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Isolated objects in asymptotically flat spacetimes in general relativity are characterized by their
conserved charges associated with the Bondi-Metzner-Sachs (BMS) group. These charges include total
energy, linear momentum, intrinsic angular momentum and center-of-mass location, and, in addition, an
infinite number of supermomentum charges associated with supertranslations. Recently, it has been
suggested that the BMS symmetry algebra should be enlarged to include an infinite number of additional
symmetries known as super-rotations. We show that the corresponding charges are finite and well defined,
and can be divided into electric parity “super center-of-mass” charges and magnetic parity “superspin”
charges. The supermomentum charges are associated with ordinary gravitational-wave memory, and the
super center-of-mass charges are associated with total (ordinary plus null) gravitational-wave memory, in
the terminology of Bieri and Garfinkle. Superspin charges are associated with the ordinary piece of spin
memory. Some of these charges can give rise to black hole hair, as described by Strominger and Zhiboedov.
We clarify how this hair evades the no-hair theorems.
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I. INTRODUCTION

Spacetimes which are asymptotically flat at future null
infinity in general relativity have a group of asymptotic
symmetries known as the Bondi-Metzner-Sachs (BMS)

group [1–3]. Associated with each generator ~ξ of this group
and each cross section of future null infinity, there is a
conserved charge1 Q [4–6]. These charges include all the
charges associated with the Poincaré group and, in addi-
tion, an infinite number of new supermomentum charges

associated with supertranslations. The generators ~ξ of the
BMS group are smooth vector fields on future null
infinity Iþ.
Recently Banks [7] and Barnich and Troessaert [8–10]

have suggested that a larger symmetry algebra might be
physically relevant. In particular, they suggested including
vector fields called “super-rotations” which contain ana-
lytic singularities as functions on the conformal 2-sphere at
infinity. These are formally infinitesimal symmetries of the
theory, but they cannot be exponentiated to yield smooth
finite diffeomorphisms, unlike the generators of the stan-
dard BMS group. There is not yet a general theory for
understanding when singular vector fields of this type
can be used to construct conserved charges and fluxes at
future null infinity, and there has been some debate in the
literature on the physical relevance or utility of the extended
algebra.

One approach to this question is to determine whether
the new symmetries give rise to relations between S-matrix
elements, like the standard symmetries do [11,12]. This
was shown to be the case for the tree level S-matrix by
Kapec et al. [13].
Another approach is to determine whether the new

symmetries give rise to well-defined and finite classical
conserved quantities. Here we adopt this approach, follow-
ing Barnich and Troessaert [10], who showed that the
charges associated with super-rotations vanish in the Kerr
spacetime. We show that the super-rotation charges are in
general finite. There are two pieces of these charges, an
electric parity piece and a magnetic parity piece. We call the
electric parity charges “super center-of-mass” charges, since
they are generalizations of the center-of-mass piece of
special-relativistic angular momentum. We call the magnetic
parity charges “superspin” charges, since they are general-
izations of the intrinsic angular momentum piece of special-
relativistic angular momentum. In addition, we show that
supermomentum charges are associated with ordinary
gravitational-wavememory and super center-of-mass charges
are associated with total (ordinary plus null) gravitational-
wavememory, in the terminology ofBieri andGarfinkle [14].
The superspin charges are associated with the ordinary piece
of“spinmemory,” thenewtypeofgravitational-wavememory
discovered by Pasterski et al. [15].
The paper is organized as follows. Section II reviews the

standard BMS group and algebra and also the extended
BMS algebra. In Sec. III, we compute the conserved
charges. In Sec. IV, we make some remarks about the
physical significance of BMS and extended BMS charges
and how they can be measured.
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1By conserved charge we mean a charge that would be

conserved in the absence of fluxes of radiation to null infinity.
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II. THE BMS SYMMETRY GROUP AND THE
EXTENDED BMS ALGEBRA

A. Asymptotically flat spacetimes
in retarded Bondi coordinates

We start by reviewing the definition of the BMS
symmetry group and its action on solutions of Einstein’s
equations near future null infinity. We closely follow the
exposition of Barnich and Troessaert [8,16] as simplified
and specialized by Strominger and collaborators [11–
13,15,17]. Our notation, however, will follow Barnich
and Troessaert in maintaining covariance with respect to
the 2-sphere coordinates instead of using the complex-
coordinate convention used in Refs. [11–13,15,17].
Following Refs. [1,8,11–13,15–17] we use retarded

Bondi coordinates ðu; r; θ1; θ2Þ near future null infinity.
The metric has the form

ds2 ¼ −Ue2βdu2 − 2e2βdudr

þ r2γABðdθA − UAduÞðdθB − UBduÞ; ð2:1Þ

where A, B ¼ 1, 2, and U, β, UA, and γAB are functions of
u, r, and θA. The four gauge conditions that are imposed
are grr ¼ 0, grA ¼ 0, and2

∂r detðγABÞ ¼ 0: ð2:2Þ

We now expand the metric functions as series in 1=r.
The order in 1=r at which the various expansions start can
be deduced from the covariant definition of asymptotic
flatness at future null infinity [18]. The expansions are3

[1,8,11–13,15–17]

β ¼ β0
r
þ β1

r2
þ β2

r3
þOðr−4Þ; ð2:3aÞ

U ¼ 1 −
2m
r

−
2M
r2

þOðr−3Þ; ð2:3bÞ

γAB ¼ hAB þ 1

r
CAB þ 1

r2
DAB þ 1

r3
EAB þOðr−4Þ; ð2:3cÞ

UA ¼ 1

r2
UA þ 1

r3

�
−
2

3
NA þ 1

16
DAðCBCCBCÞ

þ 1

2
CABDCCBC

�
þOðr−4Þ: ð2:3dÞ

Here the various coefficients on the right-hand sides are
functions of ðu; θAÞ only. The metric hABðθCÞ is the fixed

round metric on the unit 2-sphere. In adapted coordinates
ðθ;φÞ, it is dθ2 þ sin2 θdφ2, but we will use general
coordinates θA and retain two-dimensional covariance
throughout. We adopt the convention that capital latin
indices (e.g., A, B) are raised and lowered with hAB, and
we denote by DA the covariant derivative associated with
hAB. There are three important, leading-order functions
in the metric’s expansion coefficients [1,8,11–13,15–17]:
the Bondi mass aspect mðu; θAÞ; the angular-momentum
aspect4 NAðu; θAÞ; and the symmetric tensor CABðu; θAÞ
whose derivative

NAB ¼ ∂uCAB ð2:4Þ

is the Bondi news tensor.
Imposing the gauge condition (2.2) now yields the

constraints

hABCAB ¼ 0; ð2:5aÞ

DAB ¼ CCDCCDhAB=4þDAB; ð2:5bÞ

EAB ¼ CCDDCDhAB=2þ EAB; ð2:5cÞ

where the tensors DAB and EAB are traceless.
We assume the following behavior of the stress-energy

tensor as r → ∞:

Tuu ¼
1

r2
T̂uuðu; θAÞ þOðr−3Þ; ð2:6aÞ

Trr ¼
1

r4
T̂rrðu; θAÞ þ

1

r5
~Trrðu; θAÞ þOðr−6Þ; ð2:6bÞ

TuA ¼ 1

r2
T̂uAðu; θAÞ þOðr−3Þ; ð2:6cÞ

TrA ¼ 1

r3
T̂rAðu; θAÞ þOðr−4Þ; ð2:6dÞ

TAB ¼ 1

r
T̂ðu; θAÞhAB þOðr−2Þ; ð2:6eÞ

together with Tur ¼ Oðr−4Þ. These assumptions are moti-
vated by the behavior of radiative scalar-field solutions in
Minkowski spacetime.5 Imposing stress-energy conserva-
tion yields

2One could further specialize the gauge by imposing
∂u detðγABÞ ¼ 0, but in the context of the expansion in powers
of 1=r this condition follows from Eqs. (2.2) and (2.3).

3Some of the higher-order terms in these expansions are not
needed in this section but will be needed in Sec. II D below.

4Our definition of the angular-momentum aspect NA
[cf. Eq. (2.3d)] follows Ref. [15] rather than the one used in
Ref. [16]. Our definition also coincides with that used in Sec. V. 6
of the book by Chrusciel et al. [19], up to a factor of −3.

