativity.
By Einsteinian, we refer to those Einstein-like theories
which are defined in a dimension-independent way—
see Sec. VI.

IV. LINEARIZATION OF ALL THEORIES
UP TO QUARTIC ORDER

Up to quartic order in curvature, the most general
D-dimensional theory of the form (1.1) can be
written as

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ þ κ

4−D
D−2

X3
i¼1

αiL
ð2Þ
i

þ κ
6−D
D−2

X8
i¼1

βiL
ð3Þ
i þ κ

8−D
D−2

X26
i¼1

γiL
ð4Þ
i

�
: ð4:1Þ

Here, Lð2Þ
i , Lð3Þ

i , and Lð4Þ
i represent, respectively, the

quadratic, cubic, and quartic curvature invariants enu-
merated in Table II; αi, βi, and γi are dimensionless
constants; and κ ¼ 8πG is again Einstein’s constant.
Also, Λ0 is the cosmological constant, and we choose
κ

1
D−2 to be the natural scale.17 In general dimensions, there
are 3 independent quadratic, 8 cubic, and 26 quartic
invariants [66]. Naturally, these numbers get reduced as
we consider small enough D. For example, in D ¼ 4,
there are only 2 quadratic, 6 cubic, and 13 quartic
invariants.

17This election can be trivially changed by a rescaling of the
couplings, e.g., αi → αi=ðΛ0κ

2
D−2Þ4−D2 .
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Using the procedure explained in Sec. II, we have
linearized the quartic action (4.2); i.e., we have computed
the quantity LðΛ; αÞ defined in (2.21) at order Oðα2Þ for
every term in the action and obtained the values of a, b, c,

and e from there. The results are shown in Table II. Finally,
the parameters a, b, c, and e of the full theory (4.2) can be
found by adding linearly the contribution of each term, with
the corresponding coefficients in front in each case, namely,

TABLE II. Parameters e, a, b, and c of the linearized equations for all Riemann curvature invariants up to fourth order. We have cross-
checked all the terms independently for D ¼ 3, 4, 5 using Mathematica.

Label Term e a b c

Lð1Þ
1

R 1
2

0 0 0

Lð2Þ
1

R2 DðD − 1ÞΛ 0 1
2

0

Lð2Þ
2

RμνRμν ðD − 1ÞΛ 0 0 1
2

Lð2Þ
3

RμνρσRμνρσ 2Λ 1 0 0

Lð3Þ
1

Rμ
ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν 3

2
ðD − 2ÞΛ2 − 3

2
Λ 0 3

2
Λ

Lð3Þ
2

Rμν
ρσRρσ

δγRδγ
μν 6Λ2 6Λ 0 0

Lð3Þ
3

RμνρσRμνρ
δRσδ 3ðD − 1ÞΛ2 ðD − 1ÞΛ 0 2Λ

Lð3Þ
4

RμνρσRμνρσR 3DðD − 1ÞΛ2 DðD − 1ÞΛ 2Λ 0

Lð3Þ
5

RμνρσRμρRνσ 3
2
ðD − 1Þ2Λ2 0 1

2
Λ 1

2
ð2D − 3ÞΛ

Lð3Þ
6

Rμ
νRν

ρRρ
μ 3

2
ðD − 1Þ2Λ2 0 0 3

2
ðD − 1ÞΛ

Lð3Þ
7

RμνRμνR 3
2
DðD − 1Þ2Λ2 0 ðD − 1ÞΛ 1

2
DðD − 1ÞΛ

Lð3Þ
8

R3 3
2
D2ðD − 1Þ2Λ2 0 3

2
DðD − 1ÞΛ 0

Lð4Þ
1

RμνρσRμ
δ
ρ
γRδ

χ
ν
ξRγχσξ 2ð3D − 5ÞΛ3 2ðD − 4ÞΛ2 0 7Λ2

Lð4Þ
2

RμνρσRμ
δ
ρ
γRδ

χ
γ
ξRνχσξ 2ðD2 − 3Dþ 4ÞΛ3 6Λ2 Λ2 2ðD − 3ÞΛ2

Lð4Þ
3

RμνρσRμν
δγRρ

χ
δ
ξRσχγξ 4ðD − 2ÞΛ3 ðD − 7ÞΛ2 0 5Λ2

Lð4Þ
4

RμνρσRμν
δγRρδ

χξRσγχξ 8Λ3 12Λ2 0 0

Lð4Þ
5

RμνρσRμν
δγRδγ

χξRρσχξ 16Λ3 24Λ2 0 0

Lð4Þ
6

RμνρσRμνρ
δRγξχσRγξχ

δ 8ðD − 1ÞΛ3 4ðD − 1ÞΛ2 0 8Λ2

Lð4Þ
7

ðRμνρσRμνρσÞ2 8DðD − 1ÞΛ3 4DðD − 1ÞΛ2 8Λ2 0

Lð4Þ
8

RμνRρσδγRρ
ξ
δμRσξγν 2ðD − 1ÞðD − 2ÞΛ3 − 3

2
ðD − 1ÞΛ2 1

2
Λ2 1

2
ð5D − 9ÞΛ2

Lð4Þ
9

RμνRρσδγRρσ
ξ
μRδγξν 8ðD − 1ÞΛ3 6ðD − 1ÞΛ2 0 6Λ2

Lð4Þ
10

RμνRμ
ρ
ν
σRδγξρRδγξ

σ 4ðD − 1Þ2Λ3 ðD − 1Þ2Λ2 2Λ2 ð3D − 5ÞΛ2

Lð4Þ
11

RRμ
ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν 2DðD − 1ÞðD − 2ÞΛ3 − 3

2
DðD − 1ÞΛ2 3

2
ðD − 2ÞΛ2 3

2
DðD − 1ÞΛ2

Lð4Þ
12

RRμν
ρσRρσ

δγRδγ
μν 8DðD − 1ÞΛ3 6DðD − 1ÞΛ2 6Λ2 0

Lð4Þ
13

RμνRρσRδ
μ
γ
ρRδνγσ 4ðD − 1Þ2Λ3 ðD − 1Þ2Λ2 1

2
Λ2 1

2
ð9D − 10ÞΛ2

Lð4Þ
14

RμνRρσRδ
μ
γ
νRδργσ 2ðD − 1Þ3Λ3 0 1

2
ð3D − 4ÞΛ2 1

2
ð3D2 − 8Dþ 6ÞΛ2

Lð4Þ
15

RμνRρσRδγ
μρRδγνσ 4ðD − 1Þ2Λ3 ðD − 1Þ2Λ2 Λ2 ð4D − 5ÞΛ2

Lð4Þ
16

RμνRν
ρRσδγ

μRσδγρ 4ðD − 1Þ2Λ3 ðD − 1Þ2Λ2 0 5ðD − 1ÞΛ2

Lð4Þ
17

RδγRδγRμνρσRμνρσ 4DðD − 1Þ2Λ3 DðD − 1Þ2Λ2 4ðD − 1ÞΛ2 DðD − 1ÞΛ2

Lð4Þ
18

RRμνρσRμνρ
δRσδ 4DðD − 1Þ2Λ3 DðD − 1Þ2Λ2 3ðD − 1ÞΛ2 2DðD − 1ÞΛ2

Lð4Þ
19

R2RμνρσRμνρσ 4D2ðD − 1Þ2Λ3 D2ðD − 1Þ2Λ2 5DðD − 1ÞΛ2 0

Lð4Þ
20

RμνRμρνσRδρRδ
σ 2ðD − 1Þ3Λ3 0 ðD − 1ÞΛ2 ðD − 1Þð2D − 3ÞΛ2

Lð4Þ
21

RRμνρσRμρRνσ 2DðD − 1Þ3Λ3 0 1
2
ðD − 1Þð4D − 3ÞΛ2 1

2
DðD − 1Þð2D − 3ÞΛ2

Lð4Þ
22

Rμ
νRν

ρRρ
σRσ

μ 2ðD − 1Þ3Λ3 0 0 3ðD − 1Þ2Λ2

Lð4Þ
23

ðRμνRμνÞ2 2DðD − 1Þ3Λ3 0 2ðD − 1Þ2Λ2 DðD − 1Þ2Λ2

Lð4Þ
24

RRμ
νRν

ρRρ
μ 2DðD − 1Þ3Λ3 0 3

2
ðD − 1Þ2Λ2 3

2
DðD − 1Þ2Λ2

Lð4Þ
25

R2RμνRμν 2D2ðD − 1Þ3Λ3 0 5
2
DðD − 1Þ2Λ2 1

2
D2ðD − 1Þ2Λ2

Lð4Þ
26

R4 2D3ðD − 1Þ3Λ3 0 3D2ðD − 1Þ2Λ2 0
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e ¼ 1

2κ
e½R� þ κ

4−D
D−2

X3
i¼1

αie½Lð2Þ
i � þ κ

6−D
D−2

X8
i¼1

βie½Lð3Þ
i �

þ κ
8−D
D−2

X26
i¼1

γie½Lð4Þ
i �; ð4:2Þ

where, e.g., e½R� ¼ 1=2 is the value of e corresponding to
the Einstein-Hilbert term R, and so on. Completely analo-
gous expressions hold for a, b, and c.
Table II along with the results in Sec. III can be easily

used to classify the different theories in (4.2) according to
their spectrum.

V. f ðscalarsÞ THEORIES

In Sec. IV, we linearized all higher-derivative gravities of
the form (1.1) up to quartic order. That class includes linear
combinations of scalars Ri constructed from contractions
of the Riemann tensor and the metric, but not theories
constructed as arbitrary functions of those scalars, such as
fðRÞ gravity. In this section, we will consider the latter
case; i.e., we will linearize the equations of motion of a
theory of the form

L ¼ fðR1;…;RmÞ; ð5:1Þ

where the Ri are arbitrary scalars.
For a theory of this form, using the objects

Pμαβν
i ≡ ∂Ri

∂Rμαβν
; Cμγσν

i σρλη ≡ gσαgρβgλχgηξ
∂Pμγσν

i

∂Rαβχξ
; ð5:2Þ

we get the following result for the tensors defined in (2.2)
and (2.4) evaluated on the background,

P̄μαβν ¼ ∂ifðR̄ÞP̄μαβν
i ;

C̄μαβν
σρλη ¼ ∂ifðR̄ÞC̄μαβν

i σρλη þ ∂i∂jfðR̄ÞP̄μαβν
i P̄j σρλη; ð5:3Þ

where ∂i denotes derivative with respect to Ri and R̄
means that we evaluate all the scalars on the background.
Using these expressions, it is possible to obtain the values
of the parameters a, b, c, and e defined in (2.11) and (2.10)
for the theory (5.1). The result is

a ¼ ∂ifðR̄Þai; b ¼ ∂ifðR̄Þbi þ ∂i∂jfðR̄Þeiej;
c ¼ ∂ifðR̄Þci e ¼ ∂ifðR̄Þei: ð5:4Þ

Hence, once we have computed the parameters ai, bi, ci,
and ei for the set of scalars Ri, we can easily find the
corresponding parameters for any other Lagrangian
L ¼ fðR1;…;RmÞ. Plugging the values (5.4) in (2.15),
we obtain the linearized equations.

A. Theories without massive graviton

In Sec. III, we classified general LðRiemannÞ theories
according to their spectrum on a msb. One of the cases
under consideration was that corresponding to theories for
which m2

g ¼ þ∞, i.e., those containing a single massless
graviton plus an additional spin-0 mode. In terms of the
parameters defined in the first section, this condition is
2aþ c ¼ 0. Assume now that for certain scalars Ri, the
condition 2ai þ ci ¼ 0 is satisfied for all i, so that a theory
consisting of a linear combination of Ri would be free of
massive gravitons. From (5.4), we learn that in fact this
property is shared by any theory of the form L ¼
fðR1;…;RmÞ since in that case we find

2aþ c ¼ ∂ifðR̄Þð2ai þ ciÞ ¼ 0: ð5:5Þ

Therefore, theories constructed as general functions of
scalars of which the linear combinations do not produce
massive gravitons are also free of those modes. This is a
straightforward way of understanding why fðRÞ, or more
generally fðLovelockÞ theories—see Appendix B—inherit
the property of Lovelock gravities [25,26] of not propa-
gating the massive graviton [23,63].
Something similar happens for theories for which the

extra graviton is massless. Assume now that the scalars Ri
satisfy the condition −ei þ 2ΛðD − 3Þai ¼ 0, so that
mg ¼ 0 for a theory consisting of a linear combination
of Ri. Then, it is straightforward to prove that for a fðRiÞ
theory, the mass of the extra graviton is also zero:

−eþ 2ΛðD − 3Þa ¼ ∂ifðR̄Þð−ei þ 2ΛðD − 3ÞaiÞ ¼ 0:

ð5:6Þ

Furthermore, note that the condition for the absence of
scalar mode reads in turn

2aþDcþ 4bðD − 1Þ
¼ ∂ifðR̄Þð2ai þDci þ 4biðD − 1ÞÞ

þ 4ðD − 1Þ∂i∂jfðR̄Þeiej ¼ 0: ð5:7Þ

This expression is more complicated than (5.5) since the
expression for b in (5.4) contains a term involving the ei.
This is not surprising; fðRÞ does propagate the additional
scalar mode even though Einstein gravity does not.

VI. EINSTEINIAN QUARTIC GRAVITIES

In Ref. [29], we constructed a cubic theory which only
propagates a massless graviton on msb. The theory was
defined in a dimension-independent way, in the sense that
the relative couplings between the different invariants
involved in its definition were the same in all dimensions.
In fact, we proved that up to cubic order in curvature, the
most general theory satisfying those requirements reads

ASPECTS OF GENERAL HIGHER-ORDER GRAVITIES PHYSICAL REVIEW D 95, 044010 (2017)

044010-13



S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p
×

�
1

2κ
ð−2Λ0 þ RÞ þ κ

4−D
D−2αX4 þ κ

6−D
D−2½βX6 þ λP�

�
;

ð6:1Þ

where X4 and X6 are, respectively, the dimensionally
extended Euler densities for D ¼ 4 and D ¼ 6 manifolds.
X4 is defined below (2.24), and X6 is given in (B22).
Hence, the only terms appearing in (6.1) are the Lovelock
ones plus the new Einsteinian cubic gravity term P,
defined as

P ≡ 12Rμ
ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν þ Rρσ

μνR
γδ
ρσR

μν
γδ − 12RμνρσRμρRνσ

þ 8Rν
μR

ρ
νR

μ
ρ: ð6:2Þ

The effective Einstein constant for the ECG theory (6.1) is

κeff ¼ κ½1þ 4κ
2

D−2ΛαðD− 4ÞðD− 3Þ
þ 6κ

4
D−2Λ2ðD− 6ÞðD− 3ÞððD− 5ÞðD− 4Þβ− 4λÞ�−1:

ð6:3Þ

Interestingly, when restricted to D ¼ 4, the above theory
reduces to

S ¼
Z
M

d4x
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ þ κλP

�
; ð6:4Þ

given that in that number of dimensions X 4 is topological
and X6 vanishes identically.
In this section, we will explain how to extend the above

construction to quartic theories. We will take advantage of
the results in Sec. IV to construct Einsteinian quartic
gravities (EQGs).
As we have just reviewed, the construction of Einsteinian

gravities requires the theories to be defined in a dimension-
independent fashion. Apart from aesthetics, there are some
practical reasons to consider theories satisfying this prop-
erty. First, observe that this property is shared by all
Lovelock gravities, which are the most general metric
theories of gravity with divergence-free second-order
equations of motion—at the full nonlinear level—in any
number of dimensions [25,26].
In addition, theories defined in this way have the nice

feature that they preserve the total number of dof under
compactification, in the following sense. Consider, for
example, the Kaluza-Klein reduction of the D-dimensional
EH term along some direction x0. The metric gMN , which
propagatesDðD − 3Þ=2 dof, gives rise to a (D − 1)-dimen-
sional metric gμν which contains ðD − 1ÞðD − 4Þ=2 dof,
plus a 1-form Aμ ≡ gμ0 with ðD − 3Þ dof and a scalar field
ϕ≡ g00 with 1 dof. This property is shared by Einsteinian

gravities, but not by theories which have a dimension-
dependent definition. If a theory of that kind only prop-
agates the DðD − 3Þ=2 dof of the massless graviton in D
dimensions, it will give rise to extra degrees of freedom
when compactified, because the lower-dimensional metric
will in general propagate the extra spin-2 and scalar modes
in addition to the ðD − 1ÞðD − 4Þ=2þ ðD − 3Þ þ 1 ¼
DðD − 3Þ=2 dof of the massless graviton, the 1-form,
and the scalar. From a similar perspective, if we consider
some D-dimensional theory and assume some of the
dimensions of our space-time to be compact, e.g.,
MD ¼ MD0

nc ×MD−D0
c , where MD−D0

c is some compact
manifold, then the resulting effective action on the non-
compact dimensions will involve the same gravitational
term only if this has been defined in a dimension-
independent fashion—see, e.g., Refs. [67,68] for the
Kaluza-Klein reduction of Gauss-Bonnet gravity. This is
exactly what happens with the Einstein-Hilbert term in
general String Theory compactifications.18

