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In [1] the horizon fluffs proposal is put forward to identify microstates of generic nonextremal three-
dimensional Bañados–Teitelboim–Zanelli (BTZ) black holes. The proposal is that black hole microstates,
the horizon fluffs, are certain near horizon soft hairs which are not in the coadjoint orbits of the asymptotic
Virasoro algebra associated with the BTZ black holes. It is also known that AdS3 Einstein gravity has more
general black hole solutions than the BTZ family which are generically described by two periodic, but
otherwise arbitrary, holomorphic and antiholomorphic functions. We show that these general AdS3 black
holes which are typically conformal descendants of the BTZ black holes and are characterized by the
associated Virasoro coadjoint orbits, appear as coherent states in the asymptotic symmetry algebra
corresponding to the black hole family. We apply the horizon fluffs proposal to these generic AdS3 black
holes and identify the corresponding microstates. We then perform microstate counting and compute the
entropy. The entropy appears to be an orbit invariant quantity, providing an important check for the horizon
fluffs proposal.
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I. INTRODUCTION

Thermodynamic behavior of black holes plus require-
ment of unitary evolution for black hole formation and
evaporation, hint to the presence of an underlying black
hole microstate system. Black hole microstates are often
attributed to a quantum theory of gravity, and to states
which have no counterpart in the classical gravity theory. In
particular and within string theory, following [2], there have
been many efforts to identify certain supersymmetric black
hole microstates, e.g., see [3]. The ideas from string theory
seem not to be applicable to the simplest, realistic black
holes like Schwarzschild or Kerr.
On the other hand, after the seminal works Bondi and

Mentzer, and Sachs (BMS) [4], and Brown and Henneaux
[5], we have learned that in any theory with local gauge
symmetry, one may be able to define nonlocal conserved
charges given through surface integrals. For example see
[6–8] and references therein. These charges are associated
to a certain (measure-zero) subset of local gauge trans-
formations which remain undetermined even after a com-
plete gauge fixing and may hence be dubbed as residual
gauge symmetries [9]. These charges satisfy an algebra
which is generically infinite dimensional and may admit
central extension. It is then natural to assume that states in
the quantum Hilbert space of theories with local gauge
symmetries can also carry these nonlocal (residual gauge
symmetry) charges. Therefore, there is an extended Hilbert

space which is a direct product of the usual gauge theory
Hilbert space (e.g., containing transverse photon states in
the case of QED or transverse traceless gravitons in the case
of Einstein general relativity) and the states carrying
additional quantum numbers associated with residual gauge
symmetries [10]. The states which only differ in their
residual gauge symmetry charges, as these charges are
associated with gauge transformations, have the same
energy and momentum. These charges may, hence, be also
called “soft charges” [11].
In the context of general relativity we are dealing with

diffeomorphisms as local gauge symmetries and the soft
charges may be associated with the residual diffeomor-
phisms [9]. The residual diffeomorphisms are usually
identified through prescribing appropriate fall off behavior
for the “asymptotic” field (metric) perturbations caused by
the diffeomorphisms. The BMS [4] and Brown-Henneaux
[5] have shown the prime examples of such analyses. If one
can identify the charges associated with residual diffeo-
morphisms and their symmetry algebra, then geometries
which are diffeomorphic to each other but have different
residual diffeomorphism charges, become physically dis-
tinguishable. One may hence explore the idea whether
existence of these soft charges can remedy the pressing
questions in the context of black hole physics, like black
hole microstate problem or information paradox [11]. In
this context one may hence call such states as “soft hair”
[11], inspired by (and in contrast to) the “(no) hairs”
statements of black hole [12].
Motivated by these ideas “asymptotic symmetry group”
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*jabbari@theory.ipm.ac.ir
†yavar@itp.ac.cn

PHYSICAL REVIEW D 95, 044007 (2017)

2470-0010=2017=95(4)=044007(13) 044007-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.044007
http://dx.doi.org/10.1103/PhysRevD.95.044007
http://dx.doi.org/10.1103/PhysRevD.95.044007
http://dx.doi.org/10.1103/PhysRevD.95.044007


studied, e.g., see [13,14], and the corresponding represen-
tations, which in this context is more appropriately called
(coadjoint) orbits of the algebra, have been analyzed
[15,16]. In the three dimensional (3d) asymptotic AdS3
cases, this symmetry algebra consists of two copies of
Virasoro algebra at the Brown-Henneaux central charge [5],
whereas for 3d or 4d asymptotic flat geometries we are
dealing with BMS3 and BMS4 algebras [14]. In this work
we will focus on asymptotic locally AdS3 geometries with
flat 2d cylinder as the 2d boundary metric.
In black hole geometries we have a horizon and, near

horizon region of a generic black hole geometry with
bifurcate horizon has a 2d Rindler wedge. It has been noted
that at the near horizon geometry one has the possibility of
imposing nontrivial boundary conditions on the metric
fluctuations leading to a near horizon symmetry algebra
[17–21].1 This symmetry algebra generically leads to a
specific realization of the asymptotic symmetry algebra.2

Despite the possibility of different boundary conditions,
analysis of [21,22] suggests that for all different near
horizon geometries there are always boundary conditions
which lead to infinite number of copies of Heisenberg
algebra. For the case of 3d geometries this is the algebra
of creation-annihilation operators of a 2d free boson
theory [21].
3d Einstein gravity has been viewed as a testbed for

asking questions about quantum gravity and back holes,
e.g., see [24]. In particular, after the seminal work of
Bañados-Zanelli-Teitelboim (BTZ) [25], it is known that 3d
Einstein gravity with negative cosmological constant (AdS3
gravity) admits black hole solutions. In this work we will
focus on AdS3 gravity and consider a more general class of
black holes (than the BTZ solution), those within the class
of Bañados geometries [26] and analyze their near horizon
and asymptotic symmetries, and identify their microstates.
In [1] a fairly simple proposal was made for identifying

black hole microstates: There are soft hairs labeled by the
near horizon symmetry algebra charges. There is a certain
class of near horizon soft hairs which are not distinguish-
able by the asymptotic symmetry algebra charges associ-
ated with the nonextremal black hole solution or its
conformal descendants. The proposal is that, a specific
class of these states which were called horizon fluffs, are the
black hole microstates. In this work we extend and
generalize the analysis of [1] for nonextremal black holes
in the class of Bañados geometries. This analysis, besides
clarifying some aspects, provides a further nontrivial check
of the black hole horizon fluffs proposal: as was discussed

in some detail in [27–29] and as we will briefly review in
the next section, Bañados geometries may be classified by
the coadjoint orbits [30,31] of asymptotic Virasoro sym-
metry algebra. Then, as is discussed in [28] entropy should
be an orbit invariant quantity. Identifying microstates for
generic black holes in the Bañados family of solutions, we
explicitly construct the horizon fluffs and confirm that the
entropy is an orbit invariant.
This paper is organized as follows. In Sec. II, we review

