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Many aspects of the large-scale structure of the Universe can be described successfully using cosmological
models in which 27� 1% of the critical mass-energy density consists of cold dark matter (CDM). However,
few—if any—of the predictions of CDMmodels have been successful on scales of∼10 kpc or less. This lack
of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and
black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light
(m ∼ 10−22 eV) boson having a de Broglie wavelength λ ∼ 1 kpc, often called fuzzy dark matter (FDM). We
describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical
signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or subhalos
smaller than about 107ðm=10−22 eVÞ−3=2 M⊙ do not form, and the abundance of halos smaller than a few
times 1010ðm=10−22 eVÞ−4=3 M⊙ is substantially smaller in FDM than in CDM. (ii) FDM halos are
comprised of a central core that is a stationary, minimum-energy solution of the Schrödinger-Poisson
equation, sometimes called a “soliton,” surrounded by an envelope that resembles a CDM halo. The soliton
can produce a distinct signature in the rotation curves of FDM-dominated systems. (iii) The transition
between soliton and envelope is determined by a relaxation process analogous to two-body relaxation in
gravitating N-body systems, which proceeds as if the halo were composed of particles with mass ∼ρλ3 where
ρ is the halo density. (iv) Relaxation may have substantial effects on the stellar disk and bulge in the inner
parts of disk galaxies, but has negligible effect on disk thickening or globular cluster disruption near the solar
radius. (v) Relaxation can produce FDM disks but a FDM disk in the solar neighborhood must have a half-
thickness of at least ∼300ðm=10−22 eVÞ−2=3 pc and a midplane density less than 0.2ðm=10−22 eVÞ2=3 times
the baryonic disk density. (vi) Solitonic FDM subhalos evaporate by tunneling through the tidal radius and
this limits the minimum subhalo mass inside∼30 kpc of the MilkyWay to a few times 108ðm=10−22 eVÞ−3=2
M⊙. (vii) If the dark matter in the Fornax dwarf galaxy is composed of CDM, most of the globular clusters
observed in that galaxy should have long ago spiraled to its center, and this problem is resolved if the dark
matter is FDM. (viii) FDM delays galaxy formation relative to CDM but its galaxy-formation history is
consistent with current observations of high-redshift galaxies and the late reionization observed by Planck.
If the dark matter is composed of FDM, most observations favor a particle mass ≳10−22 eV and the most
significant observational consequences occur if the mass is in the range 1–10 × 10−22 eV. There is tension
with observations of the Lyman-α forest, which favor m≳ 10–20 × 10−22 eV and we discuss whether more
sophisticated models of reionization may resolve this tension.
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I. INTRODUCTION

The standard lambda cold dark matter (ΛCDM) model
for the mass-energy content of the Universe and the

development of cosmic structure has been remarkably
successful. In this model the Universe is geometrically flat
and the largest contributors to the mass-energy are dark
energy, 68� 1% of the total, and dark matter, 27� 1% [1],
both of unknown nature. Most likely the dark matter
consists of some undiscovered elementary particle(s),
produced early in the history of the Universe, that is “cold”
in the sense that the effect of its velocity dispersion on
structure formation is negligible. Ordinary or baryonic
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matter is a minor constituent (5%), and neutrinos and other
light or zero-mass particles make an even smaller contri-
bution to the total mass-energy density. This mixture of
components, with small density fluctuations normalized to
the observed fluctuations in the cosmic microwave back-
ground radiation field and allowed to grow via gravitational
instabilities, can account for the properties of the structures
in the Universe at most well-observed scales and epochs.
The initial spectral index of the perturbations is slightly
less than unity, ns ¼ 0.965� 0.006, consistent with simple
theories in which the Universe passes through an early
inflationary stage. N-body simulations with initial linear
fluctuations having this spectral index show that the non-
linear dark-matter structures that develop—called “halos” if
isolated and “subhalos” if embedded in a larger halo—are
hierarchical, with every halo and subhalo having embedded
within it subhalos, in a roughly self-similar fashion. These
simulations also show that halos and subhalos have singular
density cusps at their centers, with the density varying with
radius roughly as ρðrÞ ∝ r−1 [2,3].
On scales larger than those of the stellar distribution in

normal galaxies—say 10 kpc or more—the predictions
of ΛCDM have been amply tested, and, although neither
semianalytic theory nor numerical simulations can yet
match all that we observe, the correspondence between
calculation and observation is now good enough to assure
us that at large scales the ΛCDM model is essentially
correct. Particularly impressive is that the power spectrum
of mass fluctuations, determined at redshift z ∼ 103 by
observations of the cosmic microwave background, cor-
rectly produces the power spectrum of mass fluctuations at
the present time, redshift z≃ 0, to within a few percent
even though the amplitude at z ¼ 0 is some 5 orders of
magnitude larger than it was at z ∼ 103.
On the other hand, on scales similar to those of galaxies,

≲10 kpc, the CDM model has essentially not been tested.
In fact, the naïve predictions of the distribution of dark
matter on these scales are in most cases inconsistent with
observations [4]. As one example, the number density of
galaxies varies with their total stellar mass roughly as
dnðM⋆Þ ∝ M−1.2� dM�, but the predicted number density of
halos increases with decreasing halo mass much more
steeply, dnðMhÞ ∝ M−2

h dMh. This apparent discrepancy is
usually attributed to “baryonic physics” that causes the
efficiency of transforming baryons into stars to be lower in
systems of lower mass. Consequently thousands of opti-
cally invisible low-mass halos (Mh ≲ 108.5 M⊙) are pre-
dicted to exist in our Galaxy and others. A second example
is the “too big to fail” problem: the high-luminosity satellite
galaxies associated with the most massive subhalos appear
to be much less common than CDM would predict. A third
issue is that the expected dark-matter density cusps in the
centers of galaxies have not been detected; this discrepancy
is usually attributed to gravitational stirring of the central
regions of galaxies consequent to supernova explosions,

but in systems having a low baryonic fraction that explan-
ation is problematic. Thus the hierarchical nature of density
fluctuations predicted by CDM is amply established at
large scales such as clusters of galaxies but—to date—the
expected distribution of subhalos within the MilkyWay and
other galaxies has evaded detection. Given the complexity
of the physics, these discrepancies are not crippling blows
to the CDM model, but it can also be said that none of the
characteristic features associated with CDM on galaxy
scales has ever been detected.
Avariant to CDM is warm dark matter (WDM), in which

the mass of the hypothetical dark-matter particle is suffi-
ciently small that its thermal velocity dispersion has a
significant influence on structure formation [5]. The linear
power spectrum in WDM is greatly reduced below the free-
streaming scale, suppressing the formation of low-mass
halos or subhalos [6,7]. The finite phase-space density
prevents the development of density cusps [8], though the
implied central core size is generally small [6,7].
An alternative hypothesis is that the dark matter is com-

prised of very light bosons or axions, m ∼ 10−22–10−21 eV
[9–16]. All large-scale predictions are the same as in
ΛCDM, but the particles’ large de Broglie wavelength
[Eq. (18)] suppresses small-scale structure. This material is
sometimes termed “wave dark matter” or “fuzzy dark
matter” (FDM), a term introduced in a seminal paper by
Hu et al. [12]. A review of axion cosmology is given by
Marsh [17]. Constraints on FDM from the cosmic micro-
wave background are described in [18]. An attractive
feature of FDM with a mass in this range is that a cosmic
abundanceΩm ∼ 1 can arise in naturally occurring models,
as we describe below. FDM, by virtue of its macroscopic
de Broglie wavelength, possesses novel features in its
nonlinear dynamics. In this paper we assess the FDM
hypothesis, we provide some new calculations of the
properties of FDM, and we propose a set of tests to
ascertain its consistency with observations. Both WDM
and FDM, because they share a suppression of the power
spectrum at small scales, are subject to strong constraints
from the Lyman-α forest [19], which we also dis-
cuss below.
We note that all of the published (to date negative)

experimental searches for dark matter and its decay
products would not have detected the very light bosons
that we are proposing for the principal component of the
dark matter, although experiments have been suggested
which have the potential to detect FDM (see discussion at
the end of Sec. II A).
In Sec. II we review the physical motivation for the FDM

hypothesis; in Secs. III, IV, and V we outline the astro-
physical consequences, tests and predictions of the model;
and in Sec. VI we summarize our conclusions. Technical
calculations are relegated to several appendixes. Natural
units, where ℏ ¼ c ¼ 1, are used in Sec. II A, while factors
of ℏ and so on are kept explicit in the rest of the paper—the
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only exception is that we use eV instead of eV=c2 to denote
mass throughout.

II. THE PHYSICS OF FDM

A. Light fields of spin zero

The basic reason why it is natural in particle physics to
have a very light field of spin zero is that when the mass and
self-couplings of a spinless field ϕ are precisely zero, there
is an extra symmetry. Thus the action

I ¼ 1

2

Z
d4x

ffiffiffiffiffiffi−gp
gμν∂μϕ∂νϕ ð1Þ

has the shift symmetry ϕ → ϕþ C, with constant C.
This symmetry is lost if a mass term 1

2
m2ϕ2 or a more

general self-coupling VðϕÞ is added to the action, and
likewise it could be violated by the couplings of ϕ to
other fields.
The candidate particle for FDM is not a precisely

massless boson, but one that is very nearly massless.
Thus ϕ must have an approximate shift symmetry, not
an exact one. In fact, it is suspected that in quantum gravity
all continuous global symmetries, such as the shift sym-
metry of a scalar field, are only approximate.1; So we
expect the symmetry to be broken at some level.
There is at least one situation in which a very light

spin-zero field arises naturally: if the field ϕ is an angular
variable then the potential function VðϕÞ must be a
periodic function of ϕ. Such periodic spin-zero fields
often arise in naturally occurring models, by which we
mean models that were not invented for the purpose of
having approximate shift symmetries. Moreover, it then
often turns out that the shift symmetries are violated only
by an exponentially small amount. These fields are
sometimes called “axionlike fields” and the correspond-
ing particles are likewise called “axionlike particles”
because one of them could be a candidate for the
QCD axion.
An axionlike candidate for FDM can be largely

described by a simple model with two parameters2 μ and F:

I ¼
Z

d4x
ffiffiffiffiffiffi−gp �

1

2
F2gμν∂μa∂νa − μ4ð1 − cos aÞ

�
: ð2Þ

Here a is a dimensionless scalar field with a shift symmetry
a → aþ 2π. Since a is dimensionless, its kinetic energy
involves the constant F (sometimes called the axion decay
constant, but this terminology is misleading in the context
of FDM). The periodicity a ≅ aþ 2π would allow us to
add to the action terms involving higher harmonics
of a (cos ka or sin ka with integer k and jkj > 1), but in
models in which μ is small enough to be relevant for our
applications, those higher harmonics would have com-
pletely negligible coefficients. The mass of a is

m ¼ μ2

F
; ð3Þ

and for FDM we want m ∼ 10−22–10−21 eV.
For example, all models of particle physics derived from

string theory have at least several periodic scalar fields such
as a, and typical models have many of them (dozens or
even hundreds). Various possible applications of these
fields have been considered (see for example [23]). With
different assumptions about their masses, they have been
proposed as candidates for the inflaton field of inflationary
cosmology; as potential QCD axions, whose existence may
explain CP conservation by nuclear forces; and as con-
tributors to dark energy or the cosmological constant and/or
ingredients in a mechanism to explain its smallness. For
our present purposes, we are interested in these fields as
candidates for FDM.
In most classes of model, F lies within a relatively

narrow range bounded above by the reduced Planck mass
MPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.435 × 1018 GeV, and below by the
traditional “grand unified” scale of particle physics,
MG ∼ 1.1 × 1016 GeV:

1018 GeV≳ F ≳ 1016 GeV: ð4Þ

The lower bound is the actual value for the “model-
independent” axion of the weakly coupled heterotic string
[24]. For applications to inflation, some authors have
attempted to increase F beyond the upper bound of
∼1018 GeV, but this has proved difficult [25], except in
models in which μ is so large that the axion is not relevant.
The lower bound, which causes difficulty for some
approaches to the QCD axion, is less firm but is valid in
many classes of models [26]. As we shall see, for
applications to FDM it is satisfactory to take the range
(4) at face value.
What about the second parameter μ in the action? This

is generated by nonperturbative instanton effects of one
kind or another, depending on the model. A rough
formula is

μ4 ∼M2
PlΛ

2e−S; ð5Þ

1As a prototype of this phenomenon, for many years it
appeared that the three separate lepton numbers Le, Lμ, and
Lτ were conserved quantities in particle physics. We now know
from observations of neutrino oscillations that at least the
separate lepton numbers Le − Lμ and Lμ − Lτ are violated at
a very low level.

