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In a (2þ 1)-dimensional spacetime with a negative cosmological constant, the thermodynamics and the
entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and
inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and
the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics
to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the
gravitational area Aþ alone, S ¼ SðAþÞ. When the thin shell approaches its own gravitational radius rþ and
turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a
function of Aþ, both when the local temperature of the shell at the gravitational radius is zero and nonzero.
It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have
different properties from the corresponding nonextremal black holes, which have a definite entropy, the

Bekenstein-Hawking entropy SðAþÞ ¼ Aþ
4G, where G is the gravitational constant. It is argued that for

extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤ SðAþÞ ≤ Aþ
4G; i.e., the

extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy Aþ
4G.

Thus, rather than having just two entropies for extremal black holes, as previous results have debated,

namely, 0 and Aþ
4G, it is shown here that extremal black holes, in particular extremal BTZ black holes, may

have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a
particular extremal black hole picks must depend on past processes, notably on how it was formed. A
remarkable relation between the third law of thermodynamics and the impossibility for a massive body to
reach the velocity of light is also found. In addition, in the procedure, it becomes clear that there are two
distinct angular velocities for the shell, the mechanical and thermodynamic angular velocities. We
comment on the relationship between these two velocities. In passing, we clarify, for a static spacetime with
a thermal shell, the meaning of the Tolman temperature formula at a generic radius and at the shell.
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I. INTRODUCTION

The Bañados-Teitelboim-Zanelli (BTZ) spacetime [1] is
the spacetime of a (2þ 1)-dimensional rotating black hole
in a negative cosmological constant Λ background, being
thus an asymptotically anti-de Sitter (AdS) spacetime with
length scale l ¼ 1=

ffiffiffiffiffiffiffi
−Λ

p
. It obeys a no hair theorem [2];

i.e., the black hole is characterized by its gravitational
radius rþ and its Cauchy radius r− or, equivalently, by its
mass m and its angular momentum J . It is thus a simple
(2þ 1)-dimensional spacetime, and as such it provides a
way to test and check many different properties of the Kerr
black holes in the usual (3þ 1)-dimensional spacetime.

An important property of black holes is their entropy;
through it, one can grasp the microscopic intrinsic elements
of a spacetime. For extremal BTZ black holes, i.e., black
holes for which the gravitational radius is equal to the
Cauchy radius, rþ ¼ r−, or the angular momentum is equal
to the mass, J ¼ ml, it was found through topological
arguments in the Euclidean sector that the entropy S is [3]

S ¼ 0: ð1Þ
Other studies in string theory [4] suggested that the
extremal BTZ black hole entropy is the Bekenstein-
Hawking entropy, namely,

S ¼ Aþ
4G

; ð2Þ

where Aþ ¼ 2πrþ is the event horizon area, actually here
a perimeter; rþ is the gravitational radius; G is the
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three-dimensional gravitational constant; and we use units
such that the velocity of the light, the Planck constant, and
the Boltzmann constant are set to one. Thus, the black hole
entropy for extremal BTZ black holes is not a settled issue.
On the other hand, for nonextremal BTZ black holes, i.e.,
black holes for which the angular momentum is less than
the mass, J < ml, or rþ > r−, the entropy S is precisely
and uniquely given by the Bekenstein-Hawking entropy of
Eq. (2). For further studies on the thermodynamics and
entropy of BTZ black holes, see Refs. [5–11].
As the concept of entropy is originally based on quantum

properties of matter, it would be useful to study whether the
black hole thermodynamics could emerge from thermody-
namics of collapsing matter, when we compress matter
within its own gravitational radius. So, in order to under-
stand better the physics at the horizon, a promising setting
is a thin shell, i.e., a thin ring, in a (2þ 1)-dimensional
spacetime that is compressed quasistatically to its own
gravitational radius. Outside the ring, the spacetime has the
BTZ form; inside it, the spacetime is the ground state of the
BTZ spacetime, i.e., a zero mass locally AdS spacetime.
One can calculate the entropy of this matter ring system for
any ring radius R, in particular, when the ring is com-
pressed to its gravitational radius rþ, R ¼ rþ. This has been
done in the nonrotating BTZ case [12] and in the rotating
nonextremal BTZ case [13] where the entropic properties
of the ring at the gravitational radius were deduced. In
particular, it was found that the entropy of the ring is the
Bekenstein-Hawking entropy given in Eq. (2), provided
that the shell’s temperature coincides with the Hawking
temperature of the corresponding black hole. Still lacking is
the study of the thermodynamics and the entropy of the
extremal BTZ ring case, that might emulate the direct
calculation of the entropy of an extremal BTZ black hole.
For other studies related to the properties of matter systems,
in particular, rotational properties in BTZ backgrounds, see
Refs. [14–18].
The fact that shells reflect black hole propertieswas found

in (3þ 1) Reissner-Nordström asymptotically flat space-
times with an electric shell where the entropy properties of
zero charge, i.e., Schwarzschild [19], nonextremal [20], and
extremal [21,22], black holes were reproduced, making
these shells a very useful setting. Related to it there were the
studies of the entropy for quasiblack holes [23,24] and of
quasistatic collapse of matter [25]. In the nonextremal case,
these studies found that at the gravitational radius of the shell
the spacetime, and thus the corresponding black hole, has the
Bekenstein-Hawking entropy of Eq. (2), where in the
(3þ 1)-dimensional case Aþ ¼ 4πr2þ. On the other hand,
for extremal shells, the entropy at the gravitational radius
and thus the entropy of the corresponding extremal black
hole, can be any well-behaved function of the gravitational
radius rþ, or since Aþ ¼ 4πr2þ, the entropy can be any
well-behaved function of the gravitational area Aþ,

S ¼ SðAþÞ. So, among many other values, it can be zero
as in Eq. (1) or Aþ

4G as in Eq. (2).
The ambiguity in the entropy of extremal black holes,

that can be either zero or the Bekenstein-Hawking entropy,
was indeed found first in (3þ 1)-dimensional black holes.
For extremal (3þ 1) black holes, it was found in one
approach based on the horizon topology [26] (see also
Ref. [3]) that the entropy is zero S ¼ 0; see Eq. (1). The
other approach, based on string theory calculations, yields
that the entropy of extremal black holes is given by the
Bekenstein-Hawking entropy, Eq. (2) [27,28]; see also
Refs. [29–38]. On the other hand, for (3þ 1)-dimensional
nonextremal black holes, the entropy is the original
unambiguous Bekenstein-Hawking entropy, S ¼ Aþ

4G of
Eq. (2) [39–41].
Here, we pursue further the problem of the entropy of an

extremal BTZ black hole by using a shell, an extremal
rotating thin shell. This is important in order to gain new
insights into the entropy and other physical relevant
quantities from spacetimes that possess rotation and angu-
lar momentum.
The paper is organized as follows. In Sec. II, we discuss

the mechanics of an extremal rotating thin shell in (2þ 1)
dimensions with a cosmological constant. The exterior
spacetime to the shell is the BTZ spacetime. In Sec. III, we
study the first law of thermodynamics applied for such a
thin shell, derive the thermodynamic entropy of the thin
shell, and show that the entropy is a function of the
gravitational area Aþ only, S ¼ SðAþÞ. We also analyze
the equation of state for the temperature and for the angular
velocity of the shell. In Sec. IV, we consider the extremal
shell with zero local temperature and take the limit to its
gravitational radius, obtaining thus the properties of the
corresponding extremal black hole. In Sec. V, we consider
the extremal shell with some nonzero constant local
temperature and take again the limit to its gravitational
radius, obtaining also the properties of this extremal black
hole. In Sec. VI, we discuss the nontrivial relation between
mechanical and thermal, angular and linear, velocities and
compare the nonextremal and extremal cases. In Sec. VII,
we give some concluding remarks. In the Appendix A, we
clarify the meaning of the Tolman temperature formula at a
generic radius and at the shell for a spacetime with a
thermal shell.