Bañados geometries and simple facts about them. This is
essentially a review of [28,29]. In Sec. III, we present the
near horizon algebra associated with generic AdS3 black
holes and its relation to the Brown-Henneaux asymptotic
symmetry algebra. In Sec. IV, we construct the Hilbert
space of the near horizon algebra. We show that the
Bañados geometry is a coherent state in the asymptotic
Hilbert space. We also review how the states in asymptotic
and near horizon Hilbert spaces fall into the Virasoro
coadjoint orbits. In Sec. V, we present the definition of
black hole microstates through an equation over the near
horizon Hilbert space. Solving this equation we identify the
microstates and perform their counting. Section VI sum-
marizes our analysis and results and presents an outlook.

II. A QUICK REVIEW ON BAÑADOS
GEOMETRIES

Recalling the Lagrangian and equations of motion of
AdS3 Einstein gravity,

L ¼ 1

16πG

�
Rþ 2

l2

�
; Rμν ¼ −

2

l2
gμν; ð2:1Þ

and that in 3d Ricci tensor completely determines Riemann
curvature, the set of solutions to this theory are all locally
AdS3 geometries. These solutions are all locally diffeo-
morphic to each other and can become distinct solutions
only through their residual diffeomorphism charges (if they
exist). As is now established, thanks to the work of Brown
and Henneaux [5], the set of distinct geometries may be
fully specified by the boundary behavior of the geometries.
The set of such geometries which obey the standard Brown-
Henneaux boundary conditions [5] are given as [26]3

ds2 ¼ l2
dr2

r2
−
�
rdxþ −

l2L−ðx−Þ
r

dx−
�

×

�
rdx− −

l2LþðxþÞ
r

dxþ
�

ð2:2Þ

where L�ðx�Þ are two arbitrary periodic functions
L�ðx� þ 2πÞ ¼ L�ðx�Þ. We will call the metrics in (2.2)

1There seems to be some different choices for the near horizon
boundary conditions and hence different near horizon algebras.
See [22] for a recent and detailed discussion on this issue.

2For the case of degenerate horizon of extremal black holes,
instead of the Rindler wedge we get an AdS2 geometry. The near
horizon symmetry algebra in this case is different than the generic
nonextreme black holes [23].

3There are more relaxed boundary conditions than the Brown-
Henneaux ones, leading to geometries with more independent
functions, e.g., see [32,33].
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Bañados geometries. The conformal/causal boundary
of these geometries is a cylinder parametrized by t;ϕ,
where

x� ¼ t� ϕ; ϕ ∈ ½0; 2π�:

Note that as discussed in [28] range of r coordinate may be
extended to regions with negative r2.
The special case of constant, positive L� constitute

the BTZ black hole [25] family, while constant −1=4 <
L� < 0 family are the conic spaces and L� ¼ −1=4 is the
global AdS3.
For the generic functions L�ðx�Þ, being locally AdS3,

Bañados geometries have six Killing vector fields forming
an slð2; RÞ × slð2; RÞ algebra. These six Killing vector
fields are of the form [27],

χ½Kþ; K−� ¼ χr∂r þ χþ∂þ þ χ−∂−; ð2:3aÞ

χr ¼ −
r
2
ðK0þ þ K0−Þ;

χþ ¼ Kþ þ l2r2K00− þ l4L−K00þ
2ðr4 − l4LþL−Þ

;

χ− ¼ K− þ l2r2K00þ þ l4LþK00−
2ðr4 − l4LþL−Þ

; ð2:3bÞ

where primes denote derivative with respect to the argu-
ment and K� are two functions obeying the third order
differential equation

K000
� − 4K0

�L� − 2K�L0
� ¼ 0: ð2:4Þ

One may show that the solutions to the above equation
can be specified by the solutions to the second order
equations

ψ 00
� − L�ψ� ¼ 0: ð2:5Þ

The above equation with periodic functions L� is
called Hill’s equation [34] and if we denote the two
linearly independent solutions to the Hill’s equation by
ψα�;α ¼ 1, 2 the three solutions to each equation in (2.4)
are

K0
�¼ψ1�ψ2�; K1

�¼ψ1�ψ1�; K−1
� ¼ψ2�ψ2�: ð2:6Þ

Out of these six K�’s, recalling the Floquet theorem
[34], the K0

� are always periodic and lead to two globally
defined Uð1Þ Killing vector fields [27]. One may associate
Komar-type conserved charges to the two Killing vectors
[28,35].
Within the Bañados family, geometries for which

ψ 0
ασ

ψασ
(σ ¼ �; α ¼ 1; 2Þ are real-valued correspond to black

holes geometries with event and Killing horizons.4 BTZ
family (with constant L�) are very special cases in this
class. The four branches of the bifurcate inner and outer
Killing horizons are located at [28]

r2αβ ¼ l2
ψ 0
αþ

ψαþ

ψ 0
β−

ψβ−
; α; β ¼ 1; 2; ð2:7Þ

where two bifurcate horizons are the location of rαβ
intersections. All the geometric properties of Bañados
geometries may be conveniently described through ψ�
functions. More analysis and discussion on Bañados
geometries may be found in [28,36] and references therein.
For the latter use we also note that (2.5) may be solved

through the following ansatz:

ψ�ðx�Þ ¼ exp

�
6

c

Z
x�

J�ðx�Þ
�

ð2:8Þ

where

J0� þ 6

c
J2� ¼ c

6
L�: ð2:9Þ

The above equation determines J� for any given L� and
has two solutions Jα�. For the family of black holes, hence,
J�ðx�Þ are real-valued, periodic functions. This among
other things, recalling (2.9), implies that

