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We study several aspects of higher-order gravities constructed from general contractions of the Riemann
tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P.
Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation
modes on a maximally symmetric background in the presence of matter and to classify £(Riemann)
theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use
this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most
general cubic gravity constructed in a dimension-independent way and which does not propagate the
ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of f(Lovelock) invariants, plus
the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized
Newton potential and the post-Newtonian parameter y for general £(Riemann) gravities in arbitrary
dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study
the emission and propagation of gravitational radiation from sources for these theories in four dimensions,
providing a generalized formula for the power emitted. Finally, we review Wald’s formalism for general
L(Riemann) theories and construct new explicit expressions for the relevant quantities involved. Many

examples illustrate our calculations.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Higher-order gravities have attracted a considerable
amount of attention throughout the last few decades. The
reasons for this interest are manifold. On the one hand,
whatever the right ultraviolet completion of Einstein gravity
might turn out to be, the effective action of the theory is
expected to contain a series of higher-derivative terms
involving different contractions of the Riemann tensor
and its covariant derivatives. This is naturally what happens
in String Theory, which generically predicts the appearance
of infinitely many of these subleading terms." correcting the
Einstein-Hilbert (EH) action, e.g., Refs. [1-3].

Higher-curvature extensions of Einstein gravity have been
extensively considered in the context of cosmology. In that
case, the goal is going beyond the standard Lambda cold dark
matter (A-CDM) model, e.g., providing explanations for
late-time accelerated expansion, dark matter, or inflation—
see, e.g., Refs. [4-7] for some reviews on the subject.

In the context of holography [8-10], higher-order
gravities have also played a prominent role. In particular,
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they have been used as tools to characterize numerous
properties of strongly coupled conformal field theories
(CFTs), e.g., Refs. [11-19]. In some cases, they have even
been essential in the discovery of new universal results
valid for general CFTs—holographic or not [20-24].

Apart from these more or less well-delimited areas,
another approach entails the identification and study of
concrete classes of higher-order gravities which possess
particularly interesting properties. In some cases, they
mimic defining aspects of Einstein gravity [25-29]. In
others, they improve problematic characteristics of the
theory—e.g., by being renormalizable [30,31]. More gen-
erally, the systematic study of higher-order gravities pro-
vides a deeper understanding of FEinstein gravity itself,
since it helps unveil what features of the theory are generic
and which ones are specific.

In this paper, we will explore several aspects of gravity
theories of which the Lagrangian density is an arbitrary
function of the Riemann tensor and the metric, i.e.,

= /M dPx/19|[L(Rypes 9?) + Lpaer] . (1.1)

where we have included an additional term L, to
account for possible additional minimally coupled matter
fields. Throughout the text, we shall refer to the class of
theories defined by (1.1) as £(Riemann) gravities. While
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(1.1) does not account for the most general higher-order
gravity conceivable,” it does incorporate a broad class of
theories exhibiting very different features. Many aspects of
general £(Riemann) theories have been previously devel-
oped in several contexts, including black-hole mechanics,
linearized gravity, holography, and cosmology—see, e.g.,
Refs. [41-56] and references therein. We aim to develop
some more here. In particular, we will perform a general
and systematic study of the linearized spectrum of these
theories, which we will use to compute relevant physical
quantities such as the generalized Newtonian potential or
the power radiated by sources. In addition, our classifica-
tion will allow us to characterize some interesting pre-
viously unidentified theories. Finally, we will also study the
Wald formalism for general £(Riemann) providing new
explicit formulas for some of the relevant quantities
involved.’

A. Main results

The main results of the paper can be summarized as

follows:

(1) InSec. II, we start by reviewing the fast-linearization
procedure on maximally symmetric backgrounds
(msb) presented in Ref. [29] and valid for general
theories of the form (1.1) in general dimensions.
This reduces the problem to the evaluation of the
corresponding Lagrangian density on a particular
Riemann tensor—constructed from the metric and
an auxiliary tensor—and the computation of two
trivial derivatives. We use this result to identify the
physical modes propagated by the metric and the
corresponding dynamical equations satisfied by
those modes in the presence of matter in (anti)-de
Sitter and flat space. Finally, we construct an
effective quadratic action from which the general
linearized equations can be derived.

(i) In Sec. III, we classify all theories of the form (1.1)
according to the properties of their physical modes.
The categories include theories which do not propa-
gate an extra massive graviton but do incorporate
a dynamical scalar; theories in which the extra

2Indeed, note that we shall not consider terms involving
covariant derivatives of the Riemann tensor here. In fact, even
that case would not encapsulate the most general theory if one
considers the affine connection 1“,”,,, to be a dynamical field
independent from the metric—a la Palatini—since that setup
allows for even richer scenarios; see Refs. [32—-37] and references
therein. Of course, similar comments apply if we introduce
extra fields besides the metric, as in the case of scalar-tensor
grasvities—see, e.g., Refs. [38—40].

Our conventions throughout the paper are as follows. We use
(=, +, -+, +) signature for the metric and the usual conventions
[57] for the Riemann and Einstein tensors. We set # = ¢ = 1 but
keep the gravitational constant k = 82G explicit. Very often we

consider k7= and k=5 to be the natural length and mass scales,
respectively.
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graviton is present but the scalar is not; theories
with two massless gravitons and a massive scalar,
including generalized critical gravities, for which the
scalar is absent; and Einstein-like theories, i.e., those
that only propagate a massless graviton.

(iii) In Sec. IV, we use our method to linearize the
equations of motion of all theories contained in (1.1)
up to quartic order in curvature in arbitrary di-
mensions.

(iv) In Sec. V, we explain how to obtain the linearized
equations of a theory defined as a function of
arbitrary curvature invariants starting from the
linearized equations of each invariant. In particular,
we prove that theories constructed as general func-
tions of scalars of which the linear combinations do
not produce massive gravitons are also free of
those modes.

(v) In Sec. VI, we extend the construction of Einsteinian
cubic gravity (ECG) [29] to quartic order. The
resulting theories only propagate a massless graviton
on a msb in general dimensions, and they are defined
in a dimension-independent manner; i.e., the relative
couplings between the different invariants involved
are the same in all dimensions.

(vi) In Sec. VII, we construct the most general dimen-
sion-independent cubic theory of the form (1.1)
which is free of massive gravitons in general
dimensions—without imposing conditions on the
extra scalar mode. This theory, which we call new
ghost-free gravity, includes all the terms appearing
in the ECG action—see (6.1) below—plus all
f(Lovelock) invariants up to cubic order, plus a
previously unidentified term which reads Y=
R, PR R Y = 3R,,,0RR™ + 2R,'R/R,F.
Just like the ECG term, ) is nontrivial in four
dimensions. As opposed to it, this new term does
contribute to the denominator of the scalar mode
mass’ m,.

(vii) In Sec. VIII, we use the results in Secs. II and III to
compute the generalized Newton potential Up(r)
and the parametrized post-Newtonian (PPN) param-
eter y(r) for a theory of the form (1.1) in general
dimensions. We show that U (r) takes the form of a
combination of generalized Yukawa potentials
which, for general D, we show to be given by
UD.Yukawa(r) ~ (m/r)DT%KDTﬁ(r)’ where Kf(x) are
modified Bessel functions of the second kind. We
unveil interesting differences with respect to the
four-dimensional case.

(viii) In Sec. IX, we use the results in Secs. II and III to
study the emission and propagation of gravitational

*Recall that none of the terms in the ECG action contributes to
the denominator of my, which explains why there is no extra
scalar in ECG [29].
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radiation from sources in general four-dimensional
L(Riemann) theories. We obtain general formulas
for the radiative components of the different modes
as well as for the total power emitted by a source in
terms of the quadrupole moment and the scalar
radiation. We apply these results to a binary system
in a circular orbit.

(ix) In Sec. X, we give a detailed account of Wald’s
formalism and construct explicit expressions for
the relevant quantities involved for general
L(Riemann) theories. New results are obtained
for the symplectic structure @ and the surface
charge 6Q; —¢- 0©.

(x) Finally, our Appendixes contain many examples
which illustrate the results in Secs. II, III, V,
and X.

II. LINEARIZED EQUATIONS
OF L(Riemann) THEORIES

In this section, we study the linearized equations of
general £(Riemann) theories on msb in arbitrary dimen-
sions. The full nonlinear equations of this class of theories
(1.1) read [45]

— A
g;w = Pﬂ(m wa/)/l -

% Gule = 2VVPP ! (2.1)

uapv — 5 Tﬂw
where we defined the object

oL
OR

Pprvop = [

HUPO

:| and 7T, = — 2 5( |g|Lmatter)
g"s e /|g| 59141/

(2.2)

is the usual matter stress-energy tensor.

Our goal in this section is to review the fast-lineariza-
tion procedure presented in Ref. [29] and explain how it
can be used to characterize the spectrum of these theories,
which we will use in numerous applications throughout
the paper. In the first subsection, we linearize (2.1) up to
the identification of four constants a, b, ¢, and e. We argue
that those constants can be easily obtained from the
corresponding Lagrangian following some simple steps
that we detail. Then, we show that the general linearized
equations can in fact be written in terms of only three
physical parameters which can be easily obtained from a,
b, c, and e. These are nothing but the effective gravita-
tional constant k. and the masses of the two extra modes
which appear in the linearized spectrum of generic
L(Riemann) theories, m? and m?. As we show, both in
(anti-)de Sitter and Minkowski backgrounds, the usual
massless graviton is generically accompanied by a mas-
sive ghostlike graviton of mass m, and a scalar mode of
mass m,. In Sec. II C, we obtain the matter-coupled wave
equations satisfied by these modes. We close the section
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by constructing a quadratic effective action from which
the linearized equations can be obtained from the variation
of the metric perturbation.

A. Linearization procedure

Let us start giving a detailed account of the fast-
linearization method for general L£(Riemann) theories
presented in Ref. [29].

1. First-order variations on a general
background metric

Consider a perturbed metric of the form

G = g/w + hﬂb’ (23)
where h,, < 1 forall y,v =0,...,D — 1 and where g, is
any metric. Our goal is to expand the field equations (2.1)
to linear order in /4, assuming that g,, is a solution of the
full nonlinear ones. For this purpose, it is useful to define
the tensor

oprro

C = Yoa9pp iy Ini 7> (2.4)
PAN 2 Wy In aRaﬂ)(f

where P*?° was defined in (2.2). Now, using the identity
[45]

(2.5)

vpoy»

oL
=2P,/'R
i, =

poys

it is possible to prove that the variations of £ and Pr®
read, respectively,’

SL = 28¢" PR,y + PPSR . (2.7)
6P;m/)’u — zég/l[yp alpv + 2591)71 C;la/}DRA )m’
+ O NG G GVOR (2.8)

where the bars mean evaluation on the background met-
TiC G-

’Observe that throughout the paper we choose {Rypo- 9°}
to be the fundamental variables in L. As explained in
Refs. [45,58], all expressions obtained using these variables
are consistent with alternative elections such as {R*,,;. g?} or
{Ri7}. In particular, using the identities analogous to (2.5)
obtained in Ref. [45] for the different elections of variables, it
is possible to show that (2.7) and (2.8) are correct independ-
ently of such election. For example, if we choose {Rj},
Eqgs. (2.7) and (2.8) can be written as

5L = PhiSR™

b SPRPY = 5P - T g SR

(2.6)
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2. Maximally symmetric background

Since we are interested in the linearized version of (2.1)
on an arbitrary msb (M, g, ), we will from now on assume
that g,, satisfies

R/u/aﬁ = 2A§y[a§ﬁ]u (29)

for some constant A. Obviously, the explicit expressions
of Pra and Ci% will depend on the particular
Lagrangian £ considered. Observe, however, that when
these objects are evaluated on a msb, the resulting
expressions can only contain terms involving combina-
tions of g,,, g, and &”,. In addition, as it is clear from
(2.2) and (2.4), P*»o and C2% inherit the symmetries
of the Riemann tensors appearing in their definitions.
This forces P*** to be given by

pretv = 2eglfgle (2.10)

where the value of the constant ¢ depends on the theory.
.. ~papy
Similarly, C, .

structures, namely,

is fully determined by three tensorial

T = al5y 508,81 + 51 08l 5]
+ b[GupTc — GuTap) 777" — 515
+ 4C5[6(Tgp] [/15'7]6)57[”@&“/;561/] , (2 1 1)

where the only theory-dependent quantities are in turn
the constants a, b, and c.

3. Background embedding equation

Imposing g,, to solve the field equations (2.1) with

T, =0, one finds

u

L(A) =4e(D-1)A. (2.12)
This is a relation between the background scale A defined
in (2.9) and all the possible couplings appearing in the
higher-order Lagrangian £(Riemann). Another equation
relating e and A can be obtained using (2.9) and (2.10).
This reads in turn

dL(A)

= PT2g,8,, = 2eD(D - 1),

(2.13)

which, along with (2.12), produces the nice expression

NED) D gy

A > (2.14)

This is the algebraic equation that needs to be solved
in order to determine the possible vacua of the theory, i.e.,
the allowed values of A as functions of the scales and
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couplings appearing in £(Riemann).® Remarkably,
Eq. (2.14) is also valid for theories involving general
covariant derivatives of the Riemann tensor. Indeed,
the most general higher-order gravity can be written
as L(R,p6 VaRpsr ViVoR,ypp. -..). Now, maximally
symmetric spaces have a covariantly constant Riemann
tensor, so the derivatives of the Riemann do not have any
effect on the background embedding equation. Therefore,

Eq. (2.14) applies equally in such cases.

4. Linearization procedure

With the information from the previous items, we are
ready to linearize (2.1). The result of a long computation in
which we make use of (2.2)—(2.11) reads

1 -
EEII;,, = +[e —2A(a(D - 1)+ ¢) + (2a + ¢)T]GE,

+[a +2b+ c][g,,0-V,V,IR"

1
— Ala(D =3) = 2b(D = 1) = c|g R = Tk,

(2.15)

where the linearized Einstein and Ricci tensors and the
linearized Ricci scalar read, respectively,7

I_

GL, = RL, - 3 9, RY — (D —1)Ah,, (2.16)
L v v X4 1= le e -
R/w = V<”|V6h lv) — ED]’ZW/ - Evﬂvbh + DA]’ZW/ - Ahgﬂw

(2.17)
Rt = V*V*h,, —Oh - (D = 1)Ah. (2.18)

The above equations are quartic in derivatives of the
perturbation for generic higher-derivative theories, as
expected. The problem is hence reduced to the evaluation
of a, b, ¢, and e for a given theory, something that can be
done using (2.2), (2.4), (2.10), and (2.11). However, this is
a very tedious procedure in general, which involves the
computation of first and second derivatives of £(Riemann)
with respect to the Riemann tensor. The method presented
in Ref. [29] allows for an important simplification of this
problem. The procedure has several steps which we
explain now:

®For example, for the Einstein-Hilbert action £ = R — 2A,,
(2.14) imposes Ay=(D—1)(D—-2)A/2. For Gauss-
Bonnet with a negative cosmological constant £ =R+
(D—1)(D=2)/L*+ L*Agg/((D = 3)(D — 4))X,, one finds
the well-known relation —L?A = (1 + /T = 41gg)/(2Agp); see,
e.g., Ref. [17].

"Here, we use the standard notation s = " h,,. Also, indices
are raised and lowered with g and g,,, respectively.
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(1) Consider an auxiliary symmetric tensor k,,
satisfying
Ky =x, kH k%, = K+, (2.19)

where y is an arbitrary integer constant smaller than
D which we will leave undetermined throughout the
calculation. Note that the indices of k,, are raised
and lowered with ¢ and g,,, as usual.

(2) Define the following “Riemann tensor”g,

R;wo'p(A’ a) = ZAgﬂ[{;gp]y + 2akﬂ[{, s (220)
where @ and A are two parameters. Observe that
INQW,,/,(A, a) does not correspond—or more pre-
cisely, it does not need to correspond—to the
Riemann tensor of any actual metric in general,
even though it respects the symmetries of a true
Riemann tensor. An exception occurs when
a=0, as i?m,,,/, (A, 0) becomes the Riemann tensor
of a msb of curvature A associated to a metric
9w = G as defined in (2.9).

(3) Evaluate the higher-derivative Lagrangian (1.1)
on kﬂwp(A, a); i.e., replace all Riemann tensors
appearing in L(Riemann) by the object defined
in (2.20). This gives rise to a function of A
and a,9

L(A,a) = L(Ry5 = Rype(Aa).g%).  (2.21)

(4) The values of a, b, ¢, and e can be obtained from the

expressions

oL

P,y 2ey(y — 1), (2.22)
0L

Gat| == D@t b= 1)+ =)

(2.23)

as can be proven using the chain rule along with
Egs. (2.2), (2.4), (2.10), and (2.11). Interestingly,
since a, b, ¢, and e do not depend on y and they
appear multiplied by factors involving different
combinations of this parameter, we can identify
them unambiguously for any theory by simple
inspection. Once L(A,a) and its derivatives are
computed, we just need to compare the resulting

8 . .. .. ~
The associated “Ricci tensor” and “Riccei scalar” are R, =

AD-1)g,, +aly —1)k,, and R=AD(D—1)+ay(y—1),
resgectively.

Note that in this evaluation, indices are still lowered with g,,,,
and not with some combination of g,, and k.
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expressions with the rhs of (2.22) and (2.23) to
obtain a, b, ¢, and e 01!

(5) Replace the values of a, b, c, and e in the general
expression (2.15).

This procedure is obviously simpler than computing
PP and Cﬁ‘;:f explicitly using their definitions (2.2) and
(2.4). Indeed, the most difficult step is the evaluation of
L(A, a), which simply involves trivial contractions of g,,
and k,, for any theory. The function £L(A,«) is a sort of
“prepotential” containing all the information needed for the
linearization of a given higher-derivative theory of the form
(1.1) on a msb.

We will apply this method in various sections of the
paper—e.g., see Sec. IV for the linearization of general
quartic theories and Sec. V for theories constructed as
functions of curvature invariants. Appendix A contains a
detailed application of our linearization procedure to quad-
ratic theories and to a particular Born-Infeld-like theory.

Let us mention that in Refs. [51,52,59], a more refined
method than the naive brute-force linearization of the full
nonlinear equations was also introduced for general
L(Riemann) theories. This incorporates decompositions
similar to the ones in (2.10) and (2.11) but still requires the

somewhat tedious explicit evaluation of PHere and C“;fgi for
each theory considered.

