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It is well known that extracting viable testable predictions out of fundamental quantum gravity theories
is notoriously difficult. In this paper, we aim to incorporate putative quantum corrections coming from
loop quantum gravity in deriving modified dispersion relations for particles in a deformed Minkowski
spacetime. We show how different choices of the Immirzi parameter can, in some cases, serendipitously
lead to different outcomes for such modifications, depending on the quantization scheme chosen.
This allows one to differentiate between these quantization choices via testable phenomenological
predictions.
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I. INTRODUCTION

Themost interesting outcome from several models in loop
quantum gravity (LQG) recently has been that of the
resolution of classical singularities [1–4]. In spherically
symmetric LQG (i.e., loop quantization of the spherically
symmetric sector of classical gravity), the Schwarzschild
black hole singularity is replaced by an “effectively”
Euclidean region inside the black hole, commonly referred
to as “signature change” in LQG [5,6]. [A similar result is
available for the (1þ 1)-dimensional Callan-Giddings-
Harvey-Strominger black hole solution [7].] Similarly, the
spacelike cosmological big bang singularity can be resolved
on loop quantization (see [8,9] for a recent review of the
topic). The crucial ingredient used for this mechanism is to
regularize the curvature operator in LQG in a specified
manner, whereby it is written in terms of holonomies (or
parallel transports of the connections). (For a different
mechanism in LQG employed for singularity resolution
using inverse-triad corrections, see [10].) Effectively, this
procedure, called “polymerization,” implies that one replaces
connections by rigorously derived functions of connections.1

We shall refer to incorporating such functions as “holonomy
corrections” in this article.
All these results are pointing towards an emergence of

non-(pseudo-)Riemannian structures in models of LQG.
Such quantum spacetime structures challenge our accepted
notions of covariance and give rise to deformations in the
algebra of hypersurface deformations2 [11]. Modified

constraint algebras have been recently explored also in
multiscale theories [12], but no signature changewas found.
This provides further evidence that, as we will discuss here,
signature change is a characteristic feature of LQG, inti-
mately related to singularity resolution as mentioned above.
In fact, in the particular case of LQG, holonomy corrections
lead to a specific modification of the structure functions
arising in the Dirac constraint algebra, thereby leading to
signature change [5,13], as long as one works with the real-
valuedAshtekar-Barbero connection, as ismore prevalent in
the community. What happens when using the self-dual
Ashtekar variables is less clear, although some recent
evidence points towards an undeformed algebra [14].
However, this depends on the way in which one chooses
to implement the holonomy corrections in the self-dual case.
We clear up this point about the algebra of the quantum-
corrected constraints, while using the self-dual variables, in
some detail in this paper.
Covariance, coupled with the assumption of a classical

underlying spacetime, implies that we can have higher
derivative terms in an effective theory of gravity (obviously,
in addition to the Einstein-Hilbert term). Such perturbative
quantum corrections from higher curvature actions are
suppressed by extra factors of the Planck mass MPl,
whereas nonperturbative ones arising from LQG can easily
avoid such restrictions. Thus, to get effects that are not as
small as these, we need to turn to more specific corrections
coming from a particular theory of quantum gravity, such as
LQG. However, covariance is a strong consistency con-
dition by itself and cannot thus be arbitrarily deformed (or
worse, violated) in a quantum theory. For details about
conditions on a generally covariant quantization of back-
ground-independent theories, refer to [5,15]. Consistent
deformations of the hypersurface deformation algebra,
arising from LQG, have exciting phenomenological con-
sequences. In the natural generalization of the local

1Typically, they are replaced by bounded functions which,
indeed, play a crucial role in singularity resolution. However, for
naive choices of representations of a noncompact group, for the self-
dual variables, this is not always true, as we shall see in this article.

2Here, the word “deformation” is used to mean two different
things, which should be distinguishable from the context in which
it is used.
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Poincaré algebra, one has arbitrary coordinate transforma-
tions (or the infinite-dimensional diffeomorphism sym-
metry) as the fundamental symmetry group of general
relativity. However, since the Poincaré algebra describes
symmetries of Minkowski spacetime, it can be derived as a
special case from the full hypersurface deformation algebra
in a systematic manner. It has also been shown recently that
the deformations arising in the hypersurface deformation
algebra can be related to deformations in the local Poincaré
algebra, in the particular case of spherical symmetry [16].
Although a direct relationship between LQG and non-
commutative spacetimes has been known for some time in
lower dimensions [17,18] is the first work towards relating
LQG deformations to a noncommutative κ-Minkowski
background enjoying κ-Poincaré deformed symmetries,
in the flat limit.
In this work, we focus on another phenomenological

aspect of such deformations arising from LQG, namely,
the relationship between the energy and momentum of
elementary particles in (deformed) Minkowski space-
times. The familiar dispersion relation E ¼ m2 þ p2 is
then modified by the presence of such deformations and
forms a basis of testable predictions for effects arising
from LQG. As already mentioned, most approaches to
deriving the modified dispersion relation (MDR) come
from considering Planck-suppressed Lorentz-violating
terms in an effective theory. An exception to this is
doubly special relativity (DSR), in which one postulates
two different invariant scales instead of just the speed
of light [19–21]. Our work provides an example of a
derivation of a MDR from a fundamental quantum
gravity theory, which is similar in spirit to DSR.
However, our results also aim to use this phenomeno-
logical prediction as a tool to discriminate between
different approaches to LQG. We show how using real
Ashtekar-Barbero variables might result in a different
form of the MDR than when using the self-dual
Ashtekar variables. This is a remarkable result since
the form of the MDR seems to depend on the choice of
the Immirzi parameter. Although traditionally real
variables have been more popular, some recent results,
albeit within the context of symmetry-reduced toy
models,3 have rekindled the usefulness of the self-dual
variables [14,22–24] and, thus, this seems like an
opportune moment to confront these two approaches
with potentially observable predictions.
We study the case of the self-dual variables in three

different approaches. The primary strategy followed by
us would be to look at spherically symmetric spacetimes
and incorporate effects of holonomy corrections, based
on the real and self-dual variables, in the hypersurface