As explained in previous sections, the constraints
required for a theory to share the spectrum of Einstein
gravity at the linearized level can be written as
2aþ c ¼ 4bþ c ¼ 0, which account for the conditions
m2

g ¼ m2
s ¼ þ∞. Imposing those conditions at each order

in curvature for the theory (4.2), one is left with six

constraints on the coupling values, Fð2Þ
g ðαiÞ ¼ Fð2Þ

s ðαiÞ
¼ Fð3Þ

g ðβi; DÞ ¼ Fð3Þ
s ðβi; DÞ ¼ Fð4Þ

g ðγi; DÞ ¼ Fð4Þ
s ðγi; DÞ

¼ 0—see Appendix D for the explicit expressions. If these
constraints are satisfied, the theory will only propagate a
massless graviton on a msb. Imposing each constraint to be
satisfied independently of the dimension multiplies the

number of constraints. This is because, e.g., Fð3Þ
g;sðβi; DÞ is a

polynomial of degree 2 in D, so we need to impose the
coefficients of the D0, D1, and D2 terms to vanish
independently. More generally, at nth order in curvature,
the corresponding constraints are polynomials of degree
2n − 4 in D, and hence we will find 2n − 3 constraints
coming from the absence of the massive graviton and the
same number from imposing the absence of scalar, which
makes 2ð2n − 3Þ in total. At the quartic level, this means
ten constraints. Since in general dimensions there are up to
26 independent invariants at this order in curvature [66],
see Table II, this means that there exists a 16-parameter
family of EQGs. If we choose the 16 parameters to be
fγ1; γ2; γ3; γ4; γ5; γ6; γ7; γ8; γ9; γ10; γ12; γ13; γ14; γ18; γ20; γ26g,
the rest of the couplings are given in terms of these as

18For example, the ten-dimensional type-IIA String Theory
effective action reduces to a class of D ¼ 4, N ¼ 2 supergravity
theories when six of the dimensions are compact on a Calabi-Yau
threefold—see, e.g., Ref. [69]. In the type-IIA action, the leading
contribution from the metric is the ten-dimensional Einstein-
Hilbert term Rð10Þ. Under compactification, this produces Rð4Þ—
plus additional terms involving other fields.
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γ11 ¼ þ 1

3
ð12γ12 − 4γ1 þ 12γ2 − 8γ3 þ 36γ4 þ 72γ5 þ 16γ6 þ 16γ7 − 3γ8 þ 12γ9Þ; ð6:5Þ

γ15 ¼þ 1

2
ð−10γ1 − 4γ10 − γ13 þ γ14 þ 16γ2 − 14γ3 þ 48γ4 þ 96γ5 þ 16γ6 − 4γ8 þ 12γ9Þ;

γ16 ¼þ 1

10
ð36γ1 þ 10γ10 − 24γ12 − 5γ13 − 5γ14 − 74γ2 − 2γ20 þ 1140γ26 þ 57γ3 − 210γ4

− 420γ5 − 84γ6 − 20γ7 þ 17γ8 − 72γ9Þ;
γ17 ¼ − γ18 − 120γ26;

γ19 ¼þ 6γ26;

γ21 ¼þ 8γ1 − 12γ12 − 3γ14 þ 2γ18 − 18γ2 − 2γ20 þ 900γ26 þ 13γ3 − 54γ4 − 108γ5 − 20γ6

− 20γ7 þ 3γ8 − 12γ9;

γ22 ¼þ 1

10
ð16γ1 − 24γ12 − 10γ14 − 14γ2 − 2γ20 þ 1140γ26 þ 17γ3 − 50γ4 − 100γ5 − 4γ6

− 20γ7 þ 2γ8 þ 8γ9Þ;

γ23 ¼þ 1

20
ð−154γ1 þ 216γ12 þ 60γ14 − 40γ18 þ 306γ2 þ 38γ20 − 22260γ26 − 233γ3

þ 930γ4 þ 1860γ5 þ 316γ6 þ 340γ7 − 48γ8 þ 168γ9Þ;

γ24 ¼þ 1

30
ð−6γ1 þ 24γ12 þ 54γ2 þ 2γ20 þ 9060γ26 − 27γ3 þ 150γ4 þ 300γ5 þ 84γ6

þ 60γ7 − 12γ8 þ 72γ9Þ;
γ25 ¼ − 24γ26: ð6:6Þ

Plugging these back in the original quartic action, we obtain the family of 16 independent Einsteinian quartic gravities.
In four dimensions, it can be seen that only 13 of the 26 invariants in Table II are nonvanishing and independent of each
other [66]. We can use this fact to easily construct three Einsteinian quartic gravities. In particular, we can set
γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ γ6 ¼ γ8 ¼ γ9 ¼ γ10 ¼ γ12 ¼ γ13 ¼ γ14 ¼ γ18 ¼ γ20 ¼ 0—the choice being nonunique. More explic-
itly, Eq. (6.6) becomes now

γ11 ¼þ 8=3ð9γ5 þ 2γ7Þ; γ15 ¼ þ48γ5;

γ16 ¼þ 114γ26 − 42γ5 − 2γ7; γ17 ¼ −120γ26;

γ19 ¼þ 6γ26; γ21 ¼ þ4ð225γ26 − 27γ5 − 5γ7Þ;
γ22 ¼þ 2ð57γ26 − 5γ5 − γ7Þ; γ23 ¼ −1113γ26 þ 93γ5 þ 17γ7;

γ24 ¼þ 2ð151γ26 þ 5γ5 þ γ7Þ; γ25 ¼ −24γ26; ð6:7Þ

where the three parameters are fγ5; γ7; γ26g. Using these relations, we have constructed the following invariants:

Q1 ≡þ3RμνρσRγδ
μνR

αβ
γδRρσαβ − 15ðRμνρσRμνρσÞ2 − 8RRμ

ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν

þ 144RμνRρσRγδ
μρRγδνσ − 96RμνRρ

νRαβγ
μRαβγρ − 24RRμνρσRμρRνσ

þ 24ðRμνRμνÞ2;
Q2 ≡þ3ðRμνρσRμνρσÞ2 þ 16RRμ

ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν − 6RμνRρ

νRαβγ
μRαβγρ

− 60RRμνρσRμρRνσ − 6Rν
μR

ρ
νRσ

ρR
μ
σ þ 51ðRμνRμνÞ2 þ 6RRν

μR
ρ
νR

μ
ρ;

Q3 ≡þR4 þ 57ðRμνρσRμνρσÞ2 − 120RγδRγδRμνρσRμνρσ þ 6R2RμνρσRμνρσ

− 240RRμνρσRμρRνσ − 144ðRμνRμνÞ2 þ 416RRν
μR

ρ
νR

μ
ρ − 24R2RμνRμν

þ 304RRμ
ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν: ð6:8Þ
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Just like its cubic cousin P defined in (6.2), Q1, Q2, and
Q3—or any linear combination of them—only propagate
the usual massless graviton when linearized on a msb, not
only in D ¼ 4 but in any number of dimensions.19

It is important to note that these three are not necessarily
the only EQG theories inD ¼ 4. As we explained, there are
13 independent cubic invariants in that case, which means
that there are 11 independent four-dimensional quartic
Einstein-like invariants—because we have to impose two
conditions on the couplings in that case, namely,
m2

g ¼ m2
s ¼ þ∞. In order to determine all the possible

theories, one should construct the 16 independent
D-dimensional EQGs using (6.6) and then analyze how
many of them are independent when D ¼ 4. Given that
EQGs are particular cases of Einstein-like theories, we
conclude that there could actually be up to eight additional
EQG invariants.

VII. NEW GHOST-FREE GRAVITY

In the previous section, we reviewed ECG and extended
the construction to quartic theories. As we explained, all
those theories are free both of the ghostlike graviton and the
scalar mode on a msb. In this section, we will relax the
second condition to construct the most general cubic theory
defined in a dimension-independent manner which does not
propagate the massive graviton—but does in general
include the scalar. As far as we know, the most general
known theories which satisfy these requirements are those
defined as functions of Lagrangian densities which, when
considered as theories by themselves, do not propagate
the massive graviton—a property first proven in Sec. V.
All the known examples reduce to fðLovelockÞ gravities
and the more exotic case of fðECGÞ or functions of the
quartic theories studied in the previous section.
Recall that the condition for the absence of massive

gravitons is 2aþ c ¼ 0. If we impose this on the general
theory defined in (4.2) up to qubic order and ask it to be

satisfied independently of the space-time dimension, we are
left with the conditions

1

2
α2 þ 2α3 ¼ 0; ð7:1Þ

− β1 þ 8β2 − β5 − β6 ¼ 0; ð7:2Þ

2β3 − 2β4 þ β5 þ
3

2
β6 −

1

2
β7 ¼ 0; ð7:3Þ

2β4 þ
1

2
β7 ¼ 0: ð7:4Þ

Hence, there are two independent quadratic terms and five
cubic ones. They can all be written as

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ðR − 2Λ0Þ þ κ

4−D
D−2ð ~α1R2 þ ~α2X4Þ

þκ
6−D
D−2ð~β1R3 þ ~β2X6 þ ~β3RX 4 þ ~β4P þ ~β5YÞ

�
: ð7:5Þ

In this action, we find all the fðLovelockÞ terms up to this
order in curvature, as well as two additional theories. The
first, P, is nothing but the Einsteinian cubic term defined in
(6.2), while the second is a previously unidentified invari-
ant which reads

Y ≡ Rμ
α
ν
βRα

ρ
β
σRρ

μ
σ
ν − 3RμνρσRμρRνσ þ 2Rμ

νRν
ρRρ

μ:

ð7:6Þ

In the above expression, the pure Lovelock terms, R, X 4,
andX6 as well as P do not contribute to the denominator of
the scalar mass—and hence any linear combination of those
terms alone would yield m2

s ¼ þ∞—while R2, R3, RX 4,
and Y do. Indeed, we obtain for this new ghost-free
gravity (7.5)

m2
s ¼ ½D − 2þ 4ðD − 4Þκ 2

D−2Λð ~α1ðD − 1ÞDþ ~α2ðD − 3ÞðD − 2ÞÞ
þ 6ðD − 6Þκ 4

D−2Λ2ð ~β1ðD − 1Þ2D2 þ ~β2ðD − 5ÞðD − 4ÞðD − 3ÞðD − 2Þ
þ ~β3ðD − 3ÞðD − 2ÞðD − 1ÞD − 4~β4ðD − 3ÞðD − 2Þ − ~β5ðDðD − 3Þ þ 3ÞÞ�
× ½8ðD − 1Þðκ 2

D−2 ~α1 þ κ
4

D−2Λð3~β1ðD − 1ÞDþ 2~β3ðD − 3ÞðD − 2Þ − 3=2~β5ÞÞ�−1: ð7:7Þ
Hence, setting ~α1 ¼ ~β1 ¼ ~β3 ¼ ~β5 ¼ 0, one finds m2

s ¼ þ∞, as expected. It is also worth pointing out that, just like ECG,
Y is nontrivial in four dimensions. Moreover, the effective gravitational constant reads now

κeff ¼ κ½1þ 4κ
2

D−2Λð ~α1ðD − 1ÞDþ ~α2ðD − 4ÞðD − 3ÞÞ
þ 6κ

4
D−2Λ2ð~β1ðD − 1Þ2D2 þ ~β2ðD − 6ÞðD − 5ÞðD − 4ÞðD − 3Þ

þ ~β3ðD − 10=3ÞðD − 3ÞðD − 1ÞD − 4~β4ðD − 6ÞðD − 3Þ − ~β5ððD − 5ÞDþ 9ÞÞ�−1: ð7:8Þ

19We have cross-checked the linearized equations of P andQi, i ¼ 1, 2, 3, forD ¼ 4, 5, 6 using theMathematica package xAct [70].
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Let us stress thatwe have only proven this theory to be free of
ghost modes at the linearized level. Hence, it is still possible
that the theory develops instabilities beyond the linearized
regime—e.g., the Boulware-Deser ghost [71]. We leave for
futureworkexploringthesepotential issuesandtheirpossible
solutions—e.g., using boundary conditions [65,72]. Note
that an interesting property of fðLovelockÞ gravities is that
they areghost free at the full nonlinear level, since theycanbe
written as scalar-Lovelock theories with second-order equa-
tions of motion [63,73]. It is natural to wonder if Y has any
chance of sharing this property. More generally, it would be
interesting to explore further properties of this new cubic
term.

VIII. GENERALIZED NEWTON POTENTIAL

In this section, we use the results of Sec. II to compute
the Newton potential UDðrÞ and the PPN parameter γ for a
general theory of the form (1.1) in general dimensions. We
start reviewing the four-dimensional case, and then we
extend our results to arbitrary D, pointing out interesting
differences with respect to theD ¼ 4 case. Throughout this
section and the following, we will tacitly assume
that m2

s ; m2
g ≥ 0.

A. Four dimensions

The analysis performed in Sec. II C 2 tells us that in order
to obtain a solution of the linearized equations in a flat
background, we must solve Eqs. (2.48), (2.52), and (2.53)
and then reconstruct the metric perturbation (2.51). The
same procedure can be naturally carried out for an (A)dS
background using the expressions in Sec. II C 1. We find
that the results are approximately the same, provided we
consider distances shorter than the (A)dS scale r ≪ jΛj−1=2
and m2

g ≫ jΛj. This is useful because in the flat case one
cannot easily set the masses mg and ms to zero as only the
Einstein-Hilbert term contributes to the numerator of those
quantities when Λ ¼ 0—see, e.g., Eqs. (2.32)–(2.34). In
the (A)dS case, terms of all orders contribute, and it is in
principle possible to set ms ¼ 0 or mg ¼ 0.
If we denote by Hμνðx;mÞ the general solution of the

Klein-Gordon equation

ð□̄ −m2ÞHμνðx;mÞ ¼ −4πTμνðxÞ ð8:1Þ

and byHðx;mÞ its trace, the solutions to (2.48), (2.52), and
(2.53) can be written as

ĥμν ¼
κeff
2π

Hμνð0Þ; ϕ ¼ κeff
2π

HðmsÞ;

tμν ¼ −
κeff
2π

�
HhμνiðmgÞ þ

1

3m2
g
∂hμ∂νiHðmgÞ

�
: ð8:2Þ

Inserting this into the metric perturbation (2.51) and
making the gauge transformation

hNμν ≡ hμν − ∂ðμξνÞ; ð8:3Þ

where N stands for “Newtonian gauge” and

ξν ≡ 1

3
∂νððm−2

g −m−2
s ÞHð0Þ þm−2

s HðmsÞ −m−2
g HðmgÞÞ;

ð8:4Þ

we obtain after some simplifications

hNμν ¼
κeff
8π

�
4Hμνð0Þ − 4HμνðmgÞ

þ ημν

�
−2Hð0Þ þ 4

3
HðmgÞ þ

2

3
HðmsÞ

	�
: ð8:5Þ

Now, if we restrict ourselves to static configurations,
Eq. (8.1) reduces to the so-called screened Poisson equa-
tion, ð△ −m2ÞHμνð~x;mÞ ¼ −4πTμνð~xÞ, the general solu-
tion of which reads

Hμνð~x;mÞ ¼
Z

d3~x0
Tμνð~x0Þ
j~x − ~x0j e

−mj~x−~x0j: ð8:6Þ

This can be seen as a superposition of functions 1=j~x − ~x0j
weighted by the source Tμνð~x0Þ and with an exponential
screening controlled by the mass m. Using this, we can
rewrite (8.5) as

hNμνðxÞ ¼
κeff
8π

Z
d3~x0Tαβð~x0ÞΠαβ

μνð~x − ~x0Þ; ð8:7Þ

where the static propagator reads

Παβ
μνð~x − ~x0Þ ¼ 1

jx − x0j
�
4δαðμδβνÞð1 − e−mgj~x−~x0jÞ

−2ηαβημν
�
1 −

2

3
e−mgj~x−~x0j −

1

3
e−msj~x−~x0j

	�
:

ð8:8Þ

Now, let us apply the previous expressions to the case of a
solid and static sphere of radius R and mass M on a flat
background. For this distribution of matter, the only non-
vanishing component of the stress tensor reads

T00ðrÞ ¼ ρðrÞ ¼ ρ0θðR − rÞ; with ρ0 ≡ M
4πR3=3

;

ð8:9Þ

where θðxÞ is the Heaviside step function. For this
configuration, the result for H00ðr;mÞ ¼ −Hðr;mÞ in
the outer region r > R obtained from (8.6) reads

Hðr;mÞ ¼ −fðmRÞM
r
e−mr; ð8:10Þ
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where fðmRÞ is a form factor given by

fðmRÞ ¼ 3

ðmRÞ3 ½mR coshðmRÞ − sinhðmRÞ�; ð8:11Þ

which behaves as fðmRÞ ≈ 3
2

1
ðmRÞ2 e

mR if mR ≫ 1 and as

fðmRÞ ≈ 1 in the pointlike limit, i.e., when mR ≪ 1.
Finally, inserting these results into the metric hNμν in
(8.5) and this in gNμν ¼ ημν þ hNμν, we obtain

ds2N ¼ −ð1þ 2UðrÞÞdt2 þ ð1 − 2γðrÞUðrÞÞδijdxidxj;
ð8:12Þ

where UðrÞ and γðrÞ are given by

UðrÞ ¼ −
GeffM

r

�
1 −

4

3
fðmgRÞe−mgr þ 1

3
fðmsRÞe−msr

�
;

ð8:13Þ

γðrÞ ¼ 3 − 2fðmgRÞe−mgr − fðmsRÞe−msr

3 − 4fðmgRÞe−mgr þ fðmsRÞe−msr
ð8:14Þ

and Geff ≡ κeff=ð8πÞ. Evaluating these expressions in
the pointlike limit of the sphere fðmRÞ ¼ 1, we finally
obtain the generalized Newtonian potential and the PPN
parameter γ,

UðrÞ ¼ −
GeffM

r

�
1 −

4

3
e−mgr þ 1

3
e−msr

�
;

γðrÞ ¼ 3 − 2e−mgr − e−msr

3 − 4e−mgr þ e−msr
: ð8:15Þ

Let us make some comments about these results. First,
observe that the usual Newton potential gets corrected by
two Yukawa-like terms controlled by the masses of the two
extra modes which can be computed for a given theory
through (2.29) and (2.30). The above expression for UðrÞ
has been obtained before using different methods—see,
e.g., Refs. [30,31,74].20 Note that, while the contribution
from the scalar has the usual sign for a Yukawa potential,
the massive graviton one comes with the opposite sign,
which is another manifestation of its ghost nature. Observe
also that the whole contribution from the higher-derivative
terms appears through mg and ms, the coefficients −4=3
and 1=3 in front of the exponentials being common to all
theories. In Table III, we present the values of UðrÞ and γ
for different limiting values of ms and mg. Naturally, when
mg;ms ≫ 1, one is left with the Einsteinian values of the
Newton potential and γ, and the same happens if we go

sufficiently far away from M for arbitrary values of the
extra mode masses. It is also interesting that the only cases
for which the potential is divergent as r → 0 are those for
which at least one of the extra modes is absent, i.e., when
either ms ¼ þ∞ or mg ¼ þ∞ or both mg ¼ ms ¼ þ∞.
Indeed, UðrÞ does not diverge as r → 0 in the general

case. In fact, one finds

UðrÞ ¼ −GeffM

�ð4mg −msÞ
3

−
ð4m2

g −m2
sÞr

6
þOðr2Þ

�
;

ð8:16Þ

which is a negative constant at r ¼ 0 when mg > ms=4
(and vice versa). The potential grows linearly with r at first
order for mg > ms=2, and in that case, it is monotonous in
the whole range of r. When mg < ms=2 instead, UðrÞ
decreases linearly near r ¼ 0, and it has a minimum at some
intermediate value of r. Plots of UðrÞ=Geff for various
values of the masses satisfying the different situations can
be found in Fig. 1.

