
Curvature dependence of relativistic epicyclic frequencies in static,
axially symmetric spacetimes

Ronaldo S. S. Vieira,1,2,3,* Włodek Kluźniak,2,3,† and Marek Abramowicz2,3,4,‡
1Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo,

05508-090 São Paulo, SP, Brazil
2Copernicus Astronomical Center, ul. Bartycka 18, PL-00-716 Warszawa, Poland

3Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Bezručovo nám. 13, CZ-74601 Opava, Czech Republic

4Physics Department, Gothenburg University, SE-412-96 Göteborg, Sweden
(Received 15 December 2016; published 8 February 2017)

The sum of squared epicyclic frequencies of nearly circular motion (ω2
r þ ω2

θ) in axially symmetric
configurations of Newtonian gravity is known to depend both on the matter density and on the angular
velocity profile of circular orbits. It was recently found that this sum goes to zero at the photon orbits of
Schwarzschild and Kerr spacetimes. However, these are the only relativistic configurations for which such
a result exists in the literature. Here, we extend the above formalism in order to describe the analogous
relation for geodesic motion in arbitrary static, axially symmetric, asymptotically flat solutions of general
relativity. The sum of squared epicyclic frequencies is found to vanish at photon radii of vacuum solutions.
In the presence of matter, we obtain that ω2

r þ ω2
θ > 0 for perturbed timelike circular geodesics on the

equatorial plane if the strong energy condition holds for the matter-energy fluid of spacetime; in vacuum,
the allowed region for timelike circular geodesic motion is characterized by the inequality above. The
results presented here may be of use to shed light on general issues concerning the stability of circular orbits
once they approach photon radii, mainly the ones corresponding to stable photon motion.
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I. INTRODUCTION

General relativity (GR) introduces many additional
features which are not present in Newtonian gravity. For
instance, the radial and vertical epicyclic frequencies are
not equal in spherically symmetric spacetimes, a fact first
pointed out by Ref. [1]. The difference between these
frequencies in Schwarzschild spacetime generates an inner-
most stable circular orbit (at which the radial epicyclic
frequency vanishes), which determines the inner rim
of thin accretion discs around black holes. Recently,
Amsterdamski et al. [2] found outside Newtonian
Maclaurin spheroids a minimum radius inside which there
are no circular orbits, a phenomenon which was believed to
exist only in GR. Related to that, Kluźniak and Rosińska
[2] presented a relation between the sum of the squared
epicyclic frequencies ωr (radial) and ωθ (vertical), the
density ρ of the background matter, and the orbital
frequencyΩ of the original circular orbit (see also Ref. [3]):

ω2
r þ ω2

θ ¼ 2Ω2 þ 4πGρ: ð1Þ
Kluźniak and Rosińska also found that the (formal)
expression for the sum of the squared epicyclic frequencies
goes to zero at photon orbits of Kerr spacetime [2].

The purpose of the present paper is to extend Eq. (1),
valid for Newtonian gravity, to equatorial circular geodesics
in static, axially symmetric spacetimes. In Sec. II, we
summarize the formalism to obtain the epicyclic frequen-
cies for nearly circular motion in static, axially symmetric
spacetimes, following the derivation by Ref. [4]. Section III
contains the results of our work, namely the relation
between the sum ω2

r þ ω2
θ and the Ricci tensor, as well

as the particular case of vacuum GR spacetimes and the
relation between the allowed regions for circular geodesics
(in terms of the sign of ω2

r þ ω2
θ) and the strong energy

condition for the spacetime energy content. We present our
conclusions in Sec. IV.

II. STATIC, AXIALLY SYMMETRIC SPACETIMES

Let η ¼ ∂=∂t and ξ ¼ ∂=∂φ be the timelike and azimu-
thal Killing vector fields of a static, axially symmetric
spacetime. The line element can be written, in a coordinate
system adapted to these Killing vector fields, as

ds2 ¼ gttdt2 þ gφφdφ2 þ grrdr2 þ gθθdθ2: ð2Þ

The metric coefficients depend only on R and θ. The metric
signature is taken as (þ − −−), and the spacetime is
assumed to be asymptotically flat, so gμν → ημν
(Minkowski metric) at spatial infinity. We also impose
equatorial-plane symmetry. In particular, gμν;θ ¼ 0 on the
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equatorial plane (defined by θ ¼ π=2). We must stress that
the formalism presented in this paper is valid for smooth
metrics; the vertical stability criteria for circular orbits in
razor-thin disks were analyzed in Refs. [5,6].
We adopt the conventions of Ref. [4]. In particular, the