deformation algebra of such a system. Then we take
its flat limit to derive the form of the MDR. Our
holonomies are always going to be based on extrinsic
curvature components, rather than the real-valued
Ashtekar-Barbero connections or the self-dual
Ashtekar ones. For the approaches in which a signa-
ture-changing deformation function is allowed, we
strictly restrict ourselves to the Lorentzian part of the
spacetime and thus, for our purposes, we do not consider
more conceptual questions regarding the nature of the
singularity resolution. We would like to point out that
the deformation function allowed in our case depends on
both the radial variable and time, and it is not spatially
constant as has been studied earlier for the derivation
of a MDR from loop quantum cosmology [25,26].
Additionally, we revisit the question of the signature
change for self-dual variables, within the framework in
which quantum corrections have been implemented in
this paper.
The paper is organized as follows. In Sec. II we

concentrate on the most studied case of real SUð2Þ
Ashtekar-Barbero variables. Following Bengtsson [27]
we introduce the phase space reduced to spherical
symmetry. After having replaced connections with their
holonomies that are expected to account for quantum
effects, the algebra of effective constraints is computed.
For simplicity we adopt this effective scheme here, but
it has been proven that the same results can be obtained
by computing the expectation value of quantum operator
constraints over spin network states (see, e.g., [28,29]).
It needs to be noted that other types of effects emerge
while extracting such effective theories from the full
quantum description, such as inverse-volume corrections
or even backreaction of the moments of the quantum
state on the expectation values; however, as already
mentioned, we focus on the holonomy modifications
since they form the most interesting quantum correc-
tions from LQG. Then we restrict to the flat
(Minkowski) spacetime limit by selecting suitable lapse
and shift functions. This allows us to find out a
corresponding deformation of the Poincaré algebra,
which was first derived in [18] for real values of the
Immirzi parameter. Finally, we find the form of the
MDR requiring its invariance under deformed sym-
metries. The same analysis is repeated in Sec. III for
complex Ashtekar’s variables. In particular, we compute
holonomy corrections in three different quantization
schemes: SLð2;CÞ holonomies (Sec. III A), which have
to be regarded as a complexification of the real ones; the
analytic continuation technique (Sec. III B); and gener-
alized holonomies (Sec. III C). For our purposes the
main difference consists in the form of the implemen-
tation of holonomy corrections, which are responsible
for the modification of the dispersion relation. In
Sec. IV we discuss signature change in self-dual

3It is still unclear how one should impose reality conditions
and define spin networks for noncompact groups, going beyond
these simplified models, for full gravity.
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LQG. Conclusions are given in Sec. V. We work in
natural units.

II. REAL VARIABLES

LQG is a canonical approach to quantizing gravity,
typically based on the real-valued Ashtekar-Barbero
connection

Ai
a ¼ Γi

a þ γKi
a ð1Þ

which are conjugate to the densitized triad Ea
i ¼

ffiffiffi
q

p
eai ,

with

fAi
aðxÞ; Eb

j ðyÞg ¼ 8πGγδbaδijδ
ð3Þðx − yÞ: ð2Þ

Both Ai
a and Ea

i are functions defined on the spatial three-
dimensional manifold Σ.
It is possible to reduce the above variables to the

spherically symmetric case as has been shown in [28].
We provide a brief sketch of the procedure as follows. If Li
are the rotational Killing vectors, we can obtain connec-
tions and triads that are invariant under rotations by solving
the equation

LLj
Ea
i ¼ −½Tj; Ea

i � ¼ −ϵijkλjEa
k; ð3Þ

where Tj are the generators of Oð3Þ, while λj are just
constants.
The solution of Eq. (3) is given by the following

connections:

ðArðrÞτ3; A1ðrÞτ1 þ A2ðrÞτ2; A1ðrÞτ2 − A2τ1Þ; ð4Þ
where Ar, A1, A2 are real functions that are canonically
conjugate to Er, E1, E2, while τi ¼ − i

2
σi are the SUð2Þ

generators and r is the radial variable. The three-manifold
has been decomposed as Σ ¼ B × S2, where S2 are two-
spheres of radius r and B ¼ R. We define the angular
connections and triads as

Aϕ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þ A2

2

q
;

Eϕ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2

q
; ð5Þ

and from now on we suppress the dependence on r. We also
introduce “internal directions” [on the SUð2Þ tangent space]

τAϕ ≔
A1τ2 − A2τ1

Aϕ
; ð6Þ

τϕE ≔
E1τ2 − E2τ1

Eϕ ; ð7Þ

which allow us to define the “internal angles” α and β via the
relations

τAϕ ≕ τ1 cosðβÞ þ τ2 sinðβÞ; ð8Þ

τϕE ≕ τ1 cosðβ þ αÞ þ τ2 sinðβ þ αÞ: ð9Þ

Note that Aϕ is not canonically conjugate to Eϕ, which is
instead the momentum of the combination Aϕ cosα ¼ γKϕ

(and thus conjugate to the angular extrinsic curvature
component), i.e.,

fAϕ cos αðrÞ; Eϕðr0Þg ¼ γGδðr − r0Þ: ð10Þ

The angular component of the extrinsic curvature Kϕ can be
read off from the relation A2

ϕ ¼ Γ2
ϕ þ γ2K2

ϕ, where
Γϕ ¼ −Er0=ð2EϕÞ.4
Assuming that the Gauss constraint has been solved

classically,5 we can write the (spatial) diffeomorphism and
the scalar (Hamiltonian) constraint, respectively, as

D½Nr� ¼ 1

2G

Z
B
drNrð2EϕK0

ϕ − KrEr0Þ; ð11Þ

H½N� ¼ −
1

2G

Z
B
drN½K2

ϕE
ϕ þ 2KrKϕEr

þð1 − Γ2
ϕÞEϕ þ 2Γ0

ϕE
r�; ð12Þ

where we have used the definition Ar ¼ Γr þ γKr. At this
point, the symplectic structure of the theory is given by the
two Poisson brackets

fKrðrÞ; Erðr0Þg ¼ 2Gδðr − r0Þ ð13Þ

fKϕðrÞ; Eϕðr0Þg ¼ Gδðr − r0Þ: ð14Þ

Given the above Eqs. (13)–(14), it is easy to compute the
classical hypersurface deformation algebra as

fD½Nr�; D½Nr0 �g ¼ D½Nr∂rNr0 − Nr0∂rNr� ð15Þ

fD½Nr�; H½N�g ¼ H½Nr∂rN� ð16Þ

fH½N�; H½N0�g ¼ D½grrðN∂rN0 − N0∂rNÞ�; ð17Þ

where the inverse of the spatial metric grr ¼ Er=ðEϕÞ2.
In fact, in order to obtain Eqs. (15)–(17), it is sufficient to

use Eqs. (13)–(14), taking into account that the only
nonvanishing Poisson brackets are those between a com-
ponent of the extrinsic curvature and a derivative of the
conjugate densitized triad (or vice versa). However, by way
of example, we compute explicitly Eq. (15) (a full
derivation can be found, for instance, in [5,6]) as

4The prime 0 stands for the derivative with respect to the radial
coordinate, i.e., Er0 ¼ ∂rEr.