5The case considered in Refs. [11–13,15,17] corresponds to
T̂ ¼ 0, which applies for example to conformally invariant fields.
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∂uT̂rA ¼ DAT̂; ð2:7aÞ

∂uT̂rr ¼ −2T̂; ð2:7bÞ

from OðA; 5Þ and Oðr; 3Þ, respectively, where Oðα; nÞ
means the Oðr−nÞ piece of the α component of
∇βTαβ ¼ 0. Combining Eqs. (2.7) we can write

T̂rAðu; θAÞ ¼ ŤrAðθAÞ −
1

2
DAT̂rrðu; θAÞ; ð2:8Þ

for some function ŤrAðθAÞ.
We now impose Einstein’s equations Gab ¼ 8πTab, in

units with G ¼ 1. We adopt the shorthand notation that
Oðαβ; nÞmeans theOðr−nÞ piece of the ðαβÞ component of
Einstein’s equations. We obtain

UA ¼ −DBCAB=2; ð2:9aÞ

β0 ¼ 0; ð2:9bÞ

β1 ¼ −
1

32
CABCAB − πT̂rr; ð2:9cÞ

β2 ¼ −
1

12
CABDAB −

2π

3
~Trr; ð2:9dÞ

DADAB ¼ −8πŤrB; ð2:9eÞ

∂uDAB ¼ 0; ð2:9fÞ

from OðrA; 2Þ, Oðrr; 3Þ, Oðrr; 4Þ, Oðrr; 5Þ, OðrA; 3Þ, and
OðAB; 1Þ, respectively. Note that it follows from Eq. (2.9e)
that

DAB ¼ 0 ð2:10Þ

in vacuum. We also obtain from Oðuu; 2Þ and OðuA; 2Þ
evolution equations for the Bondi mass aspect m and the
angular-momentum aspect NA [11,15,16]:

_m ¼ −4πT̂uu −
1

8
NABNAB þ 1

4
DADBNAB; ð2:11aÞ

_NA ¼ −8πT̂uA þ πDA∂uT̂rr þDAmþ 1

4
DBDADCCBC

−
1

4
DBDBDCCCA þ

1

4
DBðNBCCCAÞ

þ 1

2
DBNBCCCA: ð2:11bÞ

Here dots denote derivatives with respect to u. The leading-
order components of the Weyl tensor for these solutions are
listed in Appendix A.

B. BMS symmetry group

BMS symmetries are diffeomorphisms of future null
infinity, Iþ, to itself that preserve its intrinsic geometric
properties [18,20]. Explicitly, in Bondi coordinates, the
diffeomorphism ψ takes the point ðu; θAÞ on Iþ to ðū; θ̄AÞ,
where

ū ¼ 1

wðθAÞ ½uþ αðθAÞ�; ð2:12aÞ

θ̄A ¼ θ̄AðθBÞ: ð2:12bÞ

Here the mapping θA → θ̄AðθBÞ must be a conformal
isometry of the 2-sphere, of which there is a six-parameter
group, and the corresponding function ω is defined by
ψ�hAB ¼ ω−2hAB. The function α can be freely chosen. The
corresponding infinitesimal symmetries are ū ¼ uþ ξu,

θ̄A ¼ θA þ ξA, where the vector field ~ξ on Iþ is

~ξ ¼ ξu∂u þ ξA∂A

¼
�
αðθAÞ þ 1

2
uDAYAðθBÞ

�
∂u þ YAðθBÞ∂A: ð2:13Þ

Here YAðθBÞ must be a conformal Killing vector on the
2-sphere—i.e., be a solution of

2DðAYBÞ −DCYChAB ¼ 0: ð2:14Þ

The general solution can be written as

YA ¼ DAχ þ ϵABDBκ; ð2:15Þ

where χ and κ are l ¼ 1 spherical harmonics, that is,
solutions of ðD2 þ 2Þχ ¼ 0 and ðD2 þ 2Þκ ¼ 0, where
D2 ¼ DADA. These solutions comprise the Lorentz alge-
bra, with the three electric parity solutions DAχ corre-
sponding to boosts, while the three magnetic parity
solutions ϵABDBκ correspond to rotations.

The symmetry vector fields ~ξ can be extended from
future null infinity Iþ into the interior of the spacetime to
give approximate asymptotic Killing vectors by demanding
that they maintain the retarded Bondi coordinate conditions
and the assumed scalings with r of the metric components.
This gives [11,16]
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~ξ ¼ f∂u þ
�
YA −

1

r
DAf þ 1

2r2
CABDBf þOðr−3Þ

�
∂A

−
�
1

2
rDAYA −

1

2
D2f −

1

2r
UADAf

þ 1

4r
DAðDBfCABÞ þOðr−2Þ

�
∂r; ð2:16Þ

where

fðu; θAÞ ¼ αðθAÞ þ 1

2
uDBYBðθAÞ: ð2:17Þ

Under these transformations, the metric transforms via
pullback as gab → ψ�gab ¼ gab þ L~ξgab. This yields the

following transformations of the metric functions [11,16],

δm ¼ f _mþ 1

4
NABDADBf þ 1

2
DAfDBNAB þ 3

2
mψ

þ YADAmþ 1

8
CABDADBψ ; ð2:18aÞ

δCAB ¼ fNAB − 2DADBf þ hABD2f −
1

2
ψCAB þ L~YCAB;

ð2:18bÞ

δNA¼f _NAþ3mDAfþ
1

4
CABDBD2f

−
3

4
DBfðDBDCCC

A−DADCCBCÞ

þ3

8
DAðCBCDBDCfÞþ

1

4
ð2DADBf−hABD2fÞDCCBC

þL~YNAþψNA−
1

2
DBðψDBAÞ− 1

32
DAψCBCCBC

þ��� ; ð2:18cÞ
where on the right-hand sides NAB is the Bondi news tensor
(2.4), overdots denote derivatives with respect to u, L is a
Lie derivative, f is defined by Eq. (2.17), ψ is defined by

ψ ≡DAYA; ð2:19Þ

and the ellipsis (…) in Eq. (2.18c) indicates terms involving
the news tensor NAB that we will not need in what follows.

C. Terminology for regions of future null infinity

If the Bondi news tensor NAB vanishes in a region of
future null infinity in a given BMS frame, then it will vanish
in that region in all BMS frames. The region is then called
“nonradiative.” We call a region of Iþ “stationary” if the
spacetime is stationary in a neighborhood of that region. If
a region is stationary then it must be nonradiative [20].
However the converse is not true; for example, a linear
superposition of the linearized gravitational fields of two

point particles with a relative boost is nonradiative but
nonstationary.
When computing charges later in this paper we will

specialize, for simplicity, to nonradiative regions of Iþ,
and sometimes in addition specialize further to stationary
regions. We will consider nonradiative-to-nonradiative
transitions, that is, spacetimes which possess a nonradiative
region of Iþ, followed by a radiative region, followed by
another nonradiative region. We will also consider sta-
tionary-to-stationary transitions.

D. Canonical Bondi frame for stationary
vacuum regions

Consider a stationary region of Iþ in which the leading-
order stress-energy components (2.6) as well as the sub-
leading components vanish. Then, there exists a preferred,
canonical Bondi frame in which the metric takes a simple
form, as we now review.
First, it is known that the news tensor (2.4) must vanish

in stationary regions [20], so that CAB is independent of u.
Next, it follows from the evolution equation (2.11a) for the
Bondi mass aspect that m is also independent of u. From
the Oður; 4Þ component of Einstein’s equation we now
obtain

6MþDANA þ 3

16
CABCAB þ 3

4
DACABDCCCB ¼ 0;

ð2:20Þ

which will be useful below.
We now specialize to Bondi frames in which the angular

momentum aspect is independent of u, so that

∂uNA ¼ 0: ð2:21Þ

The existence of such frames is established in Sec. VI. 7
of Ref. [19]. We will show that it is possible to further
specialize the frame to the preferred, canonical one.
We first derive some properties of the Bondi mass aspect

m and angular-momentum aspect NA under the above
assumptions. From the evolution equation (2.11b) with
NAB ¼ _NA ¼ 0, we obtain 4DAm − ϵABDBγ ¼ 0, where
γ ¼ hBDϵACDCDBCAD. It follows that

mðθAÞ ¼ m0; ð2:22Þ

a constant. Taking next the subleading OðuA; 3Þ compo-
nent and using Eq. (2.10) as well as Eq. (2.20) to eliminate
the subleading mass function M yields

D2NA þ NA ¼ −3DBðmCABÞ þ wA: ð2:23Þ

Here wA is an expression quadratic and cubic in CAB and
its derivatives, whose precise form will not be needed. We
have also assumed that the subleading angular momentum
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aspect is independent of u. Equation (2.23) will be
useful below.
We now derive the transformation to the preferred,

canonical Bondi frame. The tensor CAB can be decomposed
into electric and magnetic parity pieces,

CAB ¼
�
DADB −

1

2
hABD2

�
Φþ ϵCðADBÞDCΨ; ð2:24Þ

where, without loss of generality, Φ and Ψ have no l ¼ 0, 1
components. Taking the magnetic parity part of the time-
evolution equation (2.11b) for the angular-momentum
aspect by contracting it with ϵABDB, using NAB ¼
_NA ¼ 0, and commuting indices using RABCD ¼ hAChBD −
hADhBC gives ðD2 þD4=2ÞΨ ¼ 0. This forces6 the mag-
netic part Ψ to vanish. Next, by using a BMS trans-
formation with YA ¼ 0 and α ¼ Φ=2, we see from
Eq. (2.18b) that we can also make the electric part Φ
vanish, so that CAB ¼ 0.
Equation (2.23) for the angular-momentum aspect now

reduces to

D2NA þ NA ¼ 0: ð2:25Þ

We decompose NA into electric parity and magnetic parity
pieces,

NA ¼ DAϒþ ϵABDBΘ; ð2:26Þ

whereD2ϒ ¼ DANA andD2Θ ¼ −ϵABDANB. Substituting
into Eq. (2.25) now shows that ϒ and Θ satisfy

ðD2 þ 2Þϒ ¼ 0; ðD2 þ 2ÞΘ ¼ 0 ð2:27Þ

(i.e., they are both l ¼ 1 spherical harmonics). Thus, the
solutions of Eq. (2.25) for the angular-momentum aspect
coincide with the solutions discussed after Eq. (2.14) of the
conformal Killing vector equation: three electric parity
conformal Killing vectors and three magnetic parity Killing
vectors.
We now perform a BMS transformation with α ¼

−ϒ=ð3m0Þ and YA ¼ 0. From the transformation law
(2.18b) for CAB, we find that this transformation does
not alter the gauge specialization CAB ¼ 0 that we have
already achieved, because the differential operator
2DADB − hABD2 on the right-hand side annihilates l ¼ 1
spherical harmonics. The effect of the transformation is to
set the electric parity piece of NA to zero, from Eq. (2.18c).
Since the electric parity piece of NA encodes information

about the center of mass, this transformation corresponds
roughly to translating to the center-of-mass frame. The
remaining magnetic parity piece ofNA encodes the intrinsic
angular momentum.
To summarize, we have achieved a Bondi frame in which

mðθAÞ ¼ m0 ¼ constant; ð2:28aÞ

CABðθAÞ ¼ 0; ð2:28bÞ

NAðθAÞ ¼ magnetic parity; l ¼ 1: ð2:28cÞ

We call the frame which satisfies these conditions the
canonical frame. The explicit construction of this frame
in the Kerr spacetime can be found in Appendix C. 7
of Ref. [19].