specific angular momentum l ¼ −uφ=ut of timelike
circular geodesics on the equatorial plane is given by
l2ðrÞ ¼ −ðgttÞ;r=ðgφφÞ;r, where uμ is the 4-velocity of the
geodesic. The corresponding angular velocityΩ is given by
Ω2ðrÞ ¼ −gtt;r=gφφ;r, and these quantities are related by

l2ðrÞ ¼ ~r4Ω2ðrÞ; ð3Þ

where

~r2 ¼ −
gφφ
gtt

ð4Þ

is the radial coordinate in optical geometry [7,8]. The radial
(ωr) and vertical (ωθ) epicyclic frequencies of nearly
circular orbits, measured at infinity, are given by [4]

ω2
r ¼ −

ðgttÞ2
2jgrrj

½gtt;rr þ l2ðrÞgφφ;rr�; ð5Þ

ω2
θ ¼ −

ðgttÞ2
2jgθθj

½gtt;θθ þ l2ðrÞgφφ;θθ�. ð6Þ

In terms of dl2=dr, the frequency ωr can be written as

ω2
r ¼

1

2~r4grr
gφφ;r

dl2ðrÞ
dr

: ð7Þ

We may write dl2=dr in terms of d~r2=dr and dΩ2ðrÞ=dr:

dl2ðrÞ
dr

¼ 2~r2Ω2ðrÞ d~r
2

dr
þ ~r4

dΩ2ðrÞ
dr

: ð8Þ

Combining Eqs. (7) and (8), we obtain

ω2
r ¼

gφφ;r
grr

Ω2ðrÞ 1
~r2
d~r2

dr
þ gφφ;r

2grr

dΩ2ðrÞ
dr

: ð9Þ

III. RELATION BETWEEN EPICYCLIC
FREQUENCIES AND CURVATURE

We adopt the following conventions for the Riemann
(Rαβμ

ν) and Ricci (Rμν) tensors:

Rαβμ
ν ¼ ∂αΓν

βμ − ∂βΓν
αμ þ Γσ

βμΓν
ασ − Γσ

αμΓν
βσ; ð10Þ

Rμν ¼ Rαμν
α; ð11Þ

where the Christoffel symbols Γμ
να are given by

Γμ
να ¼ 1

2
gμσðgσα;ν þ gσν;α − gνα;σÞ: ð12Þ

According to the Newtonian relation (1), we expect that the
relativistic expression for ω2

r þ ω2
θ will depend on some

invariant function of Rμν, which must reduce to 4πGρ in the
Newtonian limit. This scalar function of Rμν would give a
dependence of ω2

r þ ω2
θ on the matter-energy content of

spacetime. Also, we know from the Schwarzschild case [2]
that the squared sum of epicyclic frequencies formally
vanishes at the radius of the circular photon orbit, hereafter
called the photon radius rph. We thus expect that the sum
ω2
r þ ω2

θ would involve two terms—the first term being
related to the local matter-energy content of the spacetime
(i.e. the Ricci tensor), and the second term vanishing at the
photon radius. This second term must reduce to 2Ω2 in the
Newtonian limit, according to Eq. (1).
Equatorial-plane symmetry implies that the Ricci tensor

Rμν is diagonal at θ ¼ π=2. Since the epicyclic frequencies
do not depend on partial derivatives of grr and gθθ, these
terms should not appear in the corresponding combination
of Ricci tensor coefficients. On the other hand, Rtt ¼ 4πGρ
in the Newtonian limit, which implies that this term should
appear in the expression for ω2

r þ ω2
θ. If we look for linear

combinations of the coefficients Rμν, the curvature-like
contribution must be of the form Rtt þ Ω2ðrÞRφφ in order to
cancel grr and gθθ derivatives. We see next that this is
indeed the correct expression; in fact, we have on the
equatorial plane, by direct computation,