2The assumptions that lead to a model of this form also greatly
suppress the coupling of the axion to ordinary matter. Both for
this reason and because it is so light, the FDM particle would not
be detected in the usual searches for WIMP dark matter or even in
QCD axion searches [20–22].
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where S is the instanton action and Λ, which measures
a possible suppression of instanton effects due to super-
symmetry, can vary over a very wide range:

1018 GeV≳ Λ≳ 104 GeV: ð6Þ

Typical values are Λ ∼ 1018 GeV (no suppression due to
supersymmetry), Λ ∼ 1011 GeV (gravity-mediated super-
symmetry breaking), and Λ ∼ 104 GeV (gauge-mediated
supersymmetry breaking). The formula (5) is only a very
rough one, but it is good enough to give an idea of how
large S must be so that m ¼ μ2=F will be close to
10−22 eV. Setting F ¼ 1017 GeV [a different value in
the range (4) would make little difference, given the
uncertainties], we find that to get m ¼ 10−22 eV, we need

S ¼
8<
:

165 if Λ ¼ 104 GeV

198 if Λ ¼ 1011 GeV

230 if Λ ¼ 1018 GeV

: ð7Þ

The value of S is rather model dependent. In some
simple cases, one finds S ∼ S0 ¼ 2π=αG where αG is the
Standard Model gauge coupling extrapolated to energy
MG ∼ 1.1 × 1016 GeV. In many classes of model, S can be
close to S0 but not significantly bigger [26]. The value of
αG depends on the assumed spectrum of elementary
particles up to the unification scale. The usual estimate
based on known particles only gives αG ∼ 1=25, but for
example the model in [27] has αG ∼ 1=30. Some values of
S0 are

S0 ¼
8<
:

126 for αG ¼ 1=20

157 for αG ¼ 1=25

188 for αG ¼ 1=30

: ð8Þ

Thus the range of S0 overlaps the desired range for S.
These numbers should not be taken very seriously,

even if the basic ideas are all correct, because 2π=αG
is only a very rough value for S. The reason for writing
them was only to show that a mass of 10−22 eV is
reasonable. In models with dozens or hundreds of axion-
like fields, it may readily happen that the largest values of
S are of order 2π=αG, but that most of the axions have
much smaller values of S. The axions with S ≪ 2π=αG
are not candidates for FDM. In [28] (a paper that was
motivated by applications to quintessence and dark
energy), it is estimated that it is difficult to make S much
larger than 200–300, but there is ample uncertainty in this
upper bound.
To estimate what value of F will work well for FDM, we

follow classic reasoning [29–31] that was originally devel-
oped to estimate the contribution to dark matter of a QCD
axion. Analogous estimates for FDM have been made by
several authors [23,32]. (The case of FDM is simpler as, in

a minimal model of this type,3 one does not have to
estimate the turning on of strong coupling effects such as
those of QCD.) One assumes that in the very early
Universe, the a field was a constant with some random
initial value. The logic in assuming a random initial value is
this. Instead of taking the axion potential in Eq. (2) to
be μ4ð1 − cos aÞ, we could just have well have assumed
μ4½1 − cosða − a0Þ� with some constant a0. The correct
value of a0 depends on details of the mechanism that breaks
the shift symmetry at low energies. In writing Eq. (2), we
shifted the field a to set a0 ¼ 0, but whatever mechanism
determines the value of a in the early Universe has no way
to “know” what value of a will minimize the potential at
low energies.
Starting with a random initial value of a, one determines

its behavior in an expanding Friedmann-Robertson-Walker
(FRW) universe with metric ds2 ¼ dt2 − RðtÞ2dx2 by
simply solving the classical equation of motion for a field
that depends on time only. This equation is

äþ 3H _aþm2 sin a ¼ 0; ð9Þ

with H ¼ _R=R the Hubble constant. An approximation to
the behavior of this equation is that a is constant as long as
H ≳m, and then oscillates with angular frequency m (or
mc2=ℏ, if one restores ℏ and c). The oscillations are
damped as R−3=2. In the period in which a is oscillating,
it can be interpreted as describing a Bose condensate of
ultralight particles of zero spatial momentum. The energy
density of these particles scales as 1=R3, like any other
form of cold dark matter. Indeed, the axion “condensate,”
which is just a fancy way to speak of the classical axion
field, behaves for many purposes as an exceptionally cold
form of CDM.
The temperature T0 at which H ∼m satisfies roughly

T2
0

MPl
¼ m: ð10Þ

At that temperature, the total energy density of radiation is
roughly T4

0 and the dark-matter density [with a ∼ 1 in
Eq. (2)] is of order μ4. As the Universe expands, the ratio
of dark matter to radiation grows as 1=T, and in the
real world, they are supposed to become equal at the

3In a model in which, beyond well-established physics, only
one field a is added, the μ4 cos a interaction can be understood as
some sort of instanton effect (as described above), and in
discussing the cosmic evolution, both F and μ can be treated
as constant parameters. It is also possible to make a more
complicated model with, for example, a new gauge force that
becomes strong at an energy of order μ, generating the μ4 cos a
term. Then, as in the case of the QCD axion, at temperature
T > μ, the μ4 cos a must be replaced by ðμ=TÞnμ4 cos a, where n
is a model-dependent constant.
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temperature T1 ∼ 1 eV at which the Universe becomes
matter dominated. So we want

μ4

T4
0

T0

T1

∼ 1: ð11Þ

Combining these formulas and using μ4 ¼ F2m2, we get

F ∼
M3=4

Pl T
1=2
1

m1=4 ∼ 0.5 × 1017 GeV; ð12Þ

for m ∼ 10−22 eV. The fact that this is in the range
described earlier in Eq. (4) is an interesting coincidence,
somewhat reminiscent of the weakly interacting massive
particle (WIMP) miracle. In other words, the axion energy
density today (normalized by the critical density) is

Ωaxion ∼ 0.1

�
F

1017 GeV

�
2
�

m
10−22 eV

�
1=2

: ð13Þ

The temperature T0 at which the FDM field begins to
oscillate is

T0 ∼ ðmMPlÞ1=2 ∼ 500 eV: ð14Þ

This corresponds to a redshift ∼2 × 106. This is after
nucleosynthesis, so FDM behaves during nucleosynthesis
as a (negligible) contribution to dark energy.
In the axion model, is the dynamics of dark matter

purely gravitational or do we have to consider the axion
self-interaction? In the two-parameter model of Eq. (2),
once F ∼ 1017 GeV and m ∼ 10−22 eV are determined
from observed properties of dark matter, the coefficients
of the nonlinear axion interactions are determined. Thus
the axion equation of motion, including terms of cubic
order in a, is

0 ¼ DμDμaþm2a −
m2

6
a3 þOða5Þ: ð15Þ

To decide whether the a3 term, which is attractive, is
significant, we can proceed as follows. In a body with a
dimensionless gravitational potential ε, the gravitational
contribution to the equation is of order εm2a. The condition
for the a3 term to be significant in comparison to gravity is
therefore m2a3 ≳ εm2a or a2 ≳ ε. We will evaluate this
condition in the very early Universe and in today’s
Universe.
At the temperature T0 at which dark matter begins to

oscillate dynamically, we have a2 ∼ 1 (since we have
assumed a random initial value of a) and ε ∼ 10−5 (the
value of the primordial cosmic fluctuations). Thus a2 ≫ ε
and the self-interaction of a dominates. This continues until
a diminishes by a factor of about 10−5=2. Since a ∼ R−3=2,
gravity dominates once R increases by a factor of about

105=3. Thus gravity dominates below a temperature of
roughly 10−5=3T0, and in particular gravity dominates by
the time the temperature T1 of radiation-matter equality is
reached.
On the other hand, for a weakly bound object of density

ρ and size L in today’s Universe, we have ε ∼GρL2. As the
dark-matter density is ρ ∼ F2m2a2, the condition a2 ≳ ε
for the nongravitational force to be significant is 1≳
GF2m2L2 or

L≲
ffiffiffiffiffiffi
8π

p
MP

Fm
: ð16Þ

Quantitatively, for F ∼ 1017 GeV, m ∼ 10−22 eV, this says
that gravity dominates for a dark-matter-dominated object
of size greater than roughly 1 parsec.
What are the difficulties with the axion approach to

FDM? We will just mention a couple of the more obvious
issues. One question is what to make of axionlike particles
other than the one that hypothetically makes up FDM.
Axions with a larger value of S (and therefore a smaller
mass) than the FDM particle are really not a problem. They
simply make small contributions to the dark matter or the
dark energy in today’s Universe.4 Axions with a mass larger
than about 104 GeV (which corresponds to S ∼ 50 if, for
example, Λ ∼ 1011 GeV) may decay quickly enough to
cause no cosmological difficulties. However, axionlike
particles with masses in the large range 104 GeV≳m≳
10−22 eV could potentially create too much dark matter. An
optimist might hope that the world is described by a model
in which there are no axions with (roughly) 50 < S < 200.
Another issue concerns the tensor-to-scalar ratio r of
cosmological perturbations. In a model in which r is large
enough to be observed, under the simplest assumptions a
QCD axion in the range F ≳ 1016 GeV that is assumed in
the above discussion leads to isocurvature fluctuations that
are excluded by cosmological observations. (For an assess-
ment, see for example [33]. The problem arises because
the same mechanism that leads to quantum fluctuations
of order H=2π for the inflaton field leads to fluctuations of
the same order for any sufficiently light axion field.
Independent fluctuations in two different scalar fields lead
to isocurvature perturbations.) There is an analogous
although less severe problem for a FDM particle. The
problem is less severe because the parameters of this
particle have been adjusted so that the maximum dark

4Axionlike fields that are oscillating in today’s Universe
represent contributions to dark matter. Those with masses less
than today’s Hubble constant are still not oscillating in the present
Universe and represent contributions to the dark energy. It is
argued in [28] that axion contributions are too small to account
for all of the dark energy except possibly in a situation with a very
large number of axions contributing. (In any event, we stress that
an axion in the mass range appropriate to FDM definitely behaves
as a contribution to dark matter, not dark energy.)
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matter it can produce is comparable to what is observed (by
contrast a QCD axion with F ≳ 1016 GeV is at risk of
producing much too much dark matter). But there still is a
potential difficulty, if r is observed. We will have to wait to
see if this is a problem that needs to be solved.
If FDM exists, can it be detected in any way other

than by observing its gravitational effects? Conven-
tional dark matter searches would not find the FDM particle
both because it is much too light and because it couples
much too weakly to ordinary matter (if it had strong
nongravitational couplings to ordinary matter, then
allowing for quantum effects, it would not be as light as
described above).5 However, a number of proposals for
direct, or at least more direct, observation of ultralight
axionlike particles have been made in [23]. The value
m ∼ 10−22–10−21 eV is not optimal for most of these
proposals, but is at the edge of what might be detected
by observing certain effects involving supermassive black
holes. It has been suggested (in [32] and by P. Graham,
private communication) that the CASPEr-Wind version of
the CASPEr axion experiment might ultimately have the
sensitivity to observe FDM. This experiment is described,
though not by that name, in Sec. 5 A of [34]. FDM might
also be eventually detectable less directly by pulsar timing
observations [35].