II. THIN SHELLS IN A (2þ 1)-DIMENSIONAL
EXTREMAL BTZ SPACETIME

A. Outer and inner spacetimes

We consider general relativity with a cosmological
constant Λ in a (2þ 1)-dimensional spacetime. We also
assume that Λ < 0, so that the spacetime is asymptotically
AdS, with curvature length scale l ¼ 1=

ffiffiffiffiffiffiffi
−Λ

p
. Throughout

this paper, we work in units where the velocity of light, the
Planck constant, and the Boltzmann constant are set to
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unity. G denotes the gravitational constant in (2þ 1)
dimensions.
We introduce a timelike shell, i.e., a ring, in the (2þ 1)-

dimensional spacetime, with radius R, which divides the
spacetime into the outer and inner regions labelled by (o)
and (i), respectively [12,13] (see also Ref. [18]). We
assume that the spacetime is vacuum everywhere off the
shell. Outside the shell (r > R), the spacetime is described
by the extremal rotating BTZ solution, while inside the
shell (r < R), the spacetime is the ground state of the BTZ
solution and is locally AdS. One can express the line
element for the inner and outer regions by

ds2ðIÞ ¼ −fðIÞðrÞdt2I þ gðIÞðrÞdr2

þ r2ðdϕ − ωðIÞðrÞdtðIÞÞ2; ð3Þ
where t is the time coordinate; ðr;ϕÞ are the radial and
azimuthal coordinates; I ¼ o=i refers to the outer or inner
region in relation to the shell, respectively; and the
functions fðIÞ, gðIÞ, and ωðIÞ read

fðoÞðrÞ ¼
�
r
l

�
2
�
1 −

r2þ
r2

�
2

; gðoÞðrÞ ¼
1

fðoÞðrÞ
;

ωðoÞðrÞ ¼
r2þ
lr2

; ð4Þ

fðiÞðrÞ ¼
�
r
l

�
2

; gðiÞðrÞ ¼
1

fðiÞðrÞ
; ωðiÞðrÞ ¼ 0: ð5Þ

The subscript (I) in the time coordinate tðIÞ indicates that in
general the time coordinate of the outer region tðoÞ differs
from that of the inner region tðiÞ. The radius rþ is the
gravitational radius of the spacetime. In the extremal case,
the case we consider here, the gravitational radius rþ is
equal to the Cauchy radius r−, rþ ¼ r−, and we stick to the
usual notation rþ for such a radius. The gravitational radius
rþ becomes the horizon radius if the solution is an extremal
black hole or an object on the verge of becoming an
extremal black hole. In the extremal case, the radius rþ is
given by

r2þ ¼ 4Gl2m; ð6Þ
where m is the asymptotic Arnowitt-Deser-Misner (ADM)
mass. The radius rþ can also be written as r2þ ¼ 4GlJ
upon using that the spacetime angular momentum J andm
are related in the extremal case by

J ¼ ml: ð7Þ
We assume m > 0. A gravitational or horizon radius rþ
corresponds to a gravitational or horizon area Aþ, here a
perimeter, given by

Aþ ¼ 2πrþ: ð8Þ

The inner region (i) corresponds to the ground state vacuum
solution, i.e., m ¼ 0 and J ¼ 0. In the junction between
the outer extremal BTZ spacetime and the inner vacuum
AdS spacetime, at the radius R, there is a stationary thin
shell. We assume that the shell’s character is always
timelike and the shell is located outside the event horizon,

R ≥ rþ: ð9Þ

Therefore, the outer extremal region (o) does not contain an
event horizon r ¼ rþ, except in the case R ¼ rþ. One can
also define the area A, here a perimeter, of the shell as

A ¼ 2πR; ð10Þ

so that Eq. (9) is written as

A ≥ Aþ: ð11Þ

An important quantity is the redshift function k at some

coordinate outer radius r, k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðoÞðrÞ

q
, which in our

case is

kðrþ; rÞ ¼
r
l

�
1 −

r2þ
r2

�
: ð12Þ

This function gets a value equal to one at the coordinate
r ¼ r0 given by

r0 ¼
l
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l
2

�
2

þ r2þ

s
; ð13Þ

where kðrþ; r0Þ ¼ 1. It is also of interest to display the

redshift function at the position of the shell, k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðoÞðRÞ

q
,

which in our case is

kðrþ; RÞ ¼
R
l

�
1 −

r2þ
R2

�
: ð14Þ

This function gets a value equal to one when the shell is at
the position

R0 ¼
l
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
l
2

�
2

þ r2þ

s
; ð15Þ

where kðrþ; R0Þ ¼ 1, and R0 is always greater than both rþ
and l.
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B. Spacetime at the junction: Properties
of the extremal shell

1. Metric and rotation of the extremal shell

The shell dynamics and its matter content are determined
by the Israel junction conditions. The first junction
condition ensures the uniqueness of the induced geometry

on the shell, at R, hab ¼ hðoÞab ¼ hðiÞab, where a; b ¼ t;ϕ.
The second junction condition determines the energy-
momentum tensor of matter on the thin shell, Sab, that
compensates the jump of the extrinsic curvature tensor
across the shell.
As the outer spacetime is rotating while the inner

spacetime is static, in order to match these two regions,
the shell at r ¼ R must corotate with the outer BTZ region.
We introduce a coordinate system corotating with the shell
by adopting a new angular coordinate dψ such that

dψ ¼ dϕ − ωðIÞðRÞdtðIÞ: ð16Þ

The line element given in Eq. (3) is then written as

ds2ðIÞ ¼ −fðIÞðrÞdt2ðIÞ þ gðIÞðrÞdr2

þ r2ðdψ − oðIÞðrÞdtðIÞÞ2; ð17Þ

where we have introduced

oðIÞðrÞ ¼ ωðIÞðrÞ − ωðIÞðRÞ; ð18Þ

so that at the position of the shell oðIÞðRÞ ¼ 0 and the line
element is diagonal. Also, from Eqs. (4) and (5),

ωðoÞðRÞ ¼
r2þ
lR2

; ð19Þ

and

ωðiÞðRÞ ¼ 0; ð20Þ

respectively. The induced line element on the shell at R
uniquely determined by the first junction condition is
given by

ds2R ¼ −dτ2 þ R2dψ2; R ¼ RðτÞ: ð21Þ

The proper time on the shell τ is defined by

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðoÞðRÞdt2ðoÞ − gðoÞðRÞdR2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðiÞðRÞdt2ðiÞ − gðiÞðRÞdR2

q
: ð22Þ

Since we are interested in a quasistatic process, we always
assume that dR

dτ ¼ 0 and d2R
dτ2 ¼ 0.