Rtt þ Ω2ðrÞRφφ ¼ ð∂rΓr
tt þΩ2∂rΓr

φφÞ
þ ð∂θΓθ

tt þ Ω2∂θΓθ
φφÞ

þ 2Γr
ttðΓφ

rφ − Γt
rtÞ: ð13Þ

Equation (6) for ω2
θ allows us to write

ω2
θ ¼ ∂θΓθ

tt þ Ω2∂θΓθ
φφ: ð14Þ

The other two terms of (13) can be written as

∂rΓr
tt þΩ2∂rΓr

φφ ¼ gφφ;r
2grr

dΩ2ðrÞ
dr

ð15Þ

and

2Γr
ttðΓφ

rφ − Γt
rtÞ ¼

1

2

gφφ;r
grr

Ω2ðrÞ 1
~r2
d~r2

dr
: ð16Þ

We can then separate the contribution of d~r2=dr appearing
in (9), with the help of Eqs. (15) and (16), into two terms:
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ω2
r ¼

1

2

gφφ;r
grr

Ω2ðrÞ 1
~r2
d~r2

dr

þ
�
2Γr

ttðΓφ
rφ − Γt

rtÞ þ
gφφ;r
2grr

dΩ2ðrÞ
dr

�
: ð17Þ

The curvature term Rtt þΩ2ðrÞRφφ is then easily rec-
ognized from Eq. (13) in the combination ω2

r þ ω2
θ,

according to Eqs. (14), (15), (16), and (17). The final
expression is written in terms of Rμν, ΩðrÞ and ~r as

ω2
r þ ω2

θ ¼ ½Rtt þ Ω2ðrÞRφφ� þ
gφφ;r
2grr

Ω2ðrÞ 1
~r2
d~r2

dr
: ð18Þ

The first term on the right-hand side is zero when the
spacetime is Ricci flat, while the second term vanishes at
photon radii (d~r2=dr ¼ 0, see Ref. [9]) and when Ω2ðrÞ ¼
0 (the same radius at which l2 ¼ 0 and the radial accel-
eration of a static observer is null, because gtt;r ¼ 0 at this
radius). The existence of such a radius where Ω2ðrÞ ¼ 0 is
a characteristic of a few spacetimes—for instance, the
Reissner-Nordström metric in the naked singularity regime
[10] and its generalizations [11]. This behavior is also
present in the Kehagias-Sfetsos naked-singularity space-
time [8,9] and in the no-horizon parameter region of what
would otherwise be a regular black hole spacetime [12,13].
Equation (18) reduces to the Newtonian result [Eq. (4) of

Ref. [2]; see also Eq. (1)] in the appropriate limit:
Rtt ≈ 4πGρ, Rφφ ≈ 0, ~r ≈ r, grr ≈ −1, gφφ;r ≈ −2r.

A. Vacuum (Ricci-flat) spacetimes

In Ricci-flat spacetimes (vacuum spacetimes for general
relativity), Eq. (18) reduces to

ω2
r þ ω2

θ ¼
gφφ;r
2grr

Ω2ðrÞ 1
~r2
d~r2

dr
; ð19Þ

this expression vanishes at photon radii. This simple
statement has tremendous consequences. First of all, we
must stress that in this case ω2

r þ ω2
θ ¼ 0 precisely at

photon radii, being positive in allowed regions for circular
orbits [d~r=dr > 0 and Ω2ðrÞ > 0] and—formally—
negative in forbidden regions [d~r=dr < 0 or Ω2ðrÞ < 0].
In particular, there are no timelike circular geodesics in the
region where ω2

r þ ω2
θ ≤ 0. This is the proper extension of

the Newtonian result [2] with ρ ¼ 0, Eq. (1), to geodesic
motion in static, Ricci-flat spacetimes (in particular, to test-
particle motion in vacuum GR). We exemplify the behavior
of ω2

r þ ω2
θ in vacuum spacetimes by plotting it as a

function of radius for the Schwarzschild metric in Fig. 1.
Apart from the degenerate case in which the expressions

for both ω2
r and ω2

θ are zero at the photon radius, the general
situation is that one of the squared “frequencies” is positive
and the other is negative. By continuity, there will be a

finite region around the photon radius in which one of the
squared frequencies is negative. Therefore, in Ricci-flat
spacetimes, there will always be a region of unstable
timelike circular geodesics between the photon radius
and the radius of the closest marginally stable orbit; the
region of stability will never reach the photon radius.
This phenomenon also follows from the behavior of