B. FDM as a superfluid

From the above discussion, we see that for the purpose of
studying structures on galactic scales and above, we can
ignore the self-interaction of the axionlike particle. In other
words, let us consider the following action for a scalar6 ϕ,
minimally coupled to the metric gμν:

S ¼
Z

d4x
ℏc2

ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

1

2

m2c2

ℏ2
ϕ2

�
; ð17Þ

where we have restored factors of c and ℏ, with ϕ
having energy units. We are interested in a mass m that
corresponds to an astronomically relevant de Broglie
wavelength:

λ

2π
¼ ℏ

mv
¼ 1.92 kpc

�
10−22 eV

m

��
10 km s−1

v

�
ð18Þ

where v is the velocity. A collection of a large number of
such particles in the same state can be described by a
classical scalar field. In the nonrelativistic limit, it is helpful
to express ϕ in terms of a complex scalar ψ :

ϕ ¼
ffiffiffiffiffiffiffiffi
ℏ3c
2m

r
ðψe−imc2t=ℏ þ ψ�eimc2t=ℏÞ: ð19Þ

As is well known, the equation of motion for ψ
takes the form of the Schrödinger equation, assuming
jψ̈ j ≪ mc2j _ψ j=ℏ:

iℏ

�
_ψ þ 3

2
Hψ

�
¼

�
−

ℏ2

2mR2
∇2 þmΦ

�
ψ ; ð20Þ

where Φðr; tÞ is the gravitational potential and we have
adopted the perturbed FRW metric,

ds2 ¼
�
1þ 2Φ

c2

�
c2dt2 − R2ðtÞ

�
1 −

2Φ
c2

�
dr2: ð21Þ

For many Galactic dynamics applications it is sufficient to
set the scale factor RðtÞ to unity, and the Hubble parameter
H ≡ _R=R to zero. The scalar ψ should be interpreted as a
classical field, quantum fluctuations around which are
small. The situation is analogous to using the Maxwell
equations to describe configurations involving a large
number of photons (see [36] for a discussion; see also
[37,38] for the use of the Schrödinger equation in modeling
large-scale structure).
It is sometimes useful to think of the dark matter as a

fluid, a superfluid in fact. We define the fluid density ρ and
velocity v by

ψ ≡
ffiffiffiffi
ρ

m

r
eiθ; v≡ ℏ

Rm
∇θ ¼ ℏ

2miR

�
1

ψ
∇ψ −

1

ψ�∇ψ�
�
:

ð22Þ

The vorticity of the flow ∇ × v vanishes, though the more
physically relevant quantity is the momentum density
which has nonzero curl in general. The following equations
can be derived from the ψ equation of motion in comoving
coordinates:

_ρþ 3Hρþ 1

R
∇ · ðρvÞ ¼ 0; ð23Þ

_v þHv þ 1

R
ðv · ∇Þv ¼ −

1

R
∇Φþ ℏ2

2R3m2
∇
�∇2 ffiffiffi

ρ
p
ffiffiffi
ρ

p
�
:

ð24Þ

These are known as the Madelung equations, slightly
generalized to an expanding universe (see the Feynman
lectures [39] for a discussion, and also [40–44]). They
strongly resemble the continuity and Euler equations of
classical fluid mechanics with the addition of the second
term on the right of Eq. (24), commonly referred to as the
“quantum pressure” term. The quantum pressure gives rise

5A derivative coupling of the axion to fermions is allowed, as is
a coupling aϵμναβfμνfαβ where fμν is the electromagnetic field
strength. Such couplings will be proportional to 1=F in the sort of
model assumed above, which drastically suppresses their effects.

6We use a canonically normalized scalar field ϕ, related to the
dimensionless field a used in the last subsection by ϕ ¼ Fa.
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to a certain “stiffness” of the FDM fluid that resists
compression.
More precisely, the quantum pressure arises from a stress

tensor σ,

_v þHv þ 1

R
ðv · ∇Þv ¼ −

1

R
∇Φþ 1

R
∇ · σ; ð25Þ

where

σij ¼ −
ℏ2

4m2R2

�
1

ρ

∂ρ
∂xi

∂ρ
∂xj −

∂2ρ

∂xi∂xj
�

¼ ℏ2ρ

4R2m2

∂2 log ρ
∂xi∂xj :

ð26Þ

An equivalent form is

∂tðρviÞ þ 4Hρvi þ
1

R
∂jΠij þ

1

R
ρ∂iΦ ¼ 0 ð27Þ

where the momentum flux density tensor is

Πij ¼ ρvivj − σij

¼ ℏ2

4mR2
ð∂iψ

�∂jψ þ ∂iψ∂jψ
� − ψ�∂i∂jψ − ψ∂i∂jψ

�Þ
ð28Þ

up to the addition of a divergence-free tensor.
The Madelung equations are well suited to numerical

simulations, because standard hydrodynamics codes can be
modified to incorporate the quantum pressure [16,45,46].
As an example of the relation between the fluid and scalar
field viewpoints, a discussion of the collision of streams is
given in Appendix E.
To minimize confusion, we would like to point out that

despite the appearance of ℏ in many of the above formulas,
all of the considerations above and in this paper can be
understood purely in terms of classical field theory. Indeed,
ℏ and the mass m appear only in the form of the ratio ℏ=m.
All of our formulas can be expressed in terms of this ratio
without ever mentioning ℏ.

III. ASTROPHYSICS OF FDM IN THE
MILKY WAY AND NEARBY GALAXIES

A. Introductory remarks

The differences between the properties of a standard
CDM Universe and a Universe in which the dark matter is
dominated by FDM will be most prominent in dark-matter-
dominated systems where the de Broglie wavelength λ ¼
h=ðmvÞ is comparable to the system size r. Since the virial
velocity v of halos or subhalos generally decreases as r
decreases this condition favors small systems, both because
r is small and because λ is large. Given the small scales, the
effects of FDM are most easily studied in nearby systems,
so most of the tests described below are best performed in

the Milky Way or other Local Group galaxies. On the other
hand, in the standard ΛCDM model of structure formation,
small-scale systems form earliest, so the differences
between galaxy formation in CDM- and FDM-dominated
universes will be most dramatic at high redshift. Thus the
very near, in this section, and the very far, in Secs. IVand V,
will be the foci of our attention.

B. Minimum size and maximum density

The de Broglie wavelength for FDM is given by Eq. (18).
Roughly speaking, λ=ð2πÞ cannot exceed the virial radius
r≃GM=v2 of an equilibrium self-gravitating system of
massM. Thus r≳ ℏ2=ðGMm2Þ. A more precise statement,
derived in Appendix B, is that the radius containing half the
mass of a spherically symmetric, time-independent, self-
gravitating system of FDM must satisfy the inequality

r1=2 ≥ 3.925
ℏ2

GMm2
¼ 0.335 kpc

109 M⊙
M

�
10−22 eV

m

�
2

:

ð29Þ

The inequality is an equality if the system is in a stationary
state that minimizes the energy7 this state is sometimes
called a “soliton.” Similarly, the central density satisfies

ρc ≤ 0.0044
�
Gm2

ℏ2

�
3

M4

¼ 7.05 M⊙ pc−3
�

m
10−22 eV

�
6
�

M
109 M⊙

�
4

: ð30Þ

This upper limit to the density can be compared with
the observed central densities of dwarf spheroidal galaxies
in the Local Group, which are strongly dominated by dark
matter even at their centers: many have mass-to-light
ratios ≳100 M⊙=L⊙ inside their half-light radii. Among
36 Local Group dwarf spheroidals the maximum, mean and
median density within the half-light radius are 5, 0.5, and
0.1 M⊙pc−3 [48], consistent with Eq. (30) ifm≃ 10−22 eV
and the ground-state mass exceeds 3 × 108 M⊙–109 M⊙.
With these nominal values the halo half-mass radius (29) is
similar to the observed half-light radii of dwarf spheroidal
galaxies: the median and quartiles for the Local Group
sample are 0.25þ0.3−0.1 kpc.
If we assume that the central part of the halo is a soliton it

is possible to fit the kinematics of the stars in dwarf
spheroidal galaxies to determine the FDM particle mass.

7In the approximation of the Schrödinger-Poisson equation
there is a conserved particle number, and the soliton solution
minimizes the energy for a given particle number. This particle
number is not conserved in the full equations governing a real
scalar field interacting with gravity, so in that context the soliton
is not absolutely stable, although its lifetime is much greater than
the Hubble time [47].
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Using eight dwarf spheroidals, Chen et al. [49] found
masses between m ¼ 8þ5−3 × 10−23 eV (for Draco) and
m ¼ 6þ7−2 × 10−22 eV (for Sextans). The galaxy-to-galaxy
scatter inm can be ascribed to contamination by foreground
stars, the strong covariance between the observational
determination of the central density ρc and the half-
mass radius r1=2, and perhaps the assumption that the
central part of the halo is a soliton. Other estimates, based
on fewer galaxies or more approximate models, are roughly
consistent [16,50,51].8

C. Relaxation in systems composed of FDM

Over distances that are large compared to the de Broglie
wavelength, FDM behaves similarly to CDM. Thus we
expect the soliton to be surrounded by a virialized halo with
a Navarro-Frenk-White (NFW) profile [3]. This expect-
ation is demonstrated by simulations [16,45,53,54].
Simulations yield a relation between the mass of the
central soliton M and the virial mass of the surrounding
halo Mvir [53],

M ≃ 2.7 × 108 M⊙
10−22 eV

m

�
Mvir

1010 M⊙

�
1=3

; ð31Þ

however, this relation has only been well tested over the
limited range 109 M⊙ ≲Mvir ≲ 1011 M⊙. These simula-
tions show up to 2 orders of magnitude difference in density
between the solitonic core and the surrounding halo. At
larger halo masses the density contrast between the
solitonic core and the halo is expected to be even larger,
but the soliton mass should fall below the estimate from
Eq. (31), for reasons given below.
An isolated CDM system that is in equilibrium (i.e., that

satisfies the time-independent collisionless Boltzmann
equation) evolves only through two-body relaxation [55],
on a time scale of order trelax ∼ 0.1tcrðM=mÞ where tcr ∼
r=v is the crossing time and we have neglected a loga-
rithmic factor. For typical galaxy masses M and CDM
particle masses mCDM, trelax is many orders of magnitude
longer than the Hubble time. In contrast, a FDM system
that is not a soliton evolves by expelling probability density
to infinity since all eigenstates other than the solitonic
ground state are unstable. This process is sometimes called
“gravitational cooling” [45,56–58], and the wavy granu-
larity that is the source of this relaxation is seen clearly in
simulations [16]. The granularity, which can also be
thought of as an interference pattern, arises from two
distinct sources: the finite number of modes or eigenstates
in the halo—of order ðkrÞ3 where 2π=k ¼ λ ∼ h=ðmvÞ is
the de Broglie wavelength—and the spatial correlation in

density fluctuations that arises because the FDM particles
are bosons (similar to the Hanbury-Brown and Twiss effect
for photons). The strength of the fluctuations and their
dynamical effect can be estimated by the following crude
arguments. If the local density is ρ then the FDM acts as
quasiparticles with effective mass meff ∼ ρð1