2. Energy-momentum tensor of the extremal shell

The rotating thin shell is supported by an imperfect fluid
with an energy-momentum tensor Sab, such that the non-
zero components are Sττ ¼ −σ, Sψψ ¼ p, and Sτψ ¼ j,
where σ, p, and j, represent the energy density of the shell,
the pressure in the shell, and the angular momentum flux
density of the shell, respectively. The second junction
condition gives

σ ¼ r2þ
8πGlR2

; ð23Þ

j ¼ r2þ
8πGlR

; ð24Þ

p ¼ r2þ
8πGlR2

: ð25Þ

Thus, σ ¼ p ¼ j=R. The extremal rotating shell obeys both
the weak and dominant energy conditions [18].
Defining the local proper mass and angular momentum

of the shell byM ¼ 2πRσ and J ¼ 2πRj, respectively, and
using Eqs. (23) and (24), we obtain

M ¼ 2πRσ ¼ r2þ
4GlR

; ð26Þ

J ¼ 2πRj ¼ r2þ
4Gl

: ð27Þ

3. Relation between global extremal spacetime
quantities and local extremal shell quantities

The spacetime quantitiesm and J are related to the shell
quantities M and J. From Eqs. (6) and (26), one finds that
the local proper mass of the shell M is related to the ADM
mass m by

m ¼ MR
l

: ð28Þ

From Eq. (27), one sees that the angular momentum of the
shell J is independent of the position of the shell R, and
from Eqs. (6) and (7), we see that it is identical to the
angular momentum of the outer BTZ spacetime,

J ¼ J: ð29Þ

We would like to emphasize that in our case the inner
region is a (2þ 1)-dimensional spacetime locally AdS and
it has zero ADM mass and zero angular momentum. In the
more complex case that the region inside the shell contains
instead a BTZ black hole, then the total ADM mass and
angular momentum of the outer spacetime defined at
infinity would include in addition the ADM mass and
angular momentum of the interior black hole.
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III. FIRST LAW OF THERMODYNAMICS,
ENTROPY OF AN EXTREMAL ROTATING THIN

SHELL IN A BTZ SPACETIME, AND THE
EQUATIONS OF STATE

A. First law of thermodynamics of an extremal
rotating thin shell in a BTZ spacetime

Now, we turn to the thermodynamics of the thin shell.
Following Ref. [13], we assume that the rotating shell has a
thermodynamic angular velocity Ω and is in thermal
equilibrium, with local temperature T and entropy S.
The entropy S of a system can be expressed as a function
of the state independent variables. One can take as state
independent thermodynamic variables for the thin shell the
proper mass M, the area of the shell A, and the angular
momentum of the shell J. Thus, the entropy of the shell is a
function of these quantities through the first law of
thermodynamics which reads

TdS ¼ dM þ pdA −ΩdJ: ð30Þ

To obtain the entropy S, in general we have to specify the
three equations of state TðM;A; JÞ, pðM;A; JÞ, and
ΩðM;A; JÞ, namely, the temperature, pressure, and angular
velocity equations of state, respectively. To proceed in
this direction, define the inverse local temperature of the
shell as

β ¼ 1

T
: ð31Þ

Note further that in a (2þ 1)-dimensional spacetime the
area A of the shell, actually a perimeter in common usage, is
given by Eq. (10) so that it is mathematically equivalent to
the position R except for the trivial factor 2π; i.e., we can
make use of the variable R instead of A. Using Eq. (31), the
first law of thermodynamics (30) now reads in the (M, R, J)
variables

dS ¼ βdM þ 2πβpdR − βΩdJ: ð32Þ

We need to give the equations of state for βðM;R; JÞ,
pðM;R; JÞ, and ΩðM;R; JÞ.

B. Entropy of an extremal rotating
thin shell in a BTZ spacetime

We can make progress using first, for the time being, the
equation of state for the pressure p. Through the junction
condition, i.e., through the spacetime mechanics, p is
indeed fixed by Eq. (25). Changing to the variables M
and R, and using Eqs. (25) and (26), valid for an extremal
shell, one finds that the equation of state for the pressure p
can be written as

pðM;RÞ ¼ M
2πR

: ð33Þ

Also, one can still take advantage of Eqs. (26) and (27).
Through these equations, we obtain

J ¼ MR: ð34Þ
Equation (34) gives that J, M, and R are not independent,
with dJ ¼ RdM þMdR. Putting Eqs. (33) and (34) into
the first law Eq. (32), we obtain the differential of entropy
dS ¼ β

R ð1 −ΩRÞdðMRÞ. It is then useful to define the
thermodynamic rotational velocity of the shell V by

V ¼ ΩR; 0 ≤ V ≤ 1; ð35Þ
where the constraint V ≤ 1 ensures that the maximum
velocity is the velocity of light. Then, the entropy of the
extremal rotating shell obeys

dS ¼ β

R
ð1 − VÞdðMRÞ: ð36Þ

Clearly, from Eq. (26), i.e., MR ¼ r2þ
4Gl, it is natural to

pass from the variables MR to the variable rþ. In this
variable rþ, the differential of entropy Eq. (36) can further
be reduced to

dS ¼ rþ
2Gl

β

R
ð1 − VÞdrþ: ð37Þ

It is manifest that Eq. (37) has to be written as

dS ¼ sðrþÞdrþ; ð38Þ
where

sðrþÞ ¼
rþ
2Gl

β

R
ð1 − VÞ ð39Þ

is actually the integrability condition for Eq. (37) and where
β and V are arbitrary functions of ðrþ; RÞ, but sðrþÞ is an
arbitrary function of rþ alone. Thus, the relation (38)
indicates that the entropy S of the shell is a function of the
gravitational radius of the shell rþ only,

S ¼ SðrþÞ; R > rþ; ð40Þ
where we have set a constant of integration to zero. Since
one can trade rþ for Aþ trivially through Eq. (8), we write
Eq. (40) in the more visual form

S ¼ SðAþÞ; A > Aþ: ð41Þ
Depending on the choice of sðrþÞ in Eq. (39), the entropy
SðrþÞ, or equivalently SðAþÞ, of the rotating shell in the
BTZ spacetime can take a wide range of values.
Now, in the variables ðrþ; RÞ [or if one prefers, ðAþ; AÞ],

which are the natural variables for calculation in this
problem, one has two remaining functions of state,
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βðrþ; RÞ and Vðrþ; RÞ. These two functions of state,
βðrþ; RÞ and Vðrþ; RÞ, are arbitrary as long as they obey
the thermodynamic constraint (39). The extremal rotating
shell is in this sense quite special.

C. Equations of state for the inverse temperature
β and for the rotational velocity V

1. Inverse temperature β equation of state

Now, we prepare a given extremal shell at a generic
radius R. The unique integrability condition (39) is quite
general and does not impose per se a restriction on the
temperature distribution. However, thermodynamic sys-
tems have to obey the Tolman formula for the temperature
or, equivalently, for the inverse local temperature.
The Tolman temperature formula, by its very meaning,

states that the coordinate dependence of the temperature
obeys some restriction. The Tolman temperature formula
for spherical systems of the type we are using here is
TðrÞ ¼ T0=kðrÞwhere the dependence on r, the local radial
coordinate, exists only in the redshift factor k; see the
Appendix A for a thorough discussion on the Tolman
formula for shells. The quantity T0 may depend on the
parameters of the system. In our case, the gravitational
radius rþ and the radius of the shell R are examples of such
parameters, such that T0 ¼ T0ðrþ; RÞ. For a given shell’s
position, fixed R, we can consider the Tolman formula in
the whole outer space. For some other R, the configuration
changes, and for that new configuration, we can consider
again the Tolman formula in the new whole outer space.
More precisely, suppose that we have a shell at position R
with intrinsic gravitational radius rþ at some given temper-
ature. The local temperature of the spacetime at some
specific radius r is T, say. The Tolman formula relates the
local temperature T to a constant temperature parameter T0.
In the case under discussion, T0 has the meaning of
the local temperature at r ¼ r0, where kðr0; rþÞ ¼ 1 [see
Eq. (13)]. In brief, the Tolman formula states that T at r,
TðrÞ, is a function of a temperature T0, at the radius r0
where kðr0; rþÞ ¼ 1. T0 is itself a function of the character-
istics of the system, rþ and R in our case,

T0 ¼ T0ðrþ; RÞ: ð42Þ

Thus, dividing by the redshift function at r given in
Eq. (12), the Tolman temperature formula in full is