l2ðrÞ in the case of unstable photon orbits (in this case,
timelike circular motion is allowed only for r > rph), since
l2ðrÞ grows as r approaches the photon radius from the
right, which corresponds to radial instability of the corre-
sponding circular orbits [4]. Let us remark that the relation
between the conserved angular momentum h ¼ −uφ and
conserved energy E ¼ ut of timelike circular geodesics
[Eq. (11) of Ref. [14]] in static, axially symmetric space-
times with equatorial-plane symmetry allows us to show
that dl2=dr and dh2=dr have the same sign in allowed
regions for this kind of motion, since [9]

dl2

dr
¼ 1

E2
½1 − v2� dh

2

dr
; ð20Þ

where v is the speed of the particle as measured by a local
static observer. We can also show from these arguments that
[9,14]

h2ðrÞ ¼ ~r4gtt;r

�
d~r2

dr

�−1
: ð21Þ

Therefore, since h2 → ∞ when r approaches the photon
radius, l2 grows as r → rph. Moreover, circular geodesic
motion is forbidden if d~r2=dr < 0 (the region in r between
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FIG. 1. The quantity ω2
r þ ω2

θ as a function of the radial
coordinate r for the Schwarzschild metric (solid black line).
The parameter M is the Schwarzschild mass. As we know from
Ref. [2], this quantity goes to zero at the photon radius rph ¼ 3M
(marked by a vertical gray line). Our approach extends this result:
the Schwarzschild metric is a particular case of a vacuum
spacetime in GR. We have ω2

r þ ω2
θ > 0 for r > rph and ω2

r þ
ω2
θ < 0 for r < rph [see Eq. (19)].
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a stable and an unstable photon orbit), since in this case
h2 < 0.
However, the case of radially stable photon orbits is subtler

and more interesting (in this case, timelike circular motion is
allowed only for r < rph). Although in this situation l2ðrÞ
grows with r until reaching the photon radius from the left,
corresponding to ω2

r > 0, the fact that the expression for
ω2
r þ ω2

θ vanishes at photon orbits means that the value ofω2
θ

must become negative as the circular orbit approaches the
photon orbit. The orbits become vertically unstable as they
approach this photon radius (although they are radially stable
because of Rayleigh’s criterion [14]). This result means that
off-equatorial motion has a fundamental importance to the
stability analysis of circular equatorial geodesic motion in
vacuum spacetimes, shedding light on the recent questions
raised in the literature concerning the behavior of circular
geodesics in vacuum multipole solutions of Einstein’s
equations [15]. In particular, for the mentioned multipole
solutions, the radial stability analysis is not sufficient to
classify circular geodesic motion in regions near the central
compact object when radially stable photon orbits are
present. Therefore, even if circular orbits are radially stable
in this region, theywill eventually becomevertically unstable
as r grows in the direction of the photon orbit.
The Ricci-flat condition is in fact too stringent. It is not

necessary that the spacetime be globally Ricci flat; all the
above arguments are also valid locally under the sole
requirement that Rμν ¼ 0 in a radial interval containing
the photon radius.

B. Background matter and energy conditions

If Rtt þΩ2ðrÞRφφ ≠ 0 at the photon radius, there is not a
clear relation anymore between the sign of ω2

r þ ω2
θ and the

allowed regions for timelike equatorial circular geodesics.
In an arbitrary static, axially symmetric spacetime, there is
no “first principles” argument which prohibits the existence
of (unstable) circular timelike geodesics with ω2

r þ ω2
θ < 0.

We might conclude that this is a purely general-
relativistic effect, since it does not appear in Newtonian
gravity [2]. This apparent difference comes from the fact
that the density of matter is always positive, ρ ≥ 0. An
appropriate generalization of this requirement must be
imposed in our case in order to maintain the well-behaved
properties of the energy-momentum tensor. The established
conditions for regular behavior of the matter and energy
content of spacetime are the energy conditions [16]. We
find here that the strong energy condition [16] for the
background matter,