B. Higher dimensions

The analysis of the previous section can be extended to
general dimensions D ≥ 4. The metric perturbation in the
Newtonian gauge can be seen to be given by

TABLE III. Newton’s potential and γðrÞ for various values of
the masses of the extra modes.

UðrÞ=Geff γ

ms ¼ mg ¼ þ∞ −M=r 1
ms ¼ þ∞, jmgrj ≪ 1 þM=ð3rÞ −1
ms ¼ 0, mg ¼ þ∞ −4M=ð3rÞ 1=2
m≡mg ¼ ms −Mð1 − e−mrÞ=r 1

FIG. 1. UðrÞ=ðGeffMÞ for mg ¼ 2 and ms ¼ 16, 8, 2, 1 (purple
curves) and ms ¼ 4 (red) and the usual Newton potential
(dashed gray).

20See, e.g., Refs. [75,76] for results corresponding to higher-
order gravities involving covariant derivatives of the Riemann
tensor.
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hNμν ¼ 4Geff

�
Hμνð0Þ −HμνðmgÞ

þ ημν
ðD − 1ÞðD − 2Þ ð−ðD − 1ÞHð0Þ

þ ðD − 2ÞHðmgÞ þHðmsÞÞ
�
; ð8:17Þ

where againHμνðmÞ is a solution of (8.1). In the static case,
we can write the solution explicitly as

Hμνð~x;mÞ¼ 2

�
m
2π

	D−3
2

Z
dD−1~x0

Tμνð~x0Þ
j~x− ~x0jD−3

2

KD−3
2
ðmj~x− ~x0jÞ;

ð8:18Þ

where KlðxÞ is the modified Bessel function of the second
kind. Now, specializing to a static pointlike particle of mass
M, we can obtain the D-dimensional version of (8.12). The
Newtonian potential and the gamma parameter read,
respectively,

UDðrÞ ¼ −μðDÞGeffM
rD−3

"
1þ νðDÞrD−3

2

"
−m

D−3
2

g KD−3
2
ðmgrÞ þ

m
D−3
2

s

ðD − 2Þ2KD−3
2
ðmsrÞ

##
;

γDðrÞ ¼
1 − 2

ðD−1ÞΓðD−3
2
Þ ½ðD − 2Þðmgr

2
ÞD−3

2 KD−3
2
ðmgrÞ þ ðmsr

2
ÞD−3

2 KD−3
2
ðmsrÞ�

D − 3 − 2
ðD−1ÞΓðD−3

2
Þ ½ðD − 2Þ2ðmgr

2
ÞD−3

2 KD−3
2
ðmgrÞ − ðmsr

2
ÞD−3

2 KD−3
2
ðmsrÞ�

; ð8:19Þ

with

μðDÞ≡ 8π

ðD − 2ÞΩD−2
; and νðDÞ≡ ðD − 2Þ2

Γ½Dþ1
2
�2D−1

2

;

ð8:20Þ
and where ΩD−2 ≡ 2π

D−1
2 =Γ½D−1

2
� is the volume of the

(D − 2)-dimensional unit sphere. When 2l is odd, i.e.,
for even D, the Bessel functions KlðxÞ can be written
explicitly in terms of elementary functions as

KD−3
2
ðxÞ ¼ e−x

ffiffiffiffiffi
π

2x

r XD−2
2

j¼1

ðD − 3 − jÞ!
ðj − 1Þ!ðD−2

2
− jÞ!ð2xÞD−2

2
−j

ðeven DÞ; ð8:21Þ
which allows for a simplification of (8.19) in those cases
and from which it is easy to reproduce the D ¼ 4 results
(8.15) presented in the previous section. From (8.19), we
infer that the usual four-dimensional Yukawa potential for a
force-mediating particle of mass m generalizes to higher
dimensions as

UD;YukawaðrÞ ∼
�
m
r

	D−3
2

KD−3
2
ðmrÞ: ð8:22Þ

Going back to higher-order gravities, observe that close to
the origin, the generalized Newton potentialUDðrÞ behaves
for D > 5 as

UDðr → 0Þ ∼ −
GeffM½ðD − 2Þ2m2

g −m2
s �

rD−5 þ � � � ; ð8:23Þ

up to a positive dimension-dependent constant for generic
values of mg and ms. For D ¼ 4, we find a constant term
(8.16), while for D ¼ 5, one finds a logarithmic divergence
instead,

U5ðr → 0Þ ¼ GeffM
12π

ð9m2
g −m2

sÞ log rþOðr0Þ: ð8:24Þ

This means that for generic values of the extra mode
masses, UDðrÞ is divergent at r ¼ 0 in all dimensions
higher than 4. In Fig. 2, we plot U5ðrÞ, which can be
explicitly written as

U5ðrÞ ¼ −
GeffM
6πr2

½8 − 9mgrK1ðmgrÞ þmsrK1ðmsrÞ�:
ð8:25Þ

As expected,most curves in Fig. 2 diverge at the origin. There
is an exception (and only one), though, which corresponds to
the case mg¼ms=3, for which the potential is finite every-
where. The valuemg ¼ ms

ðD−2Þ is special in general dimensions,

as it determines the transitionbetween twokinds of potentials.
In particular, when mg >

ms
ðD−2Þ, UDðrÞ is monotonous in the

whole range of r and diverges to −∞ at the origin, while for
mg <

ms
ðD−2Þ, it has a minimum at some finite value of r and

UDðr→ 0Þ→þ∞ instead—see Fig. 2 for an illustration of
these features in the five-dimensional case. For the particular
value mg¼ ms

ðD−2Þ, the potential is also finite at the origin for

D ¼ 6, but not for D ≥ 7.
In Table IV, we present some particular cases for UDðrÞ

and γD
21 corresponding to different limiting values of mg

and ms. Once again, when mg;ms ≫ 1, one is left with the
Einsteinian values of the corresponding Newton potentials
and γD, and the same happens at sufficiently large distances
from M for general values of the extra mode masses. Just

21We use the following two limits of the modified Bessel
functions:

lim
x→∞

xlKlðxÞ ¼ 0; and lim
x→0

xlKlðxÞ ¼ 2l−1ΓðlÞ: ð8:26Þ
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like in four dimensions, when the masses of the extra
modes are equal,ms ¼ mg, the gamma parameter coincides
with that of Einstein gravity, γD ¼ 1=ðD − 3Þ. Note also
that when one of the modes is absent, the divergence of
UDðrÞ at r ¼ 0 becomes stronger than in the generic case
(8.23)—namely, of order 1=rD−3 instead of 1=rD−5.

IX. GRAVITATIONAL WAVES

In this section, we study the emission and propagation
of gravitational radiation from sources in a general four-
dimensional theory of the form (1.1) using the results of
Sec. II. Our main result is a new formula for the power
emitted by a source as a function of the quadrupole
moment and the scalar radiation—see (9.40) below. This
generalizes the Einstein gravity result to general
LðRiemannÞ theories. We point out that a previous
expression obtained for fðRÞ gravities in Ref. [77] is
incorrect and provide the corrected expression, which is a
particular case of our general result.

A. Polarization of gravitational waves

In the de Donder gauge (2.47), the relevant compo-
nents of the metric perturbation decomposed as in (2.51)
satisfy Eqs. (2.48), (2.52), and (2.53). In the vacuum,
these reduce to

□̄ĥμν ¼ 0; ð□̄ −m2
gÞtμν ¼ 0; ð□̄ −m2

sÞϕ ¼ 0:

ð9:1Þ

Using the tracelessness of tμν, the gauge condition (2.47),
and Eq. (9.1) along with (2.51), one can show that
∂μtμν ¼ 0. The gauge redundancy has not been com-
pletely exploited, as we still have the freedom to make
gauge transformations hμν → hμν þ 2∂ðμξνÞ where ξμ
satisfies □̄ξμ ¼ 0. This freedom can be used to impose
four additional conditions on ĥμν. In particular, we can
set ĥ ¼ 0 and ĥti ¼ 0, which is called the traceless-
transverse gauge (TT). Observe that we cannot impose
similar conditions on tμν because we can only make
transformations with a harmonic gauge parameter ξμ, but
tμν is not harmonic because it is massive. Hence, no
degrees of freedom in tμν can be removed with such a
gauge transformation, and as a consequence, the massive
particles conserve all their polarizations.
Let us now look for plane-wave solutions of frequencyω,

ĥTTμν ¼ Aμνe−ikμx
μ
; tμν ¼ Bμνe−ipμxμ ; ϕ ¼ ce−iqμx

μ
;

ð9:2Þ

where kμ ¼ ðω; kiÞ, pμ ¼ ðω; piÞ, qμ ¼ ðω; qiÞ.
Equation (9.1) produces the following dispersion relations:

k2 ¼ ω2; p2 ¼ ω2 −m2
g; q2 ¼ ω2 −m2

s : ð9:3Þ

Note that for the massive modes to propagate, the fre-
quency must be greater than the corresponding mass, i.e.,
ω2 > m2

g and ω2 > m2
s , respectively. Otherwise, the wave

will be damped. Now, since we are working in the TT
gauge, the polarization tensor Aμν satisfies the following
constraints,

Atμ ¼ 0; kiAij ¼ 0; Aii ¼ 0; ð9:4Þ

which leave us with only two independent polarizations Aþ
μν

and A×
μν. On the other hand, Bμν only satisfies the

constraints

pμBμν ¼ 0; ημνBμν ¼ 0: ð9:5Þ

TABLE IV. Newton’s potential and γðrÞ in higher dimensions D ≥ 4 for various values of the masses of the extra
modes.

UDðrÞ=ðμðDÞGeffMÞ γD

mg ¼ ms ¼ þ∞ −1=rD−3 1=ðD − 3Þ
ms ¼ þ∞, jmgrj ≪ 1 þ1=½ðD − 3ÞðD − 1ÞrD−3� −1
ms ¼ 0, mg ¼ þ∞ −ðD − 2Þ2=½ðD − 3ÞðD − 1ÞrD−3� 1=ðD − 2Þ
m≡mg ¼ ms −

h
1 − ðD−3ÞΩD−2

ð2πÞðD−1Þ=2 ðmrÞD−3
2 KD−3

2
ðmrÞ

i
=rD−3 1=ðD − 3Þ

FIG. 2. UðrÞ=ðGeffMÞ inD ¼ 5 formg ¼ 2 andms ¼ 1, 3, 5, 7,
9 (purple curves) and ms ¼ 6 (red) and the usual Newton
potential in five dimensions (dashed gray).
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There are 5 degrees of freedom which correspond to
the choice of a spatial part of the polarization, Bij,
satisfying

pipjBij ¼ ω2Bii; ð9:6Þ

which include the þ and × polarizations plus three addi-
tional ones. The time components are then given by

Btt ¼ Bii; Bti ¼
pj

ω
Bij: ð9:7Þ

Finally, from (2.51), it follows that the contribution to the
metric perturbation associated to the scalar mode is given
by ∼Cμνe−iqαx

α
with polarization tensor

Cμν ¼ ημν −
2qμqν
m2

s
; ð9:8Þ

which is linearly independent from Aμν and Bμν because it
is not traceless.
In sum, gravitational waves in higher-order gravity can

propagate up to six different polarizations—one for the
scalar and five for the massive and massless gravitons.
However, it is important to note that the massive modes do
not propagate at lower frequencies, so the possible polar-
izations depend on the frequency.

B. Gravitational radiation from sources

Let us now consider a source Tμνðt; ~xÞ concentrated
in a region of which the diameter is much smaller
than the distance r to the observer and which moves at
a nonrelativistic characteristic speed. Under such
approximations,

j~x − ~x0j ≈ r;
d~x
dt

≪ 1; ð9:9Þ

the solutions in (8.2) can be further simplified. In particular,
for the massless graviton ĥμν, one finds

ĥμν ¼
4Geff

r

Z
d3~x0Tμνðt − r; ~x0Þ: ð9:10Þ

Our interest here is in the radiative contributions of the
solutions, i.e., the ones which change with time. For
gravitational waves, the time components ĥμ0 are determined
by the purely spacelike ones, so we only need to compute
those. The spatial components are radiative in general, and
for them one finds the well-known quadrupole formulaZ

d3~x0Tijðt − r; ~x0Þ ¼ 1

2
q̈ijðt − rÞ; ð9:11Þ

where qij is the quadrupole moment of the source

qijðt − rÞ ¼
Z

d3~xxixjρðt − r; ~xÞ; ð9:12Þ

ρ is the energy density, and each dot denotes a time
derivative. Therefore, the radiative part of ĥμν is given by

ĥij ¼
2Geff

r
q̈ijðt − rÞ: ð9:13Þ

Obviously, in the case of Einstein gravity—or for Einstein-
like theories—this is the end of the story. However, in
general LðRiemannÞ theories, we also have to take into
account the additional modes. For the scalar ϕ, one finds

ϕ ¼ 4Geff

r

Z
d3~x0Tðt − r; ~x0Þ − 4Geffms

Z
∞

r
dt0

J1ðms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t02 − r2
p

Z
d3~x0Tðt − t0; ~x0Þ; ð9:14Þ

where J1ðxÞ is a Bessel function of the first kind. The integration of the trace yieldsZ
d3~x0Tðt − r; ~x0Þ ¼

Z
d3~x0ð−T00ðt − r; ~x0Þ þ Tiiðt − r; ~x0ÞÞ ¼ −M0 − Ekðt − rÞ þ 1

2
q̈iiðt − rÞ; ð9:15Þ

whereM0 is the rest mass and Ek is the kinetic energy of the source. Since the rest mass is constant, it does not source any
radiation, and the radiative part of the field is

ϕ ¼ 4Geff

r

�
1

2
q̈iiðt − rÞ − Ekðt − rÞ

	
− 4Geffms

Z
∞

r
dt0

J1ðms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t02 − r2
p

�
1

2
q̈iiðt − rÞ − Ekðt − rÞ

	
: ð9:16Þ

It is important to note that this field does not always radiate. Indeed, if one considers the source to be a set of pointlike
particles or a pressureless perfect fluid (dust), then one gets 1

2
q̈iiðt − rÞ − Ekðt − rÞ ¼ constant.22

22The energy-momentum tensor of a pressureless fluid has the form Tμν ¼ ρuμuν, where ρ is the energy density and uμ is the 4-velocity
field, satisfying uμuμ ¼ −1. Therefore, T ¼ −ρ, and its integral yields the rest mass of the system. The same argument works for a set of
pointlike particles. Also, an explicit computation in that case shows that—at least—when particles interact only gravitationally, then
1
2
q̈ii − Ek ¼ Ek þ Ep, where Ep is the gravitational potential energy of the system, and the previous quantity is a constant of motion.
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Finally, we have to determine the radiative part of tμν.
From (8.2), we can express this field as

tμν ¼ −Hhμνi −
1

3m2
g
∂hμ∂νiH; ð9:17Þ

where the purely spacelike components of Hμν for far
sources are given by

Hij ¼ −
2Geff

r
q̈ijðt − rÞ

þ 2Geffmg

Z
∞

r
dt0

J1ðmg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t02 − r2
p q̈ijðt − t0Þ:

ð9:18Þ

Moreover, in the vacuum, we get 0 ¼ ∂μtμν ¼ ∂μHμν,
so this allows us to characterize all the components of
Hμν and tμν.