5This allows us to reduce the phase space to two pairs of
canonical variables, ðKr; ErÞ and ðKϕ; EϕÞ.
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fD½Nr�; D½Nr0 �g ¼ 1

4G2

Z
B
drdr0NrðrÞNr0 ðr0Þ½f2EϕðrÞ∂rKϕðrÞ; 2Eϕðr0Þ∂r0Kϕðr0Þg − fKrðrÞ∂rErðrÞ; Krðr0Þ∂r0Erðr0Þg�

¼ 1

4G2

Z
B
drdr0NrðrÞNr0 ðr0Þ½4GEϕðrÞ∂r0Kϕðr0Þ∂rδðr − r0Þ − 4GEϕðr0Þ∂rKϕðrÞ∂r0δðr0 − rÞ

þ2KrðrÞ∂r0Erðr0Þ∂rδðr − r0Þ − Krðr0Þ∂rErðrÞ∂r0δðr0 − rÞ�

¼ 1

2G

Z
B
drdr0½4ð−∂rNrðrÞNr0 ðr0ÞEϕðrÞ∂r0Kϕðr0Þ þ NrðrÞ∂r0Nr0 ðr0ÞEϕðr0Þ∂rKϕðrÞÞ

þ2ð−∂rNrðrÞNr0 ðr0ÞKrðrÞ∂r0Erðr0Þ þ NrðrÞ∂r0Nr0 ðr0ÞKrðr0Þ∂rErðrÞÞ�δðr − r0Þ

¼ 1

2G

Z
B
drðNrðrÞ∂rNr0 ðrÞ − Nr0 ðrÞ∂rNrðrÞÞð2EϕðrÞ∂rKϕðrÞ − KrðrÞ∂rErðrÞÞ

¼ D½Nr∂rNr0 − Nr0∂rNr�: ð18Þ

The calculation of Eqs. (16)–(17) can be performed
following the same steps.
Having set up our basics, we now want to study how

(loop) quantum corrections deform the hypersurface defor-
mation algebra. To this end we turn to the effective LQG
theory by polymerizing the angular extrinsic curvature
component:

Kϕ →
sinðKϕδÞ

δ
; ð19Þ

where δ is related to some scale, usually lPl, as suggested,
for instance, by the discrete spectrum of the area operator (δ
is proportional to the square root of the minimum eigen-
value, or the “area gap” from LQG). Clearly, the classical
regime is recovered in the limit δ → 0

6 The above sub-
stitution (19) can be justified as follows. In the quantum
theory there is no well-defined operator corresponding to
the Ashtekar-Barbero connection Ai

a on the LQG kinemati-
cal Hilbert space. Instead, in the loop representation, a well-
defined object is the holonomy operator, which is defined
as a parallel transport of the connection,

hαðAÞ ¼ P exp

�Z
α
_eaAi

aτi

�
; ð20Þ

where P is the path-ordering operator and _ea is the three-
vector tangent to the curve α. For our analysis, the
holonomies of connections along homogeneous directions
are of particular interest. They simplify as

hjðAÞ ¼ expðμAτjÞ ¼ cosðμAÞIþ sinðμAÞσj ð21Þ

and do not require a spatial integration since they transform
as scalars. In fact, so far one knows only how to implement
(local) holonomy corrections for connections along homo-
geneous directions [for a negative result concerning imple-
mentation of nonlocal (extended) holonomy corrections in
spherical symmetry, see [30]]. In our case, this is given by
γKϕð¼ Aϕ cos αÞ:

hϕðr; μÞ ¼ expðμAϕ cos αΛA
ϕÞ

¼ cosðμγKϕÞIþ sinðμγKϕÞΛ: ð22Þ

In order to see how the replacement (19) is implied by
Eq. (22), onemust take into account that the scalar constraint
(12) is quantized by utilizing the Thiemann trick

ffiffiffiffiffi
Er

p
∝

fKϕ; Vg (where V is the volume), whose quantum version
contains the commutatorhϕ½h−1ϕ ; V̂� ¼ hϕh−1ϕ V̂ − V̂h−1ϕ V̂hϕ.
(This is equivalent to regularizing the curvature of the
connection by holonomies, with the minimum area being
the area gap from LQG.) Using Eq. (22) one can easily see
that the products of holonomies are given by cosine and sine
functions of Kϕ. Finally, it turns out that the resulting
quantumor “effective” (sincewe are going to ignore operator
ordering issues, which are not crucial to our goals) scalar
constraint could be obtained simply by making the replace-
ment of Eq. (19). This justifies the following form of the
effective Hamiltonian constraint:

HQ½N� ¼ −
1

2G

Z
B
drN

�
sin2ðKϕδÞ

δ2
Eϕ

þ2Kr
sinðKϕδÞ

δ
Er þ ð1 − Γ2

ϕÞEϕ þ 2Γ0
ϕE

r

�
:

ð23Þ

The effective diffeomorphism constraint (11) remains unde-
formed since spatial diffeomorphism invariance translates
into vertex-position independence in LQG, which is

6The fact that zero does not belong to the spectrum of the area
operator in LQG is precisely the input from the full theory that
gives a nontrivial quantum geometrical effect in symmetry-
reduced quantizations such as the present case, following the
spirit of LQC. In some versions of LQG, such as group field
theories or spin foams, the same strategy is not followed.
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implemented directly at the kinematical level by unitary
operators generating finite transformations.7

Once again, it is straightforward to show that only the
Poisson bracket between two Hamiltonian constraints is
deformed due to the introduction of pointwise (since they
act at the vertices of spin networks only) holonomy
corrections, resulting in

fHQ½N�; HQ½N0�g ¼ D½cosð2δKϕÞgrrðN∂rN0 − N0∂rNÞ�;
ð24Þ

while the other two Poisson brackets (15)–(16) remain
unmodified [5,6].
Next we wish to take the Minkowski (flat) limit of this

deformed hypersurface deformation algebra, which is given
by Eqs. (24), (15), and (16), with the aim of deriving the
corresponding deformation of the Poincaré algebra. The
latter will be used to find the modification to the dispersion
relation. In order to reduce to the Minkowski spacetime
limit (see Refs. [16,18]), it is necessary to restrict to linear
lapse and shift functions that correspond to linear coor-
dinate changes, i.e.,