We close this subsection by mentioning that our lineari-
zation method reproduces all the particular cases previously
studied in the literature. These include quadratic gravities
[27,51,59-61], quasitopological gravity [19,62], f(R) [23],
and general f(Lovelock) theories [63].

B. Equivalent quadratic theory

The linearized equations (2.15) of any higher-order
gravity of the form (1.1) characterized by some parameters
a, b, ¢, and e can always be mapped to those of a quadratic
theory of the form

%0Observe that we only need £(A,a) up to a® order; i.e.,
from L(A,a)=L(A)+2x(x—1)ela+2x(xr—1)(a+by(x—1)
+c(y—1))]a?> +0O(a?), we can read off the values of all the
relevant constants.

llEquivalently, they can be obtained through direct evaluation
of the following formulas,

1 oL 1 L
:2)(()(—1)%(1:0’ N [Z()(—I)Wazo] ;{:1’
C‘{%{%ﬁf —“” ’
=1 [4x(xr = 1) 00 | 7=0
2
=T Lml— 1>%a_0‘““'(’“”]’

where |)(:1 means taking the limit lim,_,; in the corresponding
expression, etc.
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‘Cquadratic = J(R - ZAO) + aRz + ﬁR/wR/w + 7X47 (224)

where Xy = R,,,,R**° — 4R,,,R" + R? is the dimension-
ally extended four-dimensional Euler density, also known
as the Gauss-Bonnet term. Indeed, the parameters 4, a, f,
and y of the equivalent quadratic theory can be obtained in

terms of a, b, ¢, and e through

A=2e—4MNa+bD(D—1)+c(D-1)],

a=2b-a, p =4a+2c, y =a. (2.25)
Similarly, the cosmological constant A, can be trivially
related to the parameters appearing in (1.1) through
A0 = _[’(R/u//m = 0)/(21)

Notice that the mapping from (1.1) to (2.24) is surjective
but not injective; i.e., all £(Riemann) theories are mapped
to some quadratic theory, but (infinitely) many of them are
mapped to the same one. Observe also that the existence of
this mapping is a consequence of the fact that the linearized
equations of any theory come from its action expanded at
quadratic order in h,,—see Sec. I D. This means that the
most general quadratic theory, namely, (2.24), already

|

a = [dexes — 1]/[BA(D = 3)kys,
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contains all the possible kinds of terms produced in the
action at order O(h?) of any £(Riemann) theory. Observe,
however, that the fact that the parameters a, b, ¢, and e for a
given theory can be related to those appearing in (2.24)
does not immediately help in identifying the values of those
parameters for a given theory. The mapping was explicitly
performed for general cubic theories in Ref. [59].

C. Physical modes

As we just reviewed, Eﬁy depends on four constants a, b,
¢, and e as well as on the background curvature A. For a
given theory, the four constants can be computed using the
procedure explained in Sec. IT A, from which one can
obtain the full linearized equations through (2.15). In this
subsection, we will explore how (2.15) can be further
simplified using the gauge freedom of the metric perturba-
tion and used to characterize the additional physical modes
propagated by the metric in a general theory of the
form (1.1).

Let us start with the following observation. If we
parametrize a, b, and c¢ in terms of three new constants

2 .2
myg, my, and Kegr as

b = [(4eke; — 1)(D — l)mgm?] +2(3-2D+2(D - l)DeKeff)mgA
+(D = 3)A(Dm? +4(D — 1)A)]/[16A(D — 3)Keﬁcm§(D —1)(m2 + DA)],

¢ = —[(deker — 1)mg + (D = 3)A]/[AN(D = 3)Keremy)].

(2.26)

it is possible to rewrite (2.15) in terms of four different parameters, namely, kg, m2, m?/ and A. Indeed, one finds

L
I
2Keffmy

2{[mf]+2A—E]GﬁD+[

[(D —2)(m2 —m? = 2(D — 1)A)

2(D — 1)(m? + DA)

so the dependence on e disappears, while that on kg gets
factorized out from all terms. While (2.15) is more useful
when computing the linearized equations of a particular
theory—because we know a simple procedure to obtain «,
b, ¢, and e—Eq. (2.27) is more illuminating from a
physical point of view. Indeed, as we will see in a moment,
ki Will be the effective Einstein constant'> while mg and
m? will correspond, respectively, to the squared masses of
additional spin-2 and scalar modes.

It is straightforward to invert the relations (2.26) to
obtain the values of such physical quantities in terms of a,
b, ¢, and e. One finds

12Equivalently, Keif = 8mGerr Where G is the effective
Newton constant.

(D=2)(mg+m3 +2A)]
2(m? + DA) AguR
S o 1
] 9,0 - VMVD]RL} = ETﬁy, (2.27)
|
= . (2.28)
Tt = 4 —8A(D - 3)a’ '
, e(D-2)—4Aa+bD(D—1)+c(D~-1))
s 2a+ Dc + 4b(D — 1) ’
(2.29)
s 2A(D =3)a . (2.30)

g 2a+ ¢

Let us stress that if we consider a theory consisting of a
linear combination of invariants—Iike the one in (4.2)
below—the values of a, b, ¢, and e of that theory can be
simply computed as the analogous linear combination of
the parameters for each of those terms. However, that is not
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the case for ke, m3, and m?, since they are not linear
combinations of a, b, ¢, and e. Hence, in order to
determine these quantities for a given linear combination
of invariants, the natural procedure should be obtaining

|

PHYSICAL REVIEW D 95, 044010 (2017)

the total values of a, b, ¢, and e first and then using
(2.28)—(2.30) to compute the corresponding values of
Kee» M7, and mj. For example, for a general quadratic
theory of the form

! (D) v vpo
S = /A/t de |g| |:2—K (—2A0 + R) + K'D-2 (01R2 + alewR” + a3Rﬂyp6R” P ) R (231)
the values of k., m,, and my read, respectively,
Keff = 5 , (2.32)
1 +4Ak0=2(a;D(D — 1) + ay(D — 1) — 2a3(D — 4))
nﬂ_(D—2)+4QI—MA@%WJXD—1)+aﬂD—J)+2%) (233)
’ 26072 (4ay (D = 1) 4+ ay D + 4a3) ’ .
2
m? = —1 —4Akp=(a;D(D — 1) + ap(D — 1) = 2a3(D — 4)) ’ (2.34)

which we obtained using (2.28)—(2.30) and the values of «,
b, ¢, and e which appear in Table II. During the remainder
of this section, we will write all expressions in terms of kg,
m3, and m}, which will make the presentation clearer.
Nonetheless, all equations can be converted back to the
language of a, b, ¢, and e using the above relations.
The discussion proceeds slightly differently depending
on whether we consider anti-de Sitter (AdS)/de Sitter (dS)
or Minkowski as the background space-time, so we will
consider the two cases separately. Let us start with the first.

1. (Anti-)de Sitter background

When studying the physical modes propagated by the
metric perturbation on an AdS/dS background, it is
|

2k072 (e + 4as)

[
customary and very convenient to work in the transverse
gauge, in which"?

vV, =V"h. (2.35)
Imposing this condition, many terms in (2.27) cancel
out. Let us now expand the metric perturbation into its
trace and traceless parts, which we denote by & and h,,,
respectively, 1

1

My = i) + 5 Gush. (2.36)

Doing the same with the field equations (2.27), we find

1 1 - - - -
66‘”} = 2 <L W) = 4m Keﬁ {[D - ZA] [D - 2A — m;]]’l< vy — V@vM)Dh
(m2 +2(D—=1)A) + A((4=3D)m? —4(D - 1)*A)] o, -
{ 7+ D) Vo Vht, (2.37)
1 (D —1)(D=2)A(m2 — (D -2)A)] -
L 4o TL—_ g 01— m2]h. 2.
£ + 2 |: 4Keﬁ.m£2](m§ 4 DA) [ ms] ( 38)

The second is the equation of motion of a free scalar field of mass m;, while the first is an inhomogeneous equation for /2,
as it involves also &. In order to obtain an independent equation for the traceless part, we define another traceless tensor,

The metric decomposition performed in this section is similar to the one considered in Ref. [60].

"“In this section, we denote the trace and traceless parts of rank-2 tensors P,

, linear in £, asP g"“P, and P,y =P, P,

D g/w

respectively. In the case of the equatlons of motion, one can use the same notatlon ie, & = g"” s Tt = g”” TL —and s1m11arly for the

traceless part—because EW however,

Rl = g/’”Rﬁb - h/‘”l_?m = g‘”*Rﬁ,, - (D

T, =0. Observe,
—1)hA.

that RL =

is not the trace of R but rather

(9" Ru)"

044010-7
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V. Vyh
- W—W’ (2.39)

t
)" (m? + DA)

w =M

where we have implicitly assumed that m? # —DA. After
some manipulations, it can be seen that 7,, satisfies the

equation
1 = = L eff

where we have defined the effective energy-momentum
tensor

pLeff n [0+ (D-4A-m]]V,V,T
vy ) T A(D = 1)(D = 2)(mg — (D = 2)A )'
(2.41)
Now, observe that the object
L PPy 2.42
tw = —— (O M)ty (2.42)
my

satisfies the equation of the usual massless graviton,
namely,

—(O=2A) 1) = 2k TS (2.43)
but with a nonstandard coupling to matter. On the other

hand, using (2.42) and (2.43), it is easy to see that the tensor

M m 1 =
M =, - = —(@-28),  (244)
g
satisfies instead
(O =28 = md)) = 2 TLE (2.45)

Hence, we identify t,%) with a massive traceless spin-2 field

with mass m,. Observe that the coupling to matter of this
mode has the wrong sign, which reflects its ghostlike
behavior. Note that, apart from being a ghost, this mode is
also tachyonic whenever m?] < 0. The same occurs for the

scalar when m? < 0.
In sum, using definitions (2.39), (2.42), and (2.44), we
can decompose the metric perturbation 4, as

W—
(m? + DA)

Vyh 1

hy, = 1) + 100 + + Gk (246)

where h, 27, and 1\ satisfy (2.38), (2.45), and (2.43) and
represent, respectively, a scalar mode of mass mg; a
ghostlike spin-2 mode of mass m,, which we will often
refer to as a “massive graviton” throughout the text; and a
massless graviton.
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2. Minkowski background

If we set A = 0 in (2.38), this equation would lead us to
conclude that 7' = 0. This inconsistency is a reflection of
the fact that the transverse gauge cannot be used in flat
space-time. The usual choice is in this case the so-called de

Donder gauge, given by
o, = 18’% (2.47)

W =5 .

In this gauge, the linearized field equations (2.27) in a
Minkowski background can be written as

1 . 1
gL — — Oh, =-TE 2.48
174 4Keff Hv 2 1224 ( )
where we have defined
A 1 1 |- 1
h,=h,—=n,h—— {Dh ,—=0 8,}1]
i w5 M mg w5 u
m2(D —2) +m? -
2~ - 0,0,h. 2.49
{ 2(D - l)mzm2 ][ u0.] (2:49)

Using the gauge condition (2.47), it is easy to see that fzm is
transverse, 1.e.,

9,h" = 0. (2.50)
Naturally, }Az,w is the usual spin-2 massless graviton, as it
satisfies the linearized Einstein equation (2.48). However,

there are more degrees of freedom (dof). In particular, we
find that the metric can be decomposed as

. 1 A 1 B ~ .
By = hy, — Do 27]Wh + D1 (my? = m3?)8,,0,,h
1
t —_— — 0,00,
Tl T oo —2) W T o 12 O ?
(2.51)
where 7, is traceless and ¢ is a scalar field. These objects

satisfy the equations

—(0 - m3)¢ = 2k T, (2.52)

1

B -1

— L
t/u/ - 2Keff T

<’w> + a<#6D>TL .

(2.53)

Hence, even though we have proceeded in a different way
as compared to the A # 0 case, we have found the same
physical modes: we have a massless spin-2 graviton h,w,

massive one #,,, and a scalar ¢, the masses of the last two
(

being the same as the ones we found for t,fy) and £ in the (A)

044010-8
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TABLE L

PHYSICAL REVIEW D 95, 044010 (2017)

Classification of theories according to their spectrum on a msb.

2 _
mg =0

0<m§<+oo m§:+oo

0<m? < +oo
m%:—&—oo

Massless gravitons + scalar
Critical

General case
No dynamical scalar

No massive graviton
Einstein-like

dS case. Note, however, that, even though the dof and the
masses are the same, the metric decomposition as well as the
coupling of the fields to matter are different—compare
(2.38) and (2.45) with (2.52) and (2.53) and (2.46) with
(2.51). This can be understood as a consequence of the fact
that the gauge which is convenient for (A)dS (2.35) differs
from the de Donder one (2.47) utilized for Minkowski.

D. Quadratic action

As pointed out in Sec. II B, the linearized equations (2.27)
come from terms of order O(h?) in the action, which means
that the structure of the linearized equations for the most
general £(Riemann) is already captured by the most general
quadratic theory. Expanding the action of a higher-order
gravity to O(h?) is not trivial in general. However, we can
use the expression for the linearized equations (2.27) to find
an action that yields these equations when varied with
respect to h,,. The easiest possibility is

1
Sy = —= / dPxhEL, (2.54)
2 J/m

Using (2.27) and integrating by parts several times, we find
the effective action

dPx
S2 - / 4
M “FKeff

2(D — 1)m%(m? 4 DA)
~ [h/‘” N Zf;lw] Gﬁy} . (2.55)

As pointed out in Ref. [51], where an analogous action was
found, Eq. (2.55) is manifestly invariant under ‘“gauge”
transformations 4, — h,, +V,&, +V, &, as follows from
the invariance of the linearized Einstein tensor and Ricci
scalar under such transformations.

ITI. CLASSIFICATION OF THEORIES

In this section, we will classify all gravity theories of the
form (1.1) according to the properties of their physical
modes. Indeed, depending on the values of the parameters
a, b, ¢, and e, we will divide them into five classes':

15 .. . . e .
Or six, if we count the general case in which mé is finite and
different from zero, and 0 < m? < +oo.

1) theories without massive gravitons, i.e., those for which
the additional spin-2 mode is absent but the spin-0 one is
dynamical; 2) theories without a dynamical scalar, i.e.,
those for which the additional graviton is dynamical but the
spin-0 mode is absent; 3) theories with two massless
gravitons and a massive scalar, i.e., those for which the
extra graviton is massless—a property which to some
extent cures its problematic behavior; 4) generalized criti-
cal gravities, i.e., those which belong to the previous
category and, in addition, have no additional spin-0 mode;
and, finally, 5) FEinstein-like theories, i.e., theories for
which the only mode is the usual massless graviton.]6 A
summary of the different cases can be found in Table I, and
various examples of particular theories belonging to each
class are provided in Appendix B. Let us note in passing
that boundary conditions can be sometimes used to remove
spurious modes from the spectrum of certain higher-order
gravities—see Ref. [65]. We shall not discuss this issue
here. Finally, let us also mention that related analyses were
previously performed in the absence of matter in
Refs. [29,51,59].

A. Theories without massive graviton

The ghostlike massive spin-2 mode t,g,‘,/[) found in the

previous section can be removed from the linearized
spectrum of the theory by imposing mé = +o0. In terms
of the parameters characterizing a given higher-derivative
theory as described in Sec. II, such a condition will be
satisfied whenever

2a+c=0. (3.1)
When this condition holds, the linearized equations (2.27)
become

L _
Ew =

e R o]

x [(D = 1)Ag,, + g0 — vﬁy]RL}. (3.2)

Observe that (3.1) has the effect of making the EG,%,,

term—responsible for the appearance of the extra spin-2
graviton—disappear. As a consequence, even though (3.2)

In principle, one could also impose more exotic conditions
like ke = 0, which would remove all propagating modes; see,
e.g., Ref. [64].

044010-9
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still contains quartic derivatives of h,,, the equations do
become second order when we choose the transverse gauge
4 hy,, = V,h, as it can be immediately checked from (3.2)
using (2.17)—or alternatively from (2.37) taking the limit
m2 — +oo there.

On AdS/dS backgrounds—the extension to Minkowski
(M)

is straightforward—Eq. (3.1) imposes t#,,” =0, so the
metric decomposition becomes now
ViVyh 1
(m) WYy -
hy,, = tw N, 33
e +(m§+DA)+Dg” (3:3)

where /1 and t,g'f) still satisfy (2.38) and (2.43), respectively.
Observe that using (2.38) and (3.3) along with the trans-
verse gauge condition (2.35), it is possible to show that tf,',f”
is transverse in the vacuum,
VA = 0. (3.4)
Notice also that after imposing (2.35), we still have some
gauge freedom, because a gauge transformation h,, —

ff,,,,_—% 2%@) for any vector &, satisfying V"v(#éy) =
V,V, & preserves (2.35). This allows us to impose addi-
tional conditions on £, . In particular, we can choose

(m) _ fm) _

IOM Iz

(3.5)

so that only the spatial components tg}"), ih,j=1,...D—-1
are nonzero. Then, this tensor has D(D — 1)/2 compo-

nents, but we have also

Vi =0, gl =o, (3.6)

)

which follow from (3.4) and the tracelessness of tf,'f ,
respectively. These are (D — 1) + 1 = D constraints, so the
number of polarizations of t,(,'f) is D(D —3)/2, just like for
the usual Einstein graviton. Of course, the trace & provides

an additional degree of freedom, so these theories propa-
gate (D — 1)(D —2)/2 physical dof in the vacuum.

B. Theories without dynamical scalar
The condition for the absence of the scalar mode is
naturally given by m? = +co. In terms of the parameters a,
b, ¢, and e, this reads
2a+ Dc+4b(D—-1)=0. (3.7)

The linearized equations of motion (2.27) become in that
case

PHYSICAL REVIEW D 95, 044010 (2017)

- 2’<effm§ {[mg - ] -
(D-2) _ L= e
——[(D-1)Ag,, — 5,0+ V,V,IRE ¢
+2(D_ 1) [( ) gﬂl/ g}dl/ + M l/]
(3.8)
The metric decomposition simplifies to
m 1
by =t + 15" + = Guh. (3.9)

D

where the trace of the metric perturbation is simply
determined by the matter stress tensor through the
expression

) 2K L
T D-DD-2Am - (D-2)A)

(3.10)

The massless and massive gravitons satisfy the same
equations as in the general case, i.e., Egs. (2.43) and
(2.45), respectively.