Tðrþ; R; rÞ ¼
T0ðrþ; RÞ
kðrþ; rÞ

: ð43Þ

Inverting this equation, and using Eq. (31), yields the
required Tolman formula for the inverse temperature β, i.e.,

βðrþ; R; rÞ ¼ bðrþ; RÞkðrþ; rÞ; ð44Þ

where

bðrþ; RÞ ¼
1

T0ðrþ; RÞ
: ð45Þ

In this way, one interprets bðrþ; RÞ as the inverse temper-
ature at the radius r ¼ r0 for which k ¼ 1. Conversely, β is
the inverse temperature at r, blueshifted or redshifted with
factor k from the inverse temperature at the position
where k ¼ 1.
Now, on the shell, r ¼ R, so the Tolman formula there is

βðrþ; R; r ¼ RÞ ¼ bðrþ; RÞkðrþ; r ¼ RÞ, or simplifying
the notation,

βðrþ; RÞ ¼ bðrþ; RÞkðrþ; RÞ: ð46Þ

If the shell happens to be at R ¼ R0, where

R0 ¼ l
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl
2
Þ2 þ r2þ

q
, then kðrþ; R0Þ ¼ 1, see Eq. (15),

and so there βðrþ; R0Þ ¼ bðrþ; R0Þ.
It is important to note that the formula (46) for

ab initio extremal shells is more comprehensive, and so
different, than the one found for extremal shells formed from
taking the limit of nonextremal shells [13]. In Ref. [13],
it was found that for nonextremal shells, with radius R and
gravitational and Cauchy radii rþ and r−, the following
Tolman equation at the shell’s radius R, found from the
integrability conditions, holds: βðrþ;r−;RÞ¼bðrþ;r−Þ×
kðrþ;r−;RÞ, where kðrþ; r−; RÞ ¼ R

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r2þ

R2Þð1 − r2−
R2Þ

q
is

the redshift function in the nonextremal case. Taking then,
from the nonextremal shell, the extremal shell limit rþ → r−
and noting that kðrþ; r−; RÞ ¼ kðrþ; RÞ in this limit where
k ¼ kðrþ; RÞ is given in Eq. (14), one finds βðrþ; RÞ ¼
bðrþÞkðrþ; RÞ [13]. Note the difference: the limit of a
nonextremal shell to an extremal shell gives b ¼ bðrþÞ,
and b is a function of rþ alone [13]. On the other hand, when
one has an extremal shell ab initio, one finds b ¼ bðrþ; RÞ,
see Eq. (46); i.e., in this more comprehensive case, b is a
function not only of rþ but also of R.
The difference comes of course from the different

integrability conditions arising in the nonextremal and
extremal cases. For an ab initio extremal shell, the only
integrability condition (39) is too general and gives b ¼
bðrþ; RÞ as in Eq. (46). For a nonextremal shell, the three
integrabilty conditions are very restrictive, and when one
takes the extremal limit, the memory of this restrictiveness
remains, so b ¼ bðrþÞ.

2. Rotational velocity V equation of state

With the choice for the inverse temperature equation of
state (46), we find from Eq. (39) that the rotational velocity
of the shell has the functional form
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Vðrþ; RÞ ¼
R

lkðrþ; RÞ
�
gðrþ; RÞ −

r2þ
R2

�
; ð47Þ

where we have defined

gðrþ; RÞ ¼ 1 −
2Gl2

rþbðrþ; RÞ
sðrþÞ: ð48Þ

For an ab initio extremal shell, g has a dependence on rþ as
well as on R. For a nonextremal shell and taking the limit to
the extremal shell [13], the corresponding function depends
only on rþ. As in the equation of state for the inverse
temperature, this comes from the very different integrability
conditions in each case. Note that g in Eq. (48) corresponds
to c in Eq. (59) of Ref. [13] with g ¼ cr2þ, but now here g in
general has the dependence on R as well as rþ due to the
different integrability conditions as discussed.
With the definition of g in Eq. (48), we have from

Eq. (39) the useful formula

sðrþÞ ¼
rþ

2Gl2
bðrþ; RÞð1 − gðrþ; RÞÞ; ð49Þ

which shows that, although b and g are functions of rþ and
R, their combination is a function of rþ alone. Also, from
the definition of g in Eq. (48), we have another useful
formula:

Vðrþ; RÞ ¼ 1 −
R

lkðrþ; RÞ
ð1 − gðrþ; RÞÞ: ð50Þ

We see that the velocity V → 1 when g → 1, i.e., when
b → ∞ according to Eq. (48), or T0 → 0. In this respect,
there is a direct remarkable interesting relation between the
unattainability of the absolute zero of temperature and the
impossibility for a material body to reach the velocity
of light.

D. Explicit computation of the entropy of the shell

For the explicit computation of the entropy S of the shell,
see Eq. (40) [or Eq. (41)], we have to specify the equations
bðrþ; RÞ and gðrþ; RÞ which determine the thermodynamic
properties of the shell. In this paper, we do not proceed in
this way but, instead, focus on Eqs. (46) and (47) and study
the particular cases for which we can take the limit to the
extremal black hole, R → rþ.

IV. ENTROPY IN THE EXTREMAL BTZ BLACK
HOLE LIMIT: EXTREMAL THIN SHELL WITH

ZERO LOCAL TEMPERATURE T AT THE
GRAVITATIONAL RADIUS

We will now study the extremal black hole limit in the
sense that we take quasistatically the extremal shell to its
own gravitational radius, R ¼ rþ.
In this procedure of going quasistatically to the gravi-

tational radius R ¼ rþ, we have to prepare in advance the

shell. In the first place, we put the shell at some radius
R > rþ and in addition choose the functions β and V, or b
and g, in an appropriate manner. After doing this, we take
the shell to R ¼ rþ. In the second place, we stipulate b and
so β. We know that the Hawking temperature TH for a BTZ
black hole is measured at r0, i.e., T0 ¼ TH; see, e.g.,
Ref. [6]. For an extremal black hole, this temperature is
zero TH ¼ 0. We assume that the equality T0 ¼ TH is valid
for our shell since otherwise the backreaction of quantum
fields would destroy it when the shell approaches the
horizon. Now, the temperature T0 is precisely related to our
b, bðrþ; RÞ ¼ 1=T0ðrþ; RÞ; see Eq. (45). But since
T0 ¼ TH ¼ 0, we have, for a shell at radius R, to set
b ¼ ∞. Thus, from Eq. (44), βðrþ; R; rÞ ¼ ∞, and in
particular βðrþ; R; r ¼ RÞ≡ βðrþ; RÞ ¼ ∞. The temper-
ature at the shell is zero. We can now change the radius of
the shell quasistatically, and the same rationale applies,
since we always want T0 ¼ TH ¼ 0, i.e., b ¼ ∞. In the
third place, we find g and V. From Eq. (49), we find that
when b ¼ ∞ then g ¼ 1. Let us suppose that we start with a
configuration in which g is not equal to 1 exactly and b is
large but finite. Then, 1 − g ¼ sð2Gl2=rþÞ=b, for some
well-specified s. We are interested in the limit in which
b → ∞, g → 1, V → 1. To trace in more detail this limit,
we can choose g as close to 1 as we want and T0 as small as
we like, i.e., b as large as we like. In the end, keeping the
product fixed in Eq. (49) (for a given rþ), we can take the
limit of g to 1 and T0 to zero, i.e., b to infinity. We see that
the shell at R > rþ has been prepared with T0 ¼ 0, i.e.,
b ¼ ∞, and g ¼ 1, such that rþ