NkðxÞ ¼ Δxk þ Rk
i x

i NðxÞ ¼ Δtþ vixi; ð25Þ

and, at the same time, to flat spatial hypersurfaces, i.e.,
gij ≡ δij. With these restrictions, general diffeomorphisms
reduce to the subset of Poincaré transformations. Then, it is
possible to read off the commutators between the Poincaré
generators from the hypersurface deformation algebra. To
this end, let us make explicitly the case of rotations. They
are generated by the momentum constraint D½Ni�, since
they produce tangential deformations of the hypersurfaces,
with shift vectors given by Ni ¼ Ri

lx
l ¼ ϵijlφjxl (where ϵijl

is the Levi-Civita symbol and φj stands for the angle of a
rotation around the j axis). This can be easily understood as
follows. Let us introduce a local Cartesian frame on gij and
consider a rotation around the z axis (i.e., we are choosing
j ¼ 3). Then, the rotated coordinates are obtained just by
adding Ni ¼ ϵi3lφ3xl to the starting coordinates ðx; y; zÞ. In
fact, we have that x0i ¼ xi þ Ni since in this way we find
x0 ¼ x − φ3y, y0 ¼ yþ φ3x, and z0 ¼ z, as we could
expect. Having proven that D½Ni� accounts for rotations,
let us derive the Poisson bracket between two Lorentz
generators of infinitesimal rotations (i.e., fJl; Jjg) from the
hypersurface deformation algebra. In light of the above
discussion, this can be done by insertingNl ¼ ϵlikφi1xk and
Mj ¼ ϵjmnφm2xn into

fD½Nl�; D½Mj�g ¼ D½LNiMj� ð26Þ

and, doing so, we obtain

LNiMj ¼ Ni∂iMj −Mi∂iNj

¼ ϵilkφl1xkϵjmnφm2δni − ϵimnφm2xnϵjlkφl1δki

¼ ðδljδkm − δlmδkjÞφl1φm2xk

− ðδmjδnl − δmlδnjÞφl1φm2xn

¼ φj1φk2xk − φl1φj2xl

¼ −ϵjlkϵltsφt1φs2xk ¼ −ϵjlkφl3xk: ð27Þ

This means that the right-hand side of Eq. (26) (i.e., the
result of combining two rotations) is still a momentum
constraint that implements infinitesimal rotations by an
amount φl3xk ¼ ϵltsφt1φs2xk or, in other words, we have
shown that fJl; Jjg ¼ ϵljkJk. Following the same line of
reasoning, one can easily realize that Nk ¼ Δxk corre-
sponds to spatial translations, N ¼ Δt is a time translation
by an amount Δt, and finally N ¼ vixi represents a boost
along the i axis. Then, plugging proper combinations of
these lapse and shift functions into the hypersurface
deformation algebra it is possible to regain the full
Poincaré algebra just as we did for fJl; Jjg. Thus, we
have shown that, in the classical theory, one recovers the
standard Poincaré algebra by taking the flat (linear) limit of
the algebra of constraints.
In the presence of holonomy corrections from Eq. (24),

we expect to find a similar deformed version of the
Poincaré algebra. However, our main difficulty lies in
the fact that deformations in the hypersurface deformation
algebra arise in the form of the structure function getting
modified by a function of the phase space variables, while
deformations at the level of the Poincaré algebra imply
modification of the algebra generators. What we find for
the case of holonomy modifications, specifically in the case
of spherically symmetric models, is that these two can be
related using the relation [16]

λPr ¼
1

G

KϕffiffiffiffiffiffiffiffijErjp ¼ 2δKϕ; ð28Þ

with the choice δ ¼ λ

2G
ffiffiffiffiffiffi
jErj

p (λ being a constant usually set

equal to the Planck length), δ being the parameter appear-
ing in the correction function Eq. (19) (this choice of delta
is rather well motivated from the point of view of holonomy
corrections in LQG, from which δ should depend on the
inverse square root from considerations of lattice refine-
ment [32]). The above relation can be proved as follows.
We start from the Brown-York momentum, which plays the
role of the generator of local translations [33],

Pa ¼ −2
Z
∂Σ

d2x
σabffiffiffi
h

p nlπbl; ð29Þ
7In fact, there is no well-defined infinitesimal quantum diffeo-

morphism constraint in LQG for the basis spin network states.
Some progress in constructing it has been achieved in [31].
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where πbl is the gravitational momenta, nl the vector
normal to the spatial slices Σ ¼ r ¼ const, and σab the
metric of the two-boundary embedded in Σ. In particular,
we are interested in computing the radial momentum Pr so
that the above expression reads

Pr ¼ −2
Z

grr sin θffiffiffi
h

p πrrdθdϕ ¼ −
8πgrrπrrffiffiffi

h
p : ð30Þ

Recalling the form of the line element [16]

ds2 ¼ ðEϕÞ2
jErj dr2 þ jErjðdθ2 þ sin2 θdϕ2Þ; ð31Þ

it is immediate to compute the square root of the determi-
nant of the three-metric, i.e.,

ffiffiffi
h

p ¼ Eϕ
ffiffiffiffiffiffiffiffijErjp

sin θ, that
appears in Eq. (30). Again, using the form of the line
element and also the extrinsic curvature components

Krr ¼ Kr
EϕffiffiffiffiffiffiffiffijErjp ; Kθθ ¼ Kϕ

ffiffiffiffiffiffiffiffi
jErj

p
;

Kϕϕ ¼ Kϕ

ffiffiffiffiffiffiffiffi
jErj

p
sin2θ; ð32Þ

we calculate πrr as

πrr ¼
ffiffiffi
h

p

16πG
ðKrr − KhrrÞ ¼ −

1

8πG
Kϕ

jErj
Eϕ sin θ; ð33Þ

having used the fact that

K ¼ gijKij ¼ Kr

ffiffiffiffiffiffiffiffijErjp
Eϕ þ 2KϕffiffiffiffiffiffiffiffijErjp : ð34Þ

Finally, inserting all these quantities into Eq. (30), we
obtain

Pr ¼
1

G

KϕffiffiffiffiffiffiffiffijErjp ; ð35Þ

which gives us exactly Eq. (28).
Given that the (angular) momentum generator is related

to the deformation resulting from holonomy correction, it is
straightforward to find the following deformation of the
commutator between the radial boost Br and the energy P0:

½Br; P0� ¼ iPr cosðλPrÞ; ð36Þ
where we have used the relation Eq. (28).
Following (36), we find the following MDR [18],

P2
0 ¼ 2

�
λPr sin λPr þ cos λPr − 1

λ2

�
≃ P2

r −
λ2

4
P4
r ; ð37Þ

where we have taken into account that the other commu-
tation relation (i.e., ½Br; Pr� and ½Pr; P0�) remain

undeformed. Given Eq. (37), one can also derive an
energy-dependent velocity for massless particles:

vðEÞ ¼ dEðpÞ
dp

≃ 1 −
3

8
λ2E2; ð38Þ

where, writing the above formula, we have substituted the
symmetry generators P0, Pr with the corresponding con-
served charges E, p in Eq. (37).
Thus, we have shown that LQG holonomy corrections

produce a deformation of the Poincaré algebra in the flat
regime. Consequently, there is a modification of the
energy-momentum dispersion relation. In the next section
we find that a different MDR is produced when the analysis
is carried out using self-dual Ashtekar’s variables.

III. SELF-DUAL VARIABLES

Recently, self-dual Ashtekar variables have gained some
traction due to some results in black hole thermodynamics
in the LQG framework [23,24,34]. It turns out that one can
derive the correct form of the Bekenstein-Hawking formula
for both static and rotating black holes without any fine-
tuning of the Immirzi parameter in this formalism.
Moreover, the (spacetime) transformation property of the
self-dual variables has an advantage over their real-valued
counterparts in terms of description as a gauge field [35].
Other interesting features of self-dual variables, with
respect to the algebra of hypersurface deformations applied
to midisuperspace quantizations in LQG, have recently
been discovered [14,22]. Thus it is only natural to inquire if
there are phenomenological consequences of looking into
the MDR due to such variables that can distinguish them
from the real Ashtekar-Barbero connection. On the other
hand, it is still useful to remember that choosing γ ¼ �i is
still a fine-tuning, although much less arbitrary than in the
real case where it is fixed to match predictions of Hawking
radiation. Moreover, the obvious drawback of using com-
plex connections remains the introduction of complicated
reality conditions, which are notoriously difficult to solve
in the full theory. Working with self-dual connections also
means dealing with the noncompact SLð2;CÞ gauge group,
something that still represents an unsolved problem in the
full quantum theory. However, some advances are being
made currently within the context of midisuperspace
models, where they simplify considerably.
The aim of this section is to derive the MDR using the

same procedure adopted in Sec. II, but now working with
self-dual connections. We analyze three different quantiza-
tion schemes based on well-known procedures in the LQG
literature [36–39]. Section III is divided into three parts.
The first contains the formulation of effective constraints
with holonomy corrections of self-dual connections
obtained by complexifying real variables. With this first
choice, the holonomies are evaluated in the fundamental
representations of the SLð2;CÞ group just as the real case of
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Sec. II was based on the fundamental representation of
SUð2Þ. The second part makes use of self-dual connections
(i.e., γ ¼ �i) by exploiting the recently introduced pro-
cedure of analytic continuation that uses the continuous
representations of SUð1; 1Þ as the symmetry group [36].
The third treats the same issue but using the tool of
generalized holonomies, as used in [37,40]. We compute
the deformed dispersion relation for each of these three
possibilities. Our approach is to extract a holonomy-
correction function from each of these approaches, which
we then use to polymerize the effective Hamiltonian
constraint. In each case, we specialize to the spherically
symmetric gravitational system so as to be able to use the
framework developed in the previous Sec. II. We empha-
size that, for the derivation of the polymerization functions,
the original work was done in a homogeneous LQC
scenario. Our intent to transfer the correction function to
the spherically symmetric case is to examine its effect on
the deformation function, which is impossible to do in a
strictly midisuperspace setting (since the spatial diffeo-
morphism constraint in that case is trivially zero). Also, we
are not deriving new rigorous regularization schemes for
these approaches applied to midisuperspace models, but
rather mimicking the work done for the real-valued
variables to make first contact with observations. We return
to this point in the next section. Like before, we shall
only be concerned with the holonomy components along
homogeneous directions, i.e., only pointwise holonomy
corrections.
In the first two approaches, we obtain MDRs that are

different from each other and also with respect to Eq. (37).
On the other hand, the last MDR (i.e., the one we find
adopting the generalized-holonomy approach) coincides
with Eq. (37). This will lead us to claim that different
quantization techniques used in LQG, although not nec-
essarily having physically inequivalent flat limits, are
sometimes distinguishable relying solely on phenomeno-
logical grounds.

A. Fundamental SLð2;CÞ holonomies

Self-dual connections are given by

Ai
a ¼ Γi

a � iKi
a; ð39Þ

where the Immirzi parameter is, thus, purely imaginary, i.e.,
γ ¼ �i. The main difference with respect to real-valued
connections is that now the variables Ai

a are no more in the
adjoint representation of the SUð2Þ group but they are
elements of the noncompact group SLð2;CÞ. Following
Thiemann [41,42], we can obtain the latter gauge group
through a complexification of the former. This means that
any element A ∈ SLð2;CÞ can be written as [43]

A ¼ Aiτi ð40Þ

with Ai ∈ C and τi are the SUð2Þ generators already
introduced at the beginning of the previous section.
As a first pass at the problem, we choose to work in the

fundamental representation of SLð2;CÞ. This is not well
justified from the point of view of LQG since the
functions obtained in this case would then naturally be
unbounded. As a result, singularity resolution is not
possible for such a naive choice of the representation
for the effective constraints. Nevertheless, theoretical
premonitions aside, one is still allowed to do this without
violating any of the gravitational restrictions. Thus we
want to emphasize this case only to be a toy model, a sort
of warm-up exercise in deriving MDRs for self-dual
variables.
For the purposes of our analysis, the crucial thing is that,

in light of Eq. (40), the holonomy of the angular complex
connection Aϕ cos α ¼ γiKϕ is given by

hϕðr; μÞ ¼ expðμγKϕΛA
ϕÞ ¼ coshðμKϕÞI − 2 sinhðμKϕÞΛ;

ð41Þ

with Kϕ ∈ R. As a consequence, following the same line of
reasoning from Sec. II, we can introduce the following
holonomy correction:

Kϕ →
sinhðKϕδÞ

δ
: ð42Þ

Thus, we find the following form for the effective
Hamiltonian,

HQ½N� ¼ −
1

2G

Z
B
drN

�
−
sinh2ðKϕδÞ

δ2
Eϕ

þ 2Kr
sinhðKϕδÞ

δ
Er þ ðΓ2

ϕ − 1ÞEϕ − 2Γ0
ϕE

r

�
;

ð43Þ

where we have considered only the Euclidean part since
the Lorentzian one disappears when working with a
purely imaginary Immirzi parameter [the reason being
that the coefficient of the Lorentzian part is given
by ð1þ γ2Þ].
It is then straightforward to calculate the Poisson

brackets between the quantum-corrected effective
constraints, and by evaluating them one finds the follow-
ing deformation to the hypersurface deformation
algebra,

fHQ½N�; HQ½N0�g ¼ D½coshð2δKϕÞgrrðN∂rN0 − N0∂rNÞ�:
ð44Þ

Clearly, it is different in form from the real-valued case
due to the difference in holonomy-correction functions.
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Once again, we take the Minkowski limit, following
the steps outlined in Sec. II. From Eq. (44), it follows
that

½Br; P0� ¼ iPr coshðλPrÞ; ð45Þ

and, finally, the corresponding MDR takes the form

P2
0 ¼ 2

�
λPr sinh λPr − cosh λPr þ 1

λ2

�
≃ P2

r þ
λ2

4
P4
r :

ð46Þ
This implies that the energy-dependent velocity of
particles in such a deformed Poincaré spacetime takes
the form

vðEÞ ¼ dH
dp

≃ 1þ 3

8
λ2E2: ð47Þ

As is evident from the form of the MDR, such an
approach to self-dual variables would clearly be distin-
guishable from the real Ashtekar-Barbero variables in its
effect on the resulting violation of Lorentz symmetry. As
mentioned above, one might argue that fundamentally this
theory is radically different from the real-valued one in that
the self-dual approach considered here cannot resolve the
Schwarzschild singularity (or, equivalently, the big bang
singularity when applied to early Universe cosmology)
unlike the previous one. Although this is certainly correct,
such purely theoretical considerations are impossible to
directly verify since such (Planck scale) energy scales are
way out of reach of conceivable observations. Even when
looked at as a toy model, we provide a concrete path
towards differentiating this approach from the real-valued
one on phenomenological grounds before moving on to
more realistic approaches towards implementing holonomy
corrections using self-dual variables, as described in the
next part.

B. Analytic continuation: SUð1;1Þ holonomies

Now we want to address once again the system of self-
dual spherically symmetric LQG by using a recently
proposed procedure, namely, an analytic continuation from
the real Immirzi parameter to the imaginary one [34,36].
This recent proposal, originally proposed for LQC and
black hole entropy calculations, puts the self-dual variables
on a much more rigorous footing. The approach is based on
the principle that an imaginary Immirzi parameter has to be
used in combination with an analytic continuation of the
spin j representations to j ¼ − 1

2
þ i

2
swith s ∈ R. The need

for such a procedure can be briefly justified as follows (see,
e.g., Refs. [23,44] for further details). Consider the eigen-
values of the area operator in LQG:

al ¼ 8πl2Pγ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þ

p
: ð48Þ

If the Immirzi parameter is purely imaginary γ ¼ �i, then,
as one can realize by looking at the above expression, the
area eigenvalues necessarily become imaginary. This would
prevent the area operator from being a candidate observable
even at the level of the kinematical Hilbert space. A
heuristic manner to avoid this drawback is given by the
following analytic continuation,

jl →
1

2
ð−1þ isÞ; ð49Þ

since it is immediate to realize that it implies

al → 4πl2P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2l þ 1

q
: ð50Þ

In this way the spectrum of the area operator becomes
continuous but it remains real. In the language of group
theory this corresponds to turning from SUð2Þ to SUð1; 1Þ
representations.8

The expression of the field strength in terms of
holonomies of homogeneous connections has been
derived in Ref. [34] for an arbitrary representation s of
the noncompact SUð1; 1Þ symmetry group. For our pur-
poses here, it is of interest the fact that the result of
Ref. [34] corresponds to the following effective holonomy
correction:

Kϕ →
sinhðδKϕÞ

δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3

sðs2 þ 1Þ sinhðθϕÞ
∂
∂θϕ

�
sinðsθϕÞ
sinhðθϕÞ

�s
;

ð51Þ

where we have introduced the class angle θϕ, defined as

sinh

�
θϕ
2

�
¼ sinh2

�
δKϕ

2

�
: ð52Þ

We refer to Ref. [34] for formal details. Although the form
of the function obtained here is not very tractable, it has
been shown that one has a nonsingular quantum cosmo-
logical solution on implementing it [36]. As a side note, we
remark that the effective solution of this system is only
known so far in the cosmological context and a full
quantum theory is still beyond reach.
After we plug these holonomy corrections (51) into the

Hamiltonian constraint, a tedious but straightforward com-
putation reveals that the hypersurface-deformation algebra
is modified as follows:

8We note that the dimension of the representation also gets a
similar analytic continuation in a systematic procedure in this
formalism; however, it is unimportant for our purposes here.
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fHQ½N�; HQ½N0�g ¼ −3
sðs2 þ 1ÞD

�
coshð2δKϕÞ

�
1

sinhðθϕÞ
∂
∂θϕ

�
sinðsθϕÞ
sinhðθϕÞ

��

þ sinhð2δKϕÞ
δ

∂θϕ
∂Kϕ

�
−
coshðθϕÞ
sinh2ðθϕÞ

∂
∂θϕ

�
sinðsθϕÞ
sinhðθϕÞ

�
þ 1

sinhðθϕÞ
∂2

∂θ2ϕ
�
sinðsθϕÞ
sinhðθϕÞ

��

þ sinh2ðδKϕÞ
δ2

∂2θϕ
2∂K2

ϕ

�
−
coshðθϕÞ
sinh2ðθϕÞ

∂
∂θϕ

�
sinðsθϕÞ
sinhðθϕÞ

�
þ 1

sinhðθϕÞ
∂2

∂θ2ϕ
�
sinðsθϕÞ
sinhðθϕÞ

��

þ sinh2ðδKϕÞ
δ2

�∂θϕ
∂Kϕ

�
2
�

1

sinh3ðθϕÞ
∂
∂θϕ

�
sinðsθϕÞ
sinhðθϕÞ

�
−

coshðθϕÞ
sinh2ðθϕÞ

∂2

∂θ2ϕ
�
sinðsθϕÞ
sinhðθϕÞ

��

þ 1

2 sinhðθϕÞ
∂3

∂θ3ϕ
�
sinðsθϕÞ
sinhðθϕÞ

�
grrðN∂rN0 − N0∂rNÞ

�
: ð53Þ

At this point it is possible to follow the same steps we
worked out in Sec. II in order to derive the corresponding
deformation of the dispersion relation in the flat regime.
Adopting the standard notation used in Refs. [16,18], we
call βðKϕÞ the deformation function appearing in the
Poisson bracket involving scalar constraints in Eq. (53).
It allows us to rewrite the above equation in an implicit but
more compact form as follows:

fHQ½N�; HQ½N0�g ¼ D½βðKϕÞgrrðN∂rN0 − N0∂rNÞ�: ð54Þ

Then, in light of Eq. (28) that still holds true, we deduce
that, in the flat spacetime limit, the commutator between the
radial boost Br and the generator of time translations P0 is
deformed: ½Br; P0� ¼ iβðPrÞPr. Guided by the findings
obtained in Sec. II by working with real connections, we
propose the following ansatz for the MDR:

P2
0 ¼ fðPrÞ; ð55Þ

where one can easily check that fðPrÞ has to satisfy the
relation

fðPrÞ ¼ 2

Z
βðPrÞPrdPr ð56Þ

in order to ensure the invariance under the deformed
relativistic transformations implied by (54). Although we
do not calculate the explicit form of the MDR in this case
due to the complicated nature of the deformation function,
we can still numerically plot its behavior, as shown below
(see Fig. 1). This would illustrate crucial features of its
behavior even without deriving its analytical form. From a
phenomenological point of view, what is of interest is the
leading nontrivial correction to the dispersion relation. It
can be found by making a series expansion of β of
Eqs. (53)–(54) for small values of δ ≈ 0. In this way,
making use of Eq. (56), we find for Eq. (55)

P2
0 ≃ P2

r þ
λ2

4
P4
r : ð57Þ

and for the group velocity

vðEÞ ¼ dH
dp

≃ 1þ 3

8
λ2E2: ð58Þ

Notice that these expressions coincide with Eqs. (46)–(47),
which refer to the case with SLð2;CÞ holonomies.
However, it is not difficult to realize that such a con-
vergence is present only at the leading order. Then, at the
next order, the MDR in the analytic continuation scheme
picks up a negative correction term while the MDR for
SLð2;CÞ holonomies is positive definite [see Eq. (46)].
This can be immediately understood by looking at Fig. 1.

C. Generalized holonomies

In a series of recent papers [37,40], another novel way of
dealing with self-dual Ashtekar variables was proposed.

0.5 1.0 1.5 2.0
Pr

0.5

1.0

1.5

2.0

2.5

3.0

P0

FIG. 1. Behavior (for 0 ≤ Pr < 2) of the on-shell relations for
massless particles (m ¼ 0) implied by four different mass
Casimirs: the red line gives the usual special-relativistic
dispersion relation, the orange line is the MDR obtained with
both real (37) and generalized connections, the green line is the
one given by Eq. (46), and the blue line is the MDR in the analytic
continuation case (55). We set λ≡ 1 and s → 0.
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It is based on the introduction of new fundamental variables
that are called “generalized holonomies.” They are defined
as

hαðAÞ ¼ P exp

�Z
α
_eaiAi

aτi

�
; ð59Þ

where the fundamental difference with respect to standard
holonomies of Eq. (20) consists in an additional factor of i
multiplying the complex connection Ai

a. The main moti-
vation for introducing these objects comes from the fact
that, as shown in Ref. [37], standard holonomies cannot be
defined in the kinematical Hilbert space of LQC.
Generalized holonomies retain some important properties.
However, one of the major drawbacks is that they do not
transform in a simple manner under gauge transformations,
thereby losing one of the pivotal characteristics of
holonomies.
Here we wish to seek which is the form of effective

quantum corrections carried by generalized holonomies
and, furthermore, how they affect the Poisson bracket
fH;Hg. To this end let us consider a generic homogeneous
complex connection, which we call cðrÞ, and its conjugated
momentum pðr0Þ such that fcðrÞ; pðr0Þg ¼ iδðr − r0Þ.
From Eq. (59) it follows that the holonomy of cðxÞ is
given by

hjðcÞ ¼ expðμcτjÞ ¼ coshðμcÞIþ sinhðμcÞσj: ð60Þ

If we take cðrÞ ¼ γKϕðrÞ ¼ iKϕðrÞ, we can rewrite the
above equation as

hϕðr; μÞ ¼ coshðμiKϕÞIþ sinhðμiKϕÞσϕ
¼ cosðμKϕÞIþ sinðμKϕÞΛ; ð61Þ

which coincides exactly with Eq. (22). This means that, for
what regards holonomy corrections, the real case is equiv-
alent to the self-dual case formulated in terms of generalized
holonomies. In fact, in both cases, holonomy corrections
yield the same substitutionKϕ → sinðδKϕÞ=δ in the effective
Hamiltonian constraint [see Eq. (23)]. Finally, in light of the
derivation of theMinkowski limit done in Sec. II, we deduce
that generalized-holonomy corrections produce the same
deformation of the dispersion relation found in Eq. (37). As a
consequence, we claim that, relying on the form of theMDR,
it is not possible to differentiate real effective LQG models
from self-dual ones based on generalized holonomies. It
would be necessary to figure out other observables that may
allow us to distinguish between holonomy corrections from
real and self-dual variables, in the framework of generalized
holonomies.
In Fig. 1 we compare the MDRs found in self-dual

variables using different quantization techniques with the
MDR obtained for the real case, and also to the dispersion
relation of special relativity.