2
λÞ3. Then

the relaxation time should be trelax ∼ 0.1tcrM=meff where
M∼4

3
πρr3 is the halo mass interior to radius r. We find9

trelaxðrÞ ∼
0.4
frelax

m3v2r4

π3ℏ3

∼
1 × 1010 yr

frelax

�
v

100 km s−1

�
2

×

�
r

5 kpc

�
4
�

m
10−22 eV

�
3

; ð32Þ

where frelax ≲ 1 is a dimensionless constant, the value of
which remains to be estimated by simulations and/or more
careful analytic arguments.
A FDM halo will develop a compact solitonic core from

the mass originally in the halo inside radius rs, where rs is
given approximately by the condition trelaxðrsÞ ¼ t0 and t0
is the age of the halo. Low-mass halos have relatively small
radii and virial velocities so the relaxation time is short and
most of the halo is incorporated in the soliton. As the halo
mass grows the virial radius and virial velocity increase,
rvir ∼M1=3

vir and vvir ∼M2=3
vir , so the relaxation time grows

and only a small fraction of the halo mass resides in the
central soliton. The soliton mass depends on the density
and velocity distribution in the halo, which is approxi-
mately described by a NFW profile [3]. Thus the simple
relation (31) between the virial mass and the soliton mass is
probably an approximation that is only valid over a limited
range of virial masses. The NFW density profile flattens at
small radii so we expect the curve relating soliton mass to
virial mass to flatten, and possibly even have negative
slope, at large virial masses.
The fluctuating gravitational potential whose effects

are described by Eq. (32) also leads to relaxation in the
stellar components of the galaxy, although possibly with a
different dimensionless constant. Some of the relevant
dynamics has already been described in the context of
dark matter composed of massive black holes [59] or dark
clusters [60]. To make a rough estimate of the importance
of this process, we focus on the Milky Way at the distance
of the Sun, taking r ∼ 10 kpc, v ∼ 200 km s−1, ρ∼
0.01 M⊙ pc−3. Then the de Broglie wavelength λ≃
600 pcð10−22 eV=mÞ and the mass of a typical quasipar-
ticle is meff ∼ ρð1

2
λÞ3 ∼ 3 × 105 M⊙ð10−22 eV=mÞ3. The

possible effects include.
8An exception is the recent paper by Gonzáles-Morales et al.

[52], which finds m < 0.4 × 10−22 eV from analyzing the kin-
ematics of stars in the Fornax and Sculptor dwarf galaxies.

9Thus FDM has less bound substructure than CDM but more
unbound substructure.

HUI, OSTRIKER, TREMAINE, and WITTEN PHYSICAL REVIEW D 95, 043541 (2017)

043541-8



1. Disruption of star clusters

The fluctuating potential from FDM wave packets exerts
tidal forces that can pump energy into open and globular
clusters. The disruption time can be estimated from
Eq. (8.54) of [55],

tdis ≃ 0.05
frelax

σrelmclr2h
Gmeffρa3

: ð33Þ

Here σrel ∼ v is the one-dimensional dispersion in relative
velocity; mcl is the cluster mass; rh is the half-mass radius
of the perturber, which we take to be 1

2
λ; and a is the radius

or semimajor axis of the cluster star relative to the cluster
center. This formula assumes that rh ≫ a, that the maxi-
mum velocity kick from a passing FDM quasiparticle is
much less than the escape speed from the cluster, and that
the passage time of the quasiparticle rh=v is shorter than the
dynamical time in the cluster; all of these assumptions are
reasonable for the examples discussed here. Inserting
nominal parameters for globular clusters,

tdis ¼
8.4 × 1011 yr

frelax

�
v

200 km s−1

�
2
�

mcl

3 × 105 M⊙

�

×

�
m

10−22 eV

��
0.01 M⊙ pc−3

ρ

�
2
�
30 pc
a

�
3

: ð34Þ

For the nominal parameters the disruption time is much
too large to be of interest. However, the disruption time is
shorter at smaller distances from the Galactic center
because the FDM density ρ is much larger and
tdis ∼ ρ−2. Thus globular clusters close to the Galactic
center could be shorn of their outer parts or even disrupted
by FDM fluctuations if frelax ∼ 1. The outer parts of one or
two of the globular clusters in the Fornax dwarf galaxy
could also be susceptible to disruption by this process.10

Open clusters have a wide range of masses, radii, and
ages but for the nominal values mcl ¼ 300 M⊙ and a ¼
2 pc we find tdis ≃ 2 × 1011 yr=frelax compared to a typical
age of 3 × 108 yr; we conclude that for open clusters in the
solar neighborhood the effects of FDM fluctuations are
negligible.

2. Disruption of wide binary stars

The effect of FDM fluctuations on binary stars can be
described by Eq. (34) if we replace the cluster mass mcl by
the total mass of the binary, which we take to be 2 M⊙,
and let a represent the binary semimajor axis. The
widest known binary stars have a≃ 0.1 pc so we obtain
tdis ≃ 1.5 × 1014 yr=frelax, too long to be of interest.

3. Thickening of the Galactic disk

FDM fluctuations can pump energy into the orbits of
disk stars. An approximate estimate of the characteristic
time for the disk to double in thickness is

tthick ¼
0.2
frelax

σ2diskvb
2
min

G2meffρz21=2
: ð35Þ

Here σdisk and z1=2 are the vertical velocity dispersion and
half-thickness of the disk and bmin is the minimum impact
parameter of encounters that contribute strongly to the
thickening. We set bmin¼maxðz1=2;12λÞ. We have λ>2z1=2
for m < 1.0 × 10−22 eVð200 km s−1=vÞð300 pc=z1=2Þ; in
this case

tthick ¼
7.0 × 1011 yr

frelax

�
σdisk

30 km s−1

�
2
�

v
200 km s−1

�
2

×

�
m

10−22 eV

��
0.01 M⊙ pc−3

ρ

�
2
�
300 pc
z1=2

�
2

:

ð36Þ

For larger masses, when λ < 2z1=2,

tthick ¼
7.0 × 1011 yr

frelax

�
σdisk

30 km s−1

�
2
�

v
200 km s−1

�
4

×

�
m

10−22 eV

�
3
�
0.01 M⊙ pc−3

ρ

�
2

: ð37Þ

These time scales are too long to be of interest in the solar
neighborhood, but thickening by FDM fluctuations could
convert disks into thicker structures such as pseudobulges in
the inner parts of galaxies.

4. Galactic bulges

The bulges of disk galaxies have typical sizes of ∼1 kpc
and thus would interact strongly with FDM fluctuations
according to Eq. (32). However, this equation probably
overestimates the relaxation rate inside the region where
trelax is less than the age of the galaxy because most of the
FDM will be incorporated in the central soliton, which is
stationary and does not contribute to relaxation.

5. Orbital decay of supermassive black holes

Most galaxies contain black holes of 106 M⊙–1010 M⊙
at their centers. When two galaxies with CDM halos merge,
dynamical friction from the halo drains orbital energy from
the black holes and they spiral in to the central few parsecs of
the merger remnant [61,62]. If the inspiral continues to even
smaller orbital radii, until the decay time scale due to
gravitational radiation becomes shorter than a Hubble time
(typically at semimajor axes of 0.001–0.1 pc), then the two
black holes will merge. The gravitational radiation from the10T. Brandt, private communication.
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late stages of the inspiral and the merger could be detectable
by ground-based pulsar timing arrays and space-based
interferometers, respectively. However, FDM fluctuations
may inhibit the inspiral at kiloparsec scales. The effective
mass of the FDM quasiparticles meff ∼ ρFDMð12 λÞ3 can be
rewritten using the relation ρ ∼ 3v2=ð4πGr2Þ if ρ is inter-
preted as the mean density inside radius r and FDM
dominates this density so ρ ∼ ρFDM. Then

meff ∼
3π2ℏ3

4Gr2m3v

¼ 6× 107 M⊙
�
1 kpc
r

�
2
�
200 kms−1

v

��
10−22 eV

m

�
3

:

ð38Þ

At small radii, but outside the solitonic core, the effective
mass of the FDM fluctuations can be larger than the black-
hole mass and in this case the fluctuations will pump energy
into the black-hole orbits, opposing the drain of energy by
dynamical friction from the hot stellar component (an
additional effect in disk galaxies is dynamical friction from
rotating stars and gas in the disk, which adds to the
component of angular momentum normal to the disk). If
the density of FDM is comparable to the density of stars and
other baryons, the orbital decay could be slowed or even
reversed; if the stellar system has density ρ⋆ and is not
rotating, and the black hole has mass mBH, this reversal
occurs if there is a radial region where ρFDMmeff ≳ ρ⋆mBH.
In this case the formation of subparsec black-hole binaries
would be suppressed, and the rate of black-hole mergers
could be much smaller than otherwise predicted. The
predicted population of supermassive black holes orbiting
at kiloparsec distances from the centers of galaxies would be
extremely difficult to detect.
These speculations and estimates require confirmation

by more sophisticated analytic arguments and simulations.
They suggest that relaxation due to FDM fluctuations may
substantially alter the structure of both the inner parts of
galaxy-size FDM halos and their stellar components.

D. The cusp-core problem

A generic prediction of structure formation in CDM
is that halos and subhalos should have singular density
cusps at their centers, with the density varying with radius
roughly as ρðrÞ ∼ r−1 [2,3]. Baryonic processes such as
adiabatic contraction, infalling substructure, or density
fluctuations due to supernova feedback could modify this
profile [63–73], so the prediction of a central density cusp is
most secure in dwarf spheroidal galaxies, where the total
density is strongly dominated by dark matter at all radii [48].
In principle, observations of stellar kinematics can

determine whether the dark-matter density distribution at
the centers of dwarf spheroidals is a cusp as in CDM
models or a core as in FDM. Although the majority of

studies favor cores over cusps, the question has not yet been
settled, largely because of degeneracies between the obser-
vational signatures of the mass profile and the velocity
anisotropy profile [74–86]. The density profiles of low-
surface-brightness disk galaxies also appear to have cores
[87–89]; see [90] for a review.
We conclude that the kinematics of low-surface-

brightness galaxies, both dwarf spheroidals and disks, is
consistent with the cores required by FDM and disfavors,
but does not rule out, CDM. Definitive observations of
dark-matter cusps down to a distance r from the centers of
galaxies would rule out FDM with a mass m≲ ℏ=ðvrÞ
where v is the velocity dispersion at r.