C. Theories with two massless gravitons

As we saw, t,(f) is a ghost. In order to remove this

instability, the simplest solution is to consider theories in
which it is absent. Another possibility is to set m, =0,
namely, impose its mass to be zero like for the usual
graviton. The condition to be satisfied is in this case

—e+2A(D—-3)a=0. (3.11)
From (2.28), we learn that (3.11) also imposes the effective
Einstein constant to diverge, k.; = +o0. This inconsis-
tency is artificial and comes from a wrong identification of
Ko in this case. In fact, the effective gravitational constant
must be defined now as

1

] _
Keff = MgKeff = —

which remains finite when we impose (3.11). Then, the
equation for the trace reads

Gl (ki [ IS D
cheff(m% + DA) s ’

(3.13)

On the other hand, we cannot decompose the traceless
perturbation 7, into two independent fields. Instead, it
fulfills the equation

1
2k, eff

(O-2A)%, =10

el (3.14)

with a metric decomposition given now by

044010-10
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h =t v<ﬂv”>h 1

— Guh. 3.15
WY HU + (m_% +DA) g ( )

D

D. Critical gravities

Critical gravities [27] are theories in which the extra
graviton is massless and, in addition, the scalar mode is
absent, i.e., it satisfies m? = 4oc0. As shown in Ref. [27] for

the quadratic case in D = 4, the energies of both t,(,'f) and
t,(,]y) become zero for this class of theories. We can easily

check this statement from the quadratic action (2.55).
Specifying for the critical gravity case, it reads

dPx [(D -2)?
S, = %) (RL)2 —2GEwGE |
2 /M4f<eff [2(1)— 1)( ) ””

(3.16)

Now, in the vacuum, the field equations imply that 4 = 0,
so that R* =0, and (CJ—2A)*hy,,, = 0. There are sol-
utions, corresponding to the usual massless graviton, which
are annihilated by (CJ—2A), and they have Gf, = 0.
Therefore, for these solutions, the Lagrangian as well as
its derivatives vanish on shell. In particular, the
Hamiltonian vanishes, since it is constructed from the
Lagrangian and its first derivatives, so the gravitons have
zero energy. However, there are additional logarithmic
modes which are not annihilated by ([J—2A), but by
the full operator ((J —2A)? instead, and these modes do
carry positive energy [27].

The conditions to be imposed for this class of theories
are (3.11) and (3.7) as well as the redefinition of the
Einstein constant in (3.12). Then, the traceless part of the
metric satisfies

1 - - = -
pTIn (O =2A)2hy,, =V, V,y0Oh] = T<L/w>, (3.17)
while the trace is determined by matter,
2%
h=— Reit Tr. (3.18)

(D —1)(D —2)?A?

E. Einstein-like theories

When both the massive graviton and the scalar mode are
absent, we are left with a theory of which the only
propagating degree of freedom is a massless graviton.

The conditions mé = m? = 400 can be expressed as

2a+c=4b+c¢=0. (3.19)
The linearized equations of motion drastically simplify and
become identical to those of Einstein gravity with an
effective Einstein constant,

PHYSICAL REVIEW D 95, 044010 (2017)
1 1

L _ L _ 1oL
Ep = S G, = ET’“" (3.20)
The metric decomposition is very simple now,
B = 12 4 S50 3.21
o Tyw + Bg;w s ( . )

with t,(ff) satisfying (2.43) and h being again completely

determined by matter,

2k, eff

= D= 1)D=2)

TL, (3.22)

Hence, according to the discussion in Sec. IIT A, the only
propagating mode is the transverse and traceless part of
the metric perturbation, which carries D(D —3)/2 dof,
like in Einstein gravity. Let us stress at this point that
throughout the text, we use the labels Einstein-like and
Einsteinian with different meanings. By FEinstein-like
theories, we mean theories for which the extra modes
are absent and the only dynamical field at the linearized
level is the usual massless graviton of general relativity.
By Einsteinian, we refer to those Einstein-like theories
which are defined in a dimension-independent way—
see Sec. VL

IV. LINEARIZATION OF ALL THEORIES
UP TO QUARTIC ORDER

Up to quartic order in curvature, the most general
D-dimensional theory of the form (1.1) can be
written as

3

1 L
S = /M dPx |g|{2K (=280 + R) + k52 Y o,

8 26
W IR S
i=1 i=1

i=1
Here, [I,(»z), 51(3)’ and 554) represent, respectively, the
quadratic, cubic, and quartic curvature invariants enu-
merated in Table II; «;, f;, and y; are dimensionless
constants; and x = 8zG 1is again Einstein’s constant.

Also, A, is the cosmological constant, and we choose

(4.1)

k772 to be the natural scale.'” In general dimensions, there
are 3 independent quadratic, 8 cubic, and 26 quartic
invariants [66]. Naturally, these numbers get reduced as
we consider small enough D. For example, in D =4,
there are only 2 quadratic, 6 cubic, and 13 quartic
invariants.

"This election can be trivially changed by a rescaling of the
ﬂ

couplings, e.g., a; — a;/(Agkr2)' 7"
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TABLEII. Parameters e, a, b, and c of the linearized equations for all Riemann curvature invariants up to fourth order. We have cross-
checked all the terms independently for D = 3, 4, 5 using Mathematica.

Label Term e a b c

£ R ! 0 0 0

£ R? D(D—-1)A 0 ! 0

£y R, R" (D-1)A 0 0 !

cf R, R 2A 1 0 0

LY RSRS RS, HD-2)N -3A 0 A
c R,,"°R,," Rs" 6A> 6A 0 0

£l R0 R* sR7 3(D-1)A? (D-1)A 0 2A

£y R,,,cR""°R 3D(D — 1)A? D(D - 1)A 2A 0

¥ R,.,,cR*" R 3(D-1)2A? 0 TA 3(2D -3)A
¥ R,“R,R " 3(D—1)2A2 0 0 3(D-1A
Jo R, R*R 3D(D - 1)%A? 0 (D-1)A ID(D-1)A
sl R? gDZ( 1)2A? 0 3D(D-1)A 0

£§4> RR,C RS R ot 2(3D - 5)A° 2(D —4)A\? 0 TA?

Y R R, TR Ryyor 2(D? —=3D +4)A3 6A2 A? 2(D —3)A?
cl RWPOR, 'R YR, - 4(D-2)A° (D -7)A? 0 5A2

£ RAPOR,R, 7R, e 8A3 12A2 0 0

¥ R¥POR, % Rs R, e 16A3 24A? 0 0

£ RRL R R 8(D - DA? 4D - 1)A2 0 8A2
Y (RuupoR*77)? 8D(D — 1)\’ 4D(D - 1)A? 8A? 0

cl RRPTR S 5 Rozy, 2(D-1)(D-2)A° -3(D-1)A? IA? 1(5D —9)A?
cyy RRPTR 0% Ry 8(D —1)A3 6(D - 1)A? 0 6A2

EYS) R*R," Ry, R, 4(D —1)2A3 (D —1)2A2 2A? (3D —5)A?
¥ RR,’ °R,° TRs" " 2D(D-1)(D-2)A*  -3D(D-1)A? 3(D-2)A? 3D(D —1)A?
£l RR,,’°R,,% Rs" 8D(D —1)A3 6D(D — 1)A? 6A2 0

E%) RRPR Riyye 4(D—-1)°A3 (D —1)2A? 3A? 3(9D — 10)A?
' RRR?Y Ry, 2(D—1)3A3 0 3 (3D —4)A? 1(3D* = 8D + 6)A?
EY? R*RPPRY R0 4(D-1)°A3 (D —1)2A? A? (4D —5)A?
c\ R“R,’R° ,R 5, 4(D—1)2A3 (D —1)2A? 0 5(D - 1)A?
c'¥ R5 R R,,,,R""° 4D(D — 1)2A3 D(D —1)*A? 4(D - 1)A? D(D —1)A?
c\y RR,,,-R*" sR" 4D(D —1)%A3 D(D —1)*A? 3(D-1)A? 2D(D - 1)A?
L@ R’R,, - RM"° 4D*(D —1)2A3 D?(D —1)?A? 5D(D - 1)A? 0

£ R*R,,,,R¥R5® 2(D—1)3A3 0 (D—1)A? (D-1)(2D —3)A?
£ RR,,,,R*" R* 2D(D - 1)3A3 0 (D —=1)(4D - 3)A? D(D —1)(2D - 3)A?
Lg) R,'R/R,°R}* 2(D —1)3A3 0 0 3(D - 1)%A?
cy (R, R™)? 2D(D —1)3A3 0 2(D —1)2A? D(D —1)2A?
£ RR,*R,/R 2D(D —1)3A3 0 3(D—1)2A% 3D(D —1)2A?
cld R?R,, R 2D*(D —1)3A3 0 3D(D —1)2A? 1D*(D —1)*A?
cl R* 2D3(D —1)3A3 0 302( —1)2A2 0

Using the procedure explained in Sec. II, we have
linearized the quartic action (4.2); i.e., we have computed
the quantity £(A,a) defined in (2.21) at order O(a?
every term in the action and obtained the values of a, b, c,

) for
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and e from there. The results are shown in Table II. Finally,
the parameters a, b, ¢, and e of the full theory (4.2) can be
found by adding linearly the contribution of each term, with
the corresponding coefficients in front in each case, namely,
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(4.2)

where, e.g., ¢[R] = 1/2 is the value of e corresponding to
the Einstein-Hilbert term R, and so on. Completely analo-
gous expressions hold for a, b, and c.

Table II along with the results in Sec. III can be easily
used to classify the different theories in (4.2) according to
their spectrum.

V. f(scalars) THEORIES

In Sec. IV, we linearized all higher-derivative gravities of
the form (1.1) up to quartic order. That class includes linear
combinations of scalars R; constructed from contractions
of the Riemann tensor and the metric, but not theories
constructed as arbitrary functions of those scalars, such as
f(R) gravity. In this section, we will consider the latter
case; i.e., we will linearize the equations of motion of a
theory of the form

L=f(Ry,.... Rp)s (5.1)
where the R; are arbitrary scalars.
For a theory of this form, using the objects
OR; oPr
P;}aﬁu = i i C;fyou = G0u0rp9ir 0 i , 5.2
i B R;m/}y i opin aIpfp Iy Iné B Ra/)’;(f ( )

we get the following result for the tensors defined in (2.2)
and (2.4) evaluated on the background,

Pﬂ(lﬂv — aif(,]_z)Pll-uIﬁb,
o = 9,f(R)CH + 8,0,f(R)P{ P

opin i opin i J ophn> (53)
where 0; denotes derivative with respect to R; and R
means that we evaluate all the scalars on the background.
Using these expressions, it is possible to obtain the values
of the parameters a, b, ¢, and e defined in (2.11) and (2.10)
for the theory (5.1). The result is

a= aif(,]_?’>aia
¢ = 3if(7_3)ci

b= 08,f(R)b; + aiajf(k)eiej’

e=0,f(R)e;. (5.4)
Hence, once we have computed the parameters a;, b;, c;,
and e; for the set of scalars R;, we can easily find the
corresponding parameters for any other Lagrangian
L=f(R,....,R,). Plugging the values (5.4) in (2.15),
we obtain the linearized equations.
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A. Theories without massive graviton

In Sec. III, we classified general £(Riemann) theories
according to their spectrum on a msb. One of the cases
under consideration was that corresponding to theories for
which mg = +o0, i.e., those containing a single massless
graviton plus an additional spin-0 mode. In terms of the
parameters defined in the first section, this condition is
2a 4 ¢ = 0. Assume now that for certain scalars R;, the
condition 2a; + ¢; = 0 is satisfied for all i, so that a theory
consisting of a linear combination of R; would be free of
massive gravitons. From (5.4), we learn that in fact this
property is shared by any theory of the form £ =
f(Ry,...,R,,) since in that case we find

2a+c¢=0;f(R)(2a; + ¢;) = 0. (5.5)
Therefore, theories constructed as general functions of
scalars of which the linear combinations do not produce
massive gravitons are also free of those modes. This is a
straightforward way of understanding why f(R), or more
generally f(Lovelock) theories—see Appendix B—inherit
the property of Lovelock gravities [25,26] of not propa-
gating the massive graviton [23,63].

Something similar happens for theories for which the
extra graviton is massless. Assume now that the scalars R
satisfy the condition —e; +2A(D —3)a; =0, so that
m, =0 for a theory consisting of a linear combination
of R;. Then, it is straightforward to prove that for a f(R;)
theory, the mass of the extra graviton is also zero:

—e+2A(D —-3)a = 0;f(R)(—e; + 2A(D —3)a;) = 0.
(5.6)

Furthermore, note that the condition for the absence of
scalar mode reads in turn

2a +Dc+4b(D - 1)
= 9,f(R)(2a; + Dc; + 4b;(D — 1))

+4(D - 1)9,0,f(R)e;e; = 0. (5.7)
This expression is more complicated than (5.5) since the
expression for b in (5.4) contains a term involving the e;.
This is not surprising; f(R) does propagate the additional
scalar mode even though Einstein gravity does not.

VI. EINSTEINIAN QUARTIC GRAVITIES

In Ref. [29], we constructed a cubic theory which only
propagates a massless graviton on msb. The theory was
defined in a dimension-independent way, in the sense that
the relative couplings between the different invariants
involved in its definition were the same in all dimensions.
In fact, we proved that up to cubic order in curvature, the
most general theory satisfying those requirements reads
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s= [ axlg
M

1 - _
X {2— (=2Ay + R) + k020X y + k52| X + /177]},
K
(6.1)

where X, and X are, respectively, the dimensionally
extended Euler densities for D = 4 and D = 6 manifolds.
X, is defined below (2.24), and X, is given in (B22).
Hence, the only terms appearing in (6.1) are the Lovelock
ones plus the new Einsteinian cubic gravity term P,
defined as

P=12R/ R PR/ + RZZR%{;R% —12R
+ 8RURIRY,

RHP RO
(6.2)

Hvpo

The effective Einstein constant for the ECG theory (6.1) is

Kett = K[1 + 4KﬁAa(D —4)(D-3)
+6x02A2(D — 6)(D —3)((D - 5)(D —4)p — 44)] .
(6.3)

Interestingly, when restricted to D = 4, the above theory
reduces to

5= / dx |g|{i(—2AO+R)+Kz7>}, (6.4)
M 2K

given that in that number of dimensions X, is topological
and X vanishes identically.

In this section, we will explain how to extend the above
construction to quartic theories. We will take advantage of
the results in Sec. IV to construct Einsteinian quartic
gravities (EQGs).

As we have just reviewed, the construction of Einsteinian
gravities requires the theories to be defined in a dimension-
independent fashion. Apart from aesthetics, there are some
practical reasons to consider theories satisfying this prop-
erty. First, observe that this property is shared by all
Lovelock gravities, which are the most general metric
theories of gravity with divergence-free second-order
equations of motion—at the full nonlinear level—in any
number of dimensions [25,26].

In addition, theories defined in this way have the nice
feature that they preserve the total number of dof under
compactification, in the following sense. Consider, for
example, the Kaluza-Klein reduction of the D-dimensional
EH term along some direction x°. The metric g,,y, which
propagates D(D — 3)/2 dof, gives rise to a (D — 1)-dimen-
sional metric g,, which contains (D —1)(D —4)/2 dof,
plus a 1-form A, = g, with (D — 3) dof and a scalar field
¢ = goo with 1 dof. This property is shared by Einsteinian
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gravities, but not by theories which have a dimension-
dependent definition. If a theory of that kind only prop-
agates the D(D — 3)/2 dof of the massless graviton in D
dimensions, it will give rise to extra degrees of freedom
when compactified, because the lower-dimensional metric
will in general propagate the extra spin-2 and scalar modes
in addition to the (D-1)(D—-4)/2+(D-3)+1=
D(D —3)/2 dof of the massless graviton, the 1-form,
and the scalar. From a similar perspective, if we consider
some D-dimensional theory and assume some of the
dimensions of our space-time to be compact, e.g.,
MP = MP 5 MP-P'| where MP~"" is some compact
manifold, then the resulting effective action on the non-
compact dimensions will involve the same gravitational
term only if this has been defined in a dimension-
independent fashion—see, e.g., Refs. [67,68] for the
Kaluza-Klein reduction of Gauss-Bonnet gravity. This is
exactly what happens with the Einstein-Hilbert term in
general String Theory compactifications.'®

As explained in previous sections, the constraints
required for a theory to share the spectrum of Einstein
gravity at the linearized level can be written as
2a + ¢ = 4b + ¢ = 0, which account for the conditions
m? = m? = +oo. Imposing those conditions at each order

g
in curvature for the theory (4.2), one is left with six

constraints on the coupling values, F _((,2>(a,-) =F? (a;)
= Fy (. D) = FV (5. D) = Fy(vi. D) = F;" (.. D)

= O0—see Appendix D for the explicit expressions. If these
constraints are satisfied, the theory will only propagate a
massless graviton on a msb. Imposing each constraint to be
satisfied independently of the dimension multiplies the

number of constraints. This is because, e.g., F Efs) (pi,D)isa
polynomial of degree 2 in D, so we need to impose the
coefficients of the D°, D!, and D? terms to vanish
independently. More generally, at nth order in curvature,
the corresponding constraints are polynomials of degree
2n—4 in D, and hence we will find 2n — 3 constraints
coming from the absence of the massive graviton and the
same number from imposing the absence of scalar, which
makes 2(2n — 3) in total. At the quartic level, this means
ten constraints. Since in general dimensions there are up to
26 independent invariants at this order in curvature [66],
see Table II, this means that there exists a 16-parameter
family of EQGs. If we choose the 16 parameters to be

{1572, 73,74:75: Y6 V75785 Y95 7105 V1257135 7 145 V185 205 V26 )
the rest of the couplings are given in terms of these as

"For example, the ten-dimensional type-IIA String Theory
effective action reduces to a class of D = 4, A/ = 2 supergravity
theories when six of the dimensions are compact on a Calabi-Yau
threefold—see, e.g., Ref. [69]. In the type-IIA action, the leading
contribution from the metric is the ten-dimensional Einstein-
Hilbert term R(!?). Under compactification, this produces R“)—
plus additional terms involving other fields.
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1
rin = +§(12m —4yy + 12y, — 8y 4 36y4 + 72y5 + 1675 + 16y7 — 3yg + 12y), (6.5)

1
Y15 =+ E(_lo}’l —4y10 = 713 + 714 + 16y, — 14y5 4 48y, + 9675 + 1675 — 4y + 12y9),

Yie =+ % (36y1 + 10710 — 24712 = Sr13 = 514 — 7472 — 2720 + 1140y26 + 5773 — 210y,
—420y5 — 84ys — 20y, + 17yg — 72yy),

Y17 == 718 — 12072,

Y19 =+ 6726,

Y21 =+ 8y1 — 12712 = 3714 + 2718 — 182 — 2729 + 900726 + 133 — 54y, — 108y5 — 20y¢
—20y7 + 3y — 12y,

1

Yo =+ E (1671 — 24y, — 10y14 — 14y, — 2y + 1140y26 + 1773 — S0y4 — 10075 — 476
—20y; + 275 + 8y9).
1

723 =+ 50 (=154, + 216y, + 60y,4 — 40y5 + 306y, + 38y5) — 2226025 — 23375

+ 9307, + 1860y5 + 316y6 + 34077 — 485 + 168y5).