23 By using (2.51), (9.17), and the solutions

for ĥij, ϕ, and Hij that we have just found, the full
metric perturbation can be computed. Note that the
perturbation at a distance r depends on the radiation
emitted at all times previous to t − r and not only on
the radiation emitted at the time t − r. This is related
to the fact that the massive graviton and the scalar do
not propagate at the speed of light. Indeed, according

to the dispersion relation ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

g;s þ k2
q

, a wave

packet with a central frequency ω will travel at a
velocity

vg;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
g;s

ω2

s
: ð9:19Þ

1. Harmonic source

Let us work out explicitly the case corresponding to a
source with harmonic motion. Then, the quadrupole
moment takes the form qijðtÞ ¼ aije−iωt þ cij, where aij
is the polarization tensor and cij is some plausible constant
term. We also assume that the kinetic energy can be
expressed as Ek ¼ Ek0e−iωt, plus a possible constant term
which does not produce radiation and which we neglect.
For this kind of time dependence, the integrals above can be
computed, and the fields take the following form:

ĥij ¼ −
2Geffω

2

r
e−iωðt−rÞaij; ð9:20Þ

Hij ¼ −
2Geffω

2

r
e−iωtþi

ffiffiffiffiffiffiffiffiffiffi
ω2−m2

g

p
raij; ð9:21Þ

ϕ ¼ −
4Geffω

2

r
e−iωtþi

ffiffiffiffiffiffiffiffiffiffi
ω2−m2

s

p
r

�
1

2
aii − Ek0

	
: ð9:22Þ

Here, it is evident that the massive graviton (scalar)
propagates only when ω2 > m2

g (ω2 > m2
s). These expres-

sions can be written in a more compact and suggestive way
as

ĥij ¼
2Geff

r
q̈ijðt − rÞ; Hij ¼

2Geff

r
q̈ijðt − vgrÞ;

ϕ ¼ 4Geff

r

�
1

2
q̈iiðt − vsrÞ − Ekðt − vsrÞ

	
; ð9:23Þ

where vg and vs are the group velocities of the massive
graviton and the scalar, respectively24 (9.19). Note that,
while the expression for ĥij is actually valid in general, the
formulas for Hij and ϕ are only exact when the source is
harmonic.

C. Power radiated by sources

In this subsection, we derive the formula for the power
emitted by some system in the form of gravitational
radiation for a general theory of the form (1.1). In order
to do so, we need to find the energy carried by gravitational
waves. There are several ways of doing this. For instance,
one can interpret the gravitational equations (2.1) with its
linear part in hμν subtracted—i.e., Eμν − EL

μν—as the gravi-
tational stress-energy tensor, for which one needs to
compute the equations of motion up to quadratic order
[78]. We will use a different approach here. As we saw in
Sec. II D, it is possible to derive the linearized equa-
tions (2.27) from the quadratic action (2.55). From this, we
can construct the canonical energy-momentum tensor τμν
associated to hμν using the Noether prescription, e.g., [79]

τμν ¼ −
� ∂L
∂ð∂μhαβÞ

− ∂σ
∂L

∂ð∂μ∂σhαβÞ
�
∂νhαβ

−
∂L

∂ð∂μ∂σhαβÞ
∂σ∂νhαβ þ ημνL: ð9:24Þ

By construction, the total energy-momentum conservation
law holds:

∂μðτμν þ TμνÞ ¼ 0: ð9:25Þ
23For example, for a plane-wave solution, we have pμHμν ¼ 0,

so we obtain the timelike components in terms of the purely
spacelike ones: H0i ¼ pjHij=ω, H00 ¼ pipjHij=ω2. In the
general case, the relations that we obtain are not algebraic but
differential.

24Note that for this kind of dispersion relation, the group
velocity (which is the physical one) is the inverse of the phase
velocity, and that is why it seems that the velocity is in the wrong
place.

BUENO, CANO, MIN, and VISSER PHYSICAL REVIEW D 95, 044010 (2017)

044010-22



Here, Tμν is the stress tensor of matter (2.2), so τμν can be
used to determine the gravitational energy flux from a
source.25 This tensor can be computed explicitly, but we
will not need its general expression here. Instead, we will
make the further assumption that the perturbation modes
are plane waves (9.2). In that case, if the perturbations ĥμν,
tμν, and ϕ appeared separately in L, the stress tensor for
each of them would be given by

τμνðĥμνÞ ¼
kμkν

32πGeff



ĥαβĥαβ −

1

2
ĥ2
�
; ð9:26Þ

τμνðtμνÞ ¼ −
1

32πGeff
pμpνhtαβtαβi; ð9:27Þ

τμνðϕÞ ¼
1

192πGeff
qμqνhϕ2i; ð9:28Þ

where we have averaged the resulting expressions over
space-time dimensions large compared with 1=ω, so that
we are implicitly assuming r ≫ 1=ω. This averaging,
which is the natural way of defining the energy and
momentum of a wave, as it removes oscillations, e.g.,
Refs. [78,81], has the effect of killing crossed terms like
ĥαβtαβ, ĥϕ, as long as 0 ≠ ms ≠ mg ≠ 0. These terms
would otherwise be present in the final expression of
τμν. In that case, one simply finds τμν ¼ τμνðĥÞ þ τμνðtÞ þ
τμνðϕÞ. Note that, while ĥμν and ϕ carry positive energy,
the massive graviton tμν propagates negative energy,
which is in agreement with its ghost behavior. Now,
the total radiated power crossing a sphere of radius r is
given by

P ¼
Z

dΩr2τ0ini; ð9:29Þ

where ni is the unit vector normal to the sphere, and note
that with this definition, a positive power means that the
source loses energy. In order to perform the integration,
we have to write the expressions above in terms of the
spacelike components of the perturbations. In the case of
ĥμν, we can write τ0i for a harmonic wave as

τ0iðĥμνÞ ¼
ni

32πGeff



_̂h
αβ _̂hαβ −

1

2
_̂h
2
�
; ð9:30Þ

where we used the relation ω2hĥαβĥαβi ¼ h _̂hαβ _̂hαβi. Now,
since ĥμν is transverse, kμĥμν ¼ 0, we can write ĥ00 ¼
ninjĥij and ĥ0i ¼ njĥij, so (9.30) takes the form

τ0lðĥμνÞ ¼
nl

32πGeff



_̂h
ij _̂hij −

1

2
_̂h
2

ii þ ninið _̂hij _̂hkk − 2
_̂hik

_̂hjkÞ

þ 1

2
ðninj _̂hijÞ2

�
: ð9:31Þ

Finally, using (9.13) and performing the integration over
the solid angle yields the power radiated by the massless
graviton ĥμν in terms of the quadrupole moment

PðĥμνÞ ¼
Geff

5



q
…ij q

…
ij −

1

3
ðq…iiÞ2

�
: ð9:32Þ

This is the well-known result found for Einstein gravity
[78,81] and the final answer for Einstein-like theories as
defined in Sec. III.
For general theories, we need to compute the

contributions from the extra modes, which we perform
along the same lines. First, we note that it is convenient to
write tαβ in terms of the auxiliary field Hαβ (9.17), so we
get, e.g., tαβtαβ ¼ HαβHαβ − 1

3
H2. Using this, we can write

τ0iðtμνÞ as

τ0iðtμνÞ ¼ −
nivg

32πGeff



_Hαβ _Hαβ −

1

3
_H2

�
; ð9:33Þ

where we have taken into account that pi ¼ vgωni, and
again we have reabsorbed the ω factor in a time derivative.
Since Hαβ is also transverse, pαHαβ ¼ 0, we have
H00 ¼ v2gninjHij, H0i ¼ vgnjHij, and hence we find

τ0lðtμνÞ ¼ −
nlvg

32πGeff



_Hij _Hij −

1

3
_H2
ii

þ v2gninj
�
2

3
_Hij

_Hkk − 2 _Hik
_Hjk

	

þ 2

3
v4gðninj _HijÞ2

�
: ð9:34Þ

Now, we can already perform the integral over the solid
angle, and by using (9.23), we get

PðtμνÞ ¼ −
Geff

5


�
5

2
vg −

5

3
v3g þ

2

9
v5g

	
q
…ij q

…
ij

−
1

3

�
5

2
vg −

5

3
v3g −

1

3
v5g

	
ðq…iiÞ2

�
: ð9:35Þ

One can see that this flux is always negative, provided
0 ≤ vg ≤ 1. As a consequence, every time one of these

25In the nonlinear regime, one can construct a gravitational
energy-momentum pseudotensor by using the same prescription
as in (9.24), namely, τnonlinearμν ¼ −½ ∂L

∂ð∂μgαβÞ − ∂σ
∂L

∂ð∂μ∂σgαβÞ�∂νgαβ −
∂L

∂ð∂μ∂σgαβÞ ∂σ∂νgαβ þ ημνL. Although this quantity is not a tensor,

Noether’s theorem ensures that ∂μ½ ffiffiffiffiffijgjp ðτnon−linearμν þ TμνÞ� ¼ 0
[80]. In the linear regime, these expressions reduce to (9.24) and
(9.25), respectively.
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modes is emitted, some positive energy must be added to
the source in order to keep the total energy constant. In
other words, the massive graviton would have the effect of
making moving sources soak up gravitational radiation
from the environment instead of emitting it. This is yet
another manifestation of the ghost nature of this mode.
Note also that this power does not cancel the one for the

massless graviton, even if we set vg ¼ 1—corresponding
to mg ¼ 0. There is no contradiction in this, since the
polarization modes of tμν are different from those of ĥμν and
therefore the energy carried by these fields does not have to
be necessarily opposite—and indeed, it is not. Observe that
the same occurs for the generalized Newtonian potential;
i.e., if we set mg ¼ 0 in (8.15), the contributions from the
two gravitons do not cancel each other. This phenomenon is
reminiscent of the so-called van Dam-Veltman-Zakharov
discontinuity [82,83], which makes reference to the fact
that the massless limit of a free massive graviton makes
predictions different from the ones of linearized Einstein
gravity.26 We stress that (9.35) is valid only when the
perturbation propagates, i.e., when ω2 > m2

g. Otherwise,
there is no emission of energy, and PðtμνÞ ¼ 0. Thus, we
can always use the previous formula with the convention
vg ¼ 0 if ω2 < m2

g.
Finally, we can evaluate the power emitted by the scalar

mode. The integral over the solid angle can be done
straightforwardly, and the result is

PðϕÞ ¼ Geffvs
3


�
1

2
q
…
ii − _Ek

	
2
�
: ð9:36Þ

As stated previously, the scalar radiation vanishes as long as
we consider our system to be composed of dust or non-
interacting particles (without interactions different form
gravity). For example, a binary—see the next epigraph—is
very approximately a system of this kind, so there is no
scalar radiation in that case. The scalar radiation only plays
a role in systems where other interactions different from
gravity are important, like in the explosion of a supernova
[84]. Now, the final result for the power emitted in the form
of gravitational waves in a theory of the form (1.1) reads

P ¼ Geff

5


�
1 −

5

2
vg þ

5

3
v3g −

2

9
v5g

	
q
…ij q

…
ij

−
1

3

�
1 −

5

2
vg þ

5

3
v3g þ

1

3
v5g

	
ðq…iiÞ2

þ 5

3
vs

�
1

2
q
…

ii − _Ek

	
2
�
; ð9:37Þ

where

vg;s ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − m2
g;s

ω2

q
if ω2 ≥ m2

g;s;

0 if ω2 < m2
g;s:

ð9:38Þ

If we decompose the quadrupole moment into its trace and
traceless parts,

qij ¼ Qij þ
1

3
δijqkk; ð9:39Þ

we can rewrite this expression as

P ¼ Geff

5


�
1 −

5

2
vg þ

5

3
v3g −

2

9
v5g

	
Q
…ijQ

…

ij

−
5

27
v5gðq…iiÞ2 þ

5

3
vs

�
1

2
q
…
ii − _Ek

	
2
�
: ð9:40Þ

Note that in Einstein gravity, the result only involves the
traceless part of qij [78,81], while here we also have
contributions from its trace and from the variation of the
source kinetic energy due to the presence of extra modes.
Let us stress again that (9.40) is valid only for a harmonic
source. In the case of a more general time dependence, qij
and Ek can be Fourier expanded, and then the power of
each Fourier mode can be extracted from (9.40). The total
power would then be the sum of all of those contributions.
Equation (9.40) is the main result of this section. It

generalizes the Einstein gravity formula (9.32) to general
LðRiemannÞ theories. A previous extension of (9.32) to
fðRÞ gravity was found in Ref. [77]. For fðRÞ, our formula
above reduces to

PfðRÞ ¼
G

5f0ðR̄Þ


Q
…ijQ

…

ij þ
5

3
vs

�
1

2
q
…

ii − _Ek

	
2
�
; ð9:41Þ

where vs reads, see Appendix C,

vs ¼
( ffiffiffiffiffiffiffiffiffiffiffiffi

1 − m2
s

ω2

q
if ω2 ≥ m2

s ;

0 if ω2 < m2
s ;

where

m2
s ¼

f0ðR̄Þ − R̄f00ðR̄Þ
3f00ðR̄Þ : ð9:42Þ

This expression disagrees with the one found in Ref. [77]—
see (82) in that paper. However, it is easy to see that the
second term on the rhs of Eq. (43) in Ref. [77] is identically
zero, so the second contribution on the rhs of (82) is absent.
Similarly, the first term in their (82) is missing an overall2726Note, however, that the situation considered here is slightly

different from massive gravity. Indeed, in that case, the only field
is a well-behaved massive graviton, while for linearized higher-
order gravities, we deal with a massless graviton, a scalar mode,
and a ghostlike massive graviton.

27This seems to arise from a wrong identification in (48). Note
that Eqs. (46)–(50) in Ref. [77] are also inconsistent with each
other.
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1=f0ðR̄Þ2. And, finally, the authors seem to have ignored
the contribution from the scalar mode, which explains why
they do not find the term proportional to ð1=2q…ii − _EkÞ2.

1. Binary system

As an application of (9.40), let us compute explicitly the
power radiated by a system consisting of two masses m1

and m2 separated by a distance r in a circular orbit
contained in the plane z ¼ 0. For this kind of system,
the position of the masses is given by

~x1ðtÞ ¼
rm2

m1 þm2

ðcosðΩtÞ; sinðΩtÞ; 0Þ; ð9:43Þ

~x2ðtÞ ¼ −
rm1

m1 þm2

ðcosðΩtÞ; sinðΩtÞ; 0Þ; ð9:44Þ

where the orbital frequency Ω reads

Ω2 ¼ Geffðm1 þm2Þ
r3

: ð9:45Þ

Assuming the masses to be pointlike, the mass density can
be written as ρð~x; tÞ ¼ m1δð~x − ~x1ðtÞÞ þm2δð~x − ~x2ðtÞÞ.
Then, the quadrupole moment (9.12) is

qijðtÞ ¼
r2m1m2

2ðm1 þm2Þ

0
B@

1þ cosð2ΩtÞ sinð2ΩtÞ 0

sinð2ΩtÞ 1− cosð2ΩtÞ 0

0 0 0

1
CA:

ð9:46Þ

The trace and the kinetic energy are constant,
qii ¼ ðr2m1m2Þ=ðm1 þm2Þ, _Ek ¼ 0, so there is no scalar
radiation in this case.28 The traceless part of qij reads in turn

QijðtÞ ¼
r2m1m2

2ðm1 þm2Þ

×

0
B@

1=3þ cosð2ΩtÞ sinð2ΩtÞ 0

sinð2ΩtÞ 1=3 − cosð2ΩtÞ 0

0 0 −2=3

1
CA:

ð9:47Þ

Applying (9.40), we obtain the following result,

P ¼ PE

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
g

4Ω2

s �
19

18
þ 11

36

m2
g

Ω2
þ 1

72

m4
g

Ω4

�!
; ð9:48Þ

where

PE ¼ 32G4
effm

2
1m

2
2ðm1 þm2Þ

5r5
ð9:49Þ

is the result corresponding to theories which do not
propagate the massive graviton—see Sec. III. In particular,
Eq. (9.49) is the Einstein gravity result when Geff ¼ G.
Expression (9.48) is valid for 4Ω2 > m2

g. When 4Ω2 < m2
g

instead, the result reduces to PE—see Fig. 3. When
4Ω2 ¼ m2

g, the effect of the massive graviton makes the
power start to decrease. In particular, when 4Ω2=m2

g ≃
1.2761, the power emitted vanishes. For even smaller
values of m2

g with respect to Ω2, the power becomes
negative acquiring its minimum value at 4Ω2=m2

g ¼
1þ 3=

ffiffiffi
5

p
, for which P=PEð1þ 3=

ffiffiffi
5

p Þ ¼ 1 −
ffiffiffiffiffiffiffiffi
3=2

p ≃
−0.2247. Finally, for Ω2 ≫ m2

g, the power tends to the
constant value P=PEðΩ2 ≫ m2

gÞ ¼ −1=18≃ −0.0556.
Given a theory with m2

g < ∞, there would exist a critical
frequency Ω2

c ≃ 0.31903m2
g for which the source would

stop emitting radiation and such that for greater frequencies
the source would start absorbing radiation instead of
emitting it. This exotic process should not be regarded
as physical and illustrates the pathological character of
the class of theories which propagate the additional
spin-2 mode.