E. Lower bound on FDM halo masses

We have seen [Eq. (29)] that self-gravitating time-
independent FDM systems supported by quantum pressure
have the unusual property that low-mass objects are larger than
those of higher mass. This has important cosmological
consequences that are independent of the details of the halo
formation process and the spectrum of initial density pertur-
bations, in particular a minimum mass for FDM halos.
There are two arguments based on similar physical

principles that produce the same lower bound on the halo
mass. The first is based on the observation that if halos form
by gravitational collapse they cannot be lower in density
than the average universe in which they reside. Let ρ1=2 ¼
1
2
M=ð4

3
πr31=2Þ be the mean density inside the half-mass

radius [Eq. (29)]. For comparison, the virial radius is
commonly defined such that the mean density inside it
is ρvir ≡ 200ρcrit where ρcrit ¼ 3H2=ð8πGÞ is the critical
density. If we require that ρ1=2 > qρvir where q is a factor
≳1 then

M > 2.8q1=4
H1=2ℏ3=2

Gm3=2

¼ 1.4 × 107 M⊙q1=4
�

H
70 km s−1 Mpc−1

�
1=2

×

�
10−22 eV

m

�
3=2

: ð39Þ

The second argument is based on the Jeans length, the
minimum scale for gravitationally unstable density pertur-
bations in a homogeneous background. This has been
derived for FDM and gives for the critical (maximum)
Jeans wave number [12,41,42,91–94]

kJ ¼
2ðπGρÞ1=4m1=2

ℏ1=2 ð40Þ

where ρ is the unperturbed matter density and kJ is in
physical, not comoving, coordinates. The corresponding
Jeans length is λJ ≡ 2π=kJ and the Jeans mass is
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MJ ¼
4

3
πρ

�
1

2
λJ

�
3

ð41Þ

¼ 1.5 × 107 M⊙ð1þ zÞ3=4
�
ΩFDM

0.27

�
1=4

×

�
H0

70 km s−1 Mpc−1

�
1=2

�
10−22 eV

m

�
3=2

: ð42Þ

Here H0 is the Hubble constant and ΩFDM is the fraction of
the critical density in FDM. Within the considerable
uncertainties Eqs. (39) and (42) give the same result, a
minimum halo mass of ð1–2Þ × 107 M⊙ð10−22 eV=mÞ3=2,
in fairly good agreement with an earlier estimate by [53],
4 × 107 M⊙ð10−22 eV=mÞ3=2, obtained by setting M ¼
Mvir in Eq. (31). For CDM the number of halos (and
subhalos) is rising as dnðMhÞ ∝ M−2

h dMh below 108 M⊙,
so the contrast in the number of low-mass halos is dramatic.
Dark-matter halos or subhalos cannot easily exist with

masses lower than this limit, so dark-matter halos around
globular clusters or similar ultracompact dwarf galaxies are
not expected in FDM models [94].
Whether or not halos form at or near this minimum mass

depends on the initial density perturbation spectrum for
FDM and its linear and nonlinear growth, a topic we defer
to Sec. IV.

F. A maximum soliton mass

At sufficiently large mass M the depth of the central
potential of a solitonic core composed of FDM approaches
c2. From Eq. (B3) this occurs whenM ∼ ℏc=ðGmÞ and this
represents a maximum mass for FDM solitons analogous to
the Chandrasekhar mass for self-gravitating fermion sys-
tems. Calculations that employ general relativity [95–97]
provide a more accurate value,

Mmax ¼ 0.633
ℏc
Gm

¼ 8.46 × 1011 M⊙
10−22 eV

m
: ð43Þ

FDM halos can and do exist with much larger masses. In
such cases the mass of the central soliton is only a small
fraction of the total halo mass, most of the halo behaves
classically, and the mass spectrum and most other proper-
ties of halos would be the same as in CDM. An unresolved
question is how the relaxation processes described in
Sec. III C would affect the central structure in massive
FDM halos. The maximum soliton mass is lowered when
the self-interaction expected for an axion is taken into
account [98,99].

G. The missing-satellite problem

Structure formation in standard ΛCDM cosmology is
approximately self-similar, with every gravitationally
bound halo containing bound subhalos “all the way down.”
However, the expected distribution of CDM subhalos in

massive galaxies greatly exceeds the number of small
satellite galaxies observed to orbit luminous galaxies
[100,101]. This discrepancy is often called the “missing
satellite” problem. The most commonly proposed solutions
to this problem invoke baryonic physics, in particular
(i) heating of the halo gas by ultraviolet background
radiation, which could suppress gas accretion onto sub-
halos, and (ii) supernovae and stellar winds, which could
drive most of the gas out of the subhalos. The conclusions
to be drawn from recent examinations of these processes
[102,103] are unclear. Heating and feedback certainly
reduce the stellar luminosity of the satellite galaxies
associated with subhalos, but whether plausible paramet-
rizations for these processes can match the observations
over the full range of halo and subhalo masses remains an
open question.
The missing-satellite problem is reduced or resolved in

FDM without appeal to baryonic physics, because the
number of low-mass subhalos is expected to be much
smaller in FDM than in CDM. There are two main reasons
for this. The first is that subhalos are more vulnerable to
tidal disruption, both because of the upper limit to their
mass density [Eq. (30)], and because FDM can tunnel
through the potential barrier centered on the tidal radius;
thus a FDM subhalo is always disrupted by a tidal field, no
matter how weak, after a sufficiently long time. A sim-
plified model of this process for FDM solitons is described
in Appendix C. We find that a FDM soliton cannot survive
on a circular orbit in a host system for ≳10 orbits11 unless
its central density ρc > 60ρ̄host; survival for a few hundred
orbits requires ρc > 100ρ̄host. Together with Eq. (30) this
implies that the minimum mass of a FDM solitonic system
that survives 10 orbits at radius a inside a host of mass M
interior to a is given by

M > 6.7 × 108 M⊙
�

M
1011 M⊙

�
1=4

×

�
10 kpc

a

�
3=4

�
10−22 eV

m

�
3=2

: ð44Þ

This lower cutoff is consistent with numerical simulations
[16], which find that halo substructure is suppressed below
a few times 108 M⊙.
The second reason why there are fewer FDM subhalos

than CDM subhalos is that the power spectrum of FDM
density perturbations is suppressed at small masses relative
to CDM. We defer a discussion of this topic to Sec. IV.
The subhalo mass function can be probed in several

ways. One approach is to look for gravitational lensing of
background galaxies by the subhalos [104,105]. The
strongest current limits come from ALMA observations

11A typical massive galaxy like the Milky Way has a circular
speed of about 200 km s−1 so a satellite in a circular orbit of
radius r completes 15ð30 kpc=rÞ orbits in a Hubble time.
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of high-redshift star-forming galaxies; at present these are
only sensitive to subhalo masses ≳109 M⊙ [106], but
technical advances should reduce this limit to the interest-
ing range. A second is to study the evolution of tidal
streams, which we discuss in the next subsection.
The too-big-to-fail problem arises when standard abun-

dance matching methods to relate galaxies and halos are
used to predict the magnitude difference between primary
and secondary galaxies in groups. These studies [107,108]
indicate that the expected number of luminous secondary
galaxies is absent, and much work is being done to see if
feedback from massive stars and black-hole outflows, or
other baryonic physics, can account for the deficit. A fair,
if brief, summary would be that while the latest high-
resolution cosmological simulations [102] argue that the
deficit will naturally be produced by radiatively driven
winds and other feedback effects, considerably more work
will need to be done by a variety of methods before this
conclusion can be considered secure. In any event, FDM
reduces the magnitude of the too-big-to-fail problem, both
because the abundance of subhalos is smaller in FDM than
CDM at all masses below ∼1010 M⊙ (Sec. IV) and because
subhalo masses are generally estimated observationally by
the maximum circular speed of the baryons, which is lower
in FDM than CDM for halos of a given mass [109].
A more speculative concern is the origin of globular

clusters (GCs), which remains mysterious. With typical
stellar masses of 105 M⊙ and sizes of roughly 10 pc, these
old stellar systems surround all normal galaxies out to
distances comparable to the virial radius. The total mass of
GCs per galaxy seems to parallel the mass in dark matter
more closely than the mass in baryons: the ratio of the mass
in GCs to the mass in baryons is high at both ends of the
galaxy mass spectrum, like the ratio of dark to baryonic
mass. The presence of multiple stellar populations in GCs
[110] also suggests that these systems had or have escape
velocities large enough to retain gas. In an early paper
before the existence of dark matter was widely recognized,
Peebles and Dicke [111] speculated that GCs might have
formed at the era of decoupling between matter and
radiation, since they have the Jeans mass appropriate to
that epoch (z≃ 103). CDM has gravitationally unstable
initial fluctuations on the scale of GCs but it is very difficult
for the objects we see to have formed from these, for several
reasons. First, the more massive subhalos (with halo mass
of 108 M⊙, say) are absent from our inventory of galaxies
and their absence is explained in CDM by arguing that their
relatively small escape velocities allow feedback to expel
gas so efficiently that star formation is suppressed. If this
explanation is correct, then the formation of stars in
systems like GCs that are 100 times less massive would
certainly be prohibited. Furthermore the expected sizes of
the halos associated with GCs would be several kpc, so
large that contraction of even very slowly rotating baryons
to the present size of GCs would produce disk systems,

whereas observed GCs are nearly spherical. Peebles has
suggested [112] that in the CDM model GCs should be
embedded in dark halos, but despite extensive searches
[113–115] there have been no reports of diffuse dark matter
in or around GCs. It is possible that the dynamics of FDM
or other exotic alternatives to CDM could play a central role
in the formation of these important but puzzling systems,
but at the moment this is only a speculation.

H. Tidal streams

Subhalos affect the evolution of the tidal streams shed by
globular clusters as they lose stars through external tidal
forces and internal dynamical evolutionary processes [101].
The small-scale gravitational forces from subhalos can
thicken, distort, and open gaps in streams; in extreme
cases they may disperse the streams so rapidly that they
disappear in much less than a Hubble time (see [116] for a
review).
First consider stream thickening. Suppose for simplicity

that all subhalos have the same massm and size rm, and that
the number density of subhalos is N. If these move at speed
v relative to the stream, the probability of an encounter with
impact parameter smaller than b between a subhalo and a
point on the stream in an interval t is

p ¼ πNb2vt: ð45Þ

The differential tidal force across a stream of width w
due to a mass m at distance r is F ¼ kGmw=r3 where
k is of order unity, and integrating over the encounter yields
an impulse Δv ¼ R

Fdt ¼ 2kGmw=ðb2vÞ. According to
Eq. (45) the single closest encounter is given by p ¼ 1 or
b2min ¼ ðπNvtÞ−1, and this gives an impulse12

Δv ¼ 2πkwGNmt; t≲ t0: ð46Þ

An impulse Δv will cause the stream width to increase
as _w ¼ Δv. The derivation of (46) treats the subhalos as
point masses, an approximation that is only valid when
the minimum impact parameter is larger than the subhalo
radius, bmin ≳ rm. Thus it is only valid up to a time
t0 ≡ ðπNvr2mÞ−1. At times smaller than this, the stream
width will be dominated by the single closest encounter and
if we assume this encounter occurs roughly midway
through the time interval t then

wðtÞ≃ wð0Þ
�
1þ 1

2
πkGNmt2

�
; t≲ t0: ð47Þ

Over times larger than t0, stream thickening becomes a
diffusive process due to encounters with many subhalos so

12Equation (46) is closely related to formulas for the disruption
of binary stars due to tidal forces from massive objects such as
molecular clouds [117,118].
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Δv and w should be replaced by ensemble averages
hðΔvÞ2i1=2 and hw2i1=2. A similar calculation yields

dhðΔvÞ2i
dt

¼ 4πðkGmÞ2N
vr2m

hw2i; t≳ t0: ð48Þ

Replacing hðΔvÞ2i1=2 by ðd=dtÞhw2i1=2 and integrating, we
find

hw2ðtÞi1=2 ¼ hw2ðt0Þi1=2 exp
��

2πNk2G2m2

vr2m

�
1=3

ðt − t0Þ
�
;

t≳ t0: ð49Þ

Similar arguments can be used to derive the growth in the
velocity dispersion of the stream.
Even a zero-thickness stream will be distorted by the

gravitational impulse from passing subhalos. A zero-
thickness stream is a one-dimensional manifold in phase
space and must remain so; however it can be folded or
crinkled so it appears to have nonzero thickness when
projected onto a smaller number of phase-space dimensions
(e.g., the two angular coordinates on the sky if it is detected
as an overdensity in star counts). The statistical properties
of this crinkling can be determined by recognizing that the
gravitational force from a large number of subhalos can be
approximated as a Gaussian random field that is homo-
geneous in time and space at small scales, although most
investigations so far rely heavily, and appropriately, on
simulations as well [119–122].
The dynamical effect of a subhalo on a stream that is

easiest to detect is probably the opening of a “gap” by a
close encounter with a single massive subhalo—strictly,
this is a fold rather than a gap since as described above a
zero-thickness stream is only distorted, not broken, by
conservative forces [123,124].
Even once the effects of substructure are detected, it may

be difficult to distinguish CDM from FDM, for several
reasons: (i) most of the disruptive influence on streams
comes from the most massive subhalos, which are present
in both CDM and FDM [123]; (ii) substructure in the
baryonic disk can also disrupt the streams [125]; (iii) in
CDM the mass fraction in subhalos is a strong function of
radius, typically ranging from a few percent at the virial
radius, to 0.1% at 30 kpc, to 0.01% at r < 10 kpc [126];
(iv) numerical simulations suggest that many long, thin
streams can survive for a Hubble time even in a CDM halo
[127], so the difference between CDM and FDM will lie in
the abundance of old streams rather than their presence or
absence.
Despite these concerns, we note that the power of tidal

streams to discriminate among halo models will improve
dramatically over the next several years with astrometry
from the Gaia spacecraft, which will discover many more

streams and provide much more accurate kinematic obser-
vations of them.