E. Extended BMS algebra

The BMS algebra of approximate Killing vector fields
~ξ described above consists of vector fields that are
smooth and finite on future null infinity Iþ. Relaxing this
requirement, Banks [7] and Barnich and Troessaert [8–10]
suggested instead that a larger algebra might be relevant.
In particular, they suggested adding to the algebra more
general solutions of the conformal Killing equation (2.14),
in addition to the six smooth solutions discussed above.
In complex stereographic coordinates ðz; z̄Þ with z ¼
cotðθ=2Þeiφ, the conformal Killing equation reduces to

∂zYz̄ ¼ 0; ∂ z̄Yz ¼ 0; ð2:29Þ

and one can consider solutions Yz ¼ YzðzÞ, Yz̄ ¼ Yz̄ðz̄Þ,
where Yz and Yz̄ are meromorphic functions of their
arguments. A basis7 of this set of vector fields is

lm ¼ −zmþ1∂z; ð2:30aÞ

l̄m ¼ −z̄mþ1∂ z̄; ð2:30bÞ

form ∈ Z. Of this infinite basis, the six vector fields l−1, l0,
l1, l̄−1, l̄0, l̄1 are those discussed after Eq. (2.14) above that
occur in the usual BMS algebra. The remaining new vector
fields are singular and cannot be used to define smooth,
finite diffeomorphisms of the 2-sphere to itself.
The new vector fields have been called “super-rotations”

in the literature [8–10,13], since they are generalizations
of the six generators of the Lorentz group. They might also
be called “superboosts,” since they are conformal Killing
vectors but not Killing vectors on the 2-sphere, like normal
boosts but unlike normal rotations.

6The inverse of the angular differential operatorD2 þD4=2 on
the space of functions with no l ¼ 0, 1 pieces is given explicitly in
Eq. (2.17) of Ref. [15] and also in Appendix C of Ref. [14].

7Although only real vector fields YAðθBÞ are physical, for
convenience, we use a complex basis in what follows. A real basis
can be obtained by taking linear combinations.
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What is the physical relevance or utility of the extended8

BMS algebra? There has been some debate in the literature
on this issue. One approach to answering this question is to
check whether there are constraints on the quantum gravity
S-matrix associated with the additional symmetries. Kapec
et al. [13] showed that this is indeed the case at tree level.
Strominger and Zhibodev [21] showed that finite super-
rotations map asymptotically flat spacetimes into a larger
class of spacetimes which are asymptotically flat except at
isolated points which have cosmic string defects. Finally,
another approach is to determine whether there are well-
defined classical conserved quantities for the new sym-
metries, just as there are for the standard BMS symmetries.
Barnich and Troessaert followed this approach in Ref. [10],
where they computed charge integrals associated with the
new generators (2.30) with jmj > 1 in the Kerr spacetime.
They found that these charges vanish. In the next section,
we will extend their analysis to more general situations to
show that the charges are finite and to clarify their physical
interpretation.

III. BMS CONSERVED CHARGES

A. Charges and conservation laws

We first review the charges and conservation laws asso-
ciated with the standard BMS group. There are two types
ofBMSconservation laws: (i) laws that relate quantities at one
cut or cross section of future null infinity Iþ to another [4–6],
and (ii) laws that relate quantities at past null infinity I− to
quantities at future null infinity Iþ [11,15,22].
Consider the first type of conservation law. Normally the

charges associated with conservation laws can be derived
from Noether’s theorem. However, this does not apply to
charges associated with BMS generators at future null
infinity, since the associated charges are not actually
conserved because of fluxes of gravitational radiation.
Wald and Zoupas have derived a generalization of
Noether’s theorem that allows one to define conserved
charges and fluxes in very general situations of this kind

[6]. One obtains for each generator ~ξ a 2-form Ξ on Iþ,
which depends linearly on ~ξ, and whose integral over any
cut (cross section) C gives the charge

QðC; ~ξÞ ¼
Z
C
Ξ ð3:1Þ

associated with that cut. In addition, the exterior derivative
dΞ of the 2-form can be interpreted as a flux that can be
integrated over a region R of Iþ between two cuts C1 and
C2 to give the change in the charge between two cuts:

Z
R
dΞ ¼ QðC2; ~ξÞ −QðC1; ~ξÞ: ð3:2Þ

For general relativity, the flux formula had previously been
obtained by Ashtekar and Streubel [4], and the charge
associated with a cut had been obtained using a different
method by Dray and Streubel [5].
The second type of conservation law is as follows.

Suppose that for a given generator ~ξ of the BMS group

acting on Iþ one can identify an associated generator ~ξ0 of
the BMS group acting on I−, with associated 2-form Ξ0.
Then one might anticipate a conservation law of the form

lim
D→i0

Z
D
Ξ0 ¼ lim

C→i0

Z
C
Ξ; ð3:3Þ

where the first limit to spacelike infinity i0 is taken from the
past along cuts D of I−, and the second limit to i0 is taken
from the future along cuts C of Iþ. Using relations of the
form (3.2) on both I− and Iþ, the conservation law (3.3) is
equivalent to

lim
D→i−

Z
D
Ξ0 þ

Z
I−

dΞ0 ¼ lim
C→iþ

Z
C
Ξþ

Z
Iþ

dΞ; ð3:4Þ

assuming that the relevant limits exist at future timelike
infinity iþ and past timelike infinity i−.
For the translation subgroup of the BMS group, a method

of identifying the subgroups at I− and Iþ was found by
Ashtekar and Magnon-Ashtekar [22], together with an
associated conservation law of the form (3.3) for the
4-momentum. More recently, for the special class of
spacetimes studied by Christodoulou and Klainerman
[23], Strominger found a method of identifying the two
BMS groups and derived an associated conservation law9

8One might think it necessary to include in the algebra all the
vector fields generated by taking Lie brackets of BMS generators
and/or super-rotations. This would yield the algebra summarized
in Eqs. (4.17) of Ref. [16], which contains “extended super-
translation” generators of the form (2.13), but where the function
α can contain singularities of the form zpz̄q with p, q negative
integers. These charges associated with these generators are ill
defined [10]. However, one could imagine generalizing the
definition of asymptotic flatness by defining a class of solutions
which are locally asymptotically flat on Iþ except for a finite
number of points on the 2-sphere with meromorphic singularities
of the kind generated by acting with a finite super-rotation [21]. A
diffeomorphism that maps one such solution onto another has
weaker singularities with finite charges, since one is in effect
forbidden from performing two successive super-rotations with
the same singular point on the 2-sphere which would change the
nature of the singularity. Thus, the divergent charge integrals
computed in [10] might not be a sign of a fatal inconsistency.

9Ashtekar [24] has pointed out that in the Christodoulou-
Klainerman spacetimes, this conservation law (3.3) for super-
momentum does not yield any information beyond the
conservation of 4-momentum, since the additional charges all
vanish. This can be seen from Eqs. (2.26) and (2.29) of [11] and
Eq. (B4) below. If the conservation law extends to more general
spacetimes it would yield nontrivial constraints.
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of the form (3.4) for general generators, in which the
boundary terms at i− and iþ vanish [11].