2Gl2 bð1 − gÞ ¼ s and so
rþ
2Gl

β
R ð1 − VÞ ¼ s, with thus β ¼ ∞ and V ¼ 1. Since

V ¼ 1, the shell rotates with the velocity of light precisely
in this limit. The shell is now correctly prepared. Having
made the correct preparations on the shell, and as long as
R ≥ rþ and imposing that Eq. (49) is always obeyed for
some fixed sðrþÞ, we can send it to its gravitational
radius rþ.
Let us then send the extremal shell to its own gravita-

tional radius R ¼ rþ. In doing so, we are taking the
extremal black hole limit. Since the entropy differential
for the shell depends only on rþ through the function sðrþÞ
that is arbitrary, see Eq. (39), we see that the entropy of the
extremal shell in the extremal black hole limit is given by

S ¼ SðrþÞ; R ¼ rþ ð51Þ
or, in terms of the horizon area if one prefers,

S ¼ SðAþÞ; A ¼ Aþ: ð52Þ
This is the extremal black hole limit of an extremal shell.
This type of configuration, a matter system at its own
gravitational radius, is called a quasiblack hole [23,24].
Thus, the entropy of the extremal black hole can be any
well-behaved function of rþ, or Aþ, which depends on the
constitution of matter that collapses to form the extremal
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BTZ black hole. Depending on the choice of sðrþÞ, in turn
of β and V, we can obtain any function of rþ, or Aþ, for the
entropy S of the extremal black hole. This result is quite
different from the nonextremal case discussed in Ref. [13],
where the entropy of the shell for which the temperature
coincides with the Hawking temperature can only take the
form of the Bekenstein-Hawking entropy SðAþÞ ¼ Aþ

4G.
Our preceding calculations and discussion were exact.

Now, we can speculate on ways to constrain the entropy
function SðAþÞ for the extremal black hole. For the non-
extremal black holes, the entropy is SðAþÞ ¼ Aþ

4G. This
expression is found when one takes the shell to its own
gravitational radius and assumes that the shell takes the
Hawking temperature. In this case, the pressure at the shell
blows up, p → ∞ [12,13]. This blowing up of the pressure
can be interpreted as the excitation of all possible degrees of
freedom, and the corresponding black hole takes the
Bekenstein-Hawking entropy, the maximum possible
entropy. Taking the extremal limit from a nonextremal black
hole, one finds that in this particular limit the extremal black
hole entropy is theBekenstein-Hawking entropy [12,13] (see
also Refs. [23,24]). Thus, this suggests that the maximum
entropy that an extremal black hole can take is the
Bekenstein-Hawking entropy. Therefore, in this sense, the
range of values for the entropy of an extremal black hole is

0 ≤ SðrþÞ ≤
πrþ
2G

ð53Þ

or, in terms of Aþ,

0 ≤ SðAþÞ ≤
Aþ
4G

: ð54Þ

The result (51), or equivalently (52), is a quite similar
result to the case of the extremal charged shell in a (3þ 1)
Reissner-Nordström spacetime [21,22]. As for the extremal
electrically charged shells [21,22], we then constrained the
entropy function SðrþÞ, or SðAþÞ, for the extremal black
hole. For the nonextremal Reissner-Nordström black holes,
the entropy is given by the Bekenstein-Hawking formula.
In this case, when the shell is taken to its own gravitational
radius, the pressure at the shell diverges, p → ∞ as k−1 (see
(54) of Ref. [13]), and the spacetime is assumed to take the
Hawking temperature. Thus, all possible degrees of free-
dom on the shell are excited, and the black hole formed as
the limit of the shell to its gravitational radius takes the
Bekenstein-Hawking entropy SðrþÞ ¼ Aþ

4G as the maximal
entropy. This suggests that the range of values for the
entropy of the extremal black hole in the (3þ 1) dimen-
sions is given by Eq. (54) [21], as in the case of the rotating
black hole in the (2þ 1) dimensions considered here.
In Table I, we summarize the thermodynamic properties

of the extremal thin shell at its own gravitational radius with
zero local limiting temperature.

So, we have found through a thin shell approach that the
(2þ 1)-dimensional extremal rotating BTZ black hole has
an entropy S ¼ SðAþÞ as we had found for the (3þ 1)-
dimensional extremal Reissner-Nordström electrically
charge black hole [21,22], and again suggested 0 ≤
SðAþÞ ≤ Aþ

4G; see Eq. (54). The extremal black hole entropy
was discussed originally in a (3þ 1)-dimensional black
hole context. It was found in Ref. [26] that the entropy of an
extremal (3þ 1)-dimensional black hole is zero, S ¼ 0,
Eq. (1). This proposal was substantiated by topology
arguments. The (2þ 1)-dimensionalmetric does not contain
one of the angle coordinates when compared to the (3þ 1)-
dimensional metric, but this is unessential since the main
arguments concern the topology of the ðτ; rÞ submanifold,
where τ≡ it is the Euclidean time; see also Ref. [3] for
(2þ 1)-dimensional BTZ black hole. This reasoning is
purely classical, and inclusion of the backreaction due to
quantum fields can destroy this picture. On the other hand,
the proposal put forward by string theory leads to S ¼ Aþ

4G,
Eq. (2), i.e., to a Bekenstein-Hawking entropy for extremal
black hole [27,28]; see Ref. [2] for the BTZ black hole. Our
conclusion that 0 ≤ SðAþÞ ≤ Aþ

4G, see Eq. (54), incorporates

both the S ¼ 0 and the S ¼ Aþ
4G results.

V. ENTROPY IN THE EXTREMAL BTZ BLACK
HOLE LIMIT: EXTREMAL THIN SHELL WITH
NONZERO LOCAL TEMPERATURE T AT THE

GRAVITATIONAL RADIUS

Now, we take again the extremal black hole limit but
assume that the extremal shell has another equation of state
with a nonzero local temperature. Specifically, at any
r > rþ, we consider the following temperature equation
of state,

T0ðrþ; RÞ ¼ T̄0ðrþÞkðrþ; RÞ; ð55Þ

where T̄0 is independent of R. Then, from Eq. (43), the

temperature T is Tðrþ; R; rÞ ¼ T̄0ðrþÞ kðrþ;RÞkðrþ;rÞ . At the shell

r ¼ R, one gets

Tðrþ; RÞ ¼ T̄0ðrþÞ: ð56Þ

In terms of the inverse temperatures, Eq. (55) translates into

bðrþ; RÞ ¼
b̄ðrþÞ

kðrþ; RÞ
; ð57Þ

TABLE I. The extremal shell with zero local temperature at its
own gravitational radius.

T0 b T β Backreaction V Entropy

0 ∞ 0 ∞ Finite 1 0 ≤ SðAþÞ ≤ Aþ
4G
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where

b̄ðrþÞ≡ 1

T̄0ðrþÞ
; ð58Þ

is independent of R. Then, from Eq. (44), the local inverse

temperature β at r is βðrþ; R; rÞ ¼ b̄ðrþÞ kðrþ;rÞ
kðrþ;RÞ. Likewise,

at the shell, r ¼ R, one gets

βðrþ; RÞ ¼ b̄ðrþÞ ð59Þ

is constant and finite.
Combining (48) with (57), we find that the rotational

velocity equation of state can be written as

1 − gðrþ; RÞ ¼ kðrþ; RÞð1 − ḡðrþÞÞ; ð60Þ

where we have defined

ḡðrþÞ≡ 1 −
2Gl2

rþb̄ðrþÞ
sðrþÞ; ð61Þ

which is independent of R and is assumed to be in the
range 0 < ḡðrþÞ < 1.
We now take the limit to the gravitational radius of the

shell, R → rþ. In this limit, k → 0. So, supposing T̄0 finite,
which we do, we see from Eq. (55) that T0ðrþ; RÞ ¼ 0.
Since T̄0 is finite, the local temperature T at the shell is
nonzero but finite, since T ¼ T̄0 from Eq. (56), and hence
the quantum backreaction remains finite even when the
shell is taken to its gravitational radius R ¼ rþ. Since T is
finite, β given in Eq. (59) is also finite, and from Eq. (39),
we find that the shell with nonzero local temperature rotates
with thermal velocity less than the velocity of light V < 1.
Finally, the entropy of the shell obtained by integrating
Eq. (38) is well behaved and can take any function of rþ, or
Aþ. Thus, using the same arguments as before, we can write
that the entropy of this extremal shell in the extremal BTZ
black hole limit also obeys

0 ≤ SðAþÞ ≤
Aþ
4G

: ð62Þ

In Table II, we summarize the thermodynamic properties
of the extremal thin shell at its own gravitational radius with
a local temperature T ¼ T̄0.