I. Galactic disks

The relaxation time (32) is sufficiently short that soli-
tonic “dark disks” could coalesce around the inner parts of
baryonic galactic disks.
A useful first approximation to the structure of solitonic

disks is obtained by neglecting the baryonic contribution
to the gravitational potential and computing the ground
state of the Schrödinger-Poisson equation in one dimen-
sion [Eq. (B1) with ∇2 → d2=dz2]. The density ρFDMðzÞ
in this state is symmetric around z ¼ 0 and can be
characterized by the central density ρFDMð0Þ; the surface
density ΣFDM ¼ R

∞
−∞ dzρFDMðzÞ; and the half-thickness

z1=2, defined by
R z1=2
0 dzρFDMðzÞ ¼ 1

2

R
∞
0 dzρFDMðzÞ. We

find

ρFDMð0Þ ¼ 0.984
�
GΣ4

FDMm
2

ℏ2

�
1=3

¼ 0.104 M⊙ pc−3
�

ΣFDM

100 M⊙ pc−2

�
4=3

×

�
m

10−22 eV

�
2=3

z1=2 ¼ 0.2744

�
ℏ2

GΣFDMm2

�
1=3

¼ 260 pc

�
100 M⊙ pc−2

ΣFDM

�
1=3

�
10−22 eV

m

�
2=3

:

ð50Þ

In the solar neighborhood, the total surface density
within �1.1 kpc of the Galactic midplane is
68� 4 M⊙ pc−2, of which 51� 4 M⊙ pc−2 is composed
of baryons (gas and stars) [128]. The total density in the
Galactic midplane is ρð0Þ ¼ 0.10� 0.01 M⊙ pc−3, most or
all of which is baryonic [129]. The first of these results
implies that at most 20 M⊙ pc−2 is present in a dark-matter
disk; then Eq. (50) implies that for m ¼ 10−22 eV, z1=2 ≳
450 pc and ρð0Þ≲ 0.012 M⊙ pc3, large enough and
small enough respectively that the assumption that the
solitonic disk dominates the gravitational potential is
inconsistent.13

In the opposite limit, the gravitational potential is
dominated by baryons rather than FDM. Since the scale
height of the solitonic disk is large, we can approximate the
baryonic contribution as arising from a zero-thickness sheet
of surface density Σb. Then

13An unrelated problem with a solitonic disk of this kind is that
it is likely unstable at horizontal wavelengths that are large
compared to its thickness.
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ρFDMð0Þ ¼ 1.141
ΣFDM

Σb

�
GΣ4

bm
2

ℏ2

�
1=3

¼ 0.120 M⊙ pc−3
ΣFDM

Σb

�
Σb

100 M⊙ pc−2

�
4=3

×

�
m

10−22 eV

�
2=3

z1=2 ¼ 0.2399

�
ℏ2

GΣbm2

�
1=3

¼ 228 pc

�
100 M⊙ pc−2

Σb

�
1=3

�
10−22 eV

m

�
2=3

:

ð51Þ

Taking Σb ¼ 51 M⊙ pc−2 and ΣFDM ¼ 17 M⊙ pc−2 we
obtain ρFDMð0Þ ¼ 0.016 M⊙ pc−3ðm=10−22 eVÞ2=3 and
z1=2 ¼ 285 pcðm=10−22 eVÞ−2=3. We conclude that a pos-
sible solitonic disk of FDM with m ¼ 10−22 eV has
thickness comparable to the baryonic disk and makes
only a small (≲20%) relative contribution to the density in
the solar neighborhood; for m ¼ 10−21 eV the central
density would be comparable to the density of stars and
gas and the disk would be thinner than the stellar disk.
For comparison, the local density expected from a CDM
halo is ∼0.01 M⊙ pc−3 [130]. The thin dark disk proposed
by [131], with surface density ∼10 M⊙ pc−2 and thickness
∼10 pc, could not be composed of FDM unless the
particle massm≳ 5 × 10−20 eV, much too large to explain
the other small-scale structure issues addressed in
this paper.

J. Dynamical friction

The only low-luminosity satellite galaxy of the
Milky Way that contains globular clusters is the Fornax
dwarf spheroidal, the most luminous satellite in this
class, which has five. The time scale for orbital decay
of a point mass m in a background of density ρ and
velocity dispersion σ is roughly σ3=ðG2ρmÞ [55,132]. The
mass density in Fornax is high enough, and the velocity
dispersion low enough, that dynamical friction should
have caused most of the clusters to spiral to the center of
the galaxy and merge to form a prominent nucleus, which
is not seen [133]. A similar problem is present in faint
dwarf elliptical galaxies in several nearby galaxy clusters
[134]. Various explanations have been put forward to
explain the discrepancy (e.g., [135]); the most widely
discussed possibility is that the drag from dynamical
friction is reduced, eliminated, or even reversed if the
stellar system hosting the clusters has a homogeneous
(constant-density) core. This effect, sometimes called
“core stalling,” is seen in a variety of N-body simulations
[75,136,137] but the physics behind it remains murky
[136,138,139].

Here we ask how dynamical friction is modified if the
dark matter in dwarf galaxies is comprised of FDM rather
than CDM [13]. There are three distinct effects: (i) many
exotic dark-matter models, including FDM, produce
cores at the centers of halos rather than the central cusp
found in CDM [8,140–145] and thus modify the rate of
orbital decay according to the classic Chandrasekhar
formula [132] through changes in the dark-matter density
and velocity dispersion, the orbital speed, etc.; (ii) as
reviewed above, core stalling can reduce or eliminate the
drag from dynamical friction in a homogeneous core
compared to the value predicted by Chandrasekhar;
(iii) standard estimates of the drag from dynamical
friction must be modified to account for the large de
Broglie wavelengths of FDM particles, as shown in
Appendix D. Here we focus on the last of these effects,
also investigated by [146].
The orbital decay time scale for an object of mass

mcl in a circular orbit of radius r in a host system of
density ρðrÞ and enclosed mass MðrÞ is given by
Eq. (D16),

τ ¼ 37.5 Gyr
C

�
MðrÞ
108 M⊙

1 kpc
r

�
3=2 105 M⊙

mcl

0.01 M⊙ pc−3

ρðrÞ ;

ð52Þ

where the dimensionless constant C is plotted in Fig. 2,
and the fiducial values have been chosen to approx-
imately match Fornax and its globular clusters. For a
more careful comparison between frictional decay times
in FDM and CDM we adopt masses for the five Fornax
clusters from [137] and set their orbital radii equal to the
projected radii from the center of Fornax multiplied by
2=
p
3 (the ratio of the radius to the median projected

radius in a spherical distribution). For CDM (i) we take
the Fornax density from the “steep cusp” model of [137],
which has a logarithmic density slope near the center
dlogρ=dlogr¼−1 as in the NFW profile [3] that char-
acterizes CDM halos. (ii) We set the constant C in
Eq. (52) to 0.5 log½2v2r=ðGmclÞ� following Eq. (D11); the
factor 0.5 is a crude empirical correction that arises
because the classical dark-matter particles have velocities
comparable to the globular clusters and only particles
traveling slower than the test object contribute to the
frictional force [55]. For FDM we use the “large core”
model of [137], and determine C from Eq. (D14) using
k ¼ mv=ℏ where the velocity v is determined by assum-
ing the cluster is on a circular orbit.
The resulting decay times are shown in Table I for a

particle mass of 3 × 10−22 eV. In all cases shown in the
table the orbital decay times are longer in a FDM halo than
in a CDM halo. The shortest decay time in the FDM halo
exceeds 2 Gyr, compared to 0.4 Gyr in the CDM halo.
Four of the five clusters have decay times of 10 Gyr or
more in the FDM halo, thus solving the puzzle of why the
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globular clusters in Fornax have survived. For other
particle masses the decay time scales roughly as m−2

for clusters 3 and 4, which have the smallest orbits and the
shortest decay times. Observations of a larger sample of
dwarf galaxies containing globular clusters could further
test the possibility that dynamical friction is suppressed
compared to the expectations from CDM. Note that the
dynamical friction issue could in principle be decoupled
from the issue of predicting the density profile. With
sufficiently high quality data, the density profile of the
host galaxy can be observationally determined, sidestep-
ping debates about the impact of baryonic effects. Given
the measured profile, CDM or FDMmakes predictions for
the dynamical friction time scale that can be checked
against observations.
Dynamical friction from a CDM halo is also expected to

drain the angular momentum from the central bar found in
the majority of disk galaxies [147–153]. This expectation is
in tension with the observation that most bars are rapidly
rotating, in that the corotation radius is not far outside the
outer edge of the bar [154]. This tension could be resolved
if the dark matter is efficiently trapped into resonances with
the bar [155], or if the halo has a large core radius so the
density of the halo within several kpc of the galaxy center is
lower than expected from CDM. The FDM hypothesis
could contribute to the resolution of this problem since
friction would also be reduced if the half-mass radius of the
central FDM core were larger than the bar radius (kr≲ 1

in Fig. 2).

K. The most massive halos

The virial masses of the large halos associated with the
richest clusters of galaxies approachMvir ¼ 1–2 × 1015 M⊙,

If the relation (31) can be extrapolated to these large halo
masses, it implies a central soliton mass

M ≃ 1.3 × 1010 M⊙
10−22 eV

m

�
Mvir

1015 M⊙

�
1=3

: ð53Þ

This is still well below the maximum soliton mass for FDM
particles with no self-interactions [Eq. (43)]. The correspond-
ing half-mass radius is given by Eq. (29),

r1=2 ≃ 25 pc
10−22 eV

m

�
1015 M⊙
Mvir

�
1=3

: ð54Þ

Structureswith thismass and sizewouldbe a unique signature
of FDM. We have argued in Sec. III C that the extrapolation
yielding Eq. (53) probably overestimates the soliton mass at
large halo masses, but it is worthwhile to investigate the
observable consequences that would result if this extrapola-
tion were correct.
We first ask whether dense solitons at cluster centers

might already have been detected, but interpreted as
supermassive black holes. The nearest moderately rich
cluster is the Virgo cluster. The luminous galaxy M87 is
located near the center of the cluster and contains a central
dark object of mass ð6.6� 0.4Þ × 109 M⊙ as determined
by observations of stellar kinematics [156]. The resolution
of these observations is about 0.2–0.3 arcsec or 17–25 pc
and the upper limit to the size of the central object is
probably twice as large. For comparison, the soliton in a
halo of mass Mvir ≃ 2 × 1014 M⊙, roughly appropriate
for Virgo, would have M≃7×109ð10−22 eV=mÞM⊙ and
r1=2 ≃ 40ð10−22 eV=mÞ pc, roughly consistent with these
observations. A second prominent cluster is the Coma
cluster, about five times more distant than Virgo. The
luminous galaxy NGC 4889 near the center of Coma has a
central dark object of mass 0.6–3.7 × 1010 M⊙ [157]. The
spatial resolution of these observations is ∼100 pc so the
soliton expected to form at the center of Coma could easily
masquerade as a black hole. Despite these appealing
numerical coincidences, we do not favor the hypothesis
that the central dark objects in M87 and NGC 4889 are
solitons rather than black holes. There is an active galactic
nucleus and a relativistic jet at the center of M87 and a wide
range of observational evidence and theoretical arguments
suggests that these phenomena are always associated with
black holes. Moreover, the masses are similar to those of
central dark objects in other galaxies with similar properties
that are at the centers of rich clusters [158].
Where, then, are the massive, dense solitons predicted by

FDM? There are two main possibilities: (i) The galaxies we
have examined may not be at the centers of their respective
cluster halos. The Virgo cluster has a double structure, and
although M87 is in the core of the denser subcluster it is
displaced from its center in both position and velocity
[159]. The Coma cluster also appears to consist of two

TABLE I. Orbital decay times for the globular clusters in
Fornax for CDM and FDM. Notes: Projected separations and
globular cluster masses are taken from [137]. Orbital decay times
τ are determined from Eq. (D16) using the steep cusp and large
core density distributions from [137] for CDM and FDM
respectively. The dimensionless wave number kr ¼ mvr=ℏ is
evaluated assuming m ¼ 3 × 10−22 eV and v2 ¼ GMðrÞ=r,
appropriate for a circular orbit. The dimensionless constant C
is determined using Eq. (D14) for FDM, and as described in the
text for CDM.