B. Charges for standard BMS algebra

We now turn to the derivation of an explicit expression
for general BMS charges Q in the retarded Bondi coor-
dinates used here. For simplicity, we specialize to regions
of Iþ which are nonradiative, and we assume that the
leading and subleading stress-energy components vanish.
It follows that the metric functions m and CAB are
independent of u, as discussed in Sec. II D above. Then,

for the generator ~ξ given in terms of αðθAÞ and YAðθBÞ by
Eq. (2.16), and for the cut C given by u ¼ u0, the charge is

Q ¼ 1

16π

Z
d2Ω

�
4αm − 2u0YADAmþ 2YANA

−
1

8
YADAðCBCCBCÞ − 1

2
YACABDCCBC

�
: ð3:5Þ

Note that this charge is independent of u0, i.e., independent
of the cut C.10 This is as expected since the flux dΞ for all
BMS generators vanishes in nonradiative vacuum regions
[see Eq. (C1) below].
The formula (3.5) can be obtained from the prescription

given after Eq. (83) of Wald and Zoupas [6]. We decom-

pose the generator ~ξ uniquely as the sum ~ξ ¼ ~ξ1 þ ~ξ2 of two

generators, where ~ξ1 is tangent to C and ~ξ2 is a super-
translation. Explicit expressions for the two generators are

~ξ1 ¼
1

2
ðu − u0ÞDAYA∂u þ YA∂A ð3:6Þ

and ~ξ2 ¼ ðαþ 1
2
u0DAYAÞ∂u. Next, we use the linear

dependence of the charge on ~ξ to evaluate the charge as

Q ¼ Q½~ξ1� þQ½~ξ2�. The contribution to the charge from ~ξ1
is given by the integral of the Noether charge 2-form given
by Eq. (44) of [6] (i.e., the Komar formula). To get a unique
result from this prescription, Wald explains that from the
equivalence class of vector fields on spacetime that
corresponds to the desired BMS generator, one should

choose a representative ~ξ that satisfies ∇aξ
a ¼ 0, as proved

in Ref. [25]. In fact, an examination of the argument in
Ref. [25] shows that a sufficient condition for uniqueness is
∇aξ

a ¼ Oð1=r2Þ, which is satisfied by the representatives
(2.16) used here. Using a vector field of the form (2.16)

associated with the generator (3.6) together with the metric
(2.1) and computing the integral (92) of Ref. [6] over the
surface u ¼ u0 and r ¼ r0 with r0 → ∞, we find the third,
fourth, and fifth terms in Eq. (3.5) above. The remaining
first and second terms are obtained by inserting the

generator ~ξ2 into the integral (98) of Ref. [6]. The
formula (3.5) was derived by a different method11 by
Barnich and Troessaert in Ref. [10].
We next introduce some notation to describe the different

charges. The quantity (3.5) is a linear function of α and YA,
and we choose a basis of this vector space as follows. We
parametrize the function α as

α ¼ t0 − tini þ
X∞
l¼2

Xl

m¼−l
αlmYlm; ð3:7Þ

where ni ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ and tμ ¼ ðt0; tiÞ
are real parameters. Similarly we write YA as a linear
combination of conformal Killing vectors as

YA ¼ ω0ieAi þ ωijeA½inj�; ð3:8Þ

where eAi ¼ DAni; in Minkowski spacetime, this corre-
sponds via Eq. (2.16) to the limiting form of the Killing
vector ωαβx½β∂α�. We now define the quantities Pμ, Jμν, and
Plm by

Q ¼ −Pμtμ þ
1

2
Jμνωμν þ

1

4π

X∞
l¼2

Xl

m¼−l
P�

lmαlm: ð3:9Þ

Here the 4-momentum Pμ and angular momentum Jμν

transform in the normal way under the Lorentz trans-
formation subgroup of the BMS group given by taking
α ¼ 0 in Eq. (2.12). The quantities Plm are usually called
“supermomentum” [4,27,28], although they have also been
considered to be generalizations of angular momentum
[29]. We will use the terminology supermomentum since
they are conjugate to supertranslations, they have the same
physical dimension as momentum, and they are invariant
under translations and supertranslations (see Appendix B),
like normal momentum.
By comparing Eqs. (3.5) and (3.9) we see that the Bondi

mass P0 is given by the l ¼ 0 component of the Bondi mass
aspectmðθAÞ, the linear momentumPi is given by the l ¼ 1

10This can be seen by differentiating both sides with respect to
u0, and using the evolution equation (2.11b) for the derivative of
NA. The integral of YA against the third and fourth terms on the
right-hand side of Eq. (2.11b) vanishes since it is proportional toR
d2ΩκðD4 þD6=2ÞΨ, where κ is defined by Eq. (2.15) andΨ by

Eq. (2.24). This expression vanishes since κ is purely l ¼ 1 while
Ψ is purely l ≥ 2.

11The method used by Barnich and Troessaert is based on a
formula for a variation of the charge which is not integrable. This
nonintegrability issue is resolved in Ref. [6]; however, it does not
affect the nonradiative case considered here. Formulas similar to
Eq. (3.5) were derived in Ref. [19] [their Eq. (6.14)] and Ref. [26],
but those authors found the results α1 ¼ 0, α2 ¼ −1=2 and
α1 ¼ −1=8, α2 ¼ −2, respectively, where α1 and α2 are the
coefficients of the last two terms in Eq. (3.5), whose values here
are α1 ¼ −1=8, α2 ¼ −1=2. We were unable to uncover the
source of the discrepancies.
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component, and the supermomentum by the higher l
components. Similarly, when CAB ¼ 0, the angular
momentum is given by the l ¼ 1 component of the
angular-momentum aspect NAðθBÞ, with the intrinsic
angular momentum being encoded in the magnetic parity
piece, and the center-of-mass information being encoded in
the electric parity piece, as discussed in Sec. II D above.
The definitions (3.9) are of course dependent on the

choice of Bondi frame: the 4-momentum Pμ, angular
momentum Jμν, and supermomentum Plm transform into
one another under BMS transformations, just as energy and
3-momentum transform into one another under Lorentz
transformations. See Appendix B for details.
As a check of the charge formula (3.5), in Appendix C

we compute the flux dΞ for each generator ~ξ, and verify the
expected relation (3.2) between the charges on two cuts C1
and C2 and the integral of the flux over the intervening
region R of Iþ when the cuts are in nonradiative vacuum
regions.

C. Charges for extended BMS algebra

We now consider the additional symmetries of the
extended BMS algebra discussed in Sec. II E above.
Should one expect the existence of conserved quantities

for singular symmetry generators ~ξ like super-rotations?
The generalization of Noether’s theorem derived in Ref. [6]
remains formally valid, but it is possible that some of the

steps in the argument are invalidated when the vector field ~ξ
is not smooth. Ideally, one would like to generalize the
derivation given there to the present context. A simpler
alternative, as a first step, is to simply evaluate the final
expression (3.5) for the conserved charges for the super-
rotations and see if one obtains a finite result. This is the
approach we will follow here, following Barnich and
Troessaert [10]. Clearly a more fundamental investigation
of the applicability of the generalized Noether’s theorem to
singular symmetry vector fields is warranted.
As before, we specialize to nonradiative vacuum regions

of Iþ. The super-rotation charges are obtained from the
general BMS charge integral (3.5), with α ¼ 0 and with YA

taken to be the super-rotation generator lm given by
Eq. (2.30a) with jmj > 1. This charge can be written as

Q ¼ 1

8π

Z
d2ΩYAN̂A; ð3:10Þ

where

N̂A ¼ NA − uDAm −
1

16
DAðCBCCBCÞ − 1

4
CABDCCBC:

ð3:11Þ

We next explain why the integral (3.10) is finite, despite
the fact that YA is singular. The integrand in Eq. (3.5) is a

product of a meromorphic function of z times a smooth
function, and it is a well-known property of meromorphic
functions that such integrals are locally finite. This result
can be understood by expanding the smooth function as a
sum of terms of the form zpz̄q with p, q non-negative.
Integrating against a singularity z−m with m > 0 yieldsZ

dzdz̄z−mzpz̄q ¼
Z

dθ
Z

dρρ1−mþpþqeiθð−mþp−qÞ;

where z ¼ ρeiθ. The angular integral vanishes unless
m ¼ p − q, and then the remaining factor in the integrand
is proportional to ρ1þ2q, which is nonsingular.12

Next, we note that we can decompose N̂A uniquely into
electric parity and magnetic parity pieces, as in Eq. (2.26)
above. This gives rise to a decomposition of the charge
(3.10) into two pieces, which we write as

Q ¼ Qe þQb: ð3:12Þ

For the super-rotations (2.30), we will call the charges Qe
“super center-of-mass charges”. The motivation for this
terminology is as follows. As discussed in Sec. II E above,
super-rotations are generalizations of Lorentz transforma-
tions. For Lorentz transformations, boosts have electric
type parity, while rotations have magnetic type parity
[cf. Eq. (2.15)]. So it is natural to consider the electric
parity pieces of super-rotations to be generalizations of
boost symmetries. Finally, boost symmetries are conjugate
to the center-of-mass piece of angular momentum.
Similarly, we will call the charges Qb “superspin

charges,” since the magnetic parity pieces of super-
rotations can be thought of as generalizations of rotation
symmetries, which are conjugate to intrinsic angular
momentum. For m ¼ 0, �1, the charges Qe and Qb reduce
to the normal center-of-mass and spin charges discussed in
Sec. III B above.