R
2π
0 L� for black

hole solutions are positive-definite, in accord with what is
expected from the corresponding Virasoro coadjoint orbits
[28,31]. The horizon radii (2.7) take a very simple form in
terms of Jα� functions, r2αβ ¼ 36l2

c2 JαþJβ−. In other words,
functions Jα� determine the “shape” of the horizon
surfaces.
We note that the family of locally AdS3 geometries

discussed in [21] are specific family of Bañados geometries
for which J� are real valued and whose value of L� are
related to the γ, ω functions there through (2.9) where
J� ¼ γ � ω. We shall return to this point in our analysis in
the next sections. This point will be further discussed and
explored in an upcoming publication [37].
Finally, we would like to mention that, if the AdS3

gravity theory (2.1) has a 2d CFT dual, this CFT should be
at the Brown-Henneaux central charge c

c ¼ 3l
2G

; ð2:10Þ

4Note that although one can always write two independent
solutions of the Hill equation as real functions, however here by
ψασ we are referring to a particular form of solutions appearing in
the Floquet theorem: ψ1ðxÞ ¼ eT xP1ðxÞ;ψ2ðxÞ ¼ e−T xP2ðxÞ
where P1, P2 are two periodic smooth functions and T is the
Floquet index (e.g., see [28]). The Floquet index T can be real or
pure imaginary. The black hole family we will be discussing here
corresponds to real Floquet index case.
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and to have a well-defined semiclassical gravity descrip-
tion, c ≫ 1. The Bañados geometries correspond to (set of)
states in the 2d CFT for which the expectation value of the
left and right sectors of the 2d energy momentum tensor T�
are given as5

hT�i ¼
c
6
L� ¼ 6

c
J2� þ J0�: ð2:11Þ

III. THE TWO, NEAR HORIZON AND
ASYMPTOTIC, SYMMETRY ALGEBRAS

As discussed in the introduction, depending on the
choice of fall behavior of the metric perturbations near
the boundary we can have residual diffeomorphisms which
respect this fall off behavior. Besides the near boundary
(asymptotic) behavior, for the geometries which have a
horizon, one may explore the question whether we have a
choice of boundary conditions which lead to nontrivial
residual near horizon diffeomorphisms. If yes, we will then
have (at least) two sets of residual diffeomorphisms and the
corresponding charges and algebras. As we will see and
discuss, however, despite being seemingly different, these
two algebras and the corresponding Hilbert spaces are
closely related to each. Explicitly, the near horizon Hilbert
space is a specific subset of the asymptotic Hilbert space. In
this section we review the two algebras and their relation. In
the next section we will study the relation between the
corresponding Hilbert spaces.
Note on conventions: Through this paper we use bold-

face characters to denote operators and use calligraphic
mathematical symbols to denote near horizon quantities.
The near horizon algebra generators will hence be denoted
as calligraphic-boldface. Expectation values of the oper-
ators would be denoted by the same symbol, but not
boldfaced.

A. Near horizon algebra

As discussed one may get nontrivial symmetries through
imposing appropriate boundary conditions on the near
horizon geometry of a generic nonextreme black hole. In
this case one can show that the near horizon algebra
consists of copies of the creation-annihilation algebra
[1,21,22]

½J �
n ;J �

m� ¼
1

2
nδn;−m; ½J þ

n ;J −
m� ¼ 0: ð3:1Þ

The J �
n generators may be viewed as creation-annihi-

lation operators for a free 2d boson theory onR × S1 which

is a 2d conformal field theory (CFT2) and the Ln’s are
Fourier modes of its energy-momentum tensor:

L�
n ≡X

p∈Z
∶J �

n−pJ
�
p∶ ð3:2Þ

where ∷ denotes normal ordering (J n with n > 0 may be
viewed as annihilation operators). We then obtain

½L�
n ;L�

m� ¼ ðn −mÞL�
nþm þ 1

12
ðn3 − nÞδn;−m;

½Lþ
n ;L−

m� ¼ 0: ð3:3Þ

This is two copies of Virasoro algebra at central charge one
plus a uð1Þ current. Using (3.2), it would be also useful to
find commutation relation between Ln and J m. This turns
out to be

½L�
n ;J �

m� ¼ −mJ �
nþm; ½Lþ

n ;J −
m� ¼ 0: ð3:4Þ

We stress that, as the above explicitly shows, the Ln;J n
generators are not independent and are related through
(3.2). The “independent” part of the near horizon algebra is
(3.1) and as we will see the Virasoro generators (3.2) which
are constructed through the J n’s, are convenient operators
for the comparison to the asymptotic symmetry algebra.
As some remarks, we note that (1) the near horizon

algebra (3.1) is independent of the AdS3 radius and the
details of the black hole we started from; (2)J �

0 are central
elements in the algebra commuting with all the other
generators; (3) as is seen from (3.2), the central charge
of the near horizon Viraroso algebra, which is one, is purely
quantum in nature. In the sense that it arises from the
normal ordering in the definition (3.2).

B. Asymptotic Virasoro algebra

The asymptotic symmetry group of asymptotically AdS3
geometries with the Brown-Henneaux boundary conditions
has been analyzed in [5]; it is two copies of Virasoro
algebra at the Brown-Henneaux central charge (2.10). Here
we discuss a specific realisation of this algebra for black
holes in the family of Bañados geometries.

1. Realization of asymptotic symmetry algebra for
asymptotic AdS3 black holes

In [21] it was noted that for black holes in the asymptotic
AdS3 geometries, the Brown-Henneaux boundary condi-
tions instead of the AdS3 boundary may also be imposed, in
an appropriate coordinate system, near the horizon.
Specifically, in [21] (see also [22]) a family of locally
AdS3 black holes which are specified by two arbitrary real-
valued periodic functions was constructed and analyzed. As
discussed in Sec. II, these black hole geometries are a
subset of Bañados geometries and follow Brown-Henneaux

5We comment that L� are real-valued periodic functions,
(2.11), while implying J� should be periodic, does not imply J�
should be real. In particular, J�0 ¼ 1

2π

R
2π
0 J�ðx�Þ can take pure

imaginary or real values [37].
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fall off behavior. These two functions were then argued to
be associated with two current algebras, which expectedly,
is (3.1). As discussed in [1] and will become clear in
Sec. III C, we find it convenient to represent this algebra in
a slightly different notation and use J�n to denote its
generators [21]6:

½J�n ; J�m� ¼
c
12

nδn;−m; ½Jþn ; J−m� ¼ 0; ð3:5Þ

where n;m ∈ Z. The generators of the well-established
Brown-Henneaux Virasoro algebra Ln is then naturally
obtained from Jn through a twisted Sugawara construction

L�
n ≡ inJ�n þ 6

c

X
p∈Z

J�n−pJ�p : ð3:6Þ

It is straightforward to check that

½L�
n ;L�

m� ¼ ðn −mÞL�
nþm þ c

12
n3δn;−m;

½L�
n ; J�m� ¼ −mJ�nþm þ i

c
12

m2δn;−m; ð3:7Þ

and ½Xþ;Y−� ¼ 0 for any X, Y.7

It is notable that the above is nothing but (2.9) and (2.11)
and that the Virasoro generators Ln are Fourier modes of
the 2d energy momentum tensor T.8 In other words, the
functions ψ� are related to the expectation value of the
Wilson line operator (of the slð2;RÞ × slð2;RÞ Chern-
Simons formulation of AdS3 gravity) made from the
holomorphic current fields J�ðx�Þ [21]. Note also that

as (2.7) shows, the equation defining the bifurcate horizons
are directly related to the product of J� currents.9

J�0 is a central element of the algebra and commutes with
all J�n and L�

n ’s. This observation makes a direct connection
with the surface charge analysis of [29,35], where it was
argued that the charges associated with the two exact
symmetries (the two periodic Killing vectors) should
commute with the Virasoro generators. Explicitly, one
may identify the two exact symmetry charges (which in
[28,29] was denoted by J�) as a function of the center
element J�0 , as we will discuss below J� ∝ ðJ�0 Þ2.