X. WALD FORMALISM FOR GENERAL
LðRiemannÞ THEORIES

In this section, we present a self-contained review of
Wald’s formalism [41] applied to general LðRiemannÞ
theories. Wald’s formalism provides a systematic way of
constructing conserved quantities in diffeomorphism
invariant theories. It was originally developed to derive
the first law of black-hole mechanics for generic theories of
gravity [42,43], but it has led to many interesting appli-
cations, e.g., in holography [48,85,86]. Our discussion is
mainly based on Refs. [42,87], where this formalism was

FIG. 3. Power emitted by a binary system for a theory of the
form (1.1), P=PE as a function of 4Ω2=m2

g.

28In the case of a more general orbit, there is no scalar radiation
either, because, as discussed earlier, 1

2
q̈ii − Ek ¼ Ek þ Ep ¼

constant for that kind of system.
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developed for higher-derivative theories of gravity. Here,
we present new results for the symplectic structure ω and
the surface charge δQξ − ξ ·Θ for LðRiemannÞ theories.
Throughout this section, we set Lmatter ¼ 0 in (1.1); i.e., we
assume that the Lagrangian does not depend on any matter
fields. In Appendix E, we provide explicit expressions for
the quantities considered in this section for some relevant
theories.

A. Lagrangian and symplectic potential

The starting point of the Wald formalism is a diffeo-
morphism covariant Lagrangian, which—in our case—is
assumed to be a local functional of the metric and the
Riemann tensor. The Lagrangian is treated as a D-form on
the D-dimensional space-time manifold M, namely,

L ¼ LðRμνρσ; gαβÞϵ; ð10:1Þ

where LðRμνρσ; gαβÞ is the Lagrangian density and ϵ is the
volume form on M. For future reference, we will be using
the following shorthand notation for the volume form of
any codimension-n submanifold:

ϵμ1…μn ≡
1

ðD − nÞ!
ffiffiffiffiffiffi
−g

p
ϵμ1…μnνnþ1…νDdx

νnþ1 ∧ � � � ∧ dxνD:

ð10:2Þ

Under a variation of the metric,29 the first-order variation of
the Lagrangian is given by

δL ¼ ϵEμνδgμν þ dΘðg; δgÞ; ð10:3Þ

where Eμν ¼ 0 are the equations of motion for the theory,
given by30 (2.1) and Θ is the boundary term that arises due
to partial integration of terms involving derivatives of δg.
The (D − 1)-form Θ is locally constructed from g and δg
and is called the symplectic potential form. From (10.3), it
is clear that Θ is not uniquely defined, since one always
has the freedom to add a closed—and hence locally exact
[88]—form to it. However, as shown in Refs. [42,89], it is
always possible to construct an explicit covariant formula
forΘ which fixes this ambiguity. For LðRiemannÞ theories,
this somewhat canonical formula reads [42,87]

Θ ¼ ϵμð2Pμαβν∇νδgαβ − 2∇νPμαβνδgαβÞ; ð10:4Þ

where Pμβαν is defined in (2.2). Furthermore, by employing
the relation

∇νδgαβ ¼ gβρδΓ
ρ
να þ gαρδΓ

ρ
νβ; ð10:5Þ

the symplectic potential form can also be written as

Θ ¼ ϵμð−2Pμαβ
νδΓν

αβ − 2∇νPμαβνδgαβÞ; ð10:6Þ

where we used that Pμαβν is antisymmetric in its last
two indices, Pμαβν ¼ −Pμανβ, which implies that
PμαβνδΓρ

βν ¼ 0.

B. Symplectic form

The symplectic current form is defined as the antisym-
metrized variation of Θ [89],

ωðg; δ1g; δ2gÞ≡ δ1Θðg; δ2gÞ − δ2Θðg; δ1gÞ: ð10:7Þ

From (10.3) and (10.7), it follows that ω obeys the relation

dω ¼ −δ1ðϵEμνÞδ2gμν þ δ2ðϵEμνÞδ1gμν: ð10:8Þ

Here, it was used that the exterior derivative d commutes
with the variation δ: dðδΘÞ ¼ δðdΘÞ. Therefore, if δg
satisfies the linearized equations of motion δðϵEμνÞ ¼ 0,
then the symplectic current form is closed,

dω ¼ 0: ð10:9Þ

This relation implies—by Stokes’s theorem—that the
integral of ω over a compact Cauchy surface C is inde-
pendent of the choice of C. For noncompact Cauchy
surfaces, one has to impose appropriate boundary con-
ditions on the metric and its perturbations on ∂C in order to
assure convergence of the integral. Here, we just assume
that such boundary conditions exist, so that the integral of
ω over a Cauchy surface C is a conserved quantity. This
quantity is called the symplectic 2-form [42,89],

Ωðg; δ1g; δ2gÞ≡
Z
C
ωðg; δ1g; δ2gÞ: ð10:10Þ

Let us explain the origin of its name. In fact, Ω can be
regarded as a 2-form defined on the space of metric
configurations F . This is because Ω is a local functional
of the linearized perturbations δ1g and δ2g, where the
variation δ can be viewed as the exterior derivative on this
space. Moreover, from (10.7), it follows that Ω is closed,
i.e., δΩ ¼ 0, due to the fact that the exterior derivative
satisfies the relation δ2g ¼ 0. Now a proper symplectic
form on phase space is both closed and nondegenerate. The
form (10.10) is degenerate—and is hence sometimes called
the presymplectic form instead—but one can construct a
nondegenerate 2-form from (10.10) by modding out F by
the degeneracy subspace of Ω. Then, the nondegenerate Ω
and the solution submanifold ofF constitute a well-defined
covariant phase space [89].

29For convenience, we vary the Lagrangian with respect to the
metric gμν, although it was initially defined in terms of the inverse
metric gμν.

30Notice that the equations of motion with indices up
and the one with indices down are related by a minus sign:
Eμν ¼ −gμαgμνEαβ.
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Let us now compute the symplectic current form
explicitly for LðRiemannÞ theories. If we write the sym-
plectic potential form asΘ ¼ ϵμΘμ, then the definition ofω
(10.7) becomes

ωðg;δ1g;δ2gÞ ¼ ϵμ

�
ðδ1Θμðg;δ2gÞÞ þ

1

2
gμνδ1gμνΘμðg;δ2gÞ

�
− ½1↔ 2�; ð10:11Þ

where we used δ
ffiffiffiffiffiffi−gp ¼ 1

2

ffiffiffiffiffiffi−gp
gμνδgμν. Next, one can insert

two expressions for Θ for LðRiemannÞ theories. ω sim-
plifies immediately if one inserts the second expression
(10.6), since in that case one can employ the relation
δ½1δ2�Γν

αβ ¼ 0. If one inserts the first expression (10.4)
instead, one has to be careful with evaluating the term
4Pμαβνδ½1jð∇νδj2�gαβÞ, because the variation and the covar-
iant derivative do not commute. In the latter case, one can
use the fact that the variation and the partial derivative
commute, i.e., ½δ; ∂a�f ¼ 0. We checked that both proce-
dures give the same answer. The result is

ω ¼ ϵμ½−ð2δ1Pμαβ
ν þ Pμαβ

νgρσδ1gρσÞδ2Γν
αβ

− ð2δ1∇νPμαβν þ gρσδ1gρσ∇νPμαβνÞδ2gαβ� − ½1 ↔ 2�:
ð10:12Þ

By employing the formula for the variation of the
Christoffel connection

δΓν
αβ ¼

1

2
gμνð∇αδgβμ þ∇βδgαμ −∇μδgαβÞ; ð10:13Þ

the result (10.12) can also be written as

ω ¼ ϵμ½ð2δ1Pμαβν þ ðPμνρβgασ þ Pμαρνgβσ þ Pμαβρgνσ

þ PμαβνgρσÞδ1gρσÞ∇νδ2gαβ

− ð2δ1∇νPμαβν þ gρσδ1gρσ∇νPμαβνÞδ2gαβ� − ½1 ↔ 2�:
ð10:14Þ

Finally, by inserting a formula for the variation of Pμαβν that
follows from (2.8),

δPμαβν ¼ 2gσ½μPα�ρβνδgρσ þ gλγgηδCμαβν
ρσληδR

ρσ
γδ; ð10:15Þ

whereCμαβν
ρσλη is defined by (2.4), the symplectic current form

can be written as

ω ¼ ϵμ½ðSμαβνρσδ1gρσ þ 2gλγgηδCμαβν
ρσλη δ1R

ρσ
γδÞ∇νδ2gαβ

− ð2δ1∇νPμαβν þ gρσδ1gρσ∇νPμαβνÞδ2gαβ� − ½1 ↔ 2�;
ð10:16Þ

with Sμαβνρσ ≡ −2PνðαβÞðρgσÞμ þ 2PμνðρjðαgβÞjσÞ

þ PμðρjνðαgβÞjσÞ þ PμðαβÞðρgσÞν þPμðαβÞνgρσ:

ð10:17Þ

To arrive at the expression for Sμαβνρσ, we employed the
first Bianchi identity for Pμαβν: Pμαβν þ Pμβνα þ Pμναβ ¼ 0.
This new formula for the symplectic current form applies to
any higher-curvature gravity theory. Expressions for ω
were previously obtained for Einstein gravity [90–92] and
fðRÞ gravity [93]. It can be checked that this formula
provides the same results in those cases, as we show in
Appendix E.

C. Noether current and Noether charge

Next, let ξ be an arbitrary vector field on M which
generates an infinitesimal diffeomorphism. Since the
Lagrangian (10.1) is diffeomorphism invarant, it varies
under a diffeomorphism as

δξL ¼ LξL ¼ dðξ ·LÞ; ð10:18Þ

where in the last equality Cartan’s magic formula was used:
LξL ¼ ξ · dLþ dðξ ·LÞ. The first term vanishes since L
is a top form, and the dot in the second term denotes the
interior product of the vector ξ with the form L.
Since diffeomorphisms are local symmetries of the

theory, one can associate a Noether current—represented
as a (D − 1)-form—to each vector field ξ [41,89],

Jξ ≡Θðg;LξgÞ − ξ ·L: ð10:19Þ

It follows from (10.3) and (10.18) that the exterior
derivative of Jξ is

dJξ ¼ −ϵEμνLξgμν: ð10:20Þ

As a consequence, the Noether current form is closed if the
equations of motion Eμν ¼ 0 are satisfied. In that case,
Poincaré’s lemma implies that it is locally exact [88]. What
is more, in the Appendix of Ref. [94], it was shown that of-
shell Jξ can always be written in the form

Jξ ¼ dQξ þ ξνCν; ð10:21Þ

where Qξ is called the Noether charge (D − 2)-form and
Cν ¼ 0 are the constraint equations of the theory. For
theories that only depend on the metric field, these
equations are given by Cν ¼ 2ϵμEμ

ν with Eμ
ν ≡ gμαEαν.

Although Qξ is not uniquely determined by Eq. (10.21),
there exists an explicit algorithm by Ref. [88] to construct
Qξ from Jξ. For LðRiemannÞ theories of gravity, this
construction yields [42,87]
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Qξ ¼ ϵμνð−Pμνρσ∇ρξσ − 2ξρ∇σPμνρσÞ: ð10:22Þ

Thus, by Eq. (10.21), the Noether current form is

Jξ ¼ ϵμ½−2∇νðPμνρσ∇ρξσÞ − 4∇νðξρ∇σPμνρσÞ þ 2Eμ
νξ

ν�:
ð10:23Þ

D. Surface charge

From (10.3), (10.7), (10.19), and (10.21), one can obtain
a fundamental identity,

ωðg; δg;LξgÞ ¼ dkξðg; δgÞ þ 2δðϵμEμ
νÞξν þ ξλϵλEμνδgμν;

ð10:24Þ

where kξðg; δgÞ≡ δ½g�QξðgÞ − ξ ·Θðg; δgÞ ð10:25Þ

is known as the Iyer-Wald surface charge (D − 2)-form.
Notice that this relation applies to arbirary metrics g, metric
pertubations δg, and vector fields ξ. This identity was first
established off shell by Wald [41], and for field-dependent
vector fields—e.g., vector fields that depend on the metric
ξ ¼ ξðgÞ—a proof can be found in Refs. [85,95]. The
variation δ½g�Qξ ≡ δQξ −Qδξ acts only on the explicit
dependence on the metric and its derivatives in Qξ, and
not on the implicit dependence on ξ.
A special case of the identity occurs when ξ is an exact

Killing vector. In that case, the relation gives rise to the first
law of black-hole mechanics [41,42]. Since Lξg ¼ 0, the
left-hand side of (10.24) vanishes, and if g and δg satisfy,
respectively, the full equations of motion and the linearized
ones, one obtains

dkξ ¼ 0: ð10:26Þ

Therefore, the integral of kξ over a (D − 2)-dimensional,
spacelike compact surface S is “conserved,” in the sense
that it is independent of the choice of S. If the normal
directions to S are the time and radial direction, then the
integral is the same at every time and radial coordinate. In
order for this integral to be the variation of a finite
conserved charge, certain integrability conditions should
be satisfied [89].
Let us now compute this quantity for general

LðRiemannÞ theories. Inserting the known expressions
for Qξ (10.22) and Θ (10.4) into the definition of kξ

(10.25) yields

kξ ¼ δ½g�½ϵμνð−Pμνρ
σ∇ρξ

σ − 2ξρ∇σPμνρσÞ�
− ξλϵμλð2Pμαβν∇νδgαβ − 2∇νPμαβνδgαβÞ: ð10:27Þ

By letting the variation act only on the explicit dependence
on the metric, and collecting similar terms, we arrive at

kξ ¼ ϵμν

�
−δPμνρ

σ∇ρξ
σ − 2ξρδð∇σPμν

ρ
σÞ

þ
�
−
1

2
Pμνρσgαβ∇ρξσ þ 2ξν∇λPμαβλ

− ξρ∇σPμνρσgαβ
	
δgαβ

− ðξαPμνλβ þ 2ξνPμαβλÞ∇λδgαβ

�
: ð10:28Þ

Here, we have defined the δ½g� variation of the vector ξσ

(with index up) to be zero, i.e., δ½g�ξσ ≡ 0, which implies
that δ½g�ξσ ¼ ξαδgασ and δ½g�ð∇ρξ

σÞ ¼ ξαδΓσ
αρ. Finally, intro-

ducing the variation of Pμνρσ (10.15), we obtain the
expression

kξ ¼ ϵμν

�
−gγλgδηCμνρσ

αβγδ∇ρξσδRαβ
λη − 2ξρδð∇σPμν

ρ
σÞ

þ
�
Pμναλ∇βξλ −

1

2
Pμνρσgαβ∇ρξσ

þ 2ξν∇λPμαβλ − ξρ∇σPμνρσgαβ
	
δgαβ

− ðξαPμνλβ þ 2ξνPμαβλÞ∇λδgαβ

�
: ð10:29Þ

E. Barnich-Brandt-Compère definitions of ω and kξ

A different method for constructing a covariant phase
space was developed by Barnich, Brandt, and Compère
[96–98]. Their definitions of the relevant quantities are
based on the equations of motion rather than the
Lagrangian. Hence, their method is also universal, in the
sense that it applies to any diffeomorphism invariant
theory—in fact, their formalism is more general, since it
holds for any theory with local gauge symmetries.
Moreover, their definitions do not suffer from any ambi-
guities, as is the case for the Wald formalism—see the next
epigraph. Most quantities agree with those defined by Lee,
Wald, and Iyer, expect for the symplectic current ω and the
surface charge kξ. For completeness, let us present here the
Barnich-Brandt-Compère definitions of ω and kξ for
LðRiemannÞ theories. A pedagogical review of this method
can be found in Refs. [85,87].
First, the Barnich-Compère symplectic current—also

known as the invariant symplectic current—differs from
the Lee-Wald definition (10.7) by an exact form,

ωBCðg; δ1g; δ2gÞ ¼ ωLWðg; δ1g; δ2gÞ − dEðg; δ1g; δ2gÞ;
ð10:30Þ

where E was computed for arbitrary higher-derivative
Lagrangians by Ref. [87]. We provide two equivalent
expressions for E:
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Eðg; δ1g; δ2gÞ ¼ ϵμν
1

2

�
−
3

2
Pμνραgσβ þ 2Pμρσαgνβ

�
× δ1gρσδ2gαβ − ½1 ↔ 2�

¼ ϵμν

�
−
3

2
Pμνραgσβ þ Pμρσαgνβ − Pμαβρgνσ

�
× δ1gρσδ2gαβ: ð10:31Þ

Now, by adding the term “−dEðg; δg;LξgÞ” on both sides
of the equation (10.24), one can derive a new fundamental
identity for the Barnich-Compère symplectic current
(10.30), if one redefines the surface charge (10.25) as

kBB
ξ ðg; δgÞ≡ kIW

ξ ðg; δgÞ −Eðg; δg;LξgÞ; ð10:32Þ

where kBB
ξ is called the Barnich-Brandt surface charge.

Notice that for exact Killing vectors, i.e., Lξg ¼ 0, the Iyer-
Wald and Barnich-Brandt definitions of the surface charge
are equivalent. In the rest of the paper, especially in
Appendix E, we restrict again to the Lee-Wald-Iyer
proposals for ω and kξ.