D. Consistency of charges of extended
algebra with fluxes

In Appendix C we compute the fluxes associated with

BMS generators ~ξ and show that they are consistent with
the charge expression (3.5) in the sense that the conserva-
tion law (3.2) is satisfied for cuts C1 and C2 in nonradiative
regions of Iþ. We now consider the consistency issue

for the generators ~ξ of the extended algebra. All of the
computations of Appendix C continue to apply in this more
general context. We find from Eq. (C8) that the conserva-
tion law is now not satisfied; there is a discrepancy
proportional to

12A similar computation shows that for integrals on the 2-
sphere involving YA we can freely integrate by parts despite the
singularity,

R
d2ΩDAðφYAÞ ¼ 0 for any smooth function φ.
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Z
du

Z
d2ΩYAϵABDB

�
D2 þ 1

2
D4

�
Ψ; ð3:13Þ

where Ψ is the magnetic parity piece of CAB, given by
Eq. (2.24). This vanishes for BMS generators, for which YA

is constructed from l ¼ 1 harmonics, but not for general
super-rotations.
What is the explanation for this discrepancy? The

general consistency between the flux and charge formulas
derived by Wald and Zoupas [6] assumes that the vector

fields ~ξ are asymptotic symmetry vector fields, that is,
vector fields which preserve asymptotic flatness. This
condition is violated by the super-rotation generators used
here. Consistency is restored if we add to the standard BMS
flux formula (C1) the quantity13

1

32π

Z
du

Z
d2ΩCCEϵABϵ

CDDEDDDBYA; ð3:14Þ

from Eqs. (C8) and (C9). The integrand here vanishes
identically for standard BMS generators, but not for super-
rotations. We conjecture that the correction (3.14) gives the
correct flux formula for the extended BMS algebra. It
would be useful to derive this modified flux formula from a
version of the Wald-Zoupas formalism, generalized to
accommodate vector fields of the form used here. A key
element of such a generalization would be an enlarged
space of solutions which are not asymptotically flat but
are nevertheless physically relevant, as described by
Strominger and Zhiboedov [21].

E. Super center-of-mass and superspin charges
in stationary regions

We now turn to deriving an explicit expression for the
charge Q½lm� associated with the super-rotation lm. We
specialize for simplicity to stationary vacuum regions of
Iþ, and to Bondi frames satisfying the constraint (2.21)
that the angular momentum aspect be nonevolving (the
latter assumption will be relaxed in Appendix D). To
simplify the computation, we also restrict attention to
Bondi frames14 which are close to the canonical Bondi
frame (2.28), so that we can linearize in the deviation. In
particular, we can neglect the terms quadratic in CAB in
Eq. (3.5), yielding from Eq. (2.22) that

Q ¼ 1

8π

Z
d2ΩYANA: ð3:15Þ

Also, Eq. (2.23) reduces to

D2NA þ NA ¼ −3m0DBCAB; ð3:16Þ

where we have used mðθAÞ ¼ m0, a constant, from
Eq. (2.22). We now use the decomposition (2.24) of
CAB into electric and magnetic parity pieces, and use the
fact that the magnetic parity piece vanishes in stationary
regions, as shown in Appendix E. This allows us to solve
Eq. (3.16) to obtain

NA ¼ −3m0DAΦ=2þ Nl¼1
A ; ð3:17Þ

where Nl¼1
A is a l ¼ 1, homogeneous solution of Eq. (3.16)

of the type given by Eqs. (2.26) and (2.27). Next, we
expand Φ as

Φ ¼
X
l≥2

ΦlmYlm; ð3:18Þ

and combine Eqs. (2.30a), (3.15) and (3.17) to yield

Q½lm� ¼ m0

X
l≥jmj

κlmΦl;−m; if jmj > 1; ð3:19Þ

where the constants κlm are given by

κlm ¼ −
3

8

Z
π

0

dθ sin θðm − cos θÞ cotmðθ=2ÞYl;−mðθ; 0Þ:

ð3:20Þ

This integral evaluates to κ̂lm for m ≥ 2, and to
ð−1Þlþ1κ̂lð−mÞ for m ≤ −2, where

κ̂lm ¼ −
3

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1ÞðlþmÞ!

πðl −mÞ!

s
1

ðl2 þ l − 2ÞΓðm − 1Þ :

ð3:21Þ

These constants are finite even for m < 0. The charge
Q½l̄m� is given by a similar expression but with Φl;−m
replaced by Φlm in Eq. (3.19) and with Yl;−m replaced by
Ylm in Eq. (3.20).
We note that the final result (3.19) comes purely from

the electric parity piece of the expression (3.17), since the
second term in that expression does not contribute. Hence
the charge (3.19) is a super center-of-mass charge,Q ¼ Qe,
while the superspin charge Qb is vanishing.
The final result is that the super center-of-mass charges

Qe½lm� and Qe½l̄m� give information about the tensor CAB,

13Alternatively one could restore consistency by using the
standard flux (C1) and modifying the formula (3.5) for the charge
integral by a quantity proportional to the u integral of the
magnetic piece of CAB. However this modification would be
nonlocal in time.

14It might seem that the quantity we are computing is a pure
gauge effect, since it vanishes in the canonical Bondi gauge. This
is true locally in time, but as discussed in Sec. IV C below, the
change in the charge between two successive stationary regions
encodes physical, nongauge information.
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via Eqs. (2.24), (3.18), and (3.19). We note that the
information is incomplete, since one cannot reconstruct
CAB from these charges.
The computations in this subsection of the charges (3.19)

were specialized to Bondi frames obeying the constraint
(2.21) that the angular momentum aspect be nonevolving.
While such frames always exist in stationary regions, they
are not the most general frames. In Appendix D we
generalize the computations to remove this constraint,
while retaining the assumption of linearization about the
canonical Bondi frame. The result is that there are mod-
ifications to the charges for jmj ≤ 2 but not for higher
values of jmj. In particular the superspin charges are no
longer vanishing, for jmj ≤ 2.
For more general Bondi frames in stationary regions, the

superspin charges Qb need not vanish. However, these
charges do not contain any information not already con-
tained in the standard BMS charges and the super center-of-
mass charges Qe. This follows from the fact that all the
super-rotation charges vanish in the canonical Bondi frame
in stationary regions, from Eqs. (2.28) and (3.5), and from
considering the number of free functions in the general
BMS transformation (2.12) to an arbitrary Bondi frame.

F. Changes in super center-of-mass and superspin
charges in nonradiative-to-nonradiative transitions

We now turn to considering the super center-of-mass and
superspin charges in more general, nonstationary but still
nonradiative situations. In these situations, both types of
charge are finite, by the argument given in Sec. III C above.
They are also independent, and it is not possible to compute
them in terms of the strain tensor CAB.
For the superspin charges Qb, we now derive a formula

for the change in the charges in a transition from an early
nonradiative region at u ¼ u1 to a later nonradiative region
at u ¼ u2. Taking the magnetic part of Eq. (C6) and
integrating with respect to u [or equivalently using the
corrected flux given by Eqs. (3.14) and (C1)] and combin-
ing with Eq. (3.10) gives the total change

Qbðu2Þ −Qbðu1Þ

¼ −
Z

d2Ω
Z

duYAðT̂m
uA þ T m

uAÞ

þ 1

64π

Z
d2Ω

Z
duYAϵABDBD2ðD2 þ 2ÞΨ:

ð3:22Þ

Here the superscript m means “magnetic part of,” and the
quantity T uA is given by

T uA ¼ 1

64π
½3NABDCCBC − 3CABDCNBC

−DBCACNBC þDBNACCBC�; ð3:23Þ

a kind of gravitational-wave angular momentum flux.15

This result is consistent with Pasterski et al. [15], who
argued that the conserved quantities16 associated with the
super-rotation symmetries are of the form17 (3.22). Here we
extend their arguments to also include the electric pieces
(3.19) of the super-rotation charges.

IV. PHYSICAL INTERPRETATION OF BMS
AND EXTENDED BMS CHARGES

In this final section, we make some remarks about the
physical significance of BMS charges and, in particular,
about how they can be measured.

A. General considerations

For all symmetry generators ~ξ and cuts C of future null

infinity Iþ, the charges Q½~ξ; C� are defined in terms of
integrals over C, which can be evaluated in terms of a limit
of integrals over finite 2-surfaces that tend to C. It follows
that the charges can in principle be measured by a
collection of observers distributed over a 2-surface near
future null infinity, who each make local measurements of
the spacetime geometry in their vicinity and of their motion
and orientation relative to their neighbors, who then
communicate this information to one another, and who
finally process it in a suitable way. Thus, in principle, the
charges are measurable quantities. Of course, it would be
useful to understand in more detail how to specify a local18

operational prescription19 for such measurements. The
formalism of rigid quasilocal frames of Refs. [32–35]
might be useful for this purpose, as well as the covari-
ant-conformal-completion formalism for asymptotically
flat spacetimes [18].
Specifying an asymptotic Bondi frame allows observers

to establish a convention for labeling the various charges.
By an asymptotic Bondi frame, we mean a choice of
coordinates ðu; θAÞ on Iþ for which the spacetime metric
takes the form (2.1), which is unique up to BMS trans-
formations. A Bondi frame is determined up to an overall

15Note that this flux differs from the gravitational-wave
angular momentum flux defined in Eq. (2.3) of Ref. [15]. That
flux characterizes the evolution of the angular momentum aspect,
but not the radiated angular momentum. The two fluxes differ by
a total derivative with respect to u.

16They derived a conservation law of the form (3.4) for
gravitational scattering from past null infinity to future null
infinity for Christodoulou-Klainerman spacetimes.

17The difference between the angular momentum flux defi-
nition (3.23) and that used in [15] implies that the charges here
and there do not coincide; however the two conservation laws are
equivalent in the sense that each can be derived from the other.