IV. SIGNATURE CHANGE FOR SELF-DUAL
VARIABLES?

The findings in this paper seem to be in apparent conflict
with other recent results regarding self-dual Ashtekar
connections. Specifically, it has been shown that for
spherically symmetric gravity [14], the algebra of the
holonomy-corrected constraints has the same form as the
classical hypersurface-deformation algebra. This implies
that the structure functions of the quantum-corrected
constraint algebra do not pick up any modifications, for
holonomies based on self-dual connections. On the other
hand, in this paper we show that self-dual connections can
also lead to deformations in the algebra when holonomy
corrections are included in the algebra. The main source of
difference stems from the fact that in [14] the holonomies
are based on the Ashtekar variables, Ai

a, whereas in this
paper they are implemented based on extrinsic curvature
components. The Immirzi parameter is chosen to be �i in
both the approaches; however, it appears differently in the
implementation of holonomy corrections. The main differ-
ence in the mathematical structure of the Hamiltonian
constraint comes from the fact that the spin connection
terms, which contain spatial derivatives of the triad com-
ponents,9 do not arise when one works with the ðA; EÞ
variables as the coefficients of these terms are proportional
to ð1þ γ2Þ. However, when working with ðK;EÞ variables,
such terms are reintroduced into the Hamiltonian when one
expresses the self-dual Ashtekar variable in terms of the
extrinsic curvature component and the spin connection.
Explicitly, the Hamiltonian constraint in our work has all
the terms written in terms of ðKr; Kϕ; Er; EϕÞ and deriv-
atives of the triad components. The dependence on the
Immirzi parameter has been written explicitly wherever
they appear (since it appears only in the form of γ2, their
effect is limited to a sign factor in front of some of the
terms). On the other hand, the Hamiltonian constraint in
[14] is formed out of the variables ðAi; EiÞ, i ¼ 1, 2, 3, and
derivatives of the self-dual connection components. This
means that the Immirzi parameter remains hidden and
implicit wherever components of the Ashtekar connection
show up. For the approach taken in this article, the Immirzi
parameter comes back through the implementation of the
local correction functions. (An additional difference
between the two approaches lies in the fact that the
Gauss constraint is solved classically in our work, whereas
it has been kept unsolved in [14] with an additional
canonical pair of variables.) Thus the phase spaces of
the two systems, although classically equivalent, are differ-
ent in the two approaches. However, two systems that are
classically equivalent can give rise to quantum Hilbert

9It has been shown that such terms are primarily responsible
for deformations in the constraint algebra [45].
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spaces that are not unitarily equivalent, this being a ripe
example of it.
The next thing to investigate is the nature of the

deformation function arising in the case of self-dual
variables, working in our approach. As is well known in
the real-variable formalism, the deformation function
appearing in the algebra changes sign in the deep quantum
regime. This is known as signature change in the literature.
The question now is whether the deformation function in
the self-dual case behaves in a similar manner or not. We
examine this issue for each of the cases considered above
individually. First, we explore the holonomy-correction
function for the naive ansatz of the holonomy calculated in
the fundamental representation of the SLð2;CÞ group, in
Sec. III A. In this case, the polymerization function as well
as the deformation appearing in the algebra are both
unbounded and do not exhibit any change of signature.
This is easy to see from the analytic expressions for both
these functions. Next, we look at the case for the gener-
alized holonomies from Sec. III C. In this case, both the
holonomy-correction function and consequently the defor-
mation function are exactly the same as in the case of the
real-valued variables, as has been described above. Thus we
do have signature-changing deformations in this case.
Finally, we examine the case of the self-dual connection
arising from an analytic continuation of the real Immirzi
parameter, as in Sec. III B. In this case, it has been shown
that such a holonomy-correction function results in singu-
larity resolution, when applied to a homogeneous and
isotropic cosmological setting. We wish to emphasize the
fact, already shown in [36], that this function has an upper
bound that is of paramount importance for singularity
resolution. Since the classical singularity is resolved in
the high curvature regime due to this upper bound, it
follows that the deformation function, which is the second

derivative of the holonomy-correction function, turns
necessarily negative in those regimes. Thus the constraint
algebra has the same sign as is required for Euclidean
gravity and we have signature change for the analytic
continuation example, provided one works with our imple-
mentation of incorporating quantum corrections. These
analytical assertions are confirmed in the plot of both
the holonomy-correction functions as well as the deforma-
tion functions, as shown in Figs. 2 and 3.

V. CONCLUSION

Let us summarize our results as follows:
(1) We find that the choice of the Immirzi parameter, in

particular, whether it is a real variable or a purely
imaginary one, can influence the form of the MDR
due to a deformed Poincaré algebra. This, however,
depends on the quantization scheme chosen for the
self-dual connection, and only in the particular case
of the generalized holonomies does the MDR have
the same form as for the real Ashtekar-Barbero
connection.

(2) We further illustrate how self-dual variables can also
lead to the deformation of the hypersurface defor-
mation algebra based on the implementation pro-
cedure of the holonomy corrections. However, it is
worthwhile to point out that even if one takes the
point of view that the self-dual variables do not
deform the algebra, as in [14], that does not change
our central result that the MDRs due to them are
different from the case of the real-valued ones. In
this case, one gets the familiar dispersion relation in
Minkowski space for the self-dual variables and a
deformed relation for the real ones.

(3) Additionally, we illustrate the nature of the defor-
mation functions for the self-dual variables, while
proceeding with the different quantization schemes.

FIG. 3. Behavior (for 0 ≤ λKϕ < 5) of the deformation func-
tion βðKϕÞ in the four different cases we analyzed: the orange line
stands for both real (24) and generalized-connection cases,
the green line is β for complex SLð2;CÞ connections (44),
and the blue line is the one obtained using analytic continuation
(54). The discrete parameter δ is set equal to 1.
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FIG. 2. Behavior (for 0 ≤ λKϕ < 5) of holonomy-correction
functions, i.e., hðKϕÞ, in the four different cases we analyzed: the
orange line stands for both real (19) and generalized connections
(59), the green line is for complex connections given by Eq. (42),
and the blue line represents the holonomy correction with
analytic continuation (51). The discrete parameter δ is set
equal to 1.
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While both the popular schemes chosen in LQG lead
to a signature change, the more naive ansatz does not
have a change in sign. However, this shows a more
general trend that whichever quantization scheme
leads to singularity resolution within LQG essen-
tially also leads to a signature change in the deep
quantum regime.

We have taken the first steps towards confronting LQG
with actual observable consequences regarding how the

local Poincaré symmetry might get deformed in such a
quantum gravity theory. We wish to calculate other such
observables that would be able to capture phenomenologi-
cal signatures of LQG (see [46] for a preliminary step taken
by one of us toward this direction). We are also looking into
the effects of other types of quantization schemes employed
within LQG, depending on the representation of the
internal gauge group, on the MDR of particles in a
deformed (nonclassical) Minkowski spacetime.
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