1
Y24 =+ 30 (=671 + 24715 + 54y, + 2729 + 9060y, — 2775 + 150y, + 300y5 + 84y,

+ 60y7 = 12y5 + 72y4),
Y25 = — 2472. (6.6)

Plugging these back in the original quartic action, we obtain the family of 16 independent Einsteinian quartic gravities.
In four dimensions, it can be seen that only 13 of the 26 invariants in Table II are nonvanishing and independent of each
other [66]. We can use this fact to easily construct three FEinsteinian quartic gravities. In particular, we can set
YVI=72=73=74a="Y6="Vs =Yoo =710 =712 =13 = Y14 = V18 = V20 = O—the choice being nonunique. More explic-
itly, Eq. (6.6) becomes now

rii=-+8/309rs+2r7),  ris = +48s,

Yie =+ 114ys6 — 425 — 2y, Y17 = — 120726,

Y19 = + 6726, Y21 = +4(225y26 — 27ys — Sy7)s

Y22 =+ 2(57y26 = 575 = 17, Y23 = —1113y56 + 93y5 + 1777,

Y24 =+ 2(151y6 + 575 +77), Y25 = —24726, (6.7)

where the three parameters are {ys,y7,726}. Using these relations, we have constructed the following invariants:

— oo Yo paf e e
Q) = +3R™PRIRYR iy — 15(R,po R*77)? = 8RR,? °R,7 PR} ¥

+ 144R“RRIDR 5,0 — 96R™RIR! R 5, — 24RR,,,,,R* R
+ 24(R,,R"™)?,
Q) = +3(R,,psR*"°)* + 16RR,’ "R, °R} ¥ — 6R*RUR R,
— 60RR,,,,R*"R*” — 6RRURSRG + 51(R,,R™)* + 6RR.RR),
Q3 = +R* 4 57(R,, ), R**°)* — 120R ;R"°R,, ,,R*** + 6R*R,,,,R**°
— 240RR,,,,R*’R* — 144(R,,,R*)* + 416RR"R/R, — 24R*R,, R*"

+304RR,” °R,? TRs",". (6.8)

afyp pvpo
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Just like its cubic cousin P defined in (6.2), Q;, Q,, and
Q;—or any linear combination of them—only propagate
the usual massless graviton when linearized on a msb, not
only in D = 4 but in any number of dimensions."’

It is important to note that these three are not necessarily
the only EQG theories in D = 4. As we explained, there are
13 independent cubic invariants in that case, which means
that there are 11 independent four-dimensional quartic
Einstein-like invariants—because we have to impose two
conditions on the couplings in that case, namely,
mg = m? = +o0. In order to determine all the possible
theories, one should construct the 16 independent
D-dimensional EQGs using (6.6) and then analyze how
many of them are independent when D = 4. Given that
EQGs are particular cases of Einstein-like theories, we
conclude that there could actually be up to eight additional
EQG invariants.

VII. NEW GHOST-FREE GRAVITY

In the previous section, we reviewed ECG and extended
the construction to quartic theories. As we explained, all
those theories are free both of the ghostlike graviton and the
scalar mode on a msb. In this section, we will relax the
second condition to construct the most general cubic theory
defined in a dimension-independent manner which does not
propagate the massive graviton—but does in general
include the scalar. As far as we know, the most general
known theories which satisfy these requirements are those
defined as functions of Lagrangian densities which, when
considered as theories by themselves, do not propagate
the massive graviton—a property first proven in Sec. V.
All the known examples reduce to f(Lovelock) gravities
and the more exotic case of f(ECG) or functions of the
quartic theories studied in the previous section.

Recall that the condition for the absence of massive
gravitons is 2a + ¢ = 0. If we impose this on the general
theory defined in (4.2) up to qubic order and ask it to be

|
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satisfied independently of the space-time dimension, we are
left with the conditions

1
5(12"‘2(13 :O, (71)
=P+ 86— Ps —Ps =0, (7.2)
3 1
205 =2P4 + Ps + §ﬂ6 - §ﬂ7 =0, (7.3)
1
2P, + Eﬂ7 =0. (7.4)

Hence, there are two independent quadratic terms and five
cubic ones. They can all be written as

1 4-D , ~ ~
S = / dPx |g|{— (R—2M0) + k02 R? + @, Xy)
M 2K
+K53 (PR 4 Pr X + P3RX 4 + P4 P + Bsy)}- (7.5)

In this action, we find all the f(Lovelock) terms up to this
order in curvature, as well as two additional theories. The
first, P, is nothing but the Einsteinian cubic term defined in
(6.2), while the second is a previously unidentified invari-
ant which reads

Y =R, PRSsR} ¥ = 3R,,sRR” + 2R, 'R/R .

(7.6)

HUPO

In the above expression, the pure Lovelock terms, R, X,
and X4 as well as P do not contribute to the denominator of
the scalar mass—and hence any linear combination of those
terms alone would yield m? = +co—while R?, R?, RX,,
and Y do. Indeed, we obtain for this new ghost-free
gravity (7.5)

m2 = [D—2+44(D - 4)ko=2A(&; (D - 1)D + &(D - 3)(D - 2))
+6(D — 6)xv7A2(B, (D — 1)2D? + (D — 5)(D — 4)(D - 3)(D - 2)
+B3(D = 3)(D =2)(D = 1)D = 4B4(D = 3)(D = 2) = B5(D(D - 3) + 3))]

x [8(D — 1) (k02it; + k02 A(3B,(D — 1)D + 2p4(D — 3)(D —2) —3/2p5))] 7.

(7.7)

Hence, setting a; = ,Bl = ,B3 = ﬁ5 = 0, one finds m? = +oo0, as expected. It is also worth pointing out that, just like ECG,
Y is nontrivial in four dimensions. Moreover, the effective gravitational constant reads now

Ketr = K[1 + 4x02A (&, (D — 1)D + &, (D — 4)(D - 3))
+ 6k02A2(By (D — 1)2D? + Bo(D — 6)(D — 5)(D — 4)(D - 3)

+B3(D = 10/3)(D =3)(D = 1)D = 4f4(D = 6)(D = 3) = 5((D = 5)D +9))] 7.

(7.8)

We have cross-checked the linearized equations of P and Q;,i = 1,2, 3, for D = 4, 5, 6 using the Mathematica package xAct [70].
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Letus stress that we have only proven this theory to be free of
ghost modes at the linearized level. Hence, it is still possible
that the theory develops instabilities beyond the linearized
regime—e.g., the Boulware-Deser ghost [71]. We leave for
future work exploring these potential issues and their possible
solutions—e.g., using boundary conditions [65,72]. Note
that an interesting property of f(Lovelock) gravities is that
they are ghost free at the full nonlinear level, since they can be
written as scalar-Lovelock theories with second-order equa-
tions of motion [63,73]. It is natural to wonder if )/ has any
chance of sharing this property. More generally, it would be
interesting to explore further properties of this new cubic
term.

VIII. GENERALIZED NEWTON POTENTIAL

In this section, we use the results of Sec. II to compute
the Newton potential U (r) and the PPN parameter y for a
general theory of the form (1.1) in general dimensions. We
start reviewing the four-dimensional case, and then we
extend our results to arbitrary D, pointing out interesting
differences with respect to the D = 4 case. Throughout this
section and the following, we will tacitly assume
that m?, m2 > 0.

A. Four dimensions

The analysis performed in Sec. II C 2 tells us that in order
to obtain a solution of the linearized equations in a flat
background, we must solve Egs. (2.48), (2.52), and (2.53)
and then reconstruct the metric perturbation (2.51). The
same procedure can be naturally carried out for an (A)dS
background using the expressions in Sec. II C 1. We find
that the results are approximately the same, provided we
consider distances shorter than the (A)dS scale r < |A|7!/2
and m? > |A|. This is useful because in the flat case one
cannot easily set the masses m, and m; to zero as only the
Einstein-Hilbert term contributes to the numerator of those
quantities when A = 0—see, e.g., Eqs. (2.32)—(2.34). In
the (A)dS case, terms of all orders contribute, and it is in
principle possible to set m; = 0 or m, = 0.

If we denote by H,,(x;m) the general solution of the
Klein-Gordon equation

(0 -m*)H,, (x;m) = —4xT,,(x) (8.1)

and by H (x; m) its trace, the solutions to (2.48), (2.52), and
(2.53) can be written as

~ K.f Koaee
h, =-"H,0), =" H(m,).
W= S0, 6= )
Keff 1
Z‘W:—E H<”y>(mg)+W8<ﬂ8U>H(mg) . (82)
g

Inserting this into the metric perturbation (2.51) and
making the gauge transformation
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h/[yy = h/w - 8(#50)’ (83)

where N stands for “Newtonian gauge” and

1
&, =30,((my? = m?)H(0) + m32H(my) = mg*H(my)).
(8.4)
we obtain after some simplifications
Keft
Y, = 3 [4HW(O) —4H,,(m,)
4 2
+ 1 | —2H(0) + gH(mg) + gH(ms) . (8.3)

Now, if we restrict ourselves to static configurations,
Eq. (8.1) reduces to the so-called screened Poisson equa-
tion, (A —m?*)H,,(X;m) = —4xT,,(X), the general solu-
tion of which reads

- T (X .-
H, (x;m) = /d%c’%e‘mx—x/.

(8.6)

This can be seen as a superposition of functions 1/|x — X/|
weighted by the source T, (X') and with an exponential
screening controlled by the mass m. Using this, we can

rewrite (8.5) as

h (x) = % / PVTp(#) (G- F),  (8.7)
T

where the static propagator reads

n+,(x-x) =

lx — x| {450[(#5””)(1 — el

> 1
—Zrlaﬂrl/w (1 - g e—mg\x—x | — § e""l‘|"_x |>:| .
(8.8)

Now, let us apply the previous expressions to the case of a
solid and static sphere of radius R and mass M on a flat
background. For this distribution of matter, the only non-
vanishing component of the stress tensor reads

M
4zR3/3°
(8.9)

Too(r) = p(r) = pob(R—r), with  py =

where 6(x) is the Heaviside step function. For this
configuration, the result for Hyy(r;m) = —H(r;m) in
the outer region r > R obtained from (8.6) reads

H(r;m) = —f(mR) M e

; (8.10)
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where f(mR) is a form factor given by

f(mR) =

[mR cosh(mR) — sinh(mR)], (8.11)

3
(mR)?

which behaves as f(mR) ~3 (m%)z ™ if mR > 1 and as

f(mR) ~ 1 in the pointlike limit, i.e., when mR < 1.
Finally, inserting these results into the metric hﬁ’,, in
(8.5) and this in g}, = 5, + hl),, we obtain

Hv

dsy, = —=(1+2U(r))d* + (1 = 2y(r)U(r));;dx'dx’,

(8.12)
where U(r) and y(r) are given by
GeM 4 1
U(r) = ——=— |1 =2 f(mgR)e™" + = f(m,R)e™™" |,
r 3 3
(8.13)
3-2f(m,R)e™™" — f(m,R)e™™"
r(r) = . (8.14)

and G.g = keir/(87). Evaluating these expressions in
the pointlike limit of the sphere f(mR) =1, we finally
obtain the generalized Newtonian potential and the PPN
parameter y,

GuM [, 4
U(}’):—% 1—§€ g R
3 =27 — g7

3 —4eMg" + €_'”J‘r.

r(r) =

(8.15)

Let us make some comments about these results. First,
observe that the usual Newton potential gets corrected by
two Yukawa-like terms controlled by the masses of the two
extra modes which can be computed for a given theory
through (2.29) and (2.30). The above expression for U(r)
has been obtained before using different methods—see,
e.g., Refs. [30,31,74].20 Note that, while the contribution
from the scalar has the usual sign for a Yukawa potential,
the massive graviton one comes with the opposite sign,
which is another manifestation of its ghost nature. Observe
also that the whole contribution from the higher-derivative
terms appears through m, and m, the coefficients —4/3
and 1/3 in front of the exponentials being common to all
theories. In Table III, we present the values of U(r) and y
for different limiting values of m and m,. Naturally, when
mg, mg > 1, one is left with the Einsteinian values of the
Newton potential and y, and the same happens if we go

“See, e.g., Refs. [75,76] for results corresponding to higher-
order gravities involving covariant derivatives of the Riemann
tensor.

PHYSICAL REVIEW D 95, 044010 (2017)

TABLE III. Newton’s potential and y(r) for various values of
the masses of the extra modes.

U(r)/Gese /4
mg = my = +oo -M/r
my = +oo, |m,r| < 1 +M/(3r) -1
my =0, my = +o0 —4M/(3r) 1/2
m=m, = m; —M(1—e)/r 1

sufficiently far away from M for arbitrary values of the
extra mode masses. It is also interesting that the only cases
for which the potential is divergent as r — O are those for
which at least one of the extra modes is absent, i.e., when
either m; = +oco or m, = +oo or both m; = m; = +oco.

Indeed, U(r) does not diverge as r — 0 in the general
case. In fact, one finds

4m, — 4m2 — m?
010) = G |41 _ =)

+0(?)],
(8.16)

which is a negative constant at r =0 when m, > m/4
(and vice versa). The potential grows linearly with r at first
order for m, > m/2, and in that case, it is monotonous in
the whole range of r. When m, < m,/2 instead, U(r)
decreases linearly near » = 0, and it has a minimum at some
intermediate value of r. Plots of U(r)/G for various
values of the masses satisfying the different situations can
be found in Fig. 1.

B. Higher dimensions

The analysis of the previous section can be extended to
general dimensions D > 4. The metric perturbation in the
Newtonian gauge can be seen to be given by

mg=2
1 —my=16 —my=4 —m;= 7
—my=8 my=2
Z 0 ]
S
O ///‘ .
] '
,/
7! ,
II r
1
! ‘ ‘ ‘ ‘
o 1 2 3 4 5
r
FIG. 1. U(r)/(GegM) for m; =2 and m; = 16, 8, 2, 1 (purple

curves) and m; =4 (red) and the usual Newton potential
(dashed gray).
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h;]X/ = 4Geff H;w(o) - H;w(mg)
U
OB ) (=(D—-1)H(0)

+ (D —2)H(m,) + H(mv))] , (8.17)

where again H,,,(m) is a solution of (8.1). In the static case,
we can write the solution explicitly as

D=3

14+ v(D)r=

1 —m[(D 2)(%H= SKDT(’" r) + (%5 Ko p=3(myr)]
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D-3 2/
- m\ 7 o, Tu(X) R
Hﬂv(x;m):2<—) /dD lx/wi,er%(m\x—

2r |x—Xx

7)),

(8.18)

where K ,(x) is the modified Bessel function of the second
kind. Now, specializing to a static pointlike particle of mass
M, we can obtain the D-dimensional version of (8.12). The
Newtonian potential and the gamma parameter read,
respectively,

] |D
|

D=3 my®
—mg* Kp- z(mgr) +'7K074(msr) ,

(D-2)

9
ro(r) = = , (8.19)
D~ 3~ ooy [(D = 2025 7 Ko (myr) — (%05 Ka(m, )]
| G

. M
with Us(r - 0) = % (9m2 —m?)logr+O(°).  (8.24)

n

8 (D —2)? ) ,

u(D) EW, and v(D) =t This means that for generic values of the extra mode
D=2 r[572% masses, Up(r) is divergent at r =0 in all dimensions
(8.20)  higher than 4. In Fig. 2, we plot Us(r), which can be

and where Qp, , =277 /T'[25!] is the volume of the
(D — 2)-dimensional unit sphere. When 27 is odd, i.e.,
for even D, the Bessel functions K,(x) can be written
explicitly in terms of elementary functions as

Kos(x) = \/;Z]_l

(even D),

(D-3-))!
— J)1(2x) 5
(8.21)

which allows for a simplification of (8.19) in those cases
and from which it is easy to reproduce the D = 4 results
(8.15) presented in the previous section. From (8.19), we
infer that the usual four-dimensional Yukawa potential for a
force-mediating particle of mass m generalizes to higher
dimensions as

D-3

my\ z-
Ub Yukawa(r) ~ <—> KDTJ(’"’”)-

; (8.22)

Going back to higher-order gravities, observe that close to
the origin, the generalized Newton potential U, (r) behaves
for D > 5 as

GeffM[(D -
D5 + cee,

Up(r—0)~-— (8.23)

’
up to a positive dimension-dependent constant for generic
values of m, and mg. For D = 4, we find a constant term
(8.16), while for D = 5, one finds a logarithmic divergence
instead,

explicitly written as

GoM
ot 5 [8 = 9myrK, (myr) + m,rK, (mgr)].

Us(r) = - 6xr

(8.25)

As expected, most curves in Fig. 2 diverge at the origin. There
is an exception (and only one), though, which corresponds to
the case m,=m/3, for which the potential is finite every-
where. The value m, = =Dy B o) is special in general dimensions,
as it determines the transition between two kinds of potentials.
In particular, when m,, > ﬁ Up(r) is monotonous in the

whole range of r and diverges to —oo at the origin, while for

my < (53 D 55 it has a minimum at some finite value of r and

Up(r—0) — +oo instead—see Fig. 2 for an illustration of
these features in the five-dimensional case. For the particular

value m, = (L;"j the potential is also finite at the origin for

D = 6, but not for D > 7.

In Table IV, we present some particular cases for Up(r)
and me corresponding to different limiting values of m,
and mg. Once again, when m, m; > 1, one is left with the
Einsteinian values of the corresponding Newton potentials
and yp, and the same happens at sufficiently large distances
from M for general values of the extra mode masses. Just

*'We use the following two limits of the modified Bessel
functions:

limx‘K,(x) =0,

X—00

and lin(l)fof(x)zzf_]F(f). (8.26)
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my=2

—m;=9 —m;=6 —m=3
—my=7 —my=5 — my=1

2.0 25 30

FIG.2. U(r)/(GegM)in D =5form, =2andm, = 1,3,5,7,
9 (purple curves) and m; =6 (red) and the usual Newton
potential in five dimensions (dashed gray).

like in four dimensions, when the masses of the extra
modes are equal, m; = m,, the gamma parameter coincides
with that of Einstein gravity, yp = 1/(D — 3). Note also
that when one of the modes is absent, the divergence of
Up(r) at r = 0 becomes stronger than in the generic case
(8.23)—namely, of order 1/r”~3 instead of 1/rP=3.