18By this we mean to exclude, for example, demanding that
observers be stationary with respect to retarded Bondi coordi-
nates, which would be a nonlocal requirement.

19Such a prescription can be given for the Poincaré charges in
stationary situations [30,31].
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SOð3Þ rotation by specifying a single cross section or cut
of Iþ. One can equivalently think of a Bondi frame as an
equivalence class of coordinate systems on spacetime
whose asymptotic limits coincide in a suitable way, or
as a class of asymptotic observers who adjust their relative
motions, clocks and orientations in such a way as to
establish an approximate consistent convention for speci-
fying the results of asymptotic measurements.20

B. Nonradiative vacuum regions of Iþ

In nonradiative vacuum regions of Iþ, the Bondi mass
aspectm ¼ mðθAÞ and shearCABðθCÞ are independent of u,
as argued in Sec. II D above. Moreover the angular
momentum aspect has the form NAðu; θBÞ ¼ 0NAðθBÞ þ
1NAðθBÞu, from Eq. (2.11b). These functions can in
principle be extracted from measurements of the asymp-
totic components of the Weyl tensor, listed in Appendix A;
see Ref. [36] for details.
The Bondi mass aspect mðθAÞ encodes the Bondi

4-momentum and supermomentum, as in Eq. (B4) below.
In stationary regions, the supermomentum does not
contain any additional information aside from the Bondi
4-momentum, from Eqs. (2.28a) and (B5). However in
more general nonradiative regions it does. For example, for
the linearized gravitational field of two point particles
which have a relative boost, one can extract from the
supermomentum the individual 4-momenta of the two
particles. The conservation laws associated with super-
momentum can be described as a separate conservation law
for energy at every angle, as explained by Strominger [11].
Similarly the combination N̂A of the angular momen-

tum aspect and strain tensor given by Eq. (3.11) encodes
the super center-of-mass and superspin charges via
Eq. (3.10). The super center-of-mass charges encode
the supertranslation that relates the given BMS frame
to the BMS center-of-mass frame; they can be set to zero
using a supertranslation. In stationary regions the super-
spin charges encode just the spin of the spacetime.
However in more general, nonradiative regions they
contain more information, like the supermomentum.
For example, for the linearized gravitational field of
two spinning point particles which have a relative boost,
one can extract from the superspin charges the individual
spins of the two particles. The conservation laws asso-
ciated with superspin could be described as a separate
conservation law for angular momentum at every angle
[cf. Eq. (4.8) below].

C. Relation to gravitational-wave memory

Gravitational-wave memory is the relative displacement
of initially comoving observers caused by the passage of a
burst of gravitational waves [37–39]. There is a well-known
close relation between gravitational-wave memory for
observers near future null infinity and the BMS group:
the supertranslation that relates the canonical Bondi frame
of an initially nonradiative region to that of a final non-
radiative region encodes the observed memory effect
[25,29,40]. See Strominger et al. [17] for a recent clear
exposition of this relation in the retarded Bondi coordinates
used here. The memory/supertranslation effect can also be
characterized in a gauge-invariant but nonlocal way in
terms of a generalized holonomy around a suitable closed
loop in spacetime near Iþ [30].
Here we point out a new aspect of this story: a close

correspondence between the two different infinite families
of extended BMS charges (supermomentum and super
center-of-mass) and the two different types of memory
(ordinary and null [14]).
Consider a spacetime in which the flux of energy to

future null infinity vanishes in the vicinity of some early
retarded time u1, so that the news tensor NAB and stress-
energy tensor vanish there. Suppose that there is sub-
sequently a burst of gravitational waves and/or matter
energy flux to infinity, and that the fluxes vanish again
in the vicinity of some later retarded time u2. Freely falling,
initially comoving adjacent observers near infinity can
measure their net relative displacement, and as shown in
Ref. [17], to leading order in 1=r this displacement is
encoded in the change

ΔCAB ¼ CABðu2Þ − CABðu1Þ ð4:1Þ

of the tensor CAB. Thus, we will identify the change (4.1) as
the gravitational-wave-memory observable.21

The observable change (4.1) can be decomposed into
electric parity and magnetic parity pieces, as in Eq. (2.24):

ΔCAB ¼
�
DADB −

1

2
hABD2

�
ΔΦþ ϵCðADBÞDCΔΨ;

ð4:2Þ

where ΔΦ ¼ Φðu2Þ − Φðu1Þ and ΔΨ ¼ Ψðu2Þ −Ψðu1Þ.
These two pieces can in principle be measured by sur-
rounding a source of gravitational waves with a collection
of observers distributed on a 2-sphere, having them each
measure the gravitational-wave memory, and then decom-
posing the resulting function on the 2-sphere into electric
and magnetic pieces, as discussed by Winicour [41,42].

20There is a close analogy to local Lorentz frames, which can
be thought of as a specification of a set of orthonormal basis
vectors at a point in spacetime; an equivalence class of local
coordinate systems; or a class of observers who adjust their
motions, clocks and orientations in order to establish an approxi-
mate convention for specifying the results of measurements of
components of tensors near that point.

21From Eq. (2.18b) the change ΔCAB is invariant under
supertranslations and transforms just under the Lorentz group.
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This would be analogous to measurements of E and B
modes of the cosmic-microwave-background polarization.
We now discuss these two pieces separately.

1. Electric parity piece of shear

We can compute the electric parity piece ΔΦ as follows.
Following Ref. [17], we substitute the decomposition
(2.24) into the evolution equation (2.11a) for the Bondi
mass aspect and integrate from u1 to u2. The result is

Δm ¼ −4πΔE þDΔΦ: ð4:3Þ

Here Δm ¼ mðu2Þ −mðu1Þ is the change in the Bondi
mass aspect, D is the angular differential operator

D ¼ D2=4þD4=8; ð4:4Þ

and

ΔE ¼
Z

u2

u1

du
�
T̂uu þ

1

32π
NABNAB

�
ð4:5Þ

is the total energy radiated per unit solid angle in either
matter or gravitational waves. Next, we act on both
sides of Eq. (4.3) with the projection operator P that
sets to zero the l ¼ 0, 1 pieces of functions on
the sphere, and by the inverse22 of the operator D.
Using PD ¼ D the result is [17]

ΔΦ ¼ D−1PΔmþ 4πD−1PΔE: ð4:6Þ

The left-hand side of this equation is the observable,
the (electric parity piece of) the gravitational-wave
memory. The second term on the right-hand side is what
Bieri and Garfinkle called the “null memory,” the piece
of the memory that is computable directly in terms of
fluxes of energy23 to future null infinity. The first term is
what Bieri and Garfinkle called “ordinary memory,” the
kind originally discussed by Zel’dovich [37], which is
computable from the change in the asymptotic compo-
nent (A4) of the Weyl curvature tensor between early and
late times.
We see from Eq. (4.6) that the ordinary memory is

reflected in the l ≥ 2 components of the Bondi mass
aspect mðθAÞ, or equivalently the supermomenta Plm, from
Eq. (B4). The total, ordinary plus null memory is encoded

in the shear tensor, or ΔΦ. In the special case of stationary-
to-stationary transitions this is in turn (partially) encoded in
the super center-of-mass charges, from Eq. (3.19).

2. Magnetic parity piece of shear and spin memory

Turn now to the magnetic parity piece ΔΨ of the shear.
For stationary-to-stationary transitions, it follows from the
result of Appendix E that ΔΨ vanishes. For more general
nonradiative-to-nonradiative transitions, it is known that
ΔΨ vanishes in the context of linearized gravity [14,42].
We conjecture that ΔΨ also vanishes in full general
relativity for such transitions. If this conjecture is true,
then there is no magnetic piece of normal gravitational-
wave memory.
However, there is another observable that will be

generically nonvanishing, the time integral over the burst
of gravitational waves of the magnetic piece of the shear, orZ

duΨ: ð4:7Þ

This constitutes a new type of gravitational-wave memory,
spin memory, discovered by Pasterski et al. [15]. It can be
measured by observers who monitor the time-dependent
gravitational-wave strain, integrate that quantity with
respect to time, and decompose on a 2-sphere to extract
the magnetic parity part. The time integral of the shear can
alternatively be measured in principle by measuring the
mapping between initial relative displacement and velocity,
and final relative displacement and velocity for a pair of
adjacent freely falling test masses [44]. Finally, the spin
memory observable (4.7) can also be measured using
Sagnac interferometers by a certain class of accelerated
observers [15].
Just as for normal (electric parity) memory, spin memory

can be decomposed into null and ordinary pieces. Following
[15] we integrate the magnetic piece of Eq. (C6) with respect
to u and contract with ϵACDC to obtain

ΔðϵACDCN̂AÞ ¼ −8πϵACDCΔEA þD2D
Z

duΨ: ð4:8Þ

Here D is given by Eq. (4.4),

ΔEA ¼
Z

u2

u1

du½T̂uA þ T uA� ð4:9Þ

is the total angular momentum radiated per unit solid angle
in either matter or gravitational waves, and T uA is given by
Eq. (3.23). It follows thatZ

duΨ ¼ D−1D−2PΔðϵACDCN̂AÞ

þ 8πD−1D−2PϵACDCΔEA: ð4:10Þ

22See footnote 6 above.
23Bieri and Garfinkle worked in the context of linearized

gravity, so they did not have the gravitational-wave energy-flux
term in Eq. (4.5). This term was originally computed in vacuum
by Christodoulou [43] who called the effect “nonlinear memory.”
The formula with both matter and gravitational-wave fluxes was
derived in [17].
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The second term here is null spin memory, computable in
terms of the flux of angular momentum to null infinity.
The first term is ordinary spin memory, computable from
the changes in the asymptotic components of the Weyl
tensor, or, equivalently, from changes in the superspin
charges.