2. “Asymptotic” and “near horizon” symmetry
algebras are defined everywhere

The usual way of identifying residual symmetries and the
associated charge algebras is through imposing certain
boundary conditions in the asymptotic region of spacetime.
However, there are cases where one can provide alternative
ways to identify the symmetries. Technically, and for the
example of Bañados geometries, one can view this set of
solutions as a phase space with a given symplectic two-
form. Then, the conserved charge would be related to
transformations on the phase space which do not change the
symplectic two-form. In this case, the “asymptotic” sym-
metries become “symplectic” symmetries. For the case of
Bañados geometries this has been demonstrated in [29]. For
other cases of symplectic symmetries see [35,40,41].
Promoting the asymptotic symmetries to symplectic

symmetries means that the conditions defining these
charges (like “the fall off behavior”) and the surface
integrals, integrals over codimension two compact space-
like surfaces, can be chosen or specified not only in the
asymptotic region but at any place in spacetime. However,
one should make sure that there are no topological
obstructions, such as singularities, or physical obstructions,
like closed-timelike curves (CTC’s), in the spacetime.
Dealing with symplectic symmetries means that the alge-
bras (3.5) and (3.7) can be defined everywhere in the
geometry, in the near horizon and the asymptotic regions.10

Moreover, one can show [39] that the algebra (3.1) or
equivalently (3.5) is the symplectic symmetry of the family
of black hole geometries discussed in [21,22]. Despite these
facts and to distinguish this algebra from the one appearing
on the near horizon, we keep calling them as “asymptotic”
symmetries.

6We would like to thank H. Afshar and D. Grumiller for
clarifying explanations on this issue.

7As mentioned our asymptotic algebra with generators L�
n ; J�n

arises from the usual asymptotic Brown-Henneaux boundary
conditions which allows for a holomorphic and an antiholomor-
phic functions. However, in the AdS3 case one has the possibility
of relaxing the Brown-Henneaux boundary conditions. For
example, the boundary conditions allowing for boundary metric
to vary up to a conformal transformation was considered in [32].
This relaxed boundary conditions leads to the enhanced (asymp-
totic) symmetry algebra [32] which is a uð1Þ Kac-Moody algebra
where now the Virasoro and current generators are independent
and not related as in (3.6). Note that besides the LðJÞ relation
(3.6), the algebra in [32] is different than our algebra (3.7), as the
½Ln; Jm� commutator there do not involve the anomaly term
proportional to m2. We should also note that there are other
possibilities for boundary condition leading to other algebras,
e.g., see [33,38].

8The twisted Sugawara construction is closely associated with
a one-dimensional linear dilaton background string theory [21].
The string worldsheet field comes from the conformal factor of
the 2d x� part of the 3d metric. Intriguingly, the “string tension”
α0 of this theory is proportional to central charge c (in the
semiclassical large c limit) and the linear dilaton background
arises from the cosmological constant of the 3d geometry.

9We note that one may still enhance this algebra by the
addition of two more generatorsQ� which are “conjugate” to J�0 ,
i.e. ½J�n ;Q�� ¼ ic

12
δn;0; ½L�

n ;Q�� ¼ iJ�n [39]. The Q� were also
noted in Eq. (7.9) [32], where theQ generators there are related to
Q� as Q ¼ Qþ þQ−.

10For the case of 3d gravity, where we have a Chern-Simons
description, the fact that charges may be defined at any radius r,
and are r-independent can be seen very explicitly from the fact
that r-dependence, in the Chern-Simons perturbations can be
removed by a gauge choice, e.g., see [19,21,33,42–44].
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C. Asymptotic algebra from near horizon algebra

As discussed the near horizon algebra (3.1) or (3.5), and
the Brown-Henneaux Virasoro algebra (3.7) are both
symplectic symmetries of the phase space of locally
AdS3 black hole solutions and may hence be defined
everywhere in the corresponding coordinate systems
[21,29,39]. Moreover, from J �

n one construct L�
n (3.2)

which generate a Virasoro algebra at central charge one.
In [45] there is a simple proposal how to relate two

Virasoro algebras at central charge c and at central charge
one. Motivated by the proposal in [45], we related the
associated L�

0 ;L
�
0 as

cL�
0 ¼ L�

0 −
1

24
: ð3:8Þ

The extra −1=24 term in the right-hand side (RHS) has
appeared because of difference between the two conven-
tions used in the “near horizon” (3.2) and “asymptotic”
(3.7) Virasoro algebras. The relation (3.8), while could be
(partially) justified with the arguments in [45], is a part of
our horizon fluffs proposal.
We next require that the relation (3.8) is consistent with

the commutation relations among other generators. This
requirement then yields [1]11

J�n ¼ 1ffiffiffi
6

p J �
cn; n ≠ 0: ð3:9Þ

In the above we have assumed central charge c is integer-
valued. This assumption is a well justified one, noting the
discussions of [46] and that the modular invariance of a
presumed unitary 2d CFT dual to the pure AdS3 Einstein
gravity implies the central charge c to be a multiple of 24.12

Equation (3.9) does not relate J �
0 and J�0 . The relation

between these two is induced from (3.8):

L�
0 ¼ 1

c

�
L�

0 −
1

24

�
⇒ 6ðJ�0 Þ2

¼ ðJ �
0 Þ2 þ

X
n≠0

�
∶J �

−nJ
�
n ∶ −

X
n≠0

J �
−ncJ

�
nc

�
−

1

24
;

ð3:10Þ

where we used (3.6) and (3.2). Given the above one can
find other L�

n in terms of the near horizon algebra
generators J �

n .