IX. GRAVITATIONAL WAVES

In this section, we study the emission and propagation
of gravitational radiation from sources in a general four-
dimensional theory of the form (1.1) using the results of
Sec. II. Our main result is a new formula for the power
emitted by a source as a function of the quadrupole
moment and the scalar radiation—see (9.40) below. This
generalizes the FEinstein gravity result to general
L(Riemann) theories. We point out that a previous
expression obtained for f(R) gravities in Ref. [77] is
incorrect and provide the corrected expression, which is a
particular case of our general result.

A. Polarization of gravitational waves

In the de Donder gauge (2.47), the relevant compo-
nents of the metric perturbation decomposed as in (2.51)
satisfy Egs. (2.48), (2.52), and (2.53). In the vacuum,
these reduce to

PHYSICAL REVIEW D 95, 044010 (2017)
(0-m)t,, =0, (O=m?)¢p = 0.
(9.1)

Clh,, =0,

uv

Using the tracelessness of 7,,, the gauge condition (2.47),
and Eq. (9.1) along with (2.51), one can show that
0"t,, = 0. The gauge redundancy has not been com-
pletely exploited, as we still have the freedom to make
gauge transformations h,, — h,, +20,§,) where &,
satisfies Eéjﬂ = 0. This freedom can be used to impose
four additional conditions on iz}w. In particular, we can
set h=0 and h,; =0, which is called the traceless-
transverse gauge (TT). Observe that we cannot impose
similar conditions on 7,, because we can only make
transformations with a harmonic gauge parameter &,, but
t,, is not harmonic because it is massive. Hence, no
degrees of freedom in 7, can be removed with such a
gauge transformation, and as a consequence, the massive
particles conserve all their polarizations.

Let us now look for plane-wave solutions of frequency ,

ilZ‘UT = Alwe—ikyxl" tm, — };m/e—ipﬂ)d‘7 ¢ _ Ce_l‘qﬂxﬂ’
(9.2)
where k, = (0, k;), Py = (w, p;), 4, = (@, q;).

Equation (9.1) produces the following dispersion relations:

2 2

2 _ _ 2 2
p- =" —my,

K = w?, ¢ =w?-m2.  (9.3)
Note that for the massive modes to propagate, the fre-
quency must be greater than the corresponding mass, i.e.,
w® > m? and @ > m?, respectively. Otherwise, the wave
will be damped. Now, since we are working in the TT
gauge, the polarization tensor A,, satisfies the following
constraints,
Atﬂ - 0, klAl] - O, Aii - O, (94)
which leave us with only two independent polarizations A,
and Aj,. On the other hand, B, only satisfies the
constraints
p”B/u/ =0,

"B, = 0. (9.5)

TABLE IV. Newton’s potential and y(r) in higher dimensions D > 4 for various values of the masses of the extra

modes.

Up(r)/(u(D)GeyM) YD
m, = m; = +oo —1/rP-3 1/(D-3)
mg = +o0, mgr| <1 +1/[(D=3)(D - 1)rP7) -1
m, = 0. m, = +oo (D =2)2/[(D - 3)(D = 1)) 1/(D-2)
m = my = m, —[1 = L8 ()5 Ko ()| /70 1/(D=3)
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There are 5 degrees of freedom which correspond to
the choice of a spatial part of the polarization, B;
satisfying

j°

piijij = sziiv (9.6)
which include the + and x polarizations plus three addi-
tional ones. The time components are then given by

p.
w

B, = Bj;.
Finally, from (2.51), it follows that the contribution to the
metric perturbation associated to the scalar mode is given
by ~C,,e " with polarization tensor

249,49,

m2 -’

C/u/ = N (98)

which is linearly independent from A,, and B, because it
is not traceless.

In sum, gravitational waves in higher-order gravity can
propagate up to six different polarizations—one for the
scalar and five for the massive and massless gravitons.
However, it is important to note that the massive modes do
not propagate at lower frequencies, so the possible polar-
izations depend on the frequency.

B. Gravitational radiation from sources

Let us now consider a source 7,,(t,x) concentrated
in a region of which the diameter is much smaller
than the distance r to the observer and which moves at
a nonrelativistic characteristic speed. Under such
approximations,

|

_ 4Geff
r

¢

. N <) J s e —
/d3x’T(t -, x’) - 4Geffms/ dl‘/l(m—
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—

dx
— <1, 9.9
5 < (9.9)

|x = X|~r,

the solutions in (8.2) can be further simplified. In particular,

for the massless graviton fl,w, one finds
~ o AGer 5 S
by, = 20 / PRT,((—r7).  (9.10)

Our interest here is in the radiative contributions of the
solutions, i.e., the ones which change with time. For
gravitational waves, the time components h 40 are determined
by the purely spacelike ones, so we only need to compute
those. The spatial components are radiative in general, and
for them one finds the well-known quadrupole formula

- 5 1.
/d3x'Tij(t—r,x’) :qu‘j(t_")7 (9.11)
where g;; is the quadrupole moment of the source
qi;(t—r) = /d3?cxixjp(t —rX), (9.12)

p is the energy density, and each dot denotes a time
derivative. Therefore, the radiative part of 4, is given by

7 — 2Geff .

hij p Gij(t=r).

(9.13)

Obviously, in the case of Einstein gravity—or for Einstein-
like theories—this is the end of the story. However, in
general £(Riemann) theories, we also have to take into
account the additional modes. For the scalar ¢, one finds

2 ’,2) . .
e / PRT(1— 1,7, (9.14)
t r

where J,(x) is a Bessel function of the first kind. The integration of the trace yields

- - - - - 1
/d3x’T(t— rE) = /d3x’(—T00(t— ) 4+ Tt = 1 ¥)) = =My — Eg(t = 1) + 2. (t = 7),

5 (9.15)

where M, is the rest mass and E}, is the kinetic energy of the source. Since the rest mass is constant, it does not source any

radiation, and the radiative part of the field is

r

¢ = A (léii(f —r)—E(t- r)) — 4Gy /oo df'ws—m (lél'ii(f— r)— Ei(t— r)>'

2 r

(9.16)

72— 2 2

It is important to note that this field does not always radiate. Indeed, if one considers the source to be a set of pointlike
particles or a pressureless perfect fluid (dust), then one gets §§;(t —r) — Ey(t —r) = constant.”

“The energy-momentum tensor of a pressureless fluid has the form 7, = pu*u”, where p is the energy density and u* is the 4-velocity

field, satisfying u*u,,

= —1. Therefore, T = —p, and its integral yields the rest mass of the system. The same argument works for a set of

pointlike particles. Also, an explicit computation in that case shows that—at least—when particles interact only gravitationally, then

%Qii _Ek = Ek + Eps

where E, is the gravitational potential energy of the system, and the previous quantity is a constant of motion.
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Finally, we have to determine the radiative part of 7,,.
From (8.2), we can express this field as

1

Hv) 3m5

»

= —H, 9,0 H. (9.17)

u"

where the purely spacelike components of H,, for far
sources are given by

2Ge
H;j = - reff gij(t—r)
o Jy(mVE?—r?)
+ 2Geffmg/ dr gﬂz > Gij(t—=1)
r r

(9.18)

Moreover, in the vacuum, we get 0 = 9, = 0,H",
so this allows us to characterize all the components of
H,, and IW.ZS By using (2.51), (9.17), and the solutions

for 1A1,-j, ¢, and H;; that we have just found, the full
metric perturbation can be computed. Note that the
perturbation at a distance r depends on the radiation
emitted at all times previous to ¢ —r and not only on
the radiation emitted at the time ¢ — r. This is related
to the fact that the massive graviton and the scalar do

not propagate at the speed of light. Indeed, according

to the dispersion relation @ = 1/m§73 + k%, a wave

packet with a central frequency @ will travel at a
velocity

95 (9.19)
w

1. Harmonic source

Let us work out explicitly the case corresponding to a
source with harmonic motion. Then, the quadrupole
moment takes the form g¢;;(r) = a;;e™™" 4 ¢;;, where a;;
is the polarization tensor and c;; is some plausible constant
term. We also assume that the kinetic energy can be
expressed as E; = E;ge™™, plus a possible constant term
which does not produce radiation and which we neglect.
For this kind of time dependence, the integrals above can be
computed, and the fields take the following form:

A 2Geffa)2 .
— - —
hij = ——"—e"Tay;,

(9.20)

“For example, for a plane-wave solution, we have p*H,, = 0,
so we obtain the timelike components in terms of the purely
spacelike ones: Hy; = p/H;;/w, Hyo = p'p/H;;/w*. In the
general case, the relations that we obtain are not algebraic but
differential.
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2
H.. = _mﬂe—i(z)l‘{»i\/mra”

1 L

; (9.21)

4Gey® i S (1
¢ _ _e—ffwe—lwt+l *—m3r (E a; — EkO) . (922)

r

Here, it is evident that the massive graviton (scalar)
propagates only when @? > m2 (w* > m3?). These expres-
sions can be written in a more compact and suggestive way
as

R 2G 2G
hi; = reff Gij(t =), Hij = reff 4ij(t = vyr),
4G, 1
0= (Gae- o0 - Be-0n). 02
r
where v, and v, are the group velocities of the massive

graviton and the scalar, respectively24 (9.19). Note that,
while the expression for h ij 1s actually valid in general, the
formulas for H;; and ¢ are only exact when the source is
harmonic.

C. Power radiated by sources

In this subsection, we derive the formula for the power
emitted by some system in the form of gravitational
radiation for a general theory of the form (1.1). In order
to do so, we need to find the energy carried by gravitational
waves. There are several ways of doing this. For instance,
one can interpret the gravitational equations (2.1) with its
linear part in h,, subtracted—i.e., £,, — £5,—as the gravi-
tational stress-energy tensor, for which one needs to
compute the equations of motion up to quadratic order
[78]. We will use a different approach here. As we saw in
Sec. IID, it is possible to derive the linearized equa-
tions (2.27) from the quadratic action (2.55). From this, we
can construct the canonical energy-momentum tensor 7,
associated to &, using the Noether prescription, e.g., [79]

oL oL
- _ h
T (0 hyy) 9o D(0°0,hp) Ouhap
or
9= . 24
R (5:24)

By construction, the total energy-momentum conservation
law holds:

0,(c" + ") = 0, (9.25)

*Note that for this kind of dispersion relation, the group
velocity (which is the physical one) is the inverse of the phase
velocity, and that is why it seems that the velocity is in the wrong
place.
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Here, T is the stress tensor of matter (2.2), so 7, can be
used to determine the gravitational energy flux from a
source.” This tensor can be computed explicitly, but we
will not need its general expression here. Instead, we will

make the further assumption that the perturbation modes
are plane waves (9.2). In that case, if the perturbations iz,w,
t.» and ¢ appeared separately in L, the stress tensor for

each of them would be given by

. kk, Jeo. 1.
h Y PR —— R, 26
sull) =yt (g =30} 920
() = ! (1t ,5) (9.27)
i) = T R g Gy PPN ) '
O p— ) (9.28)
T 1922G. o W9\ '

where we have averaged the resulting expressions over
space-time dimensions large compared with 1/w, so that
we are implicitly assuming r > 1/w. This averaging,
which is the natural way of defining the energy and
momentum of a wave, as it removes oscillations, e.g.,
Refs. [78,81], has the effect of killing crossed terms like
h Lap fzq’), as long as 0 # m; # m, #0. These terms
would otherwise be present in the final expression of
7,,. In that case, one simply finds 7, = le(il) + 7, (1) +
7,,(¢). Note that, while fzw and ¢ carry positive energy,
the massive graviton 7, propagates negative energy,
which is in agreement with its ghost behavior. Now,
the total radiated power crossing a sphere of radius r is

given by
P = /ererini,

where n' is the unit vector normal to the sphere, and note
that with this definition, a positive power means that the
source loses energy. In order to perform the integration,
we have to write the expressions above in terms of the
spacelike components of the perturbations. In the case of

h

(9.29)

we can write 7y; for a harmonic wave as

n; Aaf A 1x2
= h hy—=h ), 9.30
32nGeff< 2 > 5:30)

25 . . L.
In the nonlinear regime, one can construct a gravitational
energy-momentum pseudotensor by using the same prescription

: nonlinear __ _[__ 0L  _ oL _
as in (9.24), namely, 7, = ey 0y 6(3,,8”9"/})]8,,9(,/;

W’fw)@&gaﬂ + 1, L. Although this quantity is not a tensor,
Noether’s theorem ensures that O#[\/|g|(zhonear + 7)) =0

[80]. In the linear regime, these expressions reduce to (9. 24) and
(9.25), respectively.

Hvs

T0i (il/w)

PHYSICAL REVIEW D 95, 044010 (2017)

where we used the relation @?(i%h,;) = (h haﬂ> Now,
=0, we can write hoo =

so (9.30) takes the form

since h is transverse, k¥ h,w

n'n’h;; and ho, = n/hlj,

A n AijA 12 F XA
wor(hy) = 32”éeﬁ‘<h hig =5 i+ nin gy = 2hchy)
1, . .x
+§(n’n]hij)2>. (931)

Finally, using (9.13) and performing the integration over
the solid angle yields the power radiated by the massless

graviton fzm, in terms of the quadrupole moment

(q”) >

This is the well-known result found for Einstein gravity
[78,81] and the final answer for Einstein-like theories as
defined in Sec. IIL

For general theories, we need to compute the
contributions from the extra modes, which we perform
along the same lines. First, we note that it is convenient to
write 7,4 in terms of the auxiliary field H,s (9.17), so we

H,;H® — L H?. Using this, we can write

(9.32)

get, e.g., tys0% =

TOi(t/w) as
niVy Frap 7 l.»
(t,) =———(HYHy——H" ), 9.33
TOI( m/) 327TGeff < af 3 ( )
where we have taken into account that p; = v,wn;, and

again we have reabsorbed the @ factor in a time derivative.
Since Haﬂ is also transverse, p”H,; =0, we have

Hyy = v n'n HU, Hy = vgn Hlj, and hence we find
() = - g L ip
o a 322Gy Vo

+ Uﬁn’nl <§ Hinkk - 2HlkH/k>
2 A( i f T \2
—|—§vg(n nH;;)* ). (9.34)

Now, we can already perform the integral over the solid
angle, and by using (9.23), we get

G /(5 5 5.2 N\
pom =~ (30,303 )i,

(9.35)

One can see that this flux is always negative, provided
0 <w,<1. As a consequence, every time one of these
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modes is emitted, some positive energy must be added to
the source in order to keep the total energy constant. In
other words, the massive graviton would have the effect of
making moving sources soak up gravitational radiation
from the environment instead of emitting it. This is yet
another manifestation of the ghost nature of this mode.
Note also that this power does not cancel the one for the
massless graviton, even if we set v, = I—corresponding
to m, = 0. There is no contradiction in this, since the

polarization modes of 7, are different from those of h . and
therefore the energy carried by these fields does not have to
be necessarily opposite—and indeed, it is not. Observe that
the same occurs for the generalized Newtonian potential;
ie., if we set m; = 0 in (8.15), the contributions from the
two gravitons do not cancel each other. This phenomenon is
reminiscent of the so-called van Dam-Veltman-Zakharov
discontinuity [82,83], which makes reference to the fact
that the massless limit of a free massive graviton makes
predictions different from the ones of linearized Einstein
gravity.26 We stress that (9.35) is valid only when the
perturbation propagates, i.e., when @? > m2. Otherwise,
there is no emission of energy, and P(t,,) = 0. Thus, we
can always use the previous formula with the convention
v, =0 if > < mj.

Finally, we can evaluate the power emitted by the scalar
mode. The integral over the solid angle can be done
straightforwardly, and the result is

As stated previously, the scalar radiation vanishes as long as
we consider our system to be composed of dust or non-
interacting particles (without interactions different form
gravity). For example, a binary—see the next epigraph—is
very approximately a system of this kind, so there is no
scalar radiation in that case. The scalar radiation only plays
a role in systems where other interactions different from
gravity are important, like in the explosion of a supernova
[84]. Now, the final result for the power emitted in the form
of gravitational waves in a theory of the form (1.1) reads

G. 5052 N\
P = Sff<<1—Evg+§v§—§v§>q”qij

(9.36)

(9.37)

26Note, however, that the situation considered here is slightly
different from massive gravity. Indeed, in that case, the only field
is a well-behaved massive graviton, while for linearized higher-
order gravities, we deal with a massless graviton, a scalar mode,
and a ghostlike massive graviton.
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where

(9.38)

If we decompose the quadrupole moment into its trace and
traceless parts,

1
qij = Qij + §5ij‘]kk, (9.39)
we can rewrite this expression as
Gegt 5 5 2 SIEE
P = 5“ <<1 —El)g"‘gi}; _§v§>QjQij
5 . 5 1. .\ ?
_fvg(qz‘i)Q +§Us <§ qii _Ek> > (9.40)

Note that in Einstein gravity, the result only involves the
traceless part of g;; [78,81], while here we also have
contributions from its trace and from the variation of the
source kinetic energy due to the presence of extra modes.
Let us stress again that (9.40) is valid only for a harmonic
source. In the case of a more general time dependence, g;;
and E; can be Fourier expanded, and then the power of
each Fourier mode can be extracted from (9.40). The total
power would then be the sum of all of those contributions.

Equation (9.40) is the main result of this section. It
generalizes the Einstein gravity formula (9.32) to general
L(Riemann) theories. A previous extension of (9.32) to
f(R) gravity was found in Ref. [77]. For f(R), our formula
above reduces to

G g 5 1. .\ 2
Pf(R)_W<Q1Qij+§vs<EQii_Ek) > (9.41)

where v, reads, see Appendix C,

{\/ M @? > ml,

vy = o where
0 if 0* < m?,

» _ f'(R) —Rf"(R)

my

This expression disagrees with the one found in Ref. [77]—
see (82) in that paper. However, it is easy to see that the
second term on the rhs of Eq. (43) in Ref. [77] is identically
zero, so the second contribution on the rhs of (82) is absent.
Similarly, the first term in their (82) is missing an overall®’

*"This seems to arise from a wrong identification in (48). Note
that Egs. (46)—(50) in Ref. [77] are also inconsistent with each
other.
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1/f'(R)?. And, finally, the authors seem to have ignored
the contribution from the scalar mode, which explains why

they do not find the term proportional to (1/27; — E;)2.