Projected
radius

Cluster
mass CDM FDM

n r⊥ (kpc) mcl (M⊙) C τ (Gyr) kr C τ (Gyr)

1 1.6 3.7 × 104 4.29 112 8.90 2.46 215
2 1.05 1.82 × 105 3.32 9.7 5.04 1.88 12
3 0.43 3.63 × 105 2.45 0.62 0.97 0.29 2.2
4 0.24 1.32 × 105 2.50 0.37 0.31 0.033 10
5 1.43 1.78 × 105 3.46 21.3 7.79 2.32 31
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subclusters that have not yet relaxed into equilibrium [160].
(ii) As we have discussed, the soliton mass–virial mass
relation in Eqs. (31) and (53) may overestimate the soliton
mass at the halo masses ∼1015 M⊙ considered here. For
example, Eq. (32) implies that in a halo with typical
velocity v ¼ 103 km s−1, typical for rich clusters, the
relaxation time is less than 1010 yr only at radii r≲
1.5 kpc f1=4relaxð10−22 eV=mÞ3=4, and the halo mass inside
that radius is insufficient to produce a soliton of 1010 M⊙.
A related question is whether the soliton can survive if

there is a supermassive black hole at its center. A non-
rotating black hole of massM• traveling at speed v through
a uniform scalar field of mass m and density ρ accretes
mass at a rate [161]

dM•

dt
¼ 32π2ðGM•Þ3mρ

ℏc3v½1 − expð−ξÞ� ; where ξ ¼ 2πGM•m
ℏv

ð55Þ

¼
8<
:

16πðGM•Þ2ρ
c3 ; ξ ≪ 1;

32π2ðGM•Þ3mρ
ℏc3v ; ξ ≫ 1.

ð56Þ

For an approximate analysis we take ρ and v to be the
central density and virial velocity of the soliton [Eqs. (B3)
and (B4)]. Then

ξ ¼ 19.07
M•

M
ð57Þ

whereM is the soliton mass, independent of the mass of the
FDM particle. The mass accretion rate is

dM•

dt
¼
8<
:

2:5×107 M⊙
1010 yr

�
M•

109 M⊙

�
2
�

m
10−22 eV

�
6
�

M
1010 M⊙

�
4
; ξ≪ 1

4:75×107 M⊙
1010 yr

�
M•

109 M⊙

�
3
�

m
10−22 eV

�
6
�

M
1010 M⊙

�
3
; ξ≫ 1.

ð58Þ

From the first of these equations we find that a seed black
hole of mass M•i ≪ M grows to ξ ∼ 1 in a time

t¼4×1014 yr

�
10−22 eV

m

�
6 106M⊙

M•i

�
1010M⊙

M

�
4

: ð59Þ

For the nominal parameters this rate is negligible; i.e.,
small seed black holes embedded in the soliton do not
grow significantly.However, the rate depends strongly on the
particle mass and could be significant form≳ 5 × 10−22 eV.
Once the soliton contains a black hole more massive than a
fewpercent of the solitonmass, so ξ ≫ 1, the last of Eqs. (58)
implies that a black hole of initial mass M•i swallows the
soliton on a time scale

t ¼ 1 × 1011 yr

�
10−22 eV

m

�
6
�
109 M⊙
M•i

�
2
�
1010 M⊙

M

�
3

:

ð60Þ

Once again, this rate is not important for the nominal
parameters but could be significant for particle masses a
few times larger than the nominal value of 10−22 eV.

IV. FDM AND GALAXY FORMATION

In contrast to CDM, in which small density fluctuations
are unstable on all spatial scales inside the horizon, FDM is
unstable only for masses larger than the Jeans mass,
Eq. (42). As discussed in Sec. III E, the Jeans mass defines
a lower limit to the mass of FDM halos and subhalos.
A stronger, but cosmology-dependent, constraint on the

abundance of halos in FDM arises because the linear power
spectrum of density fluctuations in FDM is suppressed
relative to CDM at small scales. The degree of suppression
is expressed by the ratio of the FDM power spectrum to
the CDM power spectrum. This ratio at z ¼ 0 is less than
0.5 for wave numbers greater than and halo masses less
than [12,162]

k1=2 ¼ 4.5 Mpc−1
�

m
10−22 eV

�
4=9

; ð61Þ

M1=2 ¼
4

3
πρ

�
π

k1=2

�
3

¼ 5 × 1010 M⊙
ΩFDM

0.27

�
10−22 eV

m

�
4=3

: ð62Þ

Linear theory therefore predicts a sharp cutoff in the initial
masses of FDM structures considerably above the limit
given by Eqs. (39) or (42). However, nonlinear numerical
computations show that these overdensities fragment,
leaving a spectrum of lower-mass self-gravitating objects
down to the scale given by those two equations, in which
the number density of subhalos is reduced in FDM relative
to CDM by a factor ∼ð3M=M1=2Þ2.4 [162]. It is important to
verify these conclusions with different simulations and
different numerical techniques, but for now we assume that
they are correct.
These arguments show that FDM tends to suppress

formation of small galaxies at high redshift compared to
CDM. Thus it becomes a serious question as to whether the
FDM model would allow galaxies to be formed that were
capable of reproducing the high-redshift galaxy luminosity
function, reionizing the Universe at z ¼ 8–9 [163], and
producing the early, small-scale structure probed by the
Lyman-α forest.
Because the power spectrum of density fluctuations in

FDM is suppressed for halo masses much larger than the
Jeans mass (M1=2 ≫ MJ) one can approximate the
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formation of structure in FDM using CDM simulations
in which the initial power spectrum is that of FDM
(although of course this approximation cannot capture
the formation of solitons at the centers of these halos).
Using this approach, Schive et al. [162] and [164] have
shown that FDM can reproduce the UV luminosity
function of galaxies in the redshift range 4–10, assuming
a plausible relation between galaxy luminosity and halo
mass, if m > 10−22 eV. They also show that FDM is
consistent with current observations of the reionization
history for plausible estimates of the production rate of
ionizing photons, about three times larger than required
for CDM.14

V. LYMAN-ALPHA FOREST CONSTRAINTS
ON WDM AND FDM

The Lyman-α forest offers an additional probe of the
power spectrum. Viel et al. [19] examined constraints on
warm dark matter from the forest and concluded that the
mass of a hypothetical WDM particle must exceedmFDM ¼
3.3 keV at the 2-σ level. The 3-σ, 4-σ and 9-σ lower limits
are 2.5,2 and 1 keV respectively. WDM and FDM do not
have exactly the same matter power spectrum. However,
they share the same power spectrum at large scales, and
both exhibit a precipitous drop in power below a respective
characteristic scale. Thus we can roughly translate an
observational bound on WDM to a corresponding one
on FDM by matching k1=2 for FDM from Eq. (61)15 to the
analogous quantity for WDM [19,109],16

k1=2 ¼ 12.5 Mpc−1
�

mFDM

2.5 keV

�
1.11

�
ΩFDM

0.27

�
−0.11

×

�
H0

70 km s−1Mpc−1

�
2.22

: ð63Þ

A WDM mass of 1,2,2.5,3.3 keV translates into a FDM
mass m ∼ 1; 6; 10; 20 × 10−22 eV respectively. Thus the
range of FDM masses we are interested in is disfavored
by the Lyman-α forest data, and strongly so at the low-mass
end. It would be useful, however, to verify this conclusion
with actual FDM numerical simulations of the forest. It is
possible that FDM has density fluctuations on scales
relevant to the forest (see Sec. III C and [16]) that are
not present in a WDM model. It is also prudent to examine

the assumptions underlying the WDM constraints, which
we now do.
It has been understood starting from the 1990s that the

statistical properties of the Lyman-α forest can be explained
by the ΛCDM model with a minimal set of additional
assumptions [166–173]. The most important of these is
that the neutral hydrogen density nHI responsible for the
Lyman-α absorption obeys

nHI ∝ ð1þ δbÞ2T−0.7J−1 ð64Þ

where δb is the fractional overdensity of baryons; T is the
temperature; and J is the amplitude of the ionizing back-
ground (suitably averaged over frequencies, weighted by
the ionization cross section). Photoionization equilibrium is
assumed to be a good approximation, which leads to the
factors of ð1þ δbÞ2 (the ionized fraction is close to unity)
and T−0.7 (approximate scaling of the recombination rate
with the temperature). There is a tight correlation between
temperature and density in a low-density photoionized
medium, T ¼ T0ð1þ δbÞγ−1, where γ ∼ 1–1.6 [174]. It is
generally assumed that T0, γ and J have negligible spatial
fluctuations; fluctuations in nHI thus reflect fluctuations in
baryon density δb. The baryon fluctuations in the inter-
galactic medium are assumed to evolve under gravity,
counteracted by pressure. Feedback processes, such as
galactic winds or outflows, are assumed to have negligible
impact on the forest.
Lyman-α constraints on WDM fall into two categories:

those that are primarily from high-redshift, high-resolution
data, and those that come from data at lower redshifts and
larger scales. We start with a discussion of the first
category, exemplified by the thorough analysis of Viel
et al. [19], who derived constraints from data at z ∼ 4.2–5.4
covering scales k ∼ 0.4–9 Mpc−1. Their strongest con-
straint comes from the highest redshifts, z ∼ 5.4, and the
smallest scales, k ∼ 4–9 Mpc−1 (see Fig. 12 of [19]). WDM
with a mass of 2.5 keV causes a 10% suppression of power
on these scales, in tension with the data.17 At high redshifts,
two effects are potentially significant: (i) the larger average
neutral hydrogen density and the smaller number of ion-
izing sources leads to enhanced spatial fluctuations of the
ionizing background J, and (ii) there can be significant
fluctuations in the temperature, remnants of an inhomo-
geneous reionizing process as one approaches the epoch of
reionization (recent Planck constraints suggest reionization
on average occurred around z ∼ 8 [163]).

14These results are consistent with a semianalytic study by
Bozek et al. [165], once these calculations are updated to use the
2016 Planck value for the reionization optical depth [163].

15We thank Rennan Barkana for a private communication on
this point, and for discussions on the impact of reionization on
WDM/FDM constraints. The procedure of matching k1=2 was
also discussed in [109].

16We focus onmWDM ¼ 2.5 keV as this case is treated in detail
by Viel et al..