F. List of ambiguities

In the previous epigraphs, we have given the “canonical”
formulas for the relevant quantities in Wald’s formalism.
However, these quantities are not uniquely defined. Let us
present here a list of all the corresponding ambiguities. The
symplectic potential Θ and the Noether charge Qξ are
defined by (10.3) and (10.21), respectively, up to a closed
—and hence locally exact—form, denoted by dY and dZ,
respectively. Moreover, one can add a total derivative dμ to
the Lagrangian without changing the equations of motion.
These ambiguities Y, Z, and μ also give rise to ambiguities
in the other relevant quantities. The full list reads [42]

L → Lþ dμ; ð10:33Þ

Θ → Θþ δμþ dYðg; δgÞ; ð10:34Þ

ω → ωþ dðδ1Yðg; δ2gÞ − δ2Yðg; δ1gÞÞ; ð10:35Þ

Jξ → Jξ þ dðξ · μÞ þ dYðg;LξgÞ; ð10:36Þ

Qξ → Qξ þ ξ · μþ Yðg;LξgÞ þ dZ; ð10:37Þ

kξ → kξ þ δ½g�Yðg;LξgÞ − LξYðg; δgÞ
þ dðδ½g�Zþ ξ · Yðg; δgÞÞ; ð10:38Þ

where the arrows mean that the expressions on the rhs are
also compatible with the corresponding definitions. We
have seen above that for exact Killing vectors, the integral
of kξ is conserved. Moreover, here we observe that the
integral of this form over a (D − 2)-dimensional spacelike

compact submanifold is unambiguous for Killing vectors,
since in that case, the total derivative does not contribute
and we have [42]

δ½g�Yðg;LξgÞ ¼ Yðg;LξδgÞ ¼ LξYðg; δgÞ; ð10:39Þ

because Lξg ¼ 0. Furthermore, we note that the Barnich-
Compère symplectic current (10.30) and the Barnich-
Brandt surface charge (10.32) do not fall within the
class of ambiguities of the Wald definitions, Eqs. (10.35)
and (10.38), respectively. This is because the form
Eðg; δ1g; δ2gÞ cannot be written as δ1Yðg; δ2gÞ−
δ2Yðg; δ1gÞ, although it was previously suggested in
Ref. [99] that this could be done. Thus, the proposals by
Barnich-Brandt-Compère and Lee-Wald-Iyer for ω and kξ

are distinct. Which proposal is more appropriate seems to
depend on the problem.31

XI. FINAL COMMENTS

In this paper, we have presented a collection of new
results on LðRiemannÞ theories of gravity. A summary of
our findings can be found in Sec. I A.
Before closing, we would like to point out that one of our

motivations to study the linearized spectrum of this class of
theories came from the following observations. In
Refs. [19,62], the authors constructed a cubic theory
admitting analytic extensions of the Schwarzschild-AdS
black hole characterized by a single function. Remarkably,
they noticed that this theory—which was coined quasito-
pological gravity32—has the same linearized spectrum as
Einstein gravity; i.e., it falls in the Einstein-like category
considered in Sec. III—see Appendix B. In fact, as far as
we know, all the known examples of higher-order
gravities33 for which nontrivial analytic black-hole solu-
tions—generalizing the corresponding Einstein gravity
ones—have been constructed for generic values of the
coupling34 fall into the Einstein-like category; this includes
quasitopological gravity [19,62] and its generalizations to
higher curvatures, e.g., Ref. [103], and Lovelock theories
[104–109]. In all those cases, if we restrict to static and
spherically symmetric solutions—and analogously for
planar or hyperbolic horizons—a single function deter-
mines the corresponding metric—e.g., for Schwarzschild,
fðrÞ ¼ 1 − 2M=r in the usual coordinates. This is as
opposed to black-hole solutions of theories which do not

31We thank Geoffrey Compère for clarifying this point.
32Note that, as opposed to, e.g., ECG, quasitopological gravity

is defined in a dimension-dependent fashion.
33In this statement, we are referring to purely gravitational

metric theories.
34The situation changes if one allows for fine-tuned couplings

—see, e.g., Refs. [63,100,101]. Another possibility is considering
theories which do not reduce to Einstein gravity when the
corresponding couplings vanish, like pure R2 gravity, e.g.,
Ref. [102]. We find these setups considerably less interesting.
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belong to the Einstein-like class, e.g., Refs. [110,111], for
which two independent functions are needed and generally
can only be accessed numerically or in certain limits. This
suggests the possibility of finding simple analytic exten-
sions of Einstein’s gravity black holes for that class of
theories. Furthermore, it is natural to expect that only
theories that do not propagate the extra scalar and the
ghostlike graviton at the linearized level are susceptible to
admitting extensions of Schwarzschild’s solution with a
single blackening factor. Additional evidence in favor of
these claims coming from ECG was recently reported in
Refs. [29,112–114]. A general study for arbitrary
LðRiemannÞ theories is also in progress.
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APPENDIX A: LINEARIZATION
PROCEDURE: EXAMPLES

In this Appendix, we apply the linearization procedure
explained in Sec. II to two instances. The first is a general
quadratic theory inD dimensions, for which we give details
of all the steps involved in the linearization process. The
second is a Born-Infeld gravity. Our goal in that case is to
illustrate that our method can be easily applied to theories
of which the linearization would be difficult to achieve
using different methods.

1. Quadratic gravity

Let us consider the most general quadratic gravity in
general dimensions,

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ þ κ

4−D
D−2ðα1R2 þ α2RμνRμν þ α3RμνσρRμνσρÞ

�
: ðA1Þ

In order to obtain LðΛ; αÞ, we only have to substitute the Riemann tensors appearing in the above Lagrangian density by the
expression (2.20) and use the algebraic properties of the auxiliary tensor kμν (2.19) to compute all the contractions. We find

R2jðΛ;αÞ ¼ Λ2D2ðD − 1Þ2 þ 2ΛαDðD − 1Þχðχ − 1Þ þ α2χ2ðχ − 1Þ2;
RμνRμνjðΛ;αÞ ¼ Λ2DðD − 1Þ2 þ 2ΛαðD − 1Þχðχ − 1Þ þ α2χðχ − 1Þ2;

RμνσρRμνσρjðΛ;αÞ ¼ 2DðD − 1ÞΛ2 þ 4Λαχðχ − 1Þ þ 2α2χðχ − 1Þ: ðA2Þ

The final result for LðΛ;αÞ reads

LðΛ; αÞ ¼ þ 1

2κ
ð−2Λ0 þ ΛDðD − 1Þ þ αχðχ − 1ÞÞ

þ κ
4−D
D−2ðΛ2DðD − 1Þ þ 2Λαχðχ − 1ÞÞ

× ðDðD − 1Þα1 þ ðD − 1Þα2 þ 2α3Þ
þ κ

4−D
D−2α2χðχ − 1Þ

× ðχðχ − 1Þα1 þ ðχ − 1Þα2 þ 2α3Þ: ðA3Þ

Then, applying (2.22), we get

e ¼ 1

4κ
þ Λκ

4−D
D−2ðDðD − 1Þα1 þ ðD − 1Þα2 þ 2α3Þ: ðA4Þ

The second derivative with respect to α yields

∂2L
∂α2 ¼ 2χðχ − 1Þκ4−D

D−2½χðχ − 1Þα1 þ ðχ − 1Þα2 þ 2α3�:
ðA5Þ

Hence, comparing with (2.23), we can easily obtain the
values of a, b, and c. The result is

a ¼ κ
4−D
D−2α3; b ¼ κ

4−D
D−2α1
2

; c ¼ κ
4−D
D−2α2
2

: ðA6Þ

Inserting the values of a, b, c, and e into (2.28)–(2.30) gives
rise to Eqs. (2.32)–(2.34) for κeff, m2

s , and m2
g.
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Finally, from (2.14), we see that the cosmological
constant is related to the background scale Λ and the
couplings of the theory through

Λ0 ¼
ðD − 1ÞðD − 2ÞΛ

2
þ κ

2
D−2Λ2ðD − 4ÞðD − 1Þ

× ½DðD − 1Þα1 þ ðD − 1Þα2 þ 2α3�: ðA7Þ

2. Born-Infeld gravity

Let us now consider the following theory, which has the
form of a Born-Infeld model,

S ¼ 1

κ
D

D−2ð1þ λÞD−2
2

×
Z
M

dDx
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgμνð1þ λÞ þ κ
2

D−2Rμνj
q

−
ffiffiffiffiffiffiffiffiffi
jgμνj

q i
;

ðA8Þ

where jAμνj stands for the absolute value of the determinant
and λ is a dimensionless parameter—which we assume to
be greater than −1. The normalization is chosen so that to
leading order, the action becomes Einstein-Hilbert,

S ¼ 1

2κ

Z
M

dDx
ffiffiffiffiffi
jgj

p
½−2Λ0 þ Rþ � � ��; ðA9Þ

where Λ0 ¼ ½ð1þ λÞ1−D=2 − ð1þ λÞ�κ 2
2−D and the ellipsis

means an infinite series of higher-order terms in curvature.
Linearizing this theory can be a nontrivial task, due to the
presence of the determinant and the square root. Using our
method, it becomes quite easy, though. First, extracting as a
common factor the square root of the metric determinant,35

we find the Lagrangian density

κ
D

D−2ð1þ λÞD−2
2 L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ λÞδμν þ κ

2
D−2Rμ

νj
q

− 1: ðA10Þ

Now, we follow our recipe and substitute the Riemann
tensor (2.20) in this expression:

κ
D

D−2ð1þ λÞD−2
2 LðΛ; αÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð1þ λþ κ

2
D−2ΛðD − 1ÞÞδμν þ ακ

2
D−2ðχ − 1Þkμνj

q
− 1:

ðA11Þ

The determinant can be computed using (2.19) and the
identity

jAj ¼ etrðlogAÞ: ðA12Þ

The result is

κ
D

D−2ð1þ λÞD−2
2 LðΛ; αÞ ¼ ð1þ λþ κ

2
D−2ΛðD − 1ÞÞD=2

×

�
1þ ακ

2
D−2ðχ − 1Þ

1þ λþ κ
2

D−2ΛðD − 1Þ

	
χ=2

− 1: ðA13Þ

This “prepotential” contains all the information about the
linearized theory. Let us begin by determining Λ. The
equation for the background curvature (2.14) becomes

½1þ λþ κ
2

D−2ΛðD − 1Þ�D=2 − 1

¼ κ
2

D−2ΛðD − 1Þ½1þ λþ κ
2

D−2ΛðD − 1Þ�D=2−1: ðA14Þ

A simple algebraic manipulation yields

1 ¼ ð1þ λÞ½1þ λþ κ
2

D−2ΛðD − 1Þ�D=2−1: ðA15Þ

Thus, since we have assumed λ > −1, this equation has
always one solution:

Λ ¼ 1

κ
2

D−2ðD − 1Þ ½ð1þ λÞ−2=ðD−2Þ − ð1þ λÞ�: ðA16Þ

Now, we can compute the parameters a, b, c, and e. From
(2.22), we get

e ¼ 1

4κ
ð1þ λÞ−D=2; ðA17Þ

where we already evaluated the expression on the back-
ground. On the other hand, the second derivative of LðΛ; αÞ
with respect to α evaluated at α ¼ 0 yields

1

4χðχ − 1Þ
∂2L
∂α2

����
α¼0

¼ 1

16
κ
4−D
D−2ðχ − 1Þðχ − 2Þð1þ λÞ−D2−2D−4

2ðD−2Þ ;

ðA18Þ

where we have also made use of (A16). Now, comparing
this expression with (2.23), we find the values of the
parameters, namely,

a ¼ 0; b ¼ 1

16
κ
4−D
D−2ð1þ λÞ−D2−2D−4

2ðD−2Þ ;

c ¼ −
1

8
κ
4−D
D−2ð1þ λÞ−D2−2D−4

2ðD−2Þ : ðA19Þ

Finally, using (2.28)–(2.30), we can compute the physical
parameters κeff , ms, and mg,

κeff ¼ κð1þ λÞD=2; m2
s ¼ 2ð1þ λÞκ 2

2−D;

m2
g ¼ 2ð1þ λÞ−2=ðD−2Þκ 2

2−D: ðA20Þ

Therefore, we have completely characterized the linearized
spectrum of this Born-Infeld model. Since we assumed that35We use that jAμνj ¼ jgμαAα

νj ¼ jgμνjjAα
βj.
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λ > −1, all quantities are finite and real, and everything is
well defined. For D > 2, the background (A16) is dS
(Λ > 0) when λ < 0, AdS (Λ < 0) when λ > 0, and flat
when λ ¼ 0. In all cases, we have, apart from the massless
graviton, a massive scalar and a massive spin-2 graviton.
The masses squared and the effective gravitational constant
are always positive.

APPENDIX B: CLASSIFICATION OF
THEORIES: EXAMPLES

In this Appendix, we provide numerous examples of the
different classes of theories characterized in Sec. III.

1. Theories without massive graviton

In Sec. VII, we characterized all theories being defined in
a dimension-independent manner which do not propagate
the extra massive graviton up to cubic order in curvature.
The list of theories reduced to the particular fðLovelockÞ
terms, ECG (6.2) plus a new invariant, Y, which we defined
in (7.6). In this Appendix, we will study general
fðLovelockÞ theories, which—although not necessarily
defined in a dimension-independent way—are a paradig-
matic example of theories which only propagate the usual
massless graviton plus the scalar at the linearized level [63].

2. f ðLovelockÞ gravities
The most general fðLovelockÞ action can be written as

S ¼ 1

2κ

Z
M

dDx
ffiffiffiffiffi
jgj

p
fðL0;L1;…;L⌊D=2⌋Þ; ðB1Þ

where f is some differentiable function of the dimension-
ally extended Euler densities36

Lk ≡ 1

2k
δμ1ν1…μkνk
α1β1…αkβk

Rμ1ν1
α1β1 � � �Rμkνk

αkβk ; ðB2Þ

where the generalized Kronecker symbol is defined as

δμ1ν1…μkνk
α1β1…αkβk

≡ ð2kÞ!δ½μ1α1 δ
ν1
β1
� � � δμkαkδνk�βk

. Note that the first three
densities are nothing but a constant that can be identified
with the cosmological constant L0 ≡ −2Λ0; the Einstein-
Hilbert term, L1 ≡ R; and the Gauss-Bonnet gravity,
L2 ≡ X4. A corollary from the results presented in
Sec. V is that fðLovelockÞ theories inherit the property
of Lovelock gravities of not propagating the massive
graviton37 This means that the linearized equations of
motion for fðLovelockÞ gravities should not involve

the □̄GL
μν term. This is indeed the case. In particular, they

read [63]

EL
μν ¼ αGL

μν þ ΛβḡμνRL þ β

D − 1
ðḡμν□̄ − ∇̄ν∇̄μÞRL ¼ 0;

ðB3Þ

where α and β are the following constants38:

α≡ 1

2κ

X⌊D=2⌋

k¼1

∂kfðL̄Þ
kðD − 3Þ!

ðD − 2k − 1Þ!Λ
k−1; ðB4Þ

β≡ 1

2κ

X⌊D=2⌋

k;l¼1

∂k∂lfðL̄Þ
klðD − 2Þ!ðD − 1Þ!
ðD − 2kÞ!ðD − 2lÞ!Λ

kþl−2: ðB5Þ

Here, ∂lfðL̄Þ means that we should take a formal derivative
of f with respect to the corresponding dimensionally
extended Euler density and then evaluate the result in the
background. Comparing with the linearized equations (3.2),
we see that α determines the effective Einstein constant κeff
and β is related to the mass of the scalar field

κeff ¼
1

2α
; m2

s ¼
D − 2 − 2βDΛ

2β
: ðB6Þ

Note that for β ¼ 0, the scalar mode is also absent, and the
only physical field is the massless graviton. This applies,
e.g., to pure Lovelock gravities and also to other nontrivial
theories [63]—some of which we review in the last epigraph
of this section. The parameters a, b, c, and e are given by

a ¼ −
1

2
c ¼ −

α − 2e
4ðD − 3ÞΛ ; b ¼ β

4ðD − 1Þ −
α − 2e

8ðD − 3ÞΛ ;

e ¼ fðL̄Þ
8κΛðD − 1Þ ; ðB7Þ

and the background embedding equation (2.14) reads in turn

fðL̄Þ ¼
X⌊D=2⌋

k¼1

2kðD − 1Þ!
ðD − 2kÞ! Λ

k∂kfðL̄Þ: ðB8Þ

An interesting subclass we shall not consider here is that of
Lovelock-Chern-Simons theory [115,116], which is a par-
ticular case of the Lovelock theory. This is most naturally
defined in general dimensions in terms of the tetrad and the
spin connection. Their corresponding equations are first
order, and when the torsion is set to zero, the metric field
equations become second order, and the theory is a particular
case of the Lovelock action considered in this paper, i.e.,
with a metric-compatible connection. In the latter case, the

36Namely, Lk becomes the Euler density when evaluated for a
2k-dimensional manifold.

37In Appendix C, we show how the linearized equations of
fðRÞ can be obtained from those of Einstein gravity. The
procedure can be naturally applied as well to fðLovelockÞ
theories starting from Lovelock, and the results will match the
ones presented in this Appendix.