VI. DISCUSSION ON THE ANGULAR, AND THE
CORRESPONDING LINEAR, VELOCITIES OF

ROTATING THIN SHELLS

A. Mechanical angular velocities

It is instructive to rewrite the formula for the line element
outside of the shell [see Eqs. (3) and (4)] as

ds2ðoÞ ¼ −fðoÞðrÞdt2ðoÞ þ gðoÞðrÞdr2

þ r2ðdϕ − ωðoÞðrÞdtðoÞÞ2: ð63Þ
Now, define

ωR ≡ ωðoÞðRÞ: ð64Þ
Static observers sitting at infinity, r ¼ ∞, have an AdS
metric, since the BTZ metric turns into an asymptotically
AdS metric at infinity. These observers do not rotate
relative to this AdS spacetime. Thus, observers sitting at
infinity see a rotation of the shell with ωR. Here, we keep
the discussion quite general, for the extremal BTZ case ωR

is given in Eq. (19), i.e., ωR ¼ r2þ
lR2.

At the shell r ¼ R, the metric (63) becomes

ds2R ¼ −dτ2 þ R2dψ2; R ¼ RðτÞ; ð65Þ
where τ is the proper time at the shell and in terms of dtðoÞ is

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðoÞðRÞ

q
dtðoÞ ¼ kðrþ; RÞdtðoÞ [see also (14)], and

we have chosen a new angular coordinate ψ ,

ψ ¼ ϕ − ωRtðoÞ; ð66Þ
such that the metric is displayed as diagonal [see also
Eq. (16)]. The angular velocityωR defined in Eq. (64) appears
thus quite naturally in Eq. (66) and is one of a number of
interesting mechanical angular velocities in this problem. Let
us display the others, that we name ω̄, ω, and ω∞.
From Eqs. (65) and (66), one deduces that an observer

comoving with the shell has ψ ¼ constant. Another
observer on the shell moving with respect to this comoving
observer has angular velocity ω̄ with respect to the proper
time on the shell τ given by

ω̄ ¼ dψ
dτ

: ð67Þ

This same observer has an angular velocity ω with respect
to tðoÞ given by ω ¼ dψ

dtðoÞ
¼ dτ

dtðoÞ
dψ
dτ ¼ kω̄, where here k≡

kðrþ; RÞ to simplify the notation, i.e.,

ω ¼ dψ
dtðoÞ

¼ kω̄: ð68Þ

Now, from Eq. (63), the coordinate ϕ is the angular
coordinate defined at infinity. Define then the angular
velocity ω∞ of an observer on the shell as seen by the
coordinate ϕ and in terms of tðoÞ as

TABLE II. The extremal shell with nonzero local temperature at
its own gravitational radius.

T0 b T β Backreaction V Entropy

0 ∞ Nonzero and finite Finite <1 0 ≤ SðAþÞ ≤ Aþ
4G
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ω∞ ¼ dϕ
dtðoÞ

: ð69Þ

We can now give a relation between ω, ω∞, and ωR, or
between ω̄, ω∞, ωR, and k. Clearly, from Eq. (66),

dψ
dtðoÞ

¼ dϕ
dtðoÞ

− ωR; ð70Þ

so that, using Eqs. (68) and (69) in (70), we find

ω ¼ ω∞ − ωR: ð71Þ

If we prefer to use ω̄, i.e., to use the proper time coordinate
τ, then from the help of Eqs. (67) and (68), we find

ω̄ ¼ ω∞ − ωR

k
: ð72Þ

Expression (72) is quite general. One can specialize. For
instance, the special choice of ω̄ for which a shell’s
observer detects no angular momentum flux density was

given by Eq. (39) of Ref. [18], i.e., ω̄ ¼ r−
rþR

ffiffiffiffiffiffiffiffiffiffi
R2−r2þ
R2−r2−

q
. Note

that ωR is annotated as Ω in Ref. [18], the angular velocity
of the shell with respect to infinity. We use here the notation
Ω for a quite different quantity, the thermodynamic angular
velocity on the shell; see Eq. (30). The linear velocities
corresponding to ω̄, ω, and ω∞ are v̄ ¼ ω̄R, v ¼ ωR, and
v∞ ¼ ω∞R. Angular and linear velocities share the same
properties.
It is also instructive and important to point out the

analogy with the black hole case. In this context, Eq. (72) is
similar to the expression for the angular velocity of the heat
bath surrounding a (2þ 1)-dimensional rotating black hole,

ωhb ¼
ωbh − ωzamo

k
; ð73Þ

where ωhb is the heat bath angular velocity, ωbh is the black
hole angular velocity, ωzamo is the angular velocity of a zero
angular momentum observer (ZAMO), and k in this
formula is the redshift function at the ZAMO radius; see
Eq. (13) of Ref. [5]. So, at a first glance, one may identify
ω̄≡ ωhb, ω∞ ≡ ωbh, and ωR ≡ ωzamo. There is, however,
an important difference between Eqs. (72) and (73). For a
black hole, the quantity ωhb enters both the mechanical and
thermodynamic relations (see Ref. [5] for details), so the
mechanical and thermodynamic angular velocities
coincide. However, for a shell, the relationship between
both angular velocities is much more subtle as we now
discuss.

B. Mechanical and thermodynamic angular
and linear velocities for a rotating shell:
The nonextremal and extremal cases

1. The Problem

Consideration of thermal shells in (2þ 1) dimensions in
the present paper as well in previous ones [18] (see also
Ref. [13]) revealed interesting subtleties otherwise hidden.
At first sight, the shell thermodynamic angular velocity Ω
that appears in the first law of thermodynamics, Eq. (30),
should be immediately identified with the shell mechanical
angular velocity of a rotating shell fluid ω̄, Eq. (72), in the
same way as the quantity ωhb is both the mechanical and
thermodynamic angular velocity in the black hole case, as
discussed above (see Ref. [5]).
However, the two angular velocities, namely, the ther-

modyamic angular velocity Ω and the mechanical velocity
ω̄, are indeed conceptually different; they have different
physical meanings. The quantity Ω is the quantity ascribed
to a thermodynamic system as a whole, it is calculated from
a pure thermodynamic approach [13]. On the other hand,
the quantity ω̄ represents the angular velocity of the
effective perfect fluid that fills the shell; i.e., it is obtained
from geometry and mechanics, namely, by gluing two
metrics, the BTZ metric and the zero mass BTZ metric on
the different sides of the shell, calculating the correspond-
ing energy-momentum tensor and determining the angular
velocity of the effective fluid in terms of which the
vanishing angular momentum flux is observed [18]. The
same rationale applies of course for the corresponding
linear velocities, V ¼ ΩR and v̄ ¼ ω̄R; i.e., they are
conceptually different.
So, a priori, it is not obvious at all whether or not, and

under what conditions, these two velocities can be iden-
tified. It is thus instructive to compare this issue for
extremal and nonextremal shells.