D. BMS charges as black hole hair

The BMS charges we have been discussing are uni-
versal, applying to any kind of isolated object in an
asymptotically flat spacetime. In particular, they apply to
black holes. In this context, they can be thought of as a
kind of black hole hair, as pointed out by Strominger and
Zhiboedov (SZ) [17], who dubbed them “soft hair.” SZ
discussed how this hair could be measured in terms of a
gravitational-wave-memory observation. Here we expand
on that description to clarify how the no-hair theorems
[45] are evaded.
The supermomentum charges Plm characterize depar-

tures from stationarity [this follows from Eqs. (2.28a),
(3.5), and (3.9) above], so they vanish24 for black holes
once they settle down to a stationary state. Thus, black
holes do not admit supermomentum hair. The same is true
for superspin charges.
The super center-of-mass charges (i.e. the electric

parity piece of the shear tensor CAB) are closely analo-
gous to the angles ðθ;φÞ that specify the direction of the
black hole’s intrinsic angular momentum S. Do those
angles constitute black hole hair? Clearly, they do not
give information about intrinsic properties of the black
hole, since they merely reflect an orientation with respect
to an arbitrarily chosen asymptotic reference frame. On
the other hand, if one considers observations at more than
one time, and if the black hole accretes some angular
momentum, then angle ΔΘ by which the orientation
changes between early and late times is a physical
property of the black hole, independent of any choice
of reference frame. In addition, even if one restricts
attention to one instant of time, in quantum mechanics
one can have superpositions of different angular-
momentum eigenstates, and the existence of a nontrivial
superposition is again a physical property of the black
hole, independent of any choice of reference frame.
The super center-of-mass hair is exactly analogous. In

the classical theory, at one instant of time, they do not
give any information about intrinsic properties of the
black hole. Instead, they give information about proper-
ties of the black hole relative to an arbitrarily chosen
asymptotic Bondi frame, and those properties can be

made to vanish with a suitable choice of Bondi frame in
stationary situations [cf. Eq. (2.28b) above]. Hence the
no-hair theorems are not violated. On the other hand, if
one considers measurements made at two different times
at which the black hole is stationary, then the changes
(4.1) in the charges give nontrivial physical information,
independent of any choice of reference frame. This
information is the gravitational-wave memory/super-
translation/generalized holonomy, as explained by SZ.
Finally, if one restricts attention to one instant of time,
one can have nontrivial superpositions of super center-
of-mass eigenstates, and the existence of a nontrivial
superposition is a physical property of the black hole,
independent of any choice of reference frame. To produce
such superpositions one can throw into a black hole
matter that is in a superposition of two states, one state for
which the gravitational-wave emission associated with
the accretion produces a net gravitational-wave memory,
and one state for which the net memory is zero. Thus in
quantum gravity, the set of quantum states associated
with low energy, asymptotic degrees of freedom of the
black hole is richer than what would be expected from the
classical theory locally in time.

V. CONCLUSIONS

In this paper, we have investigated the suggestion of
Refs. [7–10] that the BMS symmetry algebra be
extended. While we have found that some of the
symmetry generators of the extended algebra have con-
served charges that are finite and are associated with
gravitational-wave memory, there are several outstanding
puzzles and open issues:

(i) Consistency of the superspin charges with fluxes
requires a correction to the standard formula for the
flux associated with the BMS generator. It would
be useful to derive this correction from first
principles.

(ii) We computed the charges only in a certain regime
where some nonlinearities could be neglected
[cf. the discussion before Eq. (3.15) above] and
only in stationary, vacuum regions of Iþ. It might be
interesting to investigate the properties of the
charges more generally.

(iii) The new charges capture some but not all of
the information associated with the observable
gravitational-wave memory—cf. the discussion
after Eq. (3.20) above. This suggests that yet larger
symmetry algebras might be relevant.

A summary of the status of the various charges and
results discussed in this paper is given in Table I.
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APPENDIX A: WEYL TENSOR

For vacuum solutions, the leading-order components of
the Weyl tensor in the retarded Bondi coordinates are as
follows. We define the basis of vector fields

~eû ¼ ∂u; ~er̂ ¼ ∂r; ~eÂ ¼ 1

r
∂A; ðA1Þ

which is asymptotically orthonormal as r → ∞. The lead-
ing-order, Oð1=rÞ components of the Weyl tensor on this
basis are Petrov type IV from the peeling theorem. They are
given by

Cû Â û B̂ ¼ −
1

2r
C̈AB ðA2Þ

with all other components (except those related to these by
symmetries) vanishing at this order. The subleading-order,
Oð1=r2Þ components are given by

Cû r̂ û Â ¼ −
1

2r2
DB _CAB; ðA3aÞ

Cû Â û B̂ ¼ 1

4r2
½D2 _CAB − 2 _CAB − hABCCDC̈CD� ðA3bÞ

Cû Â B̂ Ĉ ¼ −
1

r2
D½B _CC�A: ðA3cÞ

At order Oð1=r2Þ, the Weyl tensor is Petrov type III.
The remaining components scale as Cû r̂ û r̂ ∼ Cû r̂ Â B̂ ∼
CÂ B̂ Ĉ D̂ ∼ r−3 and Cû r̂ r̂ Â ∼ Cr̂ Â r̂ B̂ ∼ Cr̂ Â B̂ Ĉ ∼ r−4. In par-
ticular we have

Cû r̂ û r̂ ¼ −
1

r3

�
2mþ 1

4
CABNAB

�
þO

�
1

r4

�
ðA4Þ

and

Cû r̂ r̂ Â ¼ NA

r4
þO

�
1

r5

�
: ðA5Þ

APPENDIX B: TRANSFORMATION PROPERTIES
OF CHARGES UNDER FINITE BMS

TRANSFORMATIONS

The transformation properties of the charges under finite
BMS transformations can be derived from the definitions
(2.12), (2.13), and (3.1); see, for example, Appendixes C.5

and C.6 of Chrusciel et al. [19]. Here we restrict attention to
vacuum nonradiative regions of Iþ so that we can neglect
the cut dependence of the charges. Consider a finite BMS
transformation ψ∶Iþ → Iþ of the form (2.12). It can be
parametrized in terms of a map φ∶S2 → S2 of the 2-sphere
to itself and a function β on the 2-sphere [denoted by α in

Eq. (2.12)]. The BMS generator ~ξ ¼ ðα; YAÞ given by

Eq. (2.13) is mapped by the pullback to ψ�~ξ ¼ ðα̂; ŶAÞ,
where ŶA ¼ φ�YA,

α̂ ¼ ωφφ�αþ 1

2
βDAŶ

A − ŶADAβ; ðB1Þ

and ωφ is defined by φ�hAB ¼ ω−2
φ hAB. For rotations

ωφ ¼ 1, while for a boost with rapidity parameter η in
the direction m, ωφðnÞ¼ coshηþsinhηn ·m. The charges
transform according to25

Q½~ξ� → Q̄½~ξ� ¼ Q½ψ−1� ~ξ�: ðB2Þ

For boosts and rotations the results are as follows. The
4-momentum and angular momentum transform in the
standard way:

P̄α ¼ Λα
βPβ; J̄αβ ¼ Λα

μΛβ
νJμν: ðB3Þ

Here Λα
β is the Lorentz transformation that is naturally

associated with φ, which can be obtained by demanding
that the action of the Lorentz transformation on the set of
null directions ð1;nÞ coincide with that of φ−1.26 For the
supermomentum, it is more convenient to give the trans-
formation law in terms of the Bondi mass aspect, which
encodes the supermomenta according to [cf. Eqs. (3.5),
(3.7), and (3.9)]

mðθAÞ ¼ P0 þ 3Pini þ
X
l≥2

X
m

PlmYlm: ðB4Þ

The transformation law is

m̄ðθAÞ ¼ m½φðθAÞ�ωφðθAÞ−3: ðB5Þ

Finally the tensor CAB which encodes the super center-of-
mass charges transforms as

25We use ψ−1 instead of ψ in this transformation law in order to
agree with the convention of the linearized analysis of Sec. II B
above. The charges are invariant under ~ξ → ψ�~ξ; gab → ψ�gab,
so the convention gab → ψ�gab used there is equivalent to the
convention ~ξ → ψ−1� ~ξ used here.

26Formally the Lorentz transformation Λα
β as well as Pα and

Jαβ are tensors over the four-parameter translation subgroup of
the BMS group, which has a flat ð−;þ;þ;þÞ metric [20].