1. Binary system

As an application of (9.40), let us compute explicitly the
power radiated by a system consisting of two masses 1,
and m, separated by a distance r in a circular orbit
contained in the plane z = 0. For this kind of system,
the position of the masses is given by

rmy

X (1) = cos(Qt), sin(Q1),0), 9.43
(1) = (cos(0),sin(Q), 0), - (943)
N rmg .
X (1) = — cos(Qt), sin(Q¢),0), 9.44
2(1) = = - (cos(@0).sin(€),0), (9.44)
where the orbital frequency Q reads
Q2 — Geff(m13+ ;) . (9.45)

r

Assuming the masses to be pointlike, the mass density can
be written as p(X, 1) = m;5(x — X, (1)) + my8(x — X, (1)).
Then, the quadrupole moment (9.12) is

) 1 +cos(2Qr)  sin(2Qr) 0
r-mini, .
ii(t) = ——— 2Qt 1- 2Q1) 0
0=y | 090 1=k 0
(9.46)

The trace and the Kkinetic energy are constant,
qii = (r*mymy)/(m, + my), E; = 0, so there is no scalar
radiation in this case.”” The traceless part of g;; reads in turn

r’mym,
0;(1) = 2, +my)
1/3 + cos(2Qt1) sin(2Qr) 0
X sin(2Qr) 1/3—cos(2Qt) 0O
0 0 —2/3
(9.47)

Applying (9.40), we obtain the following result,

m? [19 1 mé
P=Pg(l—-y/1-—L|—= ——21], (9.48
E( ' T2 [18 * i) 94] (9:48)

where

llmé
36 Q2

2In the case of a more general orbit, there is no scalar radiation
either, because, as discussed earlier, %Z]’ii —Ey=E+E,=
constant for that kind of system.
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FIG. 3. Power emitted by a binary system for a theory of the

form (1.1), P/Pg as a function of 4Q%/m?.

_ 32G mim3 (m; + m;)
5r°

£ (9.49)

is the result corresponding to theories which do not
propagate the massive graviton—see Sec. I1I. In particular,
Eq. (9.49) is the Einstein gravity result when G = G.
Expression (9.48) is valid for 4Q? > m?. When 4Q* < m
instead, the result reduces to Pp—see Fig. 3. When
4Q% = m?, the effect of the massive graviton makes the
power start to decrease. In particular, when 4Q?/m} =
1.2761, the power emitted vanishes. For even smaller

values of mg with respect to Q2?, the power becomes

negative acquiring its minimum value at 4Q?/m? =
143/+/5, for which P/Pg(1+3//5)=1-./3/2=
—0.2247. Finally, for Q? > my, the power tends to the
constant value P/Pp(Q? > m}) = —1/18 = —0.0556.
Given a theory with mg < o0, there would exist a critical
frequency Q2 = 0.31903m? for which the source would
stop emitting radiation and such that for greater frequencies
the source would start absorbing radiation instead of
emitting it. This exotic process should not be regarded
as physical and illustrates the pathological character of
the class of theories which propagate the additional
spin-2 mode.

X. WALD FORMALISM FOR GENERAL
L(Riemann) THEORIES

In this section, we present a self-contained review of
Wald’s formalism [41] applied to general L£(Riemann)
theories. Wald’s formalism provides a systematic way of
constructing conserved quantities in diffeomorphism
invariant theories. It was originally developed to derive
the first law of black-hole mechanics for generic theories of
gravity [42,43], but it has led to many interesting appli-
cations, e.g., in holography [48,85,86]. Our discussion is
mainly based on Refs. [42,87], where this formalism was
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developed for higher-derivative theories of gravity. Here,
we present new results for the symplectic structure @ and
the surface charge 6Q: — & - © for L(Riemann) theories.
Throughout this section, we set L . = 01n (1.1); i.e., we
assume that the Lagrangian does not depend on any matter
fields. In Appendix E, we provide explicit expressions for
the quantities considered in this section for some relevant
theories.

A. Lagrangian and symplectic potential
The starting point of the Wald formalism is a diffeo-
morphism covariant Lagrangian, which—in our case—is
assumed to be a local functional of the metric and the
Riemann tensor. The Lagrangian is treated as a D-form on
the D-dimensional space-time manifold M, namely,

L = L(R,,0. 9 )€, (10.1)
where L(R,,,, g*) is the Lagrangian density and € is the
volume form on M. For future reference, we will be using
the following shorthand notation for the volume form of
any codimension-n submanifold:

1
= — — Dn DY v,
€ty = (D _ l’l)' V geﬂl...y,,l/nﬂ.“yl)dx SLEVAN A dx'p,

(10.2)

Under a variation of the metric,29 the first-order variation of
the Lagrangian is given by
5L = e£"6g,, + dO(g, dg). (10.3)
where £ = 0 are the equations of motion for the theory,
given by30 (2.1) and O is the boundary term that arises due
to partial integration of terms involving derivatives of dg.
The (D — 1)-form @ is locally constructed from g and dg
and is called the symplectic potential form. From (10.3), it
is clear that @ is not uniquely defined, since one always
has the freedom to add a closed—and hence locally exact
[88]—form to it. However, as shown in Refs. [42,89], it is
always possible to construct an explicit covariant formula
for ® which fixes this ambiguity. For £(Riemann) theories,
this somewhat canonical formula reads [42,87]
0 = €,(2P*N 5,5 — 2V, PFPYSg,5), (10.4)

where P#P% is defined in (2.2). Furthermore, by employing
the relation

¥For convenience, we vary the Lagrangian with respect to the
metric g,,,, although it was initially defined in terms of the inverse
metric g".

Notice that the equations of motion with indices up
and the one with indices down are related by a minus sign:

Y = =g g E .

PHYSICAL REVIEW D 95, 044010 (2017)

vyégaﬁ - gﬂpérﬁa + gapél—fﬁ, (105)

the symplectic potential form can also be written as

0= eﬂ(—2P”“ﬁy5F;ﬁ - 2V,,P”“ﬁ”5gaﬂ), (10.6)
where we used that P**%" is antisymmetric in its last
two indices, PH¥#¥ = —pref which implies that
P”"/””él“;;y =0.

B. Symplectic form

The symplectic current form is defined as the antisym-
metrized variation of ® [89],

(9.619.6,9) = 6,0(g.6,9) —5,0(g.6,9).  (10.7)

From (10.3) and (10.7), it follows that @ obeys the relation

dw = —6,(€£")6,9,, + 6,(6£")81g,,. (10.8)
Here, it was used that the exterior derivative d commutes
with the variation §: d(6@) = 5(d®). Therefore, if g
satisfies the linearized equations of motion §(e£#) = 0,
then the symplectic current form is closed,

do = 0. (10.9)
This relation implies—by Stokes’s theorem—that the
integral of @ over a compact Cauchy surface C is inde-
pendent of the choice of C. For noncompact Cauchy
surfaces, one has to impose appropriate boundary con-
ditions on the metric and its perturbations on JC in order to
assure convergence of the integral. Here, we just assume
that such boundary conditions exist, so that the integral of
@ over a Cauchy surface C is a conserved quantity. This
quantity is called the symplectic 2-form [42,89],

Q(g’519’62g)Elw(g’élgvélg)' (1010)

Let us explain the origin of its name. In fact, & can be
regarded as a 2-form defined on the space of metric
configurations JF. This is because  is a local functional
of the linearized perturbations &,¢g and d,g, where the
variation 6 can be viewed as the exterior derivative on this
space. Moreover, from (10.7), it follows that Q is closed,
1.e., 6 = 0, due to the fact that the exterior derivative
satisfies the relation 6>°g = 0. Now a proper symplectic
form on phase space is both closed and nondegenerate. The
form (10.10) is degenerate—and is hence sometimes called
the presymplectic form instead—but one can construct a
nondegenerate 2-form from (10.10) by modding out F by
the degeneracy subspace of Q. Then, the nondegenerate Q
and the solution submanifold of F constitute a well-defined
covariant phase space [89].
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Let us now compute the symplectic current form
explicitly for £(Riemann) theories. If we write the sym-
plectic potential form as @ = €,0, then the definition of @
(10.7) becomes

1
@(9,019,6,9) =€, | (610/(g,6,9)) +§9””519,w®”(9, 6,9)

—1+ 2], (10.11)

where we used §,/—g = % /99" 89, Next, one can insert
two expressions for @ for £(Riemann) theories. @ sim-
plifies immediately if one inserts the second expression
(10.6), since in that case one can employ the relation
5[152]F2ﬁ = 0. If one inserts the first expression (10.4)

instead, one has to be careful with evaluating the term
4PrP 51 (V,6/29ap)» because the variation and the covar-

iant derivative do not commute. In the latter case, one can
use the fact that the variation and the partial derivative
commute, i.e., [5,0,]f = 0. We checked that both proce-
dures give the same answer. The result is

w =€, [_(251 Pﬂaﬂv + Pﬂaﬁuglmélgpn)52ri;ﬂ
- (25lvypua/iv + gp65lgpavupﬂaﬁv)52.gaﬂ] - [1 < 2}
(10.12)

By employing the formula for the variation of the
Christoffel connection

1
o, = ng(vaagﬂﬂ + V5894, — Vib945).  (10.13)
the result (10.12) can also be written as

o = eﬂ[(zélpya/ﬁ/ + (P;w/)/)'garr + P;wc/)ug/}(r + Pﬂa/}pgyrr
+ Pﬂa/jygﬂg>6lg/)n)vu62gaﬂ
- (251vypﬂaﬂy + gpgélgpavvpﬂaﬂy)52gaﬂ] - [1 < 2}
(10.14)

Finally, by inserting a formula for the variation of P*** that
follows from (2.8),

SPHPY = 2Pl palibusg, 4 gt PSR 5 (10.15)
where Cﬁzf; is defined by (2.4), the symplectic current form

can be written as
0 = eﬂ[(Sﬂaﬂypo-&lgpﬁ + Zgﬂygnéczzg;élRpgy&)vu(SZgaﬁ

— (28, V,PrPY + 7951 G,,V PP )82 gop] — [1 < 2],
(10.16)
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with Seapvro = _» PD<(lﬁ><Pg”)ﬂ 42 pﬂv(ﬂl(agﬁ)\ﬂ)
+ prloltaghllo) o pulap)p golv 4 pulaby oo
(10.17)

To arrive at the expression for S¥%#*’° we employed the
first Bianchi identity for Pr#v; prafv  prpva 1 puvap — (),
This new formula for the symplectic current form applies to
any higher-curvature gravity theory. Expressions for @
were previously obtained for Einstein gravity [90-92] and
f(R) gravity [93]. It can be checked that this formula
provides the same results in those cases, as we show in
Appendix E.

C. Noether current and Noether charge

Next, let & be an arbitrary vector field on M which
generates an infinitesimal diffeomorphism. Since the
Lagrangian (10.1) is diffeomorphism invarant, it varies
under a diffeomorphism as

6:L = L:L =d(-L), (10.18)
where in the last equality Cartan’s magic formula was used:
L:L =¢-dL +d(&-L). The first term vanishes since L
is a top form, and the dot in the second term denotes the
interior product of the vector £ with the form L.

Since diffeomorphisms are local symmetries of the
theory, one can associate a Noether current—represented
as a (D — 1)-form—to each vector field & [41,89],

J:=0(g9,L:9) - ¢ L. (10.19)
It follows from (10.3) and (10.18) that the exterior
derivative of J; is

d): = —€E" Leg,,. (10.20)
As a consequence, the Noether current form is closed if the
equations of motion & = 0 are satisfied. In that case,
Poincaré’s lemma implies that it is locally exact [88]. What
is more, in the Appendix of Ref. [94], it was shown that of-
shell J; can always be written in the form

J: =dQ: +&C,, (10.21)
where Q; is called the Noether charge (D — 2)-form and
C, =0 are the constraint equations of the theory. For
theories that only depend on the metric field, these
equations are given by C, = 2¢,&#, with &) = &,

Although Q; is not uniquely determined by Eq. (10.21),
there exists an explicit algorithm by Ref. [88] to construct
Q; from J.. For L(Riemann) theories of gravity, this
construction yields [42,87]
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Q: = €, (=PHP°N & — 28,V PHr7), (10.22)

Thus, by Eq. (10.21), the Noether current form is

Jé =€y [_2VU(P,UVPO'VP50_> - 4VU(£pVUP/u/pG> + 25”1/5”]'
(10.23)

D. Surface charge

From (10.3), (10.7), (10.19), and (10.21), one can obtain
a fundamental identity,

w(g.89. Leg) = dk:(g.89) + 26(e,E4,)E + E'e,EM8g,,,
(10.24)

where k;(g,89) = 59Q;(g) — & O(g.69)  (10.25)
is known as the Iyer-Wald surface charge (D — 2)-form.
Notice that this relation applies to arbirary metrics g, metric
pertubations dg, and vector fields £. This identity was first
established off shell by Wald [41], and for field-dependent
vector fields—e.g., vector fields that depend on the metric
£ =¢(g9)—a proof can be found in Refs. [85,95]. The
variation 5[5’]Q5 =0Q: — Qs acts only on the explicit
dependence on the metric and its derivatives in Q;, and
not on the implicit dependence on &.

A special case of the identity occurs when £ is an exact
Killing vector. In that case, the relation gives rise to the first
law of black-hole mechanics [41,42]. Since L:g = 0, the
left-hand side of (10.24) vanishes, and if g and dg satisfy,
respectively, the full equations of motion and the linearized
ones, one obtains

dk; = 0. (10.26)
Therefore, the integral of k: over a (D — 2)-dimensional,
spacelike compact surface S is “conserved,” in the sense
that it is independent of the choice of S. If the normal
directions to S are the time and radial direction, then the
integral is the same at every time and radial coordinate. In
order for this integral to be the variation of a finite
conserved charge, certain integrability conditions should
be satisfied [89].

Let us now compute this quantity for general
L(Riemann) theories. Inserting the known expressions
for Q: (10.22) and © (10.4) into the definition of k.
(10.25) yields

k: = 8, (—P"*,V & — 2£,V,Prro)|

— &€, (2PN, 5g,5 — 2V, PR Sg,,).  (10.27)

By letting the variation act only on the explicit dependence
on the metric, and collecting similar terms, we arrive at
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k:=¢€, {—5P””f’(,vl,§” —28r8(V, P °)
1
+ <_ 5 PHYPo gaﬂvp éfg +2 é:uv/{ pHabi

— &,V Py ) 8up

_ (éapywlﬁ + zévpﬂaﬂﬂ)vl5ga/}:| . (10.28)

Here, we have defined the 59 variation of the vector £°
(with index up) to be zero, i.e., 6[9]5” = (0, which implies
that 8l9¢, = £75g,, and 81(V &) = £26T%,. Finally, intro-
ducing the variation of P*° (10.15), we obtain the
expression

k:—e¢, {—g”’l PO ERY, — 286(V P )
1
+ ( P/w(l/lv/} 5/{ _ E PHvpo g(z/} vp 56
+ 28V, Prab — g,,vapﬂvwgf'ﬂ> 5Gup

_ (g{tp/w/lﬂ + ngpﬂaﬁi)vlégaﬁ} . (1029)

E. Barnich-Brandt-Compere definitions of @ and k,

A different method for constructing a covariant phase
space was developed by Barnich, Brandt, and Compere
[96-98]. Their definitions of the relevant quantities are
based on the equations of motion rather than the
Lagrangian. Hence, their method is also universal, in the
sense that it applies to any diffeomorphism invariant
theory—in fact, their formalism is more general, since it
holds for any theory with local gauge symmetries.
Moreover, their definitions do not suffer from any ambi-
guities, as is the case for the Wald formalism—see the next
epigraph. Most quantities agree with those defined by Lee,
Wald, and Iyer, expect for the symplectic current @ and the
surface charge k. For completeness, let us present here the
Barnich-Brandt-Compere definitions of @ and k. for
L(Riemann) theories. A pedagogical review of this method
can be found in Refs. [85,87].

First, the Barnich-Compére symplectic current—also
known as the invariant symplectic current—differs from
the Lee-Wald definition (10.7) by an exact form,

mBC(g5 (slga 529) = a)LW(g’ 5195 529) - dE(ga 5197 529)7
(10.30)
where E was computed for arbitrary higher-derivative

Lagrangians by Ref. [87]. We provide two equivalent
expressions for E:
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E(g.819.0,9) = %% {— % prve gl 4 ZPW"“QW}
X 619p6029ap — (1< 2]
=€, [_ % pﬂvpagrfﬂ + PHpoa guﬂ — prafp gw]

X 5lgp052gaﬂ' (1031)
Now, by adding the term “~dE (g, 89, L:g)” on both sides
of the equation (10.24), one can derive a new fundamental
identity for the Barnich-Compere symplectic current
(10.30), if one redefines the surface charge (10.25) as

kZ"(g,89) =k (g,69) — E(g,69, Leg),  (10.32)

where k2P is called the Barnich-Brandt surface charge.
Notice that for exact Killing vectors, i.e., £:g = 0, the Iyer-
Wald and Barnich-Brandt definitions of the surface charge
are equivalent. In the rest of the paper, especially in

Appendix E, we restrict again to the Lee-Wald-Iyer
proposals for @ and K.

F. List of ambiguities

In the previous epigraphs, we have given the “canonical”
formulas for the relevant quantities in Wald’s formalism.
However, these quantities are not uniquely defined. Let us
present here a list of all the corresponding ambiguities. The
symplectic potential ® and the Noether charge Q. are
defined by (10.3) and (10.21), respectively, up to a closed
—and hence locally exact—form, denoted by dY and dZ,
respectively. Moreover, one can add a total derivative du to
the Lagrangian without changing the equations of motion.
These ambiguities Y, Z, and p also give rise to ambiguities
in the other relevant quantities. The full list reads [42]

L — L +du, (10.33)

© — O +du+dY(g,d9), (10.34)

o — o+ d6,Y(g,6,9) —5,Y(g9.6,9)), (10.35)

Je = Je+d(E-p)+dY(g. Leg).  (10.36)

Q: = Q:+¢-pu+Y(g. Leg) + dZ, (10.37)
ks = kg +89Y(g, Leg) — L:Y(9, 59)

+d(6YZ + £-Y(g,89)), (10.38)

where the arrows mean that the expressions on the rhs are
also compatible with the corresponding definitions. We
have seen above that for exact Killing vectors, the integral
of K. is conserved. Moreover, here we observe that the
integral of this form over a (D — 2)-dimensional spacelike
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compact submanifold is unambiguous for Killing vectors,
since in that case, the total derivative does not contribute
and we have [42]

89Y (g, Leg) = Y(g, LeBg) = LY (g.69),  (10.39)
because ﬁgg = 0. Furthermore, we note that the Barnich-
Compere symplectic current (10.30) and the Barnich-
Brandt surface charge (10.32) do not fall within the
class of ambiguities of the Wald definitions, Eqs. (10.35)
and (10.38), respectively. This is because the form
E(g,6,9,6,9) cannot be written as &,Y(g,8.9) —
5,Y(g,8,9), although it was previously suggested in
Ref. [99] that this could be done. Thus, the proposals by
Barnich-Brandt-Compere and Lee-Wald-Iyer for @ and K
are distinct. Which proposal is more appropriate seems to
depend on the problem.31

XI. FINAL COMMENTS

In this paper, we have presented a collection of new
results on £(Riemann) theories of gravity. A summary of
our findings can be found in Sec. I A.