38Note that ⌊D=2⌋ stands for the largest integer smaller than or
equal to D=2.
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degrees of freedom propagated by the theory on a msb are of
course the DðD − 3Þ=2 of the usual massless graviton.
Interestingly, if the torsionless condition is relaxed, the
number of dynamical degrees of freedom is in fact
greater—see, e.g., Ref. [117].

3. Theories without dynamical scalar

In the case of quadratic gravity, the most general theory
which does not propagate a scalar field is [118]

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ

þ κ
4−D
D−2

�
β

�
R2 −

4ðD − 1Þ
D

RμνRμν

	
þ γX4

��
; ðB9Þ

where X 4 is again the Gauss-Bonnet term and β and γ are
dimensionless constants. Observe that for D ¼ 3, this
action is equivalent to new massive gravity [119]. There
are two different interesting ways of writing this theory in
terms of other well-known curvature tensors. First, it was
observed in Ref. [120] that the contraction of the Einstein
tensor Gμν with the Schouten tensor

39 Sμν is proportional to
the curvature invariant in (B9) that multiplies β,

GμνSμν ¼ −
D

4ðD − 2ÞðD − 1Þ
�
R2 −

4ðD − 1Þ
D

RμνRμν

	
:

ðB10Þ

Therefore, by rescaling β, we see that the theory is
equivalent to

S¼
Z
M
dDx

ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0þRÞþ κ

4−D
D−2ðβ̄GμνSμνþ γX4Þ

�
:

ðB11Þ

Second, it turns out that the quadratic part of (B9) is
equivalent to the higher-dimensional version of conformal
gravity, consisting of the square of the Weyl tensor,
together with a Gauss-Bonnet term. The square of the
Weyl tensor is in fact equal to40

CμνρσCμνρσ ¼ X4 −
DðD − 3Þ

ðD − 2ÞðD − 1Þ

×

�
R2 −

4ðD − 1Þ
D

RμνRμν

	
: ðB12Þ

By using this relation and redefining the couplings, the
theory can be written as

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p
×

�
1

2κ
ð−2Λ0 þ RÞ þ κ

4−D
D−2ð~βCμνρσCμνρσ þ ~γX4Þ

�
:

ðB13Þ

Thus, we observe that conformal gravity in any dimension
is free of the scalar mode and only propagates the two
gravitons. Finally, for this theory, the effective gravitational
constant and the mass of the extra graviton read, respec-
tively,

κeff ¼
κ

1 − 4κ
2

D−2ΛðD − 3Þð2~β − ~γðD − 4ÞÞ ; ðB14Þ

m2
g ¼

2 −Dþ 4κ
2

D−2ΛðD − 3ÞðD − 2Þð2~β − ~γðD − 4ÞÞ
8~βκ

2
D−2ðD − 3Þ :

ðB15Þ

If the numerator of (B15) becomes zero, then the extra
graviton is massless. This particular case will be analyzed
in the epigraph on critical gravities. Note finally that in
D ¼ 3 both the Weyl tensor and the Gauss-Bonnet term
vanish identically, so the theory reduces to Einstein gravity
plus a cosmological constant.

4. Theories with two massless gravitons

The following is an example of a theory propagating two
massless gravitons in addition to the scalar field:

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ þ κ

4−D
D−2αR2

−D

�
κ
4−D
D−2αþ 1

16κΛ0

	
RμνRμν

�
: ðB16Þ

Note that the m2
g ¼ 0 condition has the unpleasant feature

of mixing the couplings of terms of different order in
curvature. In this case, we see that the RμνRμν coupling
depends on the combination κΛ0. For this theory, the
background scale is related to the cosmological constant by

Λ ¼ 4Λ0

DðD − 1Þ : ðB17Þ

In addition, the effective gravitational constant and the
mass of the scalar field read

κ̂eff ¼
2ðD − 1ÞκΛ

1þ 4Λκ
2

D−2αDðD − 1Þ ;

m2
s ¼ −

4ðD − 1ÞΛ
Dþ 4Λκ

2
D−2αðD − 1ÞðD − 2Þ2 : ðB18Þ

39The Schouten tensor is defined as Sμν ≡ 1
D−2 ðRμν −

1
2ðD−1ÞRgμνÞ.

40The Weyl tensor is defined as Cμνρσ ≡ Rμνρσ −
2

D−2 ðgμ½ρRσ�ν − gν½ρRσ�μÞ þ 2
ðD−1ÞðD−2ÞRgμ½ρgσ�ν.
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As far as we know, this theory has not been considered
before.

5. Critical gravities

Critical gravity was introduced in Ref. [27] as the
four-dimensional quadratic theory for which the extra
graviton is massless and the scalar mode is absent.
Hence, it is a special case of the theories considered
in the last two epigraphs—(B9) and (B16)—in the
particular case of D ¼ 4. The following action is a
generalization of critical gravity to general dimensions
[120]:

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ − D2

16κΛ0ðD − 2Þ2

×

�
R2 −

4ðD − 1Þ
D

RμνRμν

	�
: ðB19Þ

It can be obtained by setting β ¼ −D2=ð16κ2=ðD−2Þ ×
Λ0ðD − 2Þ2Þ and γ ¼ 0 in (B9) or, alternatively, from
(B16) if we put α ¼ −D2=ð16κ2=ðD−2ÞΛ0ðD − 2Þ2Þ there.
In D ¼ 4, this is the critical theory considered by
Ref. [27], and for D ¼ 3, it is equivalent to critical
new massive gravity with a cosmological constant [121].

Furthermore, the effective gravitational constant of this
theory is

κ̂eff ¼ −
1

2
ðD − 2Þ2κΛ; ðB20Þ

which is only positive for Λ < 0.

6. Einstein-like theories

In Sec. VI, we already constructed examples of Einstein-
like theories in the sense defined in Sec. III, i.e., theories
which only propagate a massless graviton on a msb.
However, the theories considered in that section had the
additional property of being defined in a dimension-
independent manner, and we coined them Einsteinian. In
this Appendix, we would like to present some more
examples of Einstein-like theories of which the definition
does, however, depend on the space-time dimension.
Quasitopological gravity.—The first example is quasi-

topological gravity [18,19,62]. This is a cubic theory which
has the nice property of admitting analytic black-hole
solutions—which generalize Schwarzschild-AdS and its
Gauss-Bonnet generalization [107]. It consists of a combi-
nation of all Lovelock gravities up to cubic order plus an
additional quasitopological term:

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ þ κ

4−D
D−2αX4 þ κ

6−D
D−2½βX6 þ γZ�

�
: ðB21Þ

Here, the cubic Lovelock term is given by

X6 ≡ −8Rμ
ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν þ 4Rμν

ρσRρσ
δγRδγ

μν − 24RμνρσRμνρ
δRσδ

þ 3RμνρσRμνρσRþ 24RμνρσRμρRνσ þ 16Rμ
νRν

ρRρ
μ − 12RμνRμνRþ R3; ðB22Þ

and the quasitopological one in general dimensions reads in turn [19,62]

Z ≡ Rμ
ρ
ν
σRρ

δ
σ
γRδ

μ
γ
ν þ 1

ð2D − 3ÞðD − 4Þ
�
−3ðD − 2ÞRμνρσRμνρ

δRσδ þ 3ð3D − 8Þ
8

RμνρσRμνρσRþ 3DRμνρσRμρRνσ

þ 6ðD − 2ÞRμ
νRν

ρRρ
μ −

3ð3D − 4Þ
2

RμνRμνRþ 3D
8

R3

	
: ðB23Þ

The physical quantities for (B21) read

κeff ¼
κ

fðα; β; γ;Λ; κÞ ; ms ¼ þ∞; mg ¼ þ∞; ðB24Þ

where

fðα; β; γ;Λ; κÞ≡þ1þ 4Λκ
2

D−2αðD − 4ÞðD − 3Þ
þ 6κ

4
D−2Λ2βðD − 6ÞðD − 5ÞðD − 4ÞðD − 3Þ

þ 3ðD − 6ÞðD − 3Þ
4ð2D − 3Þ κ

4
D−2Λ2γð16þ 3DðD − 5ÞÞ:
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Hence, as explained in Ref. [19], this theory shares the
linearized spectrum of Einstein gravity. Let us close this
section by mentioning that a quartic version of quasitopo-
logical gravity was constructed in Ref. [103]. It would be
interesting to use our results in Sec. IV to check that such
theory also presents an Einstein-like spectrum.
Special fðLovelockÞ theories.—The second example we

would like to consider corresponds to a particular family of
fðLovelockÞ gravities. As we explained before, all
fðLovelockÞ theories are free of the massive graviton
but do in general propagate the extra scalar. However, as
pointed out in Ref. [63], it is possible to construct nontrivial
theories—i.e., different from the pure Lovelock case—
which are also free of the extra scalar and hence share the
linearized spectrum of Einstein gravity.
Indeed, whenever β, as defined in (B5), vanishes, the

mass of the scalar diverges—which is obvious from (B6).
This is achieved whenever ∂k∂lfðL̄Þ ¼ 0 for all k, l, which
leaves us with nothing but the usual Lovelock theory or,
alternatively, if

X⌊D=2⌋

k;l¼1

∂k∂lfðL̄Þ
klðD − 2Þ!ðD − 1Þ!
ðD − 2kÞ!ðD − 2lÞ!Λ

kþl−2 ¼ 0;

∂k∂lfðL̄Þ ≠ 0; ðB25Þ

for some k, l. This equation is, e.g., satisfied by all theories
of the form [63]

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p
×

�
1

2κ
ð−2Λ0 þ RÞ þ κ

2ðuþ2sÞ−D
D−2 λðRuLs

2 − γR2sþuÞ
�
;

ðB26Þ

where γ is the dimension-dependent constant

γ ≡ u2 þ 4ðs − 1Þsþ uð4s − 1Þ
ðuþ 2sÞðuþ 2s − 1Þ

ðD − 2ÞsðD − 3Þs
DsðD − 1Þs ;

ðB27Þ

for any u; s ≥ 0. In particular, for s ¼ u ¼ 1, one finds the
cubic class of theories

S ¼
Z
M

dDx
ffiffiffiffiffi
jgj

p �
1

2κ
ð−2Λ0 þ RÞ

þ κ
6−D
D−2λ

�
RL2 −

�
2ðD − 2ÞðD − 3Þ

3DðD − 1Þ
	
R3

��
: ðB28Þ

The D ¼ 4 case of (B28) was also considered in Ref. [28]
in a slightly different context. The effective gravitational
constant of (B28) reads

κeff ¼ κ½1þ 2ðD − 6ÞðD − 3ÞðD − 1ÞDλκ
4

D−2Λ2�−1:
ðB29Þ

APPENDIX C: f ðscalarsÞ THEORIES: EXAMPLES

Let us now illustrate how the expressions obtained in
Sec. V can be used to easily compute the values of a, b, c,
and e for theories consisting of functions of invariants, as
long as we know the values of those parameters for the
invariants themselves.

1. f ðRÞ gravity
Let us first consider fðRÞ gravity, the Lagrangian in

general dimensions of which we write as

S ¼ 1

2κ

Z
M

dDx
ffiffiffiffiffi
jgj

p
fðRÞ: ðC1Þ

According to Table II, for R, we have a ¼ b ¼ c ¼ 0,
e ¼ 1

2
, and R̄ ¼ DðD − 1ÞΛ. Therefore, using the trans-

formation rules (5.4) for the theory above, we have

a ¼ c ¼ 0; b ¼ 1

8κ
f00ðR̄Þ; e ¼ 1

4κ
f0ðR̄Þ: ðC2Þ

Note that these expressions can also be easily obtained
from the general fðLovelockÞ ones (B7). Also, according
to (2.14), the background curvature Λ is determined by the
equation

fðR̄Þ ¼ 2ðD − 1ÞΛf0ðR̄Þ: ðC3Þ

If f00ðR̄Þ ≠ 0, we have a scalar mode with mass

m2
s ¼

ðD − 2Þf0ðR̄Þ − 2R̄f00ðR̄Þ
2ðD − 1Þf00ðR̄Þ : ðC4Þ

The effective gravitational constant is in turn given by

κeff ¼
κ

f0ðR̄Þ : ðC5Þ

2. f ðR;R2
μν;R2

μνρσÞ gravity
Let us now study all theories that can be constructed

as functions of invariants up to quadratic order [122].
The independent scalars are R, Q≡ RμνRμν, and K≡
RμνρσRμνρσ, so let us consider an action of the form

S ¼ 1

2κ

Z
M

dDx
ffiffiffiffiffi
jgj

p
fðR;Q;KÞ: ðC6Þ

This theory includes, as particular cases, fðRÞ and general
quadratic gravities. In order to simplify the following
expressions, let us write R≡ ðR;Q;KÞ. Evaluated on
the background, the invariants read
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R̄ ¼ ðDðD − 1ÞΛ; DðD − 1Þ2Λ2; 2DðD − 1ÞΛ2Þ: ðC7Þ

Then, the background embedding equation (2.14)
can be written in terms of these background scalars
R̄, Q̄, K̄ as

R̄∂RfðR̄Þ þ 2Q̄∂QfðR̄Þ þ 2K̄∂KfðR̄Þ ¼ D
2
fðR̄Þ; ðC8Þ

which, in particular, generalizes (C3) for this theory.
Finally, the parameters a, b, c, and e are given by

a ¼ 1

2κ
∂KfðR̄Þ;

b ¼ 1

2κ

�
1

4
∂R∂RfðR̄Þ þ ðD − 1ÞΛ∂R∂QfðR̄Þ þ 2Λ∂R∂KfðR̄Þ

þ ðD − 1Þ2Λ2∂Q∂QfðR̄Þ þ 4ðD − 1ÞΛ2∂Q∂KfðR̄Þ þ 4Λ2∂K∂KfðR̄Þ
�
;

c ¼ 1

4κ
∂QfðR̄Þ;

e ¼ 1

4κ
½∂RfðR̄Þ þ 2ðD − 1ÞΛ∂QfðR̄Þ þ 4Λ∂KfðR̄Þ�; ðC9Þ

from which one can easily obtain the values of κeff , m2
s , and m2

g.

APPENDIX D: EINSTEINIAN QUARTIC GRAVITIES

Here we provide the explicit expressions for the conditions Fð2Þ
g ðαiÞ ¼ Fð2Þ

s ðαiÞ ¼ Fð3Þ
g ðβi; DÞ ¼ Fð3Þ

s ðβi; DÞ ¼
Fð4Þ
g ðγi; DÞ ¼ Fð4Þ

s ðγi; DÞ ¼ 0 appearing in Sec. VI. These read

Fð2Þ
g ðαiÞ≡þ 1

2
α2 þ 2α3 ¼ 0; ðD1Þ

Fð2Þ
s ðαiÞ≡þ2α1 þ

1

2
α2 ¼ 0; ðD2Þ

Fð3Þ
g ðβi; DÞ≡ −

3

2
β1 þ 12β2 þ 2Dβ3 þ 2DðD − 1Þβ4 þ

�
D −

3

2

	
β5 þ

3

2
ðD − 1Þβ6 þ

1

2
DðD − 1Þβ7 ¼ 0; ðD3Þ

Fð3Þ
s ðβi; DÞ≡þ 3

2
β1 þ 2β3 þ 8β4 þ

�
Dþ 1

2

	
β5 þ

3

2
ðD − 1Þβ6 þ ðD − 1Þ

�
D
2
þ 4

	
β7 þ 6DðD − 1Þβ8 ¼ 0; ðD4Þ

Fð4Þ
g ðγi; DÞ≡þð4D − 9Þγ1 þ 2ðDþ 3Þγ2 þ ð2D − 9Þγ3 þ 24γ4 þ 48γ5 þ 8γ6

þ 8DðD − 1Þγ7 −
1

2
ðDþ 3Þγ8 þ 6ð2D − 1Þγ9 þ ð2D2 −D − 3Þγ10

−
3

2
DðD − 1Þγ11 þ 12DðD − 1Þγ12 þ

�
2D2 þ 1

2
D − 3

	
γ13

þ 1

2
ð3D2 − 8Dþ 6Þγ14 þ ð2D2 − 3Þγ15 þ ð2D2 þD − 3Þγ16

þDðD − 1Þð2D − 1Þγ17 þ 2D2ðD − 1Þγ18 þ 2D2ðD − 1Þ2γ19
þ ðD − 1Þð2D − 3Þγ20 þ

1

2
DðD − 1Þð2D − 3Þγ21 þ 3ðD − 1Þ2γ22

þDðD − 1Þ2γ23 þ
3

2
DðD − 1Þ2γ24 þ

1

2
D2ðD − 1Þ2γ25 ¼ 0: ðD5Þ
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Fð4Þ
s ðγi; DÞ≡þ7γ1 þ 2ðD − 1Þγ2 þ 5γ3 þ 8γ6 þ 32γ7 þ

5

2
ðD − 1Þγ8

þ 6γ9 þ 3ðD − 1Þγ10 þ
3

2
ðD2 þ 3D − 8Þγ11 þ 24γ12 þ

3

2
ð3D − 2Þγ13

þ 1

2
ð3D2 þ 4D − 10Þγ14 þ ð4D − 1Þγ15 þ 5ðD − 1Þγ16

þ ðDþ 16ÞðD − 1Þγ17 þ 2ðDþ 6ÞðD − 1Þγ18 þ 20DðD − 1Þγ19
þ ðD − 1Þð2Dþ 1Þγ20 þ

1

2
ðD − 1Þð2D2 þ 13D − 12Þγ21

þ 3ðD − 1Þ2γ22 þ ðD − 1Þ2ðDþ 8Þγ23 þ
3

2
ðD − 1Þ2ðDþ 4Þγ24

þ 1

2
DðD − 1Þ2ðDþ 20Þγ25 þ 12D2ðD − 1Þ2γ26 ¼ 0: ðD6Þ

Solving the last two equations order by order inD gives rise
to the constraints which characterize Einsteinian quartic
gravities (6.6).