IV. HILBERT SPACE AND REPRESENTATIONS
OF THE TWO ALGEBRAS

As already mentioned our symmetry algebras (3.1) and
(3.7) are respectively (symplectic) symmetries of the family
of metrics discussed in [21] and (2.2). This family of
solutions may hence be viewed as representations or
coadjoint orbits of the associated algebras. In a more
quantum language, one may view them as (a part of)
Hilbert space of the associated physical theory which is
invariant under the corresponding algebra. Besides this
geometric picture, we can directly construct the Hilbert
space of the two algebras and study their relation. That is
what we carry out in this section.

A. Asymptotic black hole Hilbert space HBH

and black holes in Bañados geometries

The asymptotic algebra involves a Virasoro algebra at
Brown-Henneaux central charge and hence Virasoro coad-
joint orbits may be used to label Bañados geometries. This
has been studied in some detail in [28,29] and we do not
review that here. What we would like to note here is that
realization of Virasoro generators in terms of uð1Þ currents
J�n , i.e. the twisted-Sugawara map (3.6), implies that only a
subset of Virasoro coadjoint orbits associated with AdS3
black holes, namely the hyperbolic orbits (see [28,31])
appear as coadjoint orbits of our L�

n ; J�n algebra.
To see the above explicitly, and for our later use, we

construct these Virasoro orbits using the current algebra. To
this end, we note that Jn; n < 0 and Jn; n > 0 are respec-
tively creation annihilation conjugates of each other.
Therefore, it is natural to define the “asymptotic black
hole vacua” j0; J�0 iBH as

J�n j0; J�0 iBH ¼ 0; ∀ n > 0;

J�0 j0; J�0 iBH ¼ J�0 j0; J�0 iBH; ð4:1Þ

and we may choose the normalization such that

BHh0; J0�0 j0; J�0 iBH ¼ δJ0�
0
;J�

0
: ð4:2Þ

Analysis of [21] show that J�0 for set of AdS3 black hole
geometries discussed there should be real valued, which

11Recalling that the two algebras (3.1) and (3.5) are the same,
up to possibly normalization of charges which is not fixed
through the usual surface charge computation methods, we get
a relation of the form

J�n ¼
ffiffiffiffiffi
c
6x

r
J �

xn; n ≠ 0;

where x can be any arbitrary integer. The x ¼ c choice is fixed
upon imposing (3.8).

12Analysis of [46] casts some doubts on having a well-defined
pure AdS3 quantum gravity (which is dual to a unitary-modular
invariant 2d CFT). Nonetheless, we are working in the large c
regime where there is a semiclassical gravity description and
integer c assumption is a justified one in this limit.
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without loss of generality may be chosen to take only
positive values, i.e. J�0 ∈ Rþ. This latter implies that J�0 is
self-adjoint (Hermitian) on the Hilbert space associated
with this set of geometries. However, if we ignore the
analysis of [21] and only focus on the algebra (3.5) or (3.6),
there is no hermiticity condition induced on J�0 and J�0 can
take real or imaginary values. We will return to this point,
shortly in Sec. IVA 1. We define the asymptotic Hilbert
space HBH as the states constructed upon vacuum states
j0; J�0 iBH with real-positive J�0 .
The rest of states in the asymptotic Hilbert space HBH

are then constructed by the action of J�−n; n > 0 on the
vacuum. That is, HBH consists of states of the form

jJðfn�i gÞ; J�0 iBH ¼ Jðfn�i gÞj0; J�0 iBH;
∀ jJðfn�i gÞ; J�0 iBH ∈ HBH;

Jðfn�i gÞ ¼ N J

Y
fn�i >0g

ðJþ−nþi · J−−n−i Þ; ð4:3Þ

where the normalization factor N J is fixed such that

BHhJðfn0�i gÞ;J0�0 jJðfn�i gÞ;J�0 iBH¼δfn0ig;fnigδJ0�0 ;J�0 ; ð4:4Þ

where δfn0ig;fnig is the product of all δn0i;ni’s.

1. HBH vs. Hilbert space of unitary Virasoro
(coadjoint) orbits HVir

Given a generic state, the associated Virasoro orbit may
be constructed by the action of all possible products of
L−n; n > 0 on this state. Since we know the commutation of
Ln, Jm we can readily distinguish Virasoro orbits in HBH.
In particular, since

½J�0 ;L�
n � ¼ 0; ð4:5Þ

all states in the same orbit have the same J�0 . In other
words, the orbits may be labeled by J�0 , or J�0 is an
orbit invariant quantity.13 That is, there is an orbit asso-
ciated with each j0; J�0 iBH state, or, j0; J�0 iBH is the
representative of an orbit [31]. Recalling (3.6), one
observes that

L�
0 j0; J�0 iBH ≡ L�

0 j0; J�0 iBH ¼ 6

c
ðJ�0 Þ2j0; J�0 iBH: ð4:6Þ

The condition for unitarity of the representation implies
hermiticity of L�

0 and L�
0 þ c

24
≥ 0. In other words, if we

only focus on the Virasoro part of the algebra, one may
relax hermiticity of J�0 and require hermiticity of ðJ�0 Þ2
and ðJ�0 Þ2 þ ð c

12
Þ2 ≥ 0.

Recalling discussions in Secs. 3, 4 of [28], that the
Bañados geometries are in one-to-one relation with the
Virasoro coadjoint orbits and that the orbits discussed here
are in one-to-one relation with the coadjoint orbits, the
above implies thatHBH which only includes real-valued J�0
only captures hyperbolic orbits associated with BTZ black
holes. If we allow for negative values of ðJ�0 Þ2, those with
−ð c

12
Þ2 < ðJ�0 Þ2 < 0 capture elliptic orbits, associated with

conic singularities on global AdS3. The “global AdS3
vacuum” has ðJ�0 Þ2 ¼ −ð c

12
Þ2 [28].