Before closing, we would like to point out that one of our
motivations to study the linearized spectrum of this class of
theories came from the following observations. In
Refs. [19,62], the authors constructed a cubic theory
admitting analytic extensions of the Schwarzschild-AdS
black hole characterized by a single function. Remarkably,
they noticed that this theory—which was coined guasito-
pological gravity32—has the same linearized spectrum as
Einstein gravity; i.e., it falls in the Einstein-like category
considered in Sec. Ill—see Appendix B. In fact, as far as
we know, all the known examples of higher-order
gravities33 for which nontrivial analytic black-hole solu-
tions—generalizing the corresponding Einstein gravity
ones—have been constructed for generic values of the
coupling™ fall into the Einstein-like category; this includes
quasitopological gravity [19,62] and its generalizations to
higher curvatures, e.g., Ref. [103], and Lovelock theories
[104-109]. In all those cases, if we restrict to static and
spherically symmetric solutions—and analogously for
planar or hyperbolic horizons—a single function deter-
mines the corresponding metric—e.g., for Schwarzschild,
f(r)y=1=2M/r in the usual coordinates. This is as
opposed to black-hole solutions of theories which do not

*'We thank Geoftrey Compere for clarifying this point.

Note that, as opposed to, e.g., ECG, quasitopological gravity
is defined in a dimension-dependent fashion.

PIn this statement, we are referring to purely gravitational
metric theories.

The situation changes if one allows for fine-tuned couplings
—see, e.g., Refs. [63,100,101]. Another possibility is considering
theories which do not reduce to Einstein gravity when the
corresponding couplings vanish, like pure R? gravity, e.g.,
Ref. [102]. We find these setups considerably less interesting.
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belong to the Einstein-like class, e.g., Refs. [110,111], for
which two independent functions are needed and generally
can only be accessed numerically or in certain limits. This
suggests the possibility of finding simple analytic exten-
sions of Einstein’s gravity black holes for that class of
theories. Furthermore, it is natural to expect that only
theories that do not propagate the extra scalar and the
ghostlike graviton at the linearized level are susceptible to
admitting extensions of Schwarzschild’s solution with a
single blackening factor. Additional evidence in favor of
these claims coming from ECG was recently reported in
Refs. [29,112-114]. A general study for arbitrary
L(Riemann) theories is also in progress.
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APPENDIX A: LINEARIZATION
PROCEDURE: EXAMPLES

In this Appendix, we apply the linearization procedure
explained in Sec. II to two instances. The first is a general
quadratic theory in D dimensions, for which we give details
of all the steps involved in the linearization process. The
second is a Born-Infeld gravity. Our goal in that case is to
illustrate that our method can be easily applied to theories
of which the linearization would be difficult to achieve
using different methods.

1. Quadratic gravity

Let us consider the most general quadratic gravity in
general dimensions,

(A1)

In order to obtain L(A, a), we only have to substitute the Riemann tensors appearing in the above Lagrangian density by the
expression (2.20) and use the algebraic properties of the auxiliary tensor k,,, (2.19) to compute all the contractions. We find

R*|(p g = A?D*(D = 1) +2AaD(D = D)y (y = 1) + & (x = 1)%,
RuR*|(nay = N°D(D = 1)° +28a(D = )y (x = 1) + &5 (x = 1)%,

RuopR"| 0y = 2D(D — 1)A? + 4Aay(y — 1) + 2% (x - 1).

Hvop

The final result for £L(A, a) reads

L(A @) = +5 (=28 + AD(D = 1) + ar(z ~ 1))
+x2(A2D(D — 1) + 2Aay(y — 1))
X (D(D = 1)a; + (D —1)a, + 2a3)
+ k20l (y = 1)
X (x(r — Doy + (x — Dap + 2a3).

Then, applying (2.22), we get

(A3)

1 _
e=-+ A3 (D(D = Vay + (D = Dy + 2a3).  (A4)
K

(A2)
[
The second derivative with respect to a yields
L 4D
e 2 = D=y (r = Day + (x = Dag + 2as].
(AS)

Hence, comparing with (2.23), we can easily obtain the
values of a, b, and c¢. The result is

i1 4p
4D Kp—2a Kp=20t,
a = kp2q;, b= 5 c= 5 (A6)

Inserting the values of a, b, ¢, and e into (2.28)—(2.30) gives
rise to Egs. (2.32)~(2.34) for ke, m?, and m2.
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Finally, from (2.14), we see that the cosmological
constant is related to the background scale A and the
couplings of the theory through

(D—-1)(D -2)A

2
x [D(D = 1)a; + (D = 1)ay + 2a3).

AOZ

+ 020D - 4)(D - 1)
(A7)

2. Born-Infeld gravity
Let us now consider the following theory, which has the
form of a Born-Infeld model,
1
ko2 (1 + )%

x/ @x[\/19 (14 3) + k2R, = /lgl].
M

(A8)

where |A,, | stands for the absolute value of the determinant
and 4 is a dimensionless parameter—which we assume to
be greater than —1. The normalization is chosen so that to
leading order, the action becomes Einstein-Hilbert,

1
S——/ dPx\/|g|[-2Ag + R+ - - -], (A9)
2K M

where Ay = [(1+2)'"2/2 — (1 + 2)]x=p and the ellipsis
means an infinite series of higher-order terms in curvature.
Linearizing this theory can be a nontrivial task, due to the
presence of the determinant and the square root. Using our
method, it becomes quite easy, though. First, extracting as a
common factor the square root of the metric determinant,”
we find the Lagrangian density

k02(1 4 )5 L = \/|(1 + )8, + k53R~ 1. (A10)

Now, we follow our recipe and substitute the Riemann
tensor (2.20) in this expression:

k022(1 4 )T L(A, )

= 101+ 2+ KTEA(D = 1))8", + axria(y — 1)kA, | — 1.
(A1)

The determinant can be computed using (2.19) and the
identity
|A| = ellogd), (A12)

The result is

SSWE use that |A;w‘ = |g;wcAa1/| = |g;u/||Aaﬁ|'
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k2(1 + ) TL(A, @) = (1 + A + k02 A(D — 1))P/2
(e
1+ A+ x02A(D — 1)
—1. (A13)

This “prepotential” contains all the information about the
linearized theory. Let us begin by determining A. The
equation for the background curvature (2.14) becomes

(14 A+ xo=A(D - 1)]P12 -1

= ko=A(D — 1)[1 + A+ xk2A(D = 1)/ (Al4)
A simple algebraic manipulation yields
1=(1+A)[1+A+x0=2AD -1 (Al15)

Thus, since we have assumed A > —1, this equation has
always one solution:

1
A=——[(1+)HDP2_(141)]. (Al6
Kﬁ(D—l)[( ) (1+4). (Als6)
Now, we can compute the parameters a, b, ¢, and e. From
(2.22), we get

1
=—(1+21)7P2,

. (A17)

where we already evaluated the expression on the back-
ground. On the other hand, the second derivative of L(A, a)
with respect to a evaluated at @ = 0 yields

1 0L L 20-4

G- oc|, 16 W D=2+,

(A18)

where we have also made use of (A16). Now, comparing
this expression with (2.23), we find the values of the
parameters, namely,

I ap

D2-2D-.
a=0. b=k L)

D2-2D-
(

1 4»p —D°-2
¢ = - KA1+ )7 (A19)

Finally, using (2.28)—(2.30), we can compute the physical
parameters K, m, and m,,
Ker = k(14 2)P/2,

m2 = 2(1 + )~ (P2, (A20)

Therefore, we have completely characterized the linearized
spectrum of this Born-Infeld model. Since we assumed that
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A > —1, all quantities are finite and real, and everything is
well defined. For D > 2, the background (A16) is dS
(A > 0) when A <0, AdS (A < 0) when 4 > 0, and flat
when 4 = 0. In all cases, we have, apart from the massless
graviton, a massive scalar and a massive spin-2 graviton.
The masses squared and the effective gravitational constant
are always positive.

APPENDIX B: CLASSIFICATION OF
THEORIES: EXAMPLES

In this Appendix, we provide numerous examples of the
different classes of theories characterized in Sec. III.

1. Theories without massive graviton

In Sec. VII, we characterized all theories being defined in
a dimension-independent manner which do not propagate
the extra massive graviton up to cubic order in curvature.
The list of theories reduced to the particular f(Lovelock)
terms, ECG (6.2) plus a new invariant, ), which we defined
in (7.6). In this Appendix, we will study general
f(Lovelock) theories, which—although not necessarily
defined in a dimension-independent way—are a paradig-
matic example of theories which only propagate the usual
massless graviton plus the scalar at the linearized level [63].

2. f(Lovelock) gravities

The most general f(Lovelock) action can be written as

1
S—2—/ dPx/|glf (Lo, Ly ... Lippy),  (BI)
KJm

where f is some differentiable function of the dimension-
ally extended Euler densities®®

1
'Ck = _ gl B p apy .. .Rﬂkykakﬂk’

2k afy...aq vy (B2)

where the generalized Kronecker symbol is defined as

Sy = (2k)!50[’fl‘ b --~5ﬁ§5'/}’;]. Note that the first three
densities are nothing but a constant that can be identified
with the cosmological constant £y = —2A; the Einstein-
Hilbert term, £; =R; and the Gauss-Bonnet gravity,
L, =X,. A corollary from the results presented in
Sec. V is that f(Lovelock) theories inherit the property
of Lovelock gravities of not propagating the massive
graviton37 This means that the linearized equations of
motion for f(Lovelock) gravities should not involve

*Namely, £, becomes the Euler density when evaluated for a
2k-dimensional manifold.

In Appendix C, we show how the linearized equations of
f(R) can be obtained from those of Einstein gravity. The
procedure can be naturally applied as well to f(Lovelock)
theories starting from Lovelock, and the results will match the
ones presented in this Appendix.
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the Gwa term. This is indeed the case. In particular, they
read [63]

(g;wD - vL/v,u)RL =0,

&L, = aGl, + APy, R" +

D -1
(B3)
where a and f are the following constants™®:
[D/2]

1 - k(D =3)!
=_ T A B4
“T ,; OO D ey B

[D/2]

1 ki(D—-2)!(D -1)!

p= d M ) ARH=2 0 (BS)

2K g;l KO (L) (D —2k)\(D —21)!

Here, 0,f(L) means that we should take a formal derivative
of f with respect to the corresponding dimensionally
extended Euler density and then evaluate the result in the
background. Comparing with the linearized equations (3.2),
we see that a determines the effective Einstein constant kg
and f is related to the mass of the scalar field

1 , D-2-28DA
Keff = 5> mszT-

2a
Note that for f = 0, the scalar mode is also absent, and the
only physical field is the massless graviton. This applies,
e.g., to pure Lovelock gravities and also to other nontrivial
theories [63]—some of which we review in the last epigraph
of this section. The parameters a, b, ¢, and e are given by

(B6)

1 a—2e b p a—2e
T T A=A T T AD-1) 8(D-3)A
00
‘T 8AD-1) 7

and the background embedding equation (2.14) reads in turn

22l 2k(D - 1)1

1B) = Y =gy ML)

(B8)
k=1

An interesting subclass we shall not consider here is that of
Lovelock-Chern-Simons theory [115,116], which is a par-
ticular case of the Lovelock theory. This is most naturally
defined in general dimensions in terms of the tetrad and the
spin connection. Their corresponding equations are first
order, and when the torsion is set to zero, the metric field
equations become second order, and the theory is a particular
case of the Lovelock action considered in this paper, i.e.,
with a metric-compatible connection. In the latter case, the

*Note that | D/2] stands for the largest integer smaller than or
equal to D/2.
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degrees of freedom propagated by the theory on a msb are of
course the D(D —3)/2 of the usual massless graviton.
Interestingly, if the torsionless condition is relaxed, the
number of dynamical degrees of freedom is in fact
greater—see, e.g., Ref. [117].

3. Theories without dynamical scalar

In the case of quadratic gravity, the most general theory
which does not propagate a scalar field is [118]

1
_ D —
S_/Md X |g|{2K( 2A0+R)

e e R A | A

where X, is again the Gauss-Bonnet term and f and y are
dimensionless constants. Observe that for D = 3, this
action is equivalent to new massive gravity [119]. There
are two different interesting ways of writing this theory in
terms of other well-known curvature tensors. First, it was
observed in Ref. [120] that the contraction of the Einstein
tensor G, with the Schouten tensor’’ § 4w 18 proportional to
the curvature invariant in (B9) that multiplies f,

D A(D-1)

S = ip -1 <R2 D

RWR””> :
(B10)

Therefore, by rescaling f, we see that the theory is
equivalent to

1 D, =
S:/ dPx |g{—(—2A0+R)+K;TZ(ﬂG”DS””+yX4)}.
M 2K

(B11)

Second, it turns out that the quadratic part of (B9) is
equivalent to the higher-dimensional version of conformal
gravity, consisting of the square of the Weyl tensor,
together with a Gauss-Bonnet term. The square of the
Weyl tensor is in fact equal to™

D(D - 3)
(D-2)(D-1)

X <R2 —@Rﬂyw). (B12)

By using this relation and redefining the couplings, the
theory can be written as

C

vpc
peCHP7 = Xy —

*The Schouten tensor is defined as S, =55 (R, —
1

20,]) Rgu)-
The Weyl tensor is defined as C,ppp = Rypps —

% (guU)Ra]y - gu[/)RU];l) + Wz([)_z)Rgu[pgo]b'
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s= [ axylg
M

1 D, -
X {Z_K (_2A0 + R) + K%(ﬁcﬂw)acﬂypg =+ ]/X4)}

(B13)

Thus, we observe that conformal gravity in any dimension
is free of the scalar mode and only propagates the two
gravitons. Finally, for this theory, the effective gravitational
constant and the mass of the extra graviton read, respec-
tively,

T 1 —4EAD - 3)(2F - 7(D —4))

Ketf (B14)
, _2-D+45A(D -3)(D-2)(25 - 7(D - 4))

m jps 2
! 862 (D — 3)

(B15)

If the numerator of (B15) becomes zero, then the extra
graviton is massless. This particular case will be analyzed
in the epigraph on critical gravities. Note finally that in
D = 3 both the Weyl tensor and the Gauss-Bonnet term
vanish identically, so the theory reduces to Einstein gravity
plus a cosmological constant.

4. Theories with two massless gravitons

The following is an example of a theory propagating two
massless gravitons in addition to the scalar field:

1 -
S = / dPx |g|{—(—2A0 + R) + k-2aR?
M 2K

-D 1
- D|x53a+—— R, R™ .
(K 2a+16KA0> w }

Note that the m(zl = 0 condition has the unpleasant feature
of mixing the couplings of terms of different order in
curvature. In this case, we see that the R, R* coupling
depends on the combination kAj. For this theory, the
background scale is related to the cosmological constant by

(B16)

4A,

A:m.

(B17)

In addition, the effective gravitational constant and the
mass of the scalar field read

e 2(D - 1)xA
T + 4Akp=aD(D — 1)
, 4D -1)A

—_ i . (BI§)
D + 4Akp=a(D — 1)(D - 2)?
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As far as we know, this theory has not been considered
before.

5. Critical gravities

Critical gravity was introduced in Ref. [27] as the
four-dimensional quadratic theory for which the extra
graviton is massless and the scalar mode is absent.
Hence, it is a special case of the theories considered
in the last two epigraphs—(B9) and (B16)—in the
particular case of D =4. The following action is a
generalization of critical gravity to general dimensions
[120]:

D2

1
_ D o -
S_/Md ! |g|{2;<( 280+ R) e D= 2)

(00 )

It can be obtained by setting g = —D?/(16x* P2 x
Ag(D —2)?) and y =0 in (B9) or, alternatively, from
(B16) if we put a = —D?/(16x* (P=2) Ay (D —2)?) there.
In D=4, this is the critical theory considered by
Ref. [27], and for D =3, it is equivalent to critical
new massive gravity with a cosmological constant [121].

|

(B19)
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Furthermore, the effective gravitational constant of this
theory 1is

1
’%eff = —E (D — Z)ZKA, (BZO)

which is only positive for A < 0.

6. Einstein-like theories

In Sec. VI, we already constructed examples of Einstein-
like theories in the sense defined in Sec. III, i.e., theories
which only propagate a massless graviton on a msb.
However, the theories considered in that section had the
additional property of being defined in a dimension-
independent manner, and we coined them Einsteinian. In
this Appendix, we would like to present some more
examples of Einstein-like theories of which the definition
does, however, depend on the space-time dimension.

Quasitopological gravity—The first example is quasi-
topological gravity [18,19,62]. This is a cubic theory which
has the nice property of admitting analytic black-hole
solutions—which generalize Schwarzschild-AdS and its
Gauss-Bonnet generalization [107]. It consists of a combi-
nation of all Lovelock gravities up to cubic order plus an
additional quasitopological term:

1 - _
S:/ dPx |g|{2(—2A0+R) +K%a2(4+x%[ﬂx6+y2]}. (B21)
M K
Here, the cubic Lovelock term is given by
X¢=-8R,/ °R,° TR + 4R,/ R,,” Rs"” — 24R,,,,R"" sR7®
+ 3R, R"*°R + 24R,,,,R*’R*> + 16R,*R,'R } — 12R,,,R* R + R*, (B22)
and the quasitopological one in general dimensions reads in turn [19,62]
1 3(3D -138)
Z=R, R, R} + W)(D—él) (‘3(D — 2)R,pc R sR7 + TR,M,UR’“’P"R +3DR,,,;R'" R
33D -4 3D
+6(D-2)R,'R/R )} — QRWR*”’R + ?R3 (B23)
The physical quantities for (B21) read
K
m; = 400, my, = +oo, (B24)

= o By Ax)

where

fla. By, A k) = +1 + 4Akv=2a(D — 4)(D - 3)
+ 6x77A2B(D — 6)(D = 5)(D = 4)(D - 3)

3(D - 6)(D - 3)
4(2D - 3)

k02A%y (16 + 3D(D — 5)).
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Hence, as explained in Ref. [19], this theory shares the
linearized spectrum of Einstein gravity. Let us close this
section by mentioning that a quartic version of quasitopo-
logical gravity was constructed in Ref. [103]. It would be
interesting to use our results in Sec. IV to check that such
theory also presents an Einstein-like spectrum.