CONSERVED CHARGES OF THE EXTENDED BONDI- … PHYSICAL REVIEW D 95, 044002 (2017)

044002-15



C̄AB ¼ ωφφ�CAB: ðB6Þ

Consider next translations and supertranslations, which
are parametrized by the function β. The 4-momentum and
supermomentum are invariant under these transformations.
The angular momentum transforms as J̄μν ¼ Jμν þ δJμν
with

δJij ¼
1

2π

Z
d2ΩmeA½inj�DAβ; ðB7aÞ

δJ0i ¼ −
1

4π

Z
d2ΩβðeAi DAm − 3nimÞ: ðB7bÞ

By using Eq. (B4) these angular momentum changes can
be expressed in terms of the 4-momentum and super-
momentum. For a normal translation with β ¼ t0 − tini
we recover the standard transformation law δJμν ¼
−tμPν þ tνPμ. Finally the tensor CAB transforms accord-
ing to the same transformation law as in the linearized
case:

C̄AB ¼ CAB − 2DADAβ þ hABD2β: ðB8Þ

APPENDIX C: VERIFICATION OF FLUX
CONSERVATION LAW FOR STANDARD

BMS ALGEBRA

In this appendix we compute the flux dΞ for each

generator ~ξ of the standard BMS algebra, and verify the
expected relation (3.2) between the charges on two cuts C1
and C2 and the integral of the flux over the intervening
region R of Iþ. This computation serves as a check of the
charge formula (3.5). We assume that the cuts C1 and C2 are
in nonradiative vacuum regions of Iþ.
The flux in vacuum is proportional to the Bondi news

tensor NAB and is given by Eq. (82) of Wald and Zoupas
[6]. Translating this formula to Bondi coordinates and
adding the appropriate stress-energy flux gives for the total
flux

Z
R
dΞ ¼ −

Z
R

�
1

32π
NABδCAB þ T̂uaξ

a

�
dud2Ω: ðC1Þ

Here the quantity δCAB is the change inCAB under the BMS

transformation ~ξ, given by Eq. (2.18b).
Since the conservation law (3.2) is linear in the generator

~ξ, it is sufficient to verify the law separately for the

translation/supertranslation piece of ~ξ, parametrized by α,
and the remaining piece, parametrized by YA. We first
consider the translation/supertranslation piece. Using the
expressions (2.18b) and (2.17) for δCAB and the

formula (2.13) for the generator, specialized to YA ¼ 0,
and integrating by parts, we obtainZ

R
dΞ ¼ −

1

32π

Z
Iþ

αðNABNAB − 2DADBNAB

þ 32πT̂uuÞdud2Ω: ðC2Þ

Using the evolution equation (2.11a) for the Bondi mass
aspect and assuming that the cuts C1 and C2 are of the form
u ¼ u1 and u ¼ u2 givesZ

R
dΞ ¼ 1

4π

Z
C2

αmd2Ω −
1

4π

Z
C1

αmd2Ω; ðC3Þ

which coincides with the required form (3.2) by Eq. (3.5).
Turn now to the Lorentz transformations parametrized

by YA. Inserting the expressions (2.18b) and (2.17) for
δCAB and the formula (2.13) for the generator into Eq. (C1),
specializing α ¼ 0, and integrating by parts, we obtainZ

R
dΞ ¼ −

1

32π

Z
d2Ω

Z
u2

u1

duYAHA ðC4Þ

where

HA ¼ −
1

2
uDAðNBCNBCÞ þ uDADBDCNBC

þ 1

2
DAðCBCNBCÞ þ NBCDACBC

− 2DBðNBCCACÞ þ 32πT̂uA − 16πuDAT̂uu: ðC5Þ

We next compute the change in the charge, given
by the right-hand side of (3.2), to compare with (C4).
Differentiating the definition (3.11) of N̂A with respect to u
and using the evolution equations (2.11) together with (2.7)
gives

∂uN̂A ¼−8πT̂uAþ4πuDAT̂uuþ
u
8
DAðNBCNBCÞ

−
3

8
NABDCCBCþ3

8
CABDCNBCþ1

8
DBCACNBC

−
1

8
DBNACCBCþ1

4
DBDADCCBC−

1

4
DBDBDCCAC

−
1

4
uDADBDCNBC−2π∂uT̂rA: ðC6Þ

Here we have also used the identities

DACBCNBC ¼ DBCCANBC þ NABDCCBC; ðC7aÞ

DANBCCBC ¼ DBNCACBC þ CABDCNBC; ðC7bÞ

which can be verified by evaluating both sides in complex
stereographic coordinates ðz; z̄Þ.

ÉANNA É. FLANAGAN and DAVID A. NICHOLS PHYSICAL REVIEW D 95, 044002 (2017)

044002-16



We now integrate Eq. (C6) between u1 and u2, use the
expression (3.10) for the charge Q, use the fact that T̂rA
vanishes at u1 and u2, and compare with the flux (C4). The
result is Z

R
dΞ ¼ QðC2; ~ξÞ −QðC1; ~ξÞ þ ΔF ; ðC8Þ

where the anomalous term is

ΔF ¼ 1

32π

Z
du

Z
d2ΩYAϵABϵ

CDDBDDDECCE: ðC9Þ

If we now decompose CAB into electric and magnetic parity
pieces according to Eq. (2.24), we can rewrite this as

ΔF ¼ −
1

32π

Z
du

Z
d2ΩYAϵABDB

�
D2 þ 1

2
D4

�
Ψ:

ðC10Þ

For BMS transformations, YA is of the form (2.15), where χ
and κ are purely l ¼ 1. Integrating by parts, we see that the
expression (C10) vanishes, since l ¼ 1 harmonics are
annihilated by the operator D2 þ 2. Hence we have verified
the conservation law (3.2).

APPENDIX D: COMPUTATION OF
SUPER-ROTATION CHARGES IN

STATIONARY REGIONS IN A MORE
GENERAL CLASS OF BONDI FRAMES

The computations of the super-rotation charges in
Sec. III C were specialized to Bondi frames obeying the
constraint (2.21) that the angular momentum aspect be
nonevolving. While such frames always exist in stationary
regions, they are not the most general frames. We now
extend those computations to remove this constraint, by
using a different computational method.
As before, we restrict attention to a region of future

null infinity in which the spacetime is stationary, and in
which the leading and subleading stress-energy tensor
components vanish. We start from the canonical Bondi
frame (2.28), and write the angular momentum aspect in
that frame as

NA ¼ ϵABDBΘ; ðD1Þ

where Θ is purely l ¼ 1 and independent of u and encodes
the intrinsic angular momentum. We now perform a general
linearized BMS transformation parametrized by the vector
field on future null infinity of the form [cf. Eq. (2.13)
above, with some changes of notation]�

−
1

2
Φþ 1

2
uλ

�
∂u þ

�
−
1

2
DAλþ ϵABDBκ

�
∂A: ðD2Þ

Here Φ, λ and κ are functions on the 2-sphere which are
independent of u. The supertranslation piece Φ is arbitrary,
while the boost piece λ and the rotation piece κ are l ¼ 1
harmonics. We now combine this with the transformation
laws (2.18), the canonical form (2.28) and (D1) of the
metric functions, the result (2.25), and use DADBλ ¼
−hABλ and similarly for κ. Working to linear order in Φ,
λ and κ, this yields for the metric functions in the new frame

m ¼ m0 þ
3

2
m0λ; ðD3aÞ

CAB ¼ DADBΦ −
1

2
hABD2Φ; ðD3bÞ

NA ¼ ϵABDB½ ~Θð1þ λ=2Þ� − 3

2
m0DAΦþ 3

2
um0DAλ:

ðD3cÞ

Here ~Θ is given by

~Θ ¼ Θþ ϵABDBκDAΘ; ðD4Þ

is purely l ¼ 1, and represents the intrinsic angular
momentum in the rotated frame. The results (D3) agree
with the expressions (3.17) derived in Sec. III C above,
except for the new terms involving the rotation κ and the
boost λ.
Next, we insert the results (D3) into the formula (3.5) for

the BMS charge, specialized to α ¼ 0, neglecting terms
quadratic in CAB as before. This gives

Q ¼ 1

8π

Z
d2ΩYAN̂A; ðD5Þ

where

N̂A ¼ ϵABDB½ ~Θð1þ λ=2Þ� − 3

2
m0DAΦ: ðD6Þ

Comparing this with Eq. (3.17) we see that there is an extra
contribution to the magnetic parity piece of the super-
rotation chargesQ½lm� for jmj > 1 associated with the boost
piece λ of the BMS transformation. It gives a nonzero
contribution only for jmj ¼ 2.

APPENDIX E: MAGNETIC PARITY PIECE
OF SHEAR VANISHES IN STATIONARY

VACUUM REGIONS

In this appendix we show that the magnetic parity piece
of the shear tensor CAB vanishes in stationary vacuum
regions of future null infinity Iþ, in arbitrary Bondi frames.
Closely related results have been derived by Winicour
[41,42], and by Bieri and Garfinkle [14] in linearized
gravity.
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In the canonical Bondi frame discussed in Sec. II D above,
the metric functions take the simple form (2.28), and in
particularCAB ¼ 0. Consider nowmaking a transformation to
an arbitrary Bondi frame, using the general nonlinear BMS
transformation discussed in Appendix B. We can decompose

such a transformation into a rotation, followed by a boost,
followed by a supertranslation. The rotation and boost
maintain CAB ¼ 0, by Eq. (B6). Finally, under the super-
translation the shear tensor undergoes the transformation
(B8), which generates only an electric parity piece of CAB.
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