APPENDIX E: WALD FORMALISM: EXAMPLES

In this Appendix, we evaluate explicitly the expressions
found in Sec. X for some relevant theories, namely,
Einstein gravity, fðRÞ gravity, general quadratic gravities,
and Lovelock theories. Note that the expressions below are
valid for any background metric gμν and vector field ξμ.
Some of these formulas—but not all of them—can also be
found in Refs. [42,48,91–93,98,123,124]. The following
identities are frequently used:

∂Rμαβν

∂Rσρλη
¼ 1

2
½δ½σμ δρ�α δ½λβ δη�ν þ δ½λμ δ

η�
α δ

½σ
β δ

ρ�
ν �;

∂Rρσ

∂Rμαβν
¼ δ½αðρg

μ�½βδν�σÞ; ðE1Þ

∂R
∂Rμαβν

¼ gβ½μgα�ν; δgμν ¼ −gμαgνβδgαβ;

δ
ffiffiffiffiffiffi
−g

p ¼ 1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν: ðE2Þ

1. Einstein gravity

L ¼ 1

2κ
ϵð−2Λ0 þ RÞ; ðE3Þ

Pμαβν ¼ 1

4κ
ðgμβgαν − gμνgαβÞ; ðE4Þ

Eμν ¼
1

2κ

�
Rμν −

1

2
gμνRþ Λ0gμν

	
; ðE5Þ

Θ ¼ 1

2κ
ϵμðgμβgαν − gμνgαβÞ∇νδgαβ; ðE6Þ

ω ¼ ϵμSμαβνρσðδ1gρσ∇νδ2gαβ − δ2gρσ∇νδ1gαβÞ; ðE7Þ

Sμαβνρσ ¼ 1

2κ

�
−gμðαgβÞðρgσÞν þ 1

2
gμðαgβÞνgρσ

þ 1

2
gαβgμðρgσÞν þ 1

2
gμνgαðρgσÞβ −

1

2
gμνgαβgρσ

�
;

ðE8Þ

Jξ ¼ ϵμ

�
1

κ
∇νð∇½νξμ�Þ þ 2Eμ

νξ
ν

�
; ðE9Þ

Qξ ¼ −
1

2κ
ϵμν∇μξν; ðE10Þ

kξ ¼
1

2κ
ϵμν

��
gμα∇βξν −

1

2
gαβ∇μξν

	
δgαβ

þ ðgμαgνλξβ − gμαgβλξν þ gαβgμλξνÞ∇λδgαβ

�
: ðE11Þ

2. f ðRÞ gravity

L ¼ 1

2κ
ϵfðRÞ; ðE12Þ

Pμαβν ¼ 1

4κ
f0ðRÞðgμβgαν − gμνgαβÞ; ðE13Þ

Cσρλη
μαβν ¼

1

8κ
f00ðRÞðgμβgαν − gμνgαβÞðgσλgρη − gσηgρλÞ;

ðE14Þ

Eμν¼
1

2κ

�
f0ðRÞRμν−

1

2
fðRÞgμνþðgμν□−∇μ∇νÞf0ðRÞ

	
;

ðE15Þ

Θ ¼ f0ðRÞΘEin þ
1

2κ
ϵμðgαβ∇μf0ðRÞ − gβμ∇αf0ðRÞÞδgαβ;

ðE16Þ
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ω ¼ f0ðRÞωEin þ
1

2κ
ϵμ

�
1

2
gμβgανgρσδ1gρσδ2gαβ∇νf0ðRÞ

þ ðgμβgαν − gμνgαβÞðδ1ðf0ðRÞÞ∇νδ2gαβ

− δ1ð∇νf0ðRÞÞδ2gαβÞ − ½1 ↔ 2�
�
; ðE17Þ

Jξ ¼ ϵμ

�
1

κ
∇νðf0ðRÞ∇½νξμ� þ 2ξ½ν∇μ�f0ðRÞÞ þ 2Eμ

νξ
ν

�
;

ðE18Þ

Qξ ¼ −
1

2κ
ϵμν½f0ðRÞ∇μξν þ 2ξμ∇νf0ðRÞ�; ðE19Þ

kξ ¼ f0ðRÞkξ;Ein −
1

2κ
ϵμν½∇μξνδf0ðRÞ

− 2gμαξνδð∇αf0ðRÞÞ þ gμαξν∇βðf0ðRÞÞδgαβ�: ðE20Þ

3. Quadratic gravity

L ¼ ϵ

�
1

2κ
ð−2Λ0 þ RÞ þ α1R2

þ α2RμνRμν þ α3RμνρσRμνρσ

�
: ðE21Þ

Recall that Gauss-Bonnet gravity can be obtained by
setting41 α1 ¼ α3 ¼ − 1

4
α2 ¼ α. That theory has the

interesting feature—shared by all Lovelock gravities—that
Pμαβν is divergence free in all indices, e.g., ∇μPμαβν ¼ 0.
Hence, all derivatives of curvature tensors should cancel in
that case for the forms below, which provides a simple
check for our expressions.
The first derivative of the Lagrangian with respect to the

Riemann tensor as defined in (2.2) is

Pμαβν ¼
�
1

4κ
þ α1R

	
ðgμβgαν − gμνgαβÞ

þ 1

2
α2ðRμβgαν − Rαβgμν − Rμνgαβ þ RανgμβÞ

þ 2α3Rμαβν; ðE22Þ

and its divergence reads

∇μPμαβν ¼
�
2α1 þ

1

2
α2

	
gα½ν∇β�Rþ ðα2 þ 4α3Þ∇½βRν�α;

ðE23Þ

where we have used the following identities: ∇νRμν ¼
1
2
∇μR and ∇ρRμνσρ ¼ −2∇½μRν�σ. These can be derived

from the second Bianchi identity and will be frequently
employed to simplify our expressions below. Notice that
the divergence indeed vanishes for Gauss-Bonnet gravity.
From this, we find for the tensor defined in (2.4)

Cσρλη
μαβν ¼

1

2
α1ðgμβgαν − gμνgαβÞðgσλgρη − gσηgρλÞ þ 2α2δ

½σðτgρ�½λδη�ϵÞδτ ½μgα�½βδϵν�

þ α3ðδ½σμ δρ�α δ½λβ δη�ν þ δ½λμ δ
η�
α δ

½σ
β δ

ρ�
ν Þ: ðE24Þ

The equations of motion for quadratic gravity read

Eμν ¼
1

2κ

�
Rμν −

1

2
gμνRþ Λ0gμν

	
þ α1

�
2RRμν −

1

2
gμνR2 − 2∇μ∇νRþ 2gμν□R

	

þ α2

�
RμρRν

ρ þ RρσRμ
ρ
ν
σ þ 1

2
gμνð□R − RρσRρσÞ −∇ðμ∇νÞRþ□Rμν

	

þ α3

�
2RμρσλRν

ρσλ −
1

2
gμνRρσαβRρσαβ − 4∇ρ∇σRμρσν

	
: ðE25Þ

The symplectic potential form (10.4) is

Θ ¼ ϵμ

��
1

2κ
þ 2α1R

	
ðgμβgαν − gμνgαβÞ∇νδgαβ þ 4α1ðgβ½α∇μ�RÞδgαβ

þ 2α2

�
Rβ½μ∇α�δgαβ þ gβ½μRα�ν∇νδgαβ þ∇½μRα�βδgαβ −

1

2
gβ½μ∇α�Rδgαβ

	
þ 4α3ðRμαβν∇νδgαβ þ 2∇½μRα�βδgαβÞ

�
:

ðE26Þ

41Note that in this section, the couplings are not assumed to be dimensionless. This avoids some clutter in the already messy
expressions.
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For Gauss-Bonnet gravity, this reduces to

ΘGB ¼ ϵμ

��
1

2κ
þ 2αR

	
ðgμβgαν − gμνgαβÞ∇νδgαβ

− 8αðRβ½μ∇α�δgαβ þ gβ½μRα�ν∇νδgαβÞ þ 4αRμαβν∇νδgαβ

�
: ðE27Þ

Note that this object was previously computed in Eq. (70) of Ref. [42]. We observe that our expression above differs from
their result by a total derivative

ΘIW −ΘGB ¼ 8αϵμ∇νðRα½μgν�βδgαβÞ; ðE28Þ

but only if the sign of the second-to-last term in their formula (70) is modified—to be explicit, this term should be
“þ4ð∇eRdfÞδgef.” Hence, we suspect there is a typo in their expression. This is consistent with Ref. [125], where the
symplectic potential was also computed for quadratic gravity. Restricting their formula (3.7) for the symplectic potential to
Gauss-Bonnet indeed produces the Iyer-Wald symplectic potential with the corrected sign.
The symplectic current form (10.7) reads

ω ¼ ϵμ

�
ð1þ 4κα1RÞSμαβνρσEin δ1gρσ∇νδ2gαβ

þ α1ðgμβgανgρσδ1gρσδ2gαβ∇νRþ 4gμ½βgν�αðδ1ðRÞ∇νδ2gαβ − δ1ð∇νRÞδ2gαβÞÞ
þ α2ð2δ1ðRβ½μÞgα�ν − 2δ1ðRν½μÞgα�β þ ðRρ½μgν�βgασ − RβðμgνÞρgασ þ Rρ½μgα�νgβσ

þ RνðμgαÞρgβσ þ Rα½βgμ�ρgνσ þ Rρ½αgμ�βgνσ þ Rβ½μgα�νgρσ þ Rν½αgμ�βgρσÞδ1gρσÞ∇νδ2gαβ

− α2

�
2δ1

�
∇½αRμ�β þ 1

2
gβ½μ∇α�R

	
þ
�
∇½αRμ�β þ 1

2
gβ½μ∇α�R

	
gρσδ1gρσ

	
δ2gαβ

þ 4α3ðδ1Rμαβν þ ðRμαβðνgρÞσ − RμðανÞρgβσÞδ1gρσÞ∇νδ2gαβ

þ 4α3ð2δ1∇½μRα�β þ gρσδ1gρσ∇½μRα�βÞδ2gαβ
�
− ½1 ↔ 2�: ðE29Þ

One can check that all terms involving derivatives acting on curvature tensors cancel for Gauss-Bonnet gravity.
The Noether current (10.23) and charge (10.22) are given by

Jξ ¼ ϵμ

�
∇ν

��
1

κ
þ 4α1R

	
∇½νξμ� þ 8α1ξ

½ν∇μ�Rþ 4α2ðRρ½ν∇ρξ
μ� þ 2ξ½ν∇ρRμ�ρÞ

− 4α3ðRμνρσ∇ρξσ þ 2ξρ∇σRμνρσÞ
�
þ 2Eμ

νξ
ν

�
; ðE30Þ

Qξ ¼ −ϵμν
��

1

2κ
þ 2α1R

	
∇μξν þ 4α1ξ

μ∇νR

þ 2α2ðRμ
ρ∇½ρξν� þ 2ξ½μ∇ρ�Rν

ρÞ þ 2α3ðRμνρσ∇ρξσ þ 2ξρ∇σRμνρσÞ
�
: ðE31Þ

For Gauss-Bonnet gravity, we find the same expression as in Ref. [42], namely,

Qξ;GB ¼ −ϵμν
��

1

2κ
þ 2αR

	
∇μξν − 8αRμ

ρ∇½ρξν� þ 2αRμνρσ∇ρξσ

�
: ðE32Þ

Finally, the Iyer-Wald surface charge (10.29) is
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kξ ¼ ð1þ 4κα1Þkξ;Ein

þ ϵμν

�
2α1ð−∇μξνδRþ 2ξνδð∇μRÞ þ gμαξν∇βRδgαβÞ

þ α2ð∇½νξλ�δRμ
λ þ gμλgαβ∇½νξα�δRβ

λ þ 2ξλδð∇μRν
λÞ þ ξνδð∇μRÞÞ

þ α2ð2Rμ½αgλ�ν∇βξλ − gαβRμ½ρgσ�ν∇ρξσ þ 2ξν∇½αRμ�β þ ξν∇½αRgμ�β

− 2ξρgαβ∇σRμ½ρgσ�νÞδgαβ − 2α2ð2ξνRαðμgλÞβ þ ξαRν½βgλ�μÞ∇λδgαβ

− α3ð∇αξβδRμν
αβ þ gμαgνβ∇ρξσδRρσ

αβ − 8ξλδð∇μRν
λÞÞ

þ 2α3

�
Rμναλ∇βξλ −

1

2
Rμνρσgαβ∇ρξσ − 4ξν∇½μRα�β þ 2ξλ∇μRνλgαβ

	
δgαβ

− 2α3ðξαRμνλβ þ 2ξνRμαβλÞ∇λδgαβ

�
: ðE33Þ

Again, it is straightforward to verify that all terms involving derivatives of curvature tensors cancel for Gauss-Bonnet
gravity.

4. Lovelock gravity

The Lagrangian of Lovelock gravity is

L ¼ 1

2κ
ϵ
X⌊D=2⌋

k¼0

ckLk with Lk ¼
1

2k
δμ1ν1…μkνk
α1β1…αkβk

Rμ1ν1
α1β1 � � �Rμkνk

αkβk ; ðE34Þ

where the ck are arbitrary constants. The objects defined in (2.2) and (2.4) read, respectively,

Pμαβν ¼ 1

2κ

X⌊D=2⌋

k¼0

ckP
μαβν
ðkÞ ; Pμν

ðkÞαβ ¼
k
2k

δμνμ2ν2…μkνk
αβα2β2…αkβk

Rμ2ν2
α2β2 � � �Rμkνk

αkβk ;

Cσρλη
μαβν ¼

1

2κ

X⌊D=2⌋

k¼0

kðk − 1Þck
2k

gβγgνδgλχgηξδ
σργδμ3ν3…μkνk
μαχξα3β3…αkβk

Rμ3ν3
α3β3 � � �Rμkνk

αkβk : ðE35Þ

The equations of motion are

Eμν ¼
1

2κ

X⌊D=2⌋

k¼0

ckE
ðkÞ
μν with EðkÞμ

ν ¼
−1
2kþ1

δμρ1σ1…ρkσk
να1β1…αkβk

Rρ1σ1
α1β1 � � �Rρkσk

αkβk : ðE36Þ

Both tensors (E35) and (E36) are divergence free in all indices, e.g., ∇μPμαβν ¼ 0, ∇μEμν ¼ 0. Note that the equations of
motion are second order in the metric, as is well known for Lovelock gravity.
The rest of the relevant quantities read

Θ ¼ 1

2κ
ϵμ
X⌊D=2⌋

k¼0

kck
2k−1

δμν1μ2ν2…μkνk
α1β1α2β2…αkβk

Rμ2ν2
α2β2 � � �Rμkνk

αkβkgα1λ∇β1δgν1λ; ðE37Þ

ω ¼ 1

2κ
ϵμ
X⌊D=2⌋

k¼0

kck
2k

½δμαμ2ν2…μkνk
γδα2β2…αkβk

ð2ðk − 1Þgβγgνδδ1Rμ2ν2
α2β2

þ ðgβγgρσgνδ þ gβδgργgνσ − gβσgργgνδÞδ1gρσRμ2ν2
α2β2Þ

þ gβσgργgαδδ1gρσδ
μνμ2ν2…μkνk
γδα2β2…αkβk

Rμ2ν2
α2β2 �Rμ3ν3

α3β3 � � �Rμkνk
αkβk∇νδ2gαβ − ½1 ↔ 2�; ðE38Þ

Jξ ¼
1

2κ
ϵμ
X⌊D=2⌋

k¼0

ck

�
∇ν

�
−k
2k−1

δμνμ2ν2…μkνk
α1β1α2β2…αkβk

Rμ2ν2
α2β2 � � �Rμkνk

αkβk∇α1ξβ1
	
þ 2EðkÞμ

νξ
ν

�
; ðE39Þ
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Qξ ¼ −
1

2κ
ϵμν

X⌊D=2⌋

k¼0

kck
2k

δμνμ2ν2…μkνk
α1β1α2β2…αkβk

Rμ2ν2
α2β2 � � �Rμkνk

αkβk∇α1ξβ1 ; ðE40Þ

kξ ¼
1

2κ
ϵμν

X⌊D=2⌋

k¼0

kck
2k

�
δμνμ2ν2…μkνk
γδα2β2…αkβk

�
−ðk − 1Þ∇γξδδRμ2ν2

α2β2

þ
�
gργ∇σξδδgρσ −

1

2
gρσ∇γξδδgρσ − ξρgσδ∇γδgρσ

	
Rμ2ν2

α2β2

	

− 2ξαgγσ∇δδgρσδ
μρμ2ν2…μkνk
γδα2β2…αkβk

Rμ2ν2
α2β2

�
Rμ3ν3

α3β3 � � �Rμkνk
αkβk : ðE41Þ
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