Special f(Lovelock) theories.—The second example we
would like to consider corresponds to a particular family of
f(Lovelock) gravities. As we explained before, all
f(Lovelock) theories are free of the massive graviton
but do in general propagate the extra scalar. However, as
pointed out in Ref. [63], it is possible to construct nontrivial
theories—i.e., different from the pure Lovelock case—
which are also free of the extra scalar and hence share the
linearized spectrum of Einstein gravity.

Indeed, whenever S, as defined in (BS), vanishes, the
mass of the scalar diverges—which is obvious from (B6).
This is achieved whenever 0,0,f(L) = 0 for all k, I, which
leaves us with nothing but the usual Lovelock theory or,
alternatively, if

[D/2]
5 a0ie) <D z;)(g) 211;' AR g,
RO f (L) #0 (B25)

for some k, [. This equation is, e.g., satisfied by all theories
of the form [63]

s= [ @Vl
M
(u+2s)—D

1
X {2K< 2A0—|—R)—&—1<2 D-2

(Ruﬁi _ }/R2S+“>},

(B26)
where y is the dimension-dependent constant
Wt +4(s—1)s+u@ds—1)(D-2)5(D-3)°
T w2 ut2s—1)  D(D-1p
(B27)

for any u, s > 0. In particular, for s = u = 1, one finds the
cubic class of theories

1
S:/ dPx |g|{ (=2A¢0 +R)
M

+ 3 {RLZ - (%)(_1)1;3)) R3] }

(B28)
The D = 4 case of (B28) was also considered in Ref. [28]
in a slightly different context. The effective gravitational
constant of (B28) reads
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Keff = K{l + 2(D - 6)(D - 3)(D — 1)DﬂKﬁA2]_l

(B29)

APPENDIX C: f(scalars) THEORIES: EXAMPLES

Let us now illustrate how the expressions obtained in
Sec. V can be used to easily compute the values of a, b, c,
and e for theories consisting of functions of invariants, as
long as we know the values of those parameters for the
invariants themselves.

1. f(R) gravity
Let us first consider f(R) gravity, the Lagrangian in
general dimensions of which we write as

S=3: | /I (R)

According to Table II, for R, we have a=b =c =0,

e =1 and R = D(D — 1)A. Therefore, using the trans-

formation rules (5.4) for the theory above, we have

(C1)

L rw).

4k (€2)

1 11 (D
=— f"(R), =
—f'(R). e
Note that these expressions can also be easily obtained
from the general f(Lovelock) ones (B7). Also, according
to (2.14), the background curvature A is determined by the
equation

f(R) =2(D - 1)Af'(R). (C3)
If f(R) # 0, we have a scalar mode with mass
_ (D=2)f'(R) - 2Rf"(R)
N T R VT R

The effective gravitational constant is in turn given by

K

=—. C5
Keff f/ (R) ( )
2. f(R.R%,.R2,,,) gravity

Let us now study all theories that can be constructed
as functions of invariants up to quadratic order [122].
The independent scalars are R, Q =R, R", and K=

R, ,.R*"°, so let us consider an action of the form

uvpe
1
S=5 | xRk, (co
K JMm

This theory includes, as particular cases, f(R) and general
quadratic gravities. In order to simplify the following
expressions, let us write R = (R, Q,K). Evaluated on
the background, the invariants read
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R = (D(D = 1)A, D(D - 1)?A2,2D(D - )A%).  (C7) RORf(R) +200,f(R) + 2K0x f(R) = gf(ﬁ), (C8)

Then, the background embedding equation (2.14)

can be written in terms of these background scalars which, in particular, generalizes (C3) for this theory.
R, O, K as Finally, the parameters a, b, ¢, and e are given by

1 _
a= ZaKf(R)v

1|1

b=—|-
2k |4

OROrf(R) + (D — 1)A0R0yf(R) + 2000k f(R)
+ (D = 1)2A%0p0pf(R) +4(D — 1)A20,0x f(R) + 4020k Ok f(R) |.
1 _
C = Ean(R)y
e = 4 0RF(R) +2(D ~ 1A f(R) + 400 f(R)).

from which one can easily obtain the values of k., m2, and m?2.
eff s g

APPENDIX D: EINSTEINIAN QUARTIC GRAVITIES
Here we provide the explicit expressions for the conditions F §2>(al~) =F §2)(ai) =F é”(ﬂh D) =

F_(g4) (yi» D) = F§4)(y,~,D) = 0 appearing in Sec. VI. These read

1
Féz)(ai) = +§az +203 = 0,

1
F (a;) = +2a; + S0 = 0,

F§3)(ﬁivD) =

(D1)

(D2)

3 3 3 1
F(p.,D) = =3P+ 1202+ 2Dfs + 2D(D - 1)p4 + (D —5>ﬁs +5(D —1)Bs +§D(D -1)p; =0, (D3)

FY(p,.D) = +§ﬁ1 +2B; + 86, + <D+%>ﬁ5 +%(D— 1)f + (D — 1)<§+4>ﬁ7 +6D(D—-1)pg =0, (D4)

FS(7:,D) = +(4D = 9)y; +2(D + 3)y, + (2D — 9)y3 + 247, + 48y + 8y,

1
+8D(D — 1)y, — 5 (D+3)rs+6(2D —1)yg + (2D* — D - 3)yg
3 1
—ED(D = Dyn+12D(D = )yip + (2D2 +§D - 3)713

1
+5 (3D% — 8D + 6)y14 + (2D = 3)y15 + (2D* 4+ D — 3)y 46
+D(D = 1)(2D = 1)yy7 +2D*(D — 1)y15 + 2D*(D — 1)%y4

+ (D =1)(2D = 3)ry + %D(D —1)(2D =3)yy +3(D = 1)’

3 1
+D(D — 1)’y +§D(D —1)%72 +§D2(D —1)%y25 =0.
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5
FY (r:» D) =47y, +2(D = 1)y, + 573 + 8y + 32y + E(D - 1)ys

3 3
+6y9 +3(D = 1)yyo +§(D2 +3D = 8)y11 + 24712 +5(3D -2)113

1
+3 (3D> +4D — 10)y,4 + (4D — 1)y;5 +5(D = 1)yy6

+ (D +16)(D = 1)y17 +2(D + 6)(D = 1)y;3 +20D(D — 1)y9

1
+(D=1)(2D + )yy +§(D —1)(2D* + 13D — 12)y,,

3
+3(D = 1)y + (D —1)*(D + 8)yx; +§(D —1)*(D+4)y

1
+ ED(D —1)2(D +20)yys5 + 12D*(D — 1)?y5 = 0.

Solving the last two equations order by order in D gives rise
to the constraints which characterize Einsteinian quartic
gravities (6.6).

APPENDIX E: WALD FORMALISM: EXAMPLES

In this Appendix, we evaluate explicitly the expressions
found in Sec. X for some relevant theories, namely,
Einstein gravity, f(R) gravity, general quadratic gravities,
and Lovelock theories. Note that the expressions below are
valid for any background metric g,, and vector field &~.
Some of these formulas—but not all of them—can also be
found in Refs. [42,48,91-93,98,123,124]. The following
identities are frequently used:

ORyapy _ 1 ool il | sl ] slo ool
MY (5T + 85085 8],
aRa,D/W 2[ g / i ’ ’ ]
8Rl [
0o _ sla ips?) El
8Rllaﬂl/ 5(/)9” 56)’ ( )
OR
_ []lg(l]l/’ Satt — _gyagu/}5 ”
aRﬂ(ZﬂD gﬁ 7 geb
1
3v/=9 = 5V/=99" - (E2)
1. Einstein gravity
1
1
PR — (P — P, (E4)
1 1
Ew = 2K Ry — Egﬂ”R + MG |- (E5)
1
0= Zceﬂ(gﬂﬂgau _ g””gaﬂ)vpéga/}’ (E6)

(D6)

@ = eySﬂaﬂwm(élgptrvu52gaﬁ - 629p6vu519aﬁ)’ (E7)

Sﬂ(lﬂl/[)o' —

1 1
ﬂ [_gy((lgﬁ)(pgrr)b + 5 gy(ag/i)ug/)o'

1 1 1
+597dV " 459 g -5 gﬂ”gaﬂgﬂf’] :

(E8)
J:=e, E V,(Veer) + 25%5”] : (E9)
1
Qf = —2—K€'MDV”§D, (El())
1 1
o= Lo (e LoV,
+ (g — g g e + gaﬂgﬂﬁf”)vﬁgaﬂ} . (E11)
2. f(R) gravity
1
L :ﬂef(R), (E12)
pra = %{f’(R)(g””d’” —gvg?),  (E13)
1
CZZ}{}Z = &f//(R)(gy/}gav - gyuga[)’)(g”ﬂg/m - gm’lg)ﬂ),
(E14)

1

1
g;w :ﬂ ( /(R)R;w_zf(R)g/w_l_ (gMuD_vﬂvu)f/(R)> ’

(E15)
O = 1/(R)Op + 5, (V" (R) = *TF (R) g
(E16)
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1 1
w = f/(R)wEin + ﬂey |:§gﬂﬁgaygp051gp652gaﬂvuf/<R)

+ (¢ g™ — ¢ g) (61 (f'(R))V,629up

5 (Vf (R))sug) — [1 2]], (E17)

(E18)

1
Q: = —5 €ulf (R)V'E + 28V f/(R).  (EL9)

1
k: = f'(R)k¢gin — ﬂeuu[vﬂébéf/(R)
— 20" 8(Vof (R)) + g"“E VP (f'(R))8gqp).  (E20)

3. Quadratic gravity

1
L = 6{21(‘ (—ZAO + R) + alR2

+ &R, R + a3RﬂypgR””p"}. (E21)
Recall that Gauss-Bonnet gravity can be obtained by

setting! @, =a3; = —la, =a. That theory has the
!

Co’pﬂn _

PHYSICAL REVIEW D 95, 044010 (2017)

interesting feature—shared by all Lovelock gravities—that
Prefv is divergence free in all indices, e.g., V, P = 0.
Hence, all derivatives of curvature tensors should cancel in
that case for the forms below, which provides a simple
check for our expressions.

The first derivative of the Lagrangian with respect to the
Riemann tensor as defined in (2.2) is

1
affy __ p v _ U 0
pr —(4K+a1R>(g"g‘ 9" g")

+ %(12<Rﬂﬂgm/ _ Raﬂg/w _ Rm/gaﬁ + Rayguﬁ)

+ 203 RHY (E22)

and its divergence reads

v, prab — <2a1 i %az) SR 4 (ay + daty) VPRI,

(E23)

where we have used the following identities: V¥R, =
JV,R and V’R,,,, = —2V|,R,),. These can be derived
from the second Bianchi identity and will be frequently
employed to simplify our expressions below. Notice that
the divergence indeed vanishes for Gauss-Bonnet gravity.
From this, we find for the tensor defined in (2.4)

1
uofy E aq (gﬂ[)’gm/ - gﬂyg(lﬂ)(gﬂig/m - gmyg/)/l) + 2“26[6(19/)] [1617]6)51[”‘9(1”/}564

+ay(6/603,80 + 6,506, 8.

The equations of motion for quadratic gravity read

2k 2

(E24)

1 1 1
5/41/ = (RI'”/ — _gMI/R + AOQ/U/) + ap (ZRR}”/ - Egﬂsz - 2VﬂVDR + 2gl“/|:|R>

1
+ <RW,R,/’ + R, RS+ Eg””(DR - RPUR/’”) - V(”VV)R =+ DRW>

1
+ a3 <2Rﬂp6/lR1/M}L - EgﬂvaaaﬁRpgaﬂ - 4vvaRMPW> :

The symplectic potential form (10.4) is

(E25)

1
6 =e, sz + 2a1R> (979" = 9" F)V.0up + 41 (¢"“V R) 394

1
+ 2a, (Rﬂb‘va]égaﬁ + ¥RV g, + VFRVSg,, — 5 gﬂ[“V“]R5gaﬂ> + 4a3 (RFPN 8,5 + 2VIRV 5g,5) |-

(E26)

*Note that in this section, the couplings are not assumed to be dimensionless. This avoids some clutter in the already messy

expressions.
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For Gauss-Bonnet gravity, this reduces to

1
Ocs =€, [<2K + 20‘R> (g™ — g g? IV.69ap

— 8a(RIMVI5g,5 + PURV ,18g,5) + 4aR* PN 5,5 | . (E27)

Note that this object was previously computed in Eq. (70) of Ref. [42]. We observe that our expression above differs from
their result by a total derivative

Oy — O = 8a€ﬂvy(Ra[”9y]ﬂ59aﬂ>» (E28)

but only if the sign of the second-to-last term in their formula (70) is modified—to be explicit, this term should be
“+4(V°R%)8g,;” Hence, we suspect there is a typo in their expression. This is consistent with Ref. [125], where the
symplectic potential was also computed for quadratic gravity. Restricting their formula (3.7) for the symplectic potential to
Gauss-Bonnet indeed produces the Iyer-Wald symplectic potential with the corrected sign.

The symplectic current form (10.7) reads

W = 6‘# |:<1 + 4]('(11R)S’é?fbpaélgpo.vy5zgaﬂ

+ a1 (¢ 9 9751 9ps02905 V. R + 49" (s, (R)V,8290p — 61(VLR)5290ap))
+ &y (26, (Rﬁbt)ga]v - 26, (Rv[ﬂ)ga]ﬁ 4 (Rﬂbtgv]ﬁgw — Rﬁ(ﬂgb)Pgw 4 Rﬂ[ﬂga]vgﬁv
+ R grgfe 4 RV glr o Relaglb o o RA el g 4 RYUaglP po)§, g, )V, 82G0p

-y (251 <V[HRMV} + ;gﬁ["v"]R) + <V[11Rﬂ]ﬁ + ;gﬁ[ﬂv(l]R> .g()”(slg/)rf) 629{1/)’
+ 4“3 (51leﬂy + (R;mﬂ(vgp)a - Rﬂ(m/)ﬂgﬂg)élgpﬂ)vvé2ga/}

+ 4a5(26,VFRY 4 75, gpngRaJﬂ)azgaﬂ] -1 2. (E29)

One can check that all terms involving derivatives acting on curvature tensors cancel for Gauss-Bonnet gravity.
The Noether current (10.23) and charge (10.22) are given by

J:=¢, [Vy [(l + 4a1R> Vlier 4 8o EVHR + 40,2(Rﬂ[vvp§ﬂ] + zg[vvau]p)
K

— da3 (RPN &, + 2§pV,,R””f"’)] + 25”,,5”] , (E30)
1
Qf - _6/41/ |:<2_ + 2alR> V”fu + 401§”V”R
K
+ 20 (R* VP E) + 2EWVPIRY ) + 203 (RHOV €, + 2§I,V,,R””f’”)] : (E31)
For Gauss-Bonnet gravity, we find the same expression as in Ref. [42], namely,
1
Q:cs = —€, [(ﬂ + 2aR> VHE — 8aRH NVIPE) + 2aR””/”’V/,§,,] . (E32)

Finally, the Iyer-Wald surface charge (10.29) is
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k: = (1 +4ka;)Ke gin

+ €, |20 (=VFESR 4 2£"6(VFR) + g”“&”V/’Régaﬂ)

+ ap(VEEISRI ) + g g, VW EISRP ) + 2845(VFRY ;) + &/5(VFR))
+ 052(ygu[ﬂrgﬂ]vvﬁc_,:/1 - gaﬂRﬂLﬂgﬂ]vvpga + 28 Ve Rulb 4 gryla R glp
— 28,9V RV g1) 8,5 — 20, (28 RO P 4 E RV IV 1 5g,5
— a3 (VOEPSR™ 5 + ¢**g"PV ,E,6R" 15 — 8ES(VFRY)))

1
+ 203 (Rﬂwﬂvﬂ@ — 5 RPTFIN 6o — 4&VIHRAP + 2§NﬂRMgftﬂ> 8Gup
=205 (§"RHH + 28 RPN 18G5 (E33)

Again, it is straightforward to verify that all terms involving derivatives of curvature tensors cancel for Gauss-Bonnet
gravity.

4. Lovelock gravity

The Lagrangian of Lovelock gravity is

L ' |
L=_e > oLy with L= ?5/(;:;1]-_;';17}1 R, PR, “P, (E34)
k=0

where the c; are arbitrary constants. The objects defined in (2.2) and (2.4) read, respectively,

[D/2]
1 k
afy uofiy g _ VpoVy .. JikY, a a
Pl =50 D PR Pl = 5 R Ry
k=0
[D/2]
1 k(k—1)c
A k Susvs... ,
col = P Z ——r Uy Gus LGS R R, (E35)
k=0
The equations of motion are
TRLE] © 1
. O1...PkO0k
Ew = o g & with £k, = F‘%Zfﬂf...ﬁiﬁ:Rmmalﬂl Ry g (E36)
k=0

Both tensors (E35) and (E36) are divergence free in all indices, e.g., VﬂP’“’ﬁ” =0, V*&,, = 0. Note that the equations of
motion are second order in the metric, as is well known for Lovelock gravity.
The rest of the relevant quantities read

[D/2]
1 kc
0= ﬂeﬂ z 2k—kl %7;37(21273.2.:7,;{%Rllzl/zaZ/}z U Rﬂkvkakﬁkga]ﬂvﬁ' 5914/17 (E37)
k=0
1 2l Cr
AU Vy o Mg Vg
= 506 D ot DI QU= D0 Ry,
k=0
+ (glfVQpagu& + Popr g — gﬂagprUB)&lgpngyzaZﬁz)
+ &GS 01Gpa g R ™ Ry Ry PV 820 = [1 2], (E38)
1 bl —k
VUrUy .. . Up U,
Jé - 2_K€” ; Ck |:VD <2k_1 6glgfa;ﬂ2’-l-liaiﬂkRﬂzl’za2ﬂ2 e Rﬂkvkakﬂk val§ﬂ1> + 28(k)ﬂu£{| ’ (E39)
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