RμνXμXν ≥ 0 for all timelike vectors Xμ; ð22Þ

implies that all circular timelike geodesics have ω2
r þ ω2

θ >
0 for their perturbed motion. In fact, writing the tangent unit
vector to the aforementioned geodesics as

uα ¼ A½ηα þ ΩðrÞξα� ð23Þ

with A ¼ AðrÞ > 0, we have the equality

Rtt þ Ω2ðrÞRφφ ¼ 1

A2
Rμνuμuν: ð24Þ

The “circular vector field” uα is timelike in regions where ~r
increases with r (d~r=dr > 0), spacelike where ~r decreases
with r (d~r=dr < 0), and null at photon orbits. We have then
the following picture: if Rμνuμuν ≥ 0 for all timelike
circular vector fields of the form (23), then there are no
timelike circular geodesics whose expressions for the
“epicyclic frequencies” satisfy ω2

r þ ω2
θ ≤ 0. Since the

strong energy condition (22) implies the above result,
we obtain that the strong energy condition for the back-
ground matter guarantees that ω2

r þ ω2
θ > 0 in the allowed

region for timelike circular motion. As a consequence, the
strong energy condition is, in our context, the appropriate
relativistic extension to the positivity of mass in Newtonian
gravity. The behavior of ω2

r þ ω2
θ as a function of the radial

coordinate is illustrated in Fig. 2 for the case of the
Reissner-Nordström metric with a charge-to-mass param-
eter q ¼ 0.8.
Moreover, if Rtt þ Ω2ðrÞRφφ > 0 at the photon radius,

we no longer have the characterization of the allowed
regions for circular motion in terms of ω2

r þ ω2
θ, presented

in the former section for Ricci-flat spacetimes. In fact, in
this case, ω2

r þ ω2
θ > 0 at the photon radius, and therefore it

is possible to have an inner region of stability which
reaches a radially stable photon orbit (this situation indeed
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r M
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FIG. 2. The quantity ω2
r þ ω2

θ as a function of the radial
coordinate r for the Reissner-Nordström metric (solid black
line). We adopt q ¼ Q=M ¼ 0.8. The vertical gray line represents
the photon radius rph ¼ 2.485M. We see that ω2

r þ ω2
θ > 0 for

every timelike circular geodesic, as predicted from Eq. (18), since
the Reissner-Nordström metric satisfies the strong energy con-
dition, Eq. (22). There is also a region inside the photon radius
(where circular motion is not allowed) for which the formal
expression ω2

r þ ω2
θ is positive.
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happens for many naked-singularity spacetimes [9–11] and
spacetimes without horizons [12,13]). On the other hand,
although ω2

r þ ω2
θ > 0 in the region outside unstable

photon orbits, the corresponding circular geodesics are
radially unstable according to Rayleigh’s criterion.
Therefore, Eq. (18) does not tell us about the stability of
circular orbits without additional assumptions about the
spacetime structure.
Precise conditions for the existence of an instability

region between the photon radius and the radius of the
marginally stable orbit can be obtained when spherical
symmetry is assumed. In this case, ω2

θ ¼ Ω2, which is
positive in allowed regions for circular timelike geodesics.
We can therefore write Eq. (18) as an equation for ω2

r :

ω2
r ¼ ½Rtt þΩ2ðrÞðRφφ − 1Þ� þ gφφ;r

2grr
Ω2ðrÞ 1

~r2
d~r2

dr
: ð25Þ

The condition to guarantee that the stability region reaches
the photon orbit is therefore

Rtt þΩ2ðrÞðRφφ − 1Þ > 0 ð26Þ

at the photon radius rph, since from Eq. (25) it is equivalent
to have ω2

r >0 at the photon radius. If RttþΩ2ðrÞ×
ðRφφ−1Þ<0 at rph, then there will be an instability region
between rph and the next marginally stable circular geo-
desic, whereas if Rtt þ Ω2ðrÞðRφφ − 1Þ ¼ 0 at rph the
criterion is inconclusive. The above inequality can also
be written in terms of spacetime invariants as

½Rμν − ξμξν�uμuν > 0; ð27Þ

evaluated at the photon radius.
According to Eq. (25) and Rayleigh’s criterion, we

expect Rtt þ Ω2ðrÞðRφφ − 1Þ ≤ 0 at radii corresponding
to radially unstable photon orbits in spherically symmetric
spacetimes. By the same argument, the radial region just
inside a stable photon orbit corresponds to stable timelike
circular geodesics, and thus Rtt þΩ2ðrÞðRφφ − 1Þ ≥ 0 at
radii corresponding to radially stable photon orbits.