2. Extremal shell

For an extremal shell, the situation is interesting and
different from what one would expect.
Indeed, the two velocities Ω and ω̄, or V and v̄, do not

need to coincide at all, as the integrability condition (39)
does not restrict the form of the function Ω in the extremal
case. We will explain this fact now.
The thermodynamic angular velocity Ω presents new

features. As it is argued above in Sec. IV, when T ¼ 0, then
we must select

Ω ¼ 1

R
; T ¼ 1

β
¼ 0 ð74Þ

so that

V ¼ 1; ð75Þ
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in the extremal limit under discussion, to ensure the
finiteness of sðrþÞ. This is the extremal black hole limit
from an extremal thin shell with zero local temperature T;
see also Table I. However, when T ≠ 0, see Sec. V, any
thermodynamic angular velocity Ω obeying

Ω <
1

R
; T ¼ 1

β
≠ 0; ð76Þ

i.e.,

V < 1; ð77Þ
is suitable provided that T ¼ β−1 remains nonzero in the
extremal black hole limit R → rþ; see Eq. (39). This is the
extremal black hole limit from an extremal thin shell with
nonzero local temperature T; see also Table II.
The mechanical angular velocity ω̄, on the other hand, is

given by

ω̄ ¼ 1

R
; ð78Þ

as is seen from Eq. (82). As a result, the linear mechanical
velocity, v̄ ¼ ω̄R, is

v̄ ¼ 1; ð79Þ
which coincides with the velocity of light. This is quite
natural for a massless fluid, according to the discussion at
the end of Sec. V in Ref. [18].

3. Nonextremal shell

For a nonextremal shell, the situation is what one expects
upon imposing a reasonable regularity condition. We will
see this now.
Fornonextremal rotating shells, fromEq. (59)ofRef. [13],

the thermodynamic angular velocity Ω is equal to

Ω ¼ r−

rþR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r2þ

R2Þð1 − r2−
R2Þ

q �
gðrþ; r−Þ −

r2þ
R2

�
; ð80Þ

where again gðrþ; r−Þ is an arbitrary function of the gravi-
tational and Cauchy radii, rþ and r−, respectively. Now, if
(i) theblackhole limitR → rþ is reachableand (ii)wewant to
have Ω finite on the horizon, these conditions select the
choice g ¼ 1, and hence

Ω ¼ r−
rþR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2þ
R2 − r2−

s
: ð81Þ

Then, Ω ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R − rþ

p
→ 0 in this limit.

The mechanical angular velocity ω̄ was obtained in
Eq. (39) of Ref. [18] from matching conditions, namely,

ω̄ ¼ r−
rþR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2þ
R2 − r2−

s
: ð82Þ

As we can see, in general, i.e., without imposing any
condition, Ω given in Eq. (80) is different from ω̄ given in
Eq. (82), Ω ≠ ω̄, so thermodynamic and mechanical
angular velocities do not coincide. The same applies for
the corresponding linear velocities, i.e., v ¼ ΩR and
v̄ ¼ ω̄R, do not coincide in general. However, for the
choice g ¼ 1, one gets Eq. (81) that ensures the black hole
limit, and both Eq. (81) and Eq. (82) coincide in this case;
i.e., Ω ¼ ω̄.
To some extent, the situation resembles that with the

temperature. Then, T0 ≠ TH in general, where T0 is the
temperature of the shell measured at r0 in the AdS case and
TH is theHawking temperature of a black holewith the same
mass andother parameters.However, if the blackhole limit is
to be possible, we must take T0 ¼ TH since otherwise an
infinite backreaction would destroy the horizon; see
Ref. [20] for more detailed discussion in the asymptotically
flat case. Thus, in both cases, for the temperature and angular
velocity, the existence of a well-defined black hole limit
pushes forward the regularity conditions that make the
choice of these quantities unambiguous.

VII. CONCLUSIONS

We have investigated the thermodynamic entropy of an
extremal rotating thin shell in the (2þ 1)-dimensional
asymptotically AdS spacetime, where the exterior and
interior of the shell were taken to be the BTZ spacetimes
and the ground state AdS spacetime, respectively. The
matching procedure of these two geometries is quite similar
to the nonextremal shells, but, nevertheless, the thermo-
dynamic properties of the extremal shell have been shown
to be quite different from those of the nonextremal shell.
For the extremal rotating shells, the thermodynamic state

independent variables, namely, the local proper mass M of
the shell, the position R of the shell, and the angular
momentum J of the shell, which appear in the first law of
thermodynamics, are not independent but are constrained
by the relation J ¼ MR. Then, it was shown that the
thermodynamic integrability condition does not restrict
the form of the inverse temperature β and rotational
velocity V equations of state of the shell, except that the
product βR ð1 − VÞmust be solely a function of rþ. This also
leads to the fact that the entropy S is a function of the
gravitational radius rþ alone, S ¼ SðrþÞ, or if one prefers,
the gravitational area Aþ, S ¼ SðAþÞ. To find the temper-
ature distribution throughout the spacetime, one must resort
to the Tolman temperature formula.
We have considered two specific classes of equations of

state for the temperature, one in which the local temper-
ature at the shell is zero and the other in which the local
temperature at the shell is nonzero and finite. We then took
appropriately the extremal black hole limit and found that
in both cases the extremal black hole entropy is S ¼ SðAþÞ,
arguing convincingly that one should set 0 ≤ SðAþÞ ≤ Aþ

4G;
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i.e., the extremal black hole entropy has values in between
zero and the maximum entropy, the Bekenstein-Hawking
entropy Aþ

4G. Thus, rather than having just two entropies for
extremal black holes, as previous results have debated,
namely, 0 and Aþ

4G, it is shown here that extremal black holes,
in particular extremal BTZ black holes, may have a
continuous range of entropies, limited by precisely those
two entropies. Surely, the entropy that a particular black
hole picks must depend on past processes, notably on how
it was formed. In the gravitational collapse of a shell to
form an extremal black hole, the entropy could depend on
the equation of state the shell; in the case of extremal black
hole pair creation, the entropy could depend on the system
initial conditions.
One can try to explain how the entropy of an extremal

black hole is ambiguous and can take a range of values,
S ¼ SðAþÞ. The no hair theorems for the nonextremal BTZ
black hole state that the final dynamical classical black hole
is characterized only by its horizon radius rþ and Cauchy
radius r− (or equivalently by the mass m and angular
momentum J ) and for the extremal black hole only by rþ,
as rþ ¼ r− (or equivalently by the massm, as J ¼ ml). In
the nonextremal case, the entropy is given in Eq. (2),
S ¼ Aþ

4G, and it is a quantum, i.e., nonclassical, quantity at its
very heart, since the area, or perimeter in the (2þ 1) case,
Aþ is measured in terms of Planck areas 1=G (recall the
Planck constant is put to unity). Remarkably, this result is
saying that the black hole entropy, the variable that
characterizes the macroscopic quantum state, is character-
ized only by Aþ which itself is a function only of the
variables of the no hair theorems, namely, rþ and r− (or m
and J ). For the extremal case, the situation is different.
Although the area Aþ still appears in the entropy, the
entropy can be now a general function of the area itself,
SðAþÞ, and does not need to be just proportional to it. Thus,
somehow the entropy for the extremal case has more
freedom; it can depend on the initial object states that will
form the extremal black hole, as for instance on the
equation of state of the matter used to form the extremal
black hole. At present, the origin of such an unusual
behavior in the extremal case, that the entropy depends on
the initial state of the system, is unknown, and a detailed
elucidation of this issue would be of significant physical
interest. Surely, fundamental theories to describe the
entropy have to take this into account.
Two further important and interesting features have

arisen in our analysis. One feature that came about in
analyzing the shell with zero temperature is remarkable and
should be mentioned. In this case, we have found a relation
between the limits T → 0 and V → 1, i.e., between the
impossibility of reaching absolute zero as the third law of
thermodynamics states, and the impossibility for a massive
body to reach the velocity of light. Another interesting
feature that our considerations revealed and that deserves

further analysis in a wider context of gravitational thermo-
dynamics, not only for the (2þ 1)-dimensional spacetimes,
is the relationship between two angular, or between two
linear, velocities, namely, the mechanical velocity v̄ and the
thermodynamic velocity V. For the extremal rotating shells
that we have studied, this is especially pronounced since
v̄ ¼ 1, while the thermodynamic velocity V can take any
value equal to or less than 1.
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APPENDIX A: TOLMAN TEMPERATURE AND
INVERSE TEMPERATURE FORMULAS