Therefore, the set of all unitary of representations of
Virasoro algebra and their coadjoint orbits form a bigger
Hilbert space than HBH. This Hilbert space will conven-
iently be denoted by HVir and contains orbits associated
with global AdS3 ðj0; J�0 ¼ ic=12iÞ, elliptic orbits asso-
ciated with ðj0; J�0 ¼ icν�=12iÞ; 0 < ν� < 1, and hyper-
bolic orbits associated with ðj0; J�0 iBHÞ; J�0 ∈ Rþ (BTZ
black hole orbits). Therefore, it is readily seen that HBH ⊂
HVir [28,37].
Before closing this part some further comments are

in order:
(i) All states in the same Virasoro orbit will have the

same J�0 while they will have different L�
0 eigen-

values L�
0 . Explicitly, L

�
0 is not an orbit invariant

quantity.
(ii) States in the orbit of j0; J�0 iBH all have higher L�

0

eigenvalue than j0; J�0 iBH itself. That is, the repre-
sentative (which may be called “highest weight
state”) has the lowest value of L�

0 in the orbit.
(iii) There could be more than one orbit associated with a

given J�0 , as the orbits can have another discrete
label. This other label, being discrete, is not captured
by the surface integrals accounting for charges
associated with continuous transformations, and
hence not included in our current discussions. These
other orbits, however, are not among the represen-
tations which are unitary on a single cover of AdS3,
while they may be unitarizable on multiple covers of
AdS3. (See [28] for some preliminary discussion on
the latter.) These other cases may be studied in a
separate publication.

2. Generic black hole is a coherent state in HBH

As mentioned in the previous subsections, the asymp-
totic Hilbert space HBH contains states with J�0 ∈ Rþ
associated with geometries in the orbit of BTZ black holes
(related to hyperbolic orbits). Geometries in these orbits are
specified by generic functions L�ðx�Þ which can be
mapped to constant-positive L�

0 , explicitly, there exists
h�ðx�Þ functions such that [28]

13We comment that J�ðx�Þ ¼ J�0 þP
n≠0J

�einx� and (2.8)
imply ψ� ¼ expð6c J�0 x�ÞP�ðx�Þ, where P� are periodic func-
tions. In other words, 6c J

�
0 are equal to the Floquet index, denoted

by T � in [28] (cf. foonote 4).
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L�ðx�Þ ¼ h0�
2L�

0 þ S½h�; x�;
h�ðx� þ 2πÞ ¼ h�ðx�Þ þ 2π;

where S½h; x� is the Schwarz derivative.14 Alternatively, as
reviewed in Sec. II (see also [28,36]) one may use ψ�, or
equivalently J�ðx�Þ, to specify the corresponding geom-
etry. Explicitly, let us consider a geometry corresponding to
the (coadjoint) orbit associated with the BTZ geometry
with given J�0 . This geometry is then associated to a state in
HBH which we conveniently denote by jfJ�nig; J�0 iBH. This
state is defined through equation

BHhfJ�nig; J�0 jJ�nk jfJ�nig; J�0 iBH ¼ J�nk ;

jfJ�nig; J�0 iBH ∈ HBH; ð4:7Þ

where the fJ�nig appearing in jfJ�nig; J�0 iBH is the collection
of all J�nk appearing in the right-hand side. The BTZ black
hole discussed in [1] corresponds to J�n ¼ 0, (n ≠ 0) in the
above family. Since in the BTZ orbit we are dealing with
geometries with real J�ðx�Þ functions, we have J−n ¼ J�n.
Recalling the fact that each Jn behaves like creation

(n < 0) or annihilation (n > 0) operator, solutions to (4.7)
are coherent states. Next, we also note that Jn, Jm commute
for n ≠ −m and hence a general solution to set of
equations (4.7) for all n is simply product of these coherent
states. That is,

jfJ�nig; J�0 iBH ¼
Y

fn�i >0g
exp

�
12Jþni
cni

Jþ−ni −
12Jþni

�

cni
Jþni

�

· exp

�
12J−ni
cni

J−−ni −
12J−ni

�

cni
J−ni

�
j0; J�0 iBH:

ð4:8Þ
One may readily check that the above coherent state is
normalized BHhfJ�nig; J�0 jfJ�nig; J�0 iBH ¼ 1.
As we see the black hole state is not a coherent state in

J�0 sector. This is due to the fact that J�0 , unlike J�n , J�−n,
have no conjugate in the algebra (3.5). However, as pointed
out in footnote 9 one may enhance (3.5) by the addition
of Q� operators which are conjugate to J�0 . We will
briefly comment on this point and its possible implications
for our black hole microstate counting in the discussion
section.
Finally, we remark that using (3.6) one can read the

values of L�
n for the BTZ family in terms of their J�n

eigenvalues, namely we have

BHhfJ�nig; J�0 jL�
n jfJ�nig; J�0 iBH ¼ L�

n ; ð4:9Þ

where L�
n ¼ inJ�n þ 6

c

P
J�n−pJ�p . As discussed values of

L�
n and in particular L�

0 are not orbit invariant quantities
and the appropriate definition of mass or angular momen-
tum, as inspired by the gravity analysis, is through orbit
invariant quantities J�0 . This latter leads to the conserved
quantities associated with the two Uð1Þ global Killing
vectors of Bañados geometries and are those appearing in
the expression for the first law of thermodynamics [28,35].
For the special case of BTZ black hole, where all J�n , n ≠ 0
vanish, then (cf. (2.11), (3.6)

For BTZgeometry∶
1

2
ðlM�JÞ≡Δ�¼6

c
ðJ�0 Þ2: ð4:10Þ

where M, J are ADM mass and angular momentum of the
BTZ black hole.

B. Hilbert space of near horizon soft hairs HNH

As discussed in [28] the causal structure of all Bañados
geometries in the same Virasoro (coadjoint) orbit are the
same. Therefore, despite the fact that in the BTZ orbits we
are dealing with geometries with nonconstant value of
L�ðx�Þ (i.e. with nonzero L�

n values), they have the same
causal structure as the corresponding BTZ. One may hence
study their near horizon algebra as was done for BTZ black
hole itself. Analysis of [1,21] readily goes through and one
obtains the same asymptotic and near horizon algebras
(3.7) and (3.1) for all members in the BTZ orbits.
To construct the Hilbert space of the near horizon algebra

HNH, we follow essentially the same steps as the previous
subsection. We start with defining the vacuum j0i:

J �
n j0i ¼ 0; ∀ n ≥ 0: ð4:11Þ

We note the difference between the above and (4.1) and that
here we set J �

0 to have zero eigenvalue on the vacuum. In
principle we could have chosen the vacuum to have a
nonzero J �

0 value. J �
0 ¼ 0 is a convenient choice as

L�
0 j0i ¼ 0. More importantly, it is a convenient choice

because the energy in the near horizon observer frame is
proportional to J þ

0 þ J −
0 [21]. With this choice, all the

states in HNH will have zero energy from a near horizon
observer viewpoint, they are near horizon soft hairs [1,11].
In other words, HNH is nothing but the Hilbert space of
near horizon soft hairs.
A generic descendant of the vacuum, jΨðfn�i gÞi, may

then be constructed using creation operators J �
−n�i

with sets

of positive integers fn�i > 0g, i.e.

jΨðfn�i gÞi ¼
Y

fn�i >0g
ðJ þ

−nþi
·J −

−n−i Þj0i;

∀ jΨðfn�i gÞi ∈ HNH: ð4:12Þ
14Recalling (2.8), one may see that under a conformal trans-

formation JðxÞ behaves as: JðxÞ → JðhðxÞÞh0 − c
12

h00
h0 , compatible

with L, J commutator in (3.7).
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Given (4.11), we deduce that

L�
0 jΨðfn�i gÞi ¼

�X
i

n�i

�
jΨðfn�i gÞi: ð4:13Þ

One may compute the eigenvalue of Ln ’s (n ≠ 0) and
construct the near horizon (Virasoro) orbits. However, since
it is essentially the same as the asymptotic algebra case and
will not be relevant for our microstate counting, we will not
present it here.