IV. CONCLUSIONS

Circular orbits have been studied since the beginnings of
the astrophysical applications of Newtonian gravity and
general relativity. Nevertheless, it was only recently that
their qualitative properties in general relativity received
proper attention. We presented in this paper closed-form
expressions for the sum of the squared epicyclic frequen-
cies of perturbed timelike equatorial circular geodesics in
static, axially symmetric, asymptotically flat spacetimes;
these expressions are written in terms of the Ricci tensor
and of a quantity which vanishes at photon orbits. For
Ricci-flat spacetimes, the present framework establishes the

existence of an instability region around each photon radius.
Although this result is a consequence of Rayleigh’s criterion
near the radius of a radially unstable photon orbit, the same
criterion implies that circular geodesics are radially stable in
the inner region near the radius of a radially stable photon
orbit. The mentioned region of instability means, in this
case, that the formula for ω2

θ is negative in this inner region,
in thevicinity of the photon radius. Therefore, althoughω2

r is
positive in this region, motion is unstable under off-
equatorial perturbations if we get close enough to the radius
of the stable photon orbit. This simple statement has a
profound impact on the analysis of circular geodesics in
quasispherical, multipolar vacuum solutions of Einstein’s
equations [15]: radial perturbations are not sufficient to
analyze circular motion near an existing inner photon orbit.
If off-equatorial perturbations are also considered, these
geodesics will eventually become unstable before reaching
the inner photon radius (and therefore a hypothetic thin
accretion disc in this inner region will have a “gap” between
its marginally stable circular orbit and the inner photon
radius).
If Rμν ≠ 0, it is also possible to find a relation between

the sign of ω2
r þ ω2

θ and the allowed regions for equatorial
circular orbits, if the strong energy condition is satisfied for
the spacetime matter-energy content. Namely, in this case
ω2
r þ ω2

θ > 0 in allowed regions for timelike circular geo-
desics. Moreover, the formalism presented here is the
relativistic generalization of the analogous result in
Newtonian gravity [2,3] for static, axially symmetric
configurations. The dependence of ω2

r þ ω2
θ on the Ricci

tensor shows the proper generalization of the matter density
term in the Newtonian equation for our case [see Eqs. (1)
and (18)], the strong energy condition being the correct
relativistic generalization of the positivity of mass (as was
recently found in Ref. [6] for relativistic razor-thin disks).
Thus, as in many other qualitative results for timelike
geodesic motion in Lorentzian manifolds [16], the results
obtained here have a deep relation with energy conditions
for the background spacetime.
Modified theories of gravity do not have, necessarily,

(22) as an energy condition; the properties of geodesic
motion may not be directly connected to the properties of
matter in these theories. However, even in these theories,
the above arguments are valid, since they only depend on
the properties of the metric and of the Ricci tensor, which
are geometrically well-defined quantities.
A well-known result relates the radial stability of the

photon orbit and the properties of nearby timelike circular
geodesics. Let rph be the radius of the photon orbit, and
assume this orbit is not marginally stable. From Rayleigh’s
stability criterion for circular geodesics [4,14], we have the
following correspondence between the properties of photon
orbits and those of nearby timelike circular geodesics: If the
photon orbit is radially unstable, timelike circular geodesics
are allowed only for r > rph and are radially unstable in a
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neighborhood of rph. If the photon orbit is radially stable,
timelike circular geodesics are allowed only for r < rph and
are radially stable locally. This behavior is seen in many
spacetimes with photon orbits and no horizon [9–13]. Our
findings demonstrate that the full linear stability analysis
near stable photon orbits relies heavily on the properties of
off-equatorial motion and, by Eqs. (18) and (24), on the
local properties of the Ricci tensor. In general relativity, the
presence of a region of stability up to the stable photon orbit
is therefore strongly dependent on the local properties of
matter.
It was shown in Ref. [2] that the sumω2

r þ ω2
θ vanishes at

the photon orbits of Kerr spacetime. The question of
whether the formalism presented here extends to rotating,
stationary spacetimes remains an open problem; our results
are a starting point to tackle this more general case. Based
on the results for Kerr spacetime [2], it is reasonable to
suppose that the quantity ω2

r þ ω2
θ might vanish at photon

radii of stationary vacuum spacetimes (for both prograde
and retrograde orbits), a hypothesis that deserves a
thorough investigation. We also conjecture that the strong
energy condition should be sufficient to ensure the pos-
itivity of ω2

r þ ω2
θ for all circular timelike geodesics in

stationary, axially symmetric spacetimes.
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