FOR A SPHERICAL SHELL:
GENERAL DISCUSSION, AND THE

NONEXTREMAL AND EXTREMAL CASES

1. Tolman Inverse Temperature Formula For a
Spherical Shell: The General Formula

The Tolman temperature formula states that the coor-
dinate dependence of the temperature in a static back-
ground with radial coordinate r is

T ¼ T0

kðrÞ ; ðA1Þ

where T0 depends not on r but on some possible parameters
related to the system, T depends on r through kðrÞ only and
on these possible parameters of the system, and kðrÞ is the
redshift function that depends essentially on r but also can
possibly depend on the other possible parameters. For the
inverse temperatures β and b, with β ¼ 1=T, b ¼ 1=T0,
formula (A1) turns into

β ¼ bkðrÞ: ðA2Þ
Wewill work with the inverse temperatures and the formula
Eq. (A2). By inverting it, we can always revert to the
relation between the temperatures themselves, Eq. (A1).
We start with a general nonextremal rotating BTZ

spacetime in which a shell, or ring, is immersed at radius
R. The discussion is quite general and, with small mod-
ifications, also holds for spacetimes with a spherical shell in
other dimensions. For such a spacetime, the gravitational
radius rþ, the Cauchy radius r−, and the radius of the shell
R are the parameters that characterize the system. Thus, in
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general, for a nonextremal rotating BTZ spacetime with a
shell at radius R, the Tolman general formula Eq. (A2)
reads in this case

βðrþ; r−; R; rÞ ¼ bðrþ; r−; RÞkðrþ; r−; rÞ; ðA3Þ

where now kðrþ; r−; rÞ for the nonextremal shell can be
written explicitly as

kðrþ; r−; rÞ ¼
r
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

r2þ
r2

��
1 −

r2−
r2

�s
: ðA4Þ

For a given set of the parameters ðrþ; r−; RÞ, we can
consider the Tolman inverse temperature formula Eq. (A3)
which gives the inverse temperature β at a coordinate r
knowing the inverse temperature b at the radius where
k ¼ 1; i.e., β is the inverse temperature at r, blueshifted or
redshifted with factor k from the inverse temperature b at
the position where k ¼ 1. One can then change the set
ðrþ; r−; RÞ and consider again the Tolman formula for the
inverse temperature at r for this new setting.

2. Tolman Inverse Temperature
Formula For a Spherical Shell:

The Extremal Case

One can now treat the ab initio extremal case. For that,
we take the extremal limit of the nonextremal shell,
rþ → r−. Then, Eq. (A3) gives in this limit

βðrþ; R; rÞ ¼ bðrþ; RÞkðrþ; rÞ; ðB1Þ

where now from Eq. (A4) one has kðrþ; rÞ ¼ r
l ð1 −

r2þ
r2 Þ. As

before, the function b can be interpreted as the inverse
temperature of the shell at the position r0, where
kðrþ; r0Þ ¼ 1 [see also Eq. (13)]. At the shell, r ¼ R,
the Tolman formula is

βðrþ; RÞ ¼ bðrþ; RÞkðrþ; RÞ; ðB2Þ
where

kðrþ; RÞ ¼
R
l

�
1 −

r2þ
R2

�
: ðB3Þ

There is no independent thermodynamic integrability con-
dition for β or b, and so the general equation for the
thermodynamic shell is b ¼ bðrþ; RÞ.
One could expect that the dependence on R could be

dropped, i.e., b ¼ bðrþÞ, which would be the case if one
took directly the limit to an extremal case from a non-
extremal case. But for an ab initio extremal shell, this does
not happen, and one has indeed b ¼ bðrþ; RÞ. This is the
reason why extremal shells are different thermodynamic
systems from nonextremal shells and extremal black holes
are different thermodynamic systems from nonextremal
black holes. See also Eqs. (44) and (46) in the main text.

In the above discussion, we implied that R > rþ, the
quantity b being finite. If a black hole limit is allowed, there
are restrictions that force us to take b ¼ ∞; see Secs. IVand
V and Tables I and II.

3. Tolman Inverse Temperature Formula For A
Spherical Shell: The Nonextremal Case

One can show that in the nonextremal case Eq. (A3)
simplifies to

βðrþ; r−; R; rÞ ¼ bðrþ; r−Þkðrþ; r−; rÞ; ðC1Þ
i.e., the R dependence in bðrþ; r−; RÞ drops, and one gets
instead simply bðrþ; r−Þ, with kðrþ; r−; rÞ still being given
by Eq. (A4).
Indeed, at r ¼ R, the Tolman formula (A3) is

βðrþ; r−; R; r ¼ RÞ ¼ bðrþ; r−; RÞkðrþ; r−; r ¼ RÞ; i.e.,
βðrþ;r−;RÞ¼bðrþ;r−;RÞkðrþ;r−;RÞ with kðrþ; r−; RÞ ¼
R
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r2þ

R2Þð1 − r2−
R2Þ

q
. This is the Tolman inverse temperature

expression at the shell radius R. If the shell happens to be at
R ¼ R0, where R0 is the radius at which kðrþ; r−; R0Þ ¼ 1,
then at R0, βðrþ; r−; R0Þ ¼ bðrþ; r−; R0Þ.
Now, it is astonishing that the thermodynamic integra-

bility conditions for the nonextremal BTZ shell case (this
feature also holds for shells in other dimensions) give an
equation which is a particular case of βðrþ; r−; RÞ ¼
bðrþ; r−; RÞkðrþ; r−; RÞ. Indeed, for the nonextremal rotat-
ing shells with two gravitational radii, rþ and r− (rþ > r−),
the integrability conditions obtained from the first law of
thermodynamics yield that the local inverse temperature
equation of state of the shell [13] is

βðrþ; r−; RÞ ¼ bðrþ; r−Þkðrþ; r−; RÞ; ðC2Þ
where bðrþ; r−Þ is an arbitrary function of rþ and r− and
depends on the matter of the shell, and again k is given by

kðrþ; r−; RÞ ¼
R
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

r2þ
R2

��
1 −

r2−
R2

�s
; ðC3Þ

which represents the gravitational redshift factor in the
nonextremal BTZ spacetime. Note that here, from the
integrability conditions, one finds b ¼ bðrþ; r−Þ, see
Eq. (C2), whereas directly from Tolman formula, one
has b ¼ bðrþ; r−; RÞ. Thus, thermodynamics, through its
integrability conditions, restricts the parameter space for b.
Equation (C2) is still the Tolman temperature equation for
the shell at the shell, but a restricted form. Thus, by
continuity, one also recovers the Tolman temperature
formula for the whole spacetime displayed in Eq. (C1).
Note again that the extremal limit of Eq. (C1), i.e., of a

nonextremal shell, is βðrþ; R; rÞ ¼ bðrþÞkðrþ; rÞ, a par-
ticular, restrictive, case of the general ab initio extremal
shell Eq. (B1). For extremal shells, the correct expression
is, of course, Eq. (B1).
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