C. Relation between HBH, HVir and HNH

So far, we have introduced and constructed three Hilbert
spaces:

(i) HBH which is the Hilbert space of generic AdS3
black holes, this includes all nonextremal BTZ black
holes and their Virasoro excitations (descendants).

(ii) HVir which is the Hilbert space associated with all
unitary constant representative Virasoro coadjoint
orbits, including BTZ black holes and conic singu-
larities and their Virasoro descendants. Every state in
HVir is then specified by the value of J�0 and a set of
integers (accounting for Virasoro excitations). Note
in particular that HBH ⊂ HVir.

(iii) HNH which denotes Hilbert space of near horizon
soft hairs and its states are specified by a set of
integers.

With the maps introduced in Sec. III C, we related a subset
of the near horizon generators J �

n to the asymptotic ones
J�n . Here we would like to discuss the relation between the
Hilbert spaces induced from this mapping of generators. In
particular, (3.9) and (3.8) or (3.10) may be viewed as an
equation which could be written on the HNH. Using them
we learn that the j0; J�0 iBH vacuum state is mapped onto
several different states created by J �

r or product thereof,
where r is not a multiple of c and 6ðJ�0 Þ2 ¼

P
r�i − 1=24.

Therefore, we learn thatHNH contains all the states inHBH

whose 6ðJ�0 Þ2 is of the form given here and HNH does not
include states with other form of J0 ’s. These are the states
which in [1] were identified as BTZ black hole microstates.
See the next section for more discussions.
On the other hand, from discussions of Sec. III B 2 and

the standard AdS3=CFT2 and Brown-Henneaux analysis,
we expectHNH ⊂ HVir. This expectation will be discussed
and established in [37]. However, here we would like to
give the general picture. Given (3.9), one may distinguish
two classes of creation operators among J �’s: J �

−nc with
n > 0, and J �

−ðncþrÞ, n > 0, r ¼ 1; 2;…; c − 1. The first

class, as discussed, are those which create states in the
HBH. The second class, which correspond to states with
imaginary J�0 inHVir are then associated with certain conic
defects and their Virasoro descendants. In particular, the
second class contains conic defects with L0 ¼ −1þ r=c
where r ¼ 0 case creates global AdS3 vacuum and r ¼ c

the massless BTZ state. These states are then creating the
spectral flow between the two vacua. This picture dovetails
with the well-known spectral flow of the (supersymmetric)
2d CFT’s which are dual to AdS3 gravity theory [47,48].

V. MICROSTATES OF A GENERIC AdS3
BLACK HOLE

The most natural proposal for black hole microstates,
which was put forward in [1], is that microstates of a black
hole specified by a given set of L�

n (or equivalently J�n )
charges are states in HNH which describe a geometry with
the same asymptotic charges L�

n . To this end, we note that
using the map (3.9) and also definitions of near horizon and
asymptotic vacua, generators of the asymptotic algebra and
in particular J�n can now be viewed as operators defined on
the wholeHNH (and not just onHBH). Then, our proposed
definition of black hole microstates associated with the
Bañados geometry given by function J�ðx�Þ with Fourier
modes J�n is simply equation (4.7), but now this equation is
to be solved over HNH. Explicitly, our microstates
jBðfJ�n g; J�0 Þi ∈ HNH are solutions to

hB0ðfJ�n g; J�0 ÞjJ�n jBðfJ�n g; J�0 Þi ¼
1ffiffiffi
6

p

hB0ðfJ�n g; J�0 ÞjJ �
ncjBðfJ�n g; J�0 Þi ¼ J�n δB;B0 ; n ≠ 0: ð5:1Þ

Recalling the relations between asymptotic and near
horizon generators (3.9) and that J n, Jm with n not a
multiple of c, commute, solution to the above is of the form,

jBðfJ�n g; J�0 Þi ¼ N fn�i gjF ðfn�i gÞ; J�0 i ⊗ jfJ�nig; J�0 iBH
ð5:2Þ

where

jN fn�i gj2 ¼
Y

fn�i not a multiple of cg

2

nþi
·
2

n−i
;

and

jF ðfn�i gÞ; J�0 i ¼
Y

fn�i not a multiple of cg
ðJ þ

−nþi
·J −

−n−i Þj0i;

such that
X

n�i ¼ 6ðJ�0 Þ2 þ
1

24
; ð5:3Þ

or linear combinations thereof. In fact jF ðfn�i gÞi is exactly
the microstates (horizon fluffs) of the BTZ black hole [1].
Hereafter, we will denote the set of states in (5.3) byHF . It
is readily seen that HF forms a vector space and that HBH
and HF form two subspaces of HNH and overlap only on
the vacuum state, as depicted in Fig. 1.
One may associate an orbit invariant mass and angular

momentum to the BTZ orbits. This is possible recalling
(2.11) and (3.6):
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Δ� ¼ 1

2
ðlM � JÞ ¼ c

6
hF ðfn�i gÞ; J�0 jL�

0 jF ðfn�i gÞ; J�0 i

¼ 6

c
ðJ�0 Þ2 ≃ 1

c

X
ni; ð5:4Þ

where in the last equality we assumed
P

ni ≫ 1=24 and
dropped the 1=24 part. Note that here ni are not a multiple
of c, that in the above the “BTZ part” of the black
hole microstates, jF ðfn�i gÞ; J�0 i (and not jBðfJ�n g; J�0 Þi)
has been used, and that hF ðfn�i gÞ; J�0 jJ�n≠0jF ðfn�i gÞ;
J�0 i ¼ 0.

A. Black hole microstate counting

Given the black hole microstates (5.2) corresponding to a
generic geometry in the BTZ-orbit, we can perform their
counting for a given asymptotic orbit invariant mass and
angular momentum (5.4). The idea, as spelled out in [1], is
to use Hardy–Ramanujan formula, see e.g., [49] and Refs.
therein: number of partitions of a given positive integer N
into non-negative integers, pðNÞ, for large N is given by

pðNÞjN≫1 ≃ 1

4N
ffiffiffi
3

p exp

�
2π

ffiffiffiffi
N
6

r �
: ð5:5Þ

The number of microstates of any black hole in the BTZ
orbit, recalling (5.4), is given by pðcΔþÞ · pðcΔ−Þ and the
entropy S by

S ¼ lnpðcΔþÞ þ lnpðcΔ−Þ

¼ 2π

� ffiffiffiffiffiffiffiffiffi
cΔþ

6

r
þ

ffiffiffiffiffiffiffiffiffi
cΔ−

6

r �
− lnðcΔþÞ − lnðcΔ−Þ þ � � �

ð5:6Þ

where we have assumed cΔ� ≫ 1, and � � � denotes sub-
leading terms in cΔ�.
Given the fact that a generic microstate of a black hole in

the BTZ orbit is a direct product of a “microstate part” and
an asymptotic “macrostate part” cf. (5.2), one readily sees
that the microstate part is an orbit invariant quantity and
only knows about orbit invariant (asymptotic) charges J�0 .
Therefore, the entropy is also an orbit invariant quantity.
This is of course expected recalling discussions of [28] and
that entropy is the conserved charge associated with an
exact Killing vector field which generates the Killing
horizon [28,35].

VI. DISCUSSIONS AND OUTLOOK

In this work we have repeated the analysis of the
“horizon fluffs” proposal15 of [1] for generic black holes
in the class of Bañados geometries. The “horizon fluffs”
proposal has three main steps:
(1) Identifying the given black hole as a state in the

Hilbert space of asymptotic symmetry algebraHBH.
(2) Identifying the near horizon algebra and the Hilbert

space of near horizon soft hairs HNH.
(3) Providing asymptotic to near horizon embedding

map (3.8), which given the commutation relations in
the algebras, induces (3.9). This latter in turn
provides the relation between the two different
presentations of the near horizon algebra in terms of
J or J ’s.

The last step is the crucial part which enables us to
construct all states in HNH which correspond to the same
“asymptotic black hole state.” These states are what we
identified as black hole microstates.
There are very rigorous constructions and analysis for

the steps (1) and (2). The step (3), while still lacking a
rigorous proof, is a very well-justified one. Some early
justifications and arguments were already given by
Bañados in [45]. Some more comments are
(1) The asymptotic symmetry algebra, as discussed in

[29], is also symplectic and may hence be defined
everywhere in the 3d geometry, including at the
horizon.

(2) The near horizon Hilbert spaceHNH which is based
on J �

n contains more states than the asymptotic
Hilbert space associated with AdS3 black holes
HBH. Nonetheless HNH and HBH are both subsets
of the Hilbert space of unitary representations
(coadjoint orbits) of Brown-Henneaux Virasoro
algebra HVir. We note that HVir includes states
which correspond to geometries which are not black
holes, associated with particles on AdS3 (conic
defects). Specifically,

FIG. 1. A schematic diagram of the near horizon Hilbert spaces
HNH, Asymptotic black hole Hilbert space isHBH (green region)
and the Hilbert space of horizon fluffs (black hole microstates) is
HF (red region). Intersection ofHBH andHF is the vacuum state
j0i or j0; 0iBH

15In comparison with the “fuzzball” proposal by S. Mathur
[50], we may call this proposal “fluff ball.” See discussions of [1]
for the comparison between the two proposals.
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(a) HBH includes coadjoint orbits whose value of J�0
can be an arbitrary real number. However, as a
result of (3.9), we learn that HNH only contains
orbits whose J�0 are “quantized,” as given in
(5.4). This latter, as a gain seen from (5.4),
means that our horizon fluffs proposal yields a
“Bohr-type quantization” on the mass and an-
gular momentum of the corresponding black
hole, specifically, Δ� ∈ Z=c.

(b) Moreover, (3.9) and the fact that HNH is the set
of near horizon soft hairs (near horizon zero
energy states), implies that HNH includes a
specific subclass of elliptic orbits in HVir, those
whose ν parameter is quantized as r=c;
r ¼ 1; 2;…; c − 1. Near horizon fluffs, micro-
states of the given AdS3 black hole, are states in
these orbits.

(c) If we denote the set of horizon fluffs by HF, the
above makes it clear that HF ⊂ HNH ⊂ HVir,
and that HF and HBH only overlap on the
vacuum state.

(3) The “semi-classical Bohr-type” quantizations are of
course confirmed by the specific cases where we
know the full quantum theory. That is, for the known
cases of the AdS3=CFT2. In the string theory
realisations of AdS3=CFT2, e.g., in the D1D5 system
[47,48], there are usually some restrictions on the
spectrum of states appearing in HVir, e.g., the conic
defects appear in the spectral flow between R and
NS vacua, are expected to have L0 ¼ −6r=c;
r ¼ 0; 1;…; c=6 [48]. (Note that these examples
are supersymmetric and the extra factor of 6 com-
pared to our case is due to the fact that we are
considering pure AdS3 gravity case.)

It is of course desirable to make this step (3) as rigorous as
the other two steps and make the relation between theHNH
and HVir more clear. This will be done in [37].
The analysis of this work, besides extending those of [1]

(which was made for BTZ black holes) to generic AdS3
black holes, clarifies further the proposal and its technical
aspects. In particular it makes the construction of the

asymptotic and near horizon Hilbert spaces more explicit.
The main result of this work is to identify explicitly the
microstates of black holes in the family of Bañados
geometries and establish the fact that the entropy is an
“orbit invariant” quantity. Of course the orbit invariance of
entropy and other thermodynamical properties and the first
law of thermodynamics for the Bañados family was already
stated and argued for in the semiclassical analysis [28,29]
and this work provides a more microscopic description
of that.
One of the interesting side results of this work is to show

that Bañados geometries are in general coherent states of
extended asymptotic symmetry algebra [21]. This is in
agreement with the general expectation that geometries, as
classical notions, should correspond to coherent states of
the underlying quantum system. Here, we of course do not
have the full description of pure AdS3 quantum gravity and
its dynamics. However, if this theory makes sense (see
[46]), our near horizon Hilbert spaceHNH should contain a
good part, if not all of, its Hilbert space. In view of the
issues with formulation of AdS3 quantum gravity [46], one
may wonder if states which are in HNH but not in HBH
may be relevant to the resolution of problems faced there.
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