17Keeping all other parameters fixed, at this mass, scale and
redshift WDM suppresses the power by ∼50%. However, by
allowing other parameters (such as the temperature) to vary to
best fit the data, the net suppression is closer to ∼10%. Note that
k1=2 in Eq. (63) refers to the suppression scale for the linear matter
power spectrum; the nonlinear mapping from mass to flux moves
the suppression scale to a lower k for the flux power spectrum.
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An attempt was made by Viel et al. to account for the
first effect using a simulation in which the ionizing
background is sourced by rare quasars, with the accom-
panying clustering and Poisson fluctuations. However, the
simulation did not include spatial fluctuations due to the
inhomogeneous distribution of absorbers. There appears
to be a variety of possible modifications to the flux power
spectrum from a fluctuating ionizing background,
depending on assumptions about the density and cluster-
ing of the ionizing sources and absorbers. For instance,
the authors of [175] showed that while quasars as
sources tend to add power at large scales without
significantly affecting the small-scale power, Lyman-
break galaxies tend to suppress power at large scales
k ∼ 0.1–0.5 Mpc−1 and add power at small scales
k≳ 1 Mpc−1, especially at high redshifts (see Figs. 5
and 7 of [175]). Even in the case of quasars as sources,
different investigators arrive at different conclusions
about the scale dependence of the flux power spectrum
modification (for instance the author of [176] included
inhomogeneous radiative transfer, and the authors of
[175,177] applied an average attenuation). In fitting the
forest data, the common practice is to assume a template
for the effect of a fluctuating ionizing background—
meaning the shape (scale dependence) of the flux power
spectrum modification—and allow the amplitude of the
modification to be a free parameter. In this way, the
authors of [19] obtained a bound on the amplitude of a
particular quasar template, and showed that it does not
have a large impact on the WDM constraint. It would be
useful to repeat the analysis using other templates,
including those that might be more degenerate with the
effect of WDM in their scale dependence (such as those
from galaxies as ionizing sources, and those that account
for inhomogeneous radiative transfer).
The second astrophysical effect to consider is spatial

fluctuations in temperature due to patchy reionization.
Reionization typically raises the temperature of the inter-
galactic medium to a few times 104 K. The gas generally
cools afterwards (except for late time HeII reionization that
could temporarily reverse this trend). Because different
patches of the medium reionize at different times due to
fluctuations in the distribution of ionizing sources and
absorbing materials, the temperature could vary by a factor
of a few at redshift ∼5 if the reionization of different
patches spans the redshift range ∼7–10 [178,179]. Let us
stress that by temperature variations, we are not referring to
the fact that temperature depends on density—such a
dependence is expected, even in the absence of inhomo-
geneous reionization, and is captured by the temperature-
density relation T ¼ T0ð1þ δbÞγ−1 described earlier. Here
we are interested in an extra source of fluctuations in
temperature. It can be described in a number of ways.
One way is to phrase this in terms of fluctuations in
temperature that exist even at the same local density, say the

mean density T0.
18 A more sophisticated description would

correlate the local temperature to the density smoothed
on a larger scale (the scale of the reionization patch).
A patch with a higher large-scale density might reionize
earlier, due to an abundance of sources, leading to a lower
temperature at the observed redshift. The opposite could
happen: the same patch might reionize later, due to
shielding by an abundance of absorbers, leading to a
higher temperature.
Less attention has been paid to this second effect, that

of patchy reionization on the flux power spectrum. An
exception is [180],19 whose authors compared how two
simulations, with early and late reionization respectively,
predict different flux power spectra at z≳ 4. They found
that the late reionization scenario increases the power at
large scales k≲ 5 Mpc−1 and suppresses it at small scales
k≳ 5 Mpc−1. Could further investigations, exploring dif-
ferent assumptions about the sources and absorbers, reveal
qualitatively different behavior, just as in the case of the
first effect? Let us describe one possibility, motivated by the
observations of D’Aloisio et al. [179].
By examining the average absorption at z ∼ 5.5–5.9

along different lines of sight, D’Aloisio et al. found
evidence that T0 fluctuates on a scale of ∼36 Mpc,
suggesting reionization patches of this size. Such fluctua-
tions leave two imprints on the flux power spectrum.
Fluctuations in temperature lead to fluctuations in the
recombination rate, and therefore in the neutral hydrogen
density [Eq. (64)]. The affected scale is roughly
k≲ π=36 Mpc ∼ 0.09 Mpc−1; this is beyond the largest
scales probed in existing 1D power spectrum analyses
[181]. Cross power spectra might be useful in this respect.
A second imprint, perhaps surprisingly, is present at small
scales, and arises because of smoothing. There are two
known sources of smoothing, thermal broadening (an effect
in 1D) and gas pressure, i.e., Jeans smoothing (an effect in
3D). Thermal broadening dominates the smoothing of the
observed (1D) flux power spectrum [182,183], although for
our purpose there is no real need to distinguish between the
two. A finite temperature leads to a smoothing of the flux
power spectrum: PfðkÞ → PfðkÞWðk; T0Þ, whereWðk; T0Þ
is the smoothing kernel.20 At a temperature around 104 K,
the smoothing kernel suppresses power at k≳ 5 Mpc−1;

18At redshift ≳5, the relevant density is actually δb < 0 for
pixels that are not completely saturated. We use the temperature
at the mean density T0 as a convenient proxy, since spatial
fluctuations in T0 imply temperature fluctuations at another
density too. It is worth emphasizing that inhomogeneous reio-
nization leads to spatial fluctuations in the exponent γ and in fact
the whole temperature-density relation.

19We thank Uros Seljak for pointing out this and other
references, and for thoughtful discussions on the Lyman-α forest.

20The smoothing kernel strictly speaking should depend on γ
and even reionization history [171], in addition to T0. We use T0

as a proxy for the dependence of the smoothing kernel on the
thermal state of the gas.
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the higher the temperature, the larger the affected scales.
A measurement of the flux power spectrum from many
reionization patches effectively probes the averaged
smoothing kernel hWðk; T0Þi. This need not be the same
as the smoothing kernel at the averaged temperature
Wðk; hT0iÞ. In general hWðk; T0Þi might even differ in
shape from the smoothing kernel at any temperature. We
expect hWðk; T0Þi to retain more small-scale power: at high
k’s, the power is dominated by patches where the temper-
ature fluctuates below the mean. The magnitude of this
effect depends on the range of temperature in these
reionization patches. We estimate that the effect could be
at the ∼10% level on scales relevant for the WDM
constraint, if the difference between the highest and lowest
temperatures exceeds 104 K. It would be useful to inves-
tigate this more carefully using numerical simulations.
It is worth noting that, the effect of patchy reionization

aside, simply modifying the thermal history could impact
the WDM constraint also. It was shown by [184] that
allowing for a nonmonotonic temperature evolution
(expected if HeII reionization occurs at intermediate red-
shifts) weakens the 2σ lower bound on the WDM mass
from 3.3 keV to 2.1 keV, using the same data as [19].
We close by discussing WDM constraints from

Lyman-α forest data at large scales and low redshifts
(k ∼ 0.06–1.6 Mpc−1, z ∼ 2.2–4.4), for instance Seljak
et al. [185], and more recently, Baur et al. [186]—the
latter gave a 2σ lower limit of mWDM > 4.1 keV. At these
lower redshifts, the effects discussed above, patchy reio-
nization and fluctuations in the ionizing background, are
reduced. On the other hand, the effect of WDM is also
smaller on these relatively large scales: the difference in
power between CDM and WDM (mWDM ¼ 2.5 keV for
instance) is at the few percent level if the other parameters
are fixed [186]; allowing them to float to their respective
best-fit values would further diminish the difference
between the two models. At this level of precision, the
effect of fluctuations in the ionizing background might not
be negligible. Moreover, [187] showed that galactic out-
flows can also impact the flux power spectrum at this level
(see also [188]). Typically, these astrophysical effects are
accounted for by template fitting: a template based on
numerical simulations of the effect is introduced which
fixes the scale (and often redshift) dependence of the flux
power modification; the amplitude of the modification is
treated as a free parameter, and WDM constraints are
obtained by marginalizing over this parameter. As empha-
sized earlier in the context of fluctuations in the ionizing
background, it is helpful to explore the diversity of possible
templates. In the case of galactic outflows, it would be
useful to know how robust the assumed redshift and scale
dependence is to uncertainties in the physics of galaxy
formation.
In summary, it is possible that the existing Lyman-α

forest constraints on WDM would be relaxed if the

diversity of modifications to the flux power spectrum,
from a number of astrophysical effects, is taken into
account. We believe effects similar to those we have
discussed could weaken the corresponding FDM lower
bound to a few times 10−22 eV. Further analyses of
simulations and data are required to determine if this is
the case. It would also be helpful to carry out the flux power
spectrum analyses directly on FDM simulations, to test the
validity of (or to bypass) the translation between WDM and
FDM constraints.

VI. SUMMARY

The standard lambda cold dark matter or ΛCDM model
for the nature of dark matter and the growth of cosmic
structure in the Universe describes a wide variety of
observations with remarkable precision. To date, exper-
imental searches for the particle or particles comprising
CDM have been unsuccessful or controversial, but
“absence of evidence is not evidence of absence” and
many ongoing experiments offer the hope of future success.
A larger concern is that few if any of the predictions of the
CDM scenario on scales smaller than ∼10 kpc have been
successful. While all large-scale predictions of ΛCDM
appear to be valid, the simple-minded predictions of this
model are inconsistent with the relatively small number of
low-mass field and satellite galaxies, the absence of dark-
matter cusps at the centers of galaxies dominated by dark
matter, the absence of dark matter around normal globular
clusters, the weakness of dynamical friction in dwarf
galaxies, and several other phenomena. Complex dynamics
or baryonic physics may ultimately prove able to account
for all of these, but it is worthwhile to investigate whether
some well-motivated model for the properties of the dark
matter could replicate the successes of CDM at large scales
and in addition predict properties of the dark-matter
distribution and dynamics at small scales (and correspond-
ingly at early times) that are in better agreement with the
observations than is CDM.
One possibility that has been considered by a number of

investigators is an extremely light boson having a de
Broglie wavelength λ of kpc scale at the typical internal
velocities in galaxies [Eq. (18)]. A fluid with these proper-
ties would resist compression to smaller scales and could
not form equilibrium self-gravitating halos with mass
smaller than about 107 M⊙ [Eqs. (39) and (42)], so it
provides a model that is eminently falsifiable by compari-
son to observations at early times and small scales. We have
summarized the work of others (see also the recent review
by Marsh [17]) and added several new calculations,
concluding that, if the particle mass lies in the range
m ¼ 1–10 × 10−22 eV, the FDM scenario is an attractive
alternative to CDM with new and powerful tests soon to be
available and new calculations and simulations needed to
elucidate its behavior. For several of the astrophysical
applications the lower end of this mass range is preferable
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but current observations of the Lyman-α forest, though
their interpretation is somewhat model dependent, favor
the upper end of the range and may require masses as
large as 10–20 × 10−22 eV. We note in the text and in
what follows the many possible observations that could
cleanly demonstrate that FDM is not the dominant form
of dark matter.
A possible concern is that it is unnatural to have a boson

with a mass ∼10−22–10−21 eV, many orders of magnitude
less than the masses of known elementary particles. In fact,
a spinless field of very small mass that also interacts very
weakly with ordinary matter is fairly natural in particle
physics, because there is extra symmetry in the limit of a
massless field of spin zero that interacts only with gravity.
Moreover, there are natural mechanisms to generate a
nonzero but exponentially small mass for such a field.
In models with multiple fields of this type, which are
relatively well motivated (see for example [23]), it is
plausible that one of these fields might have a mass in
the required range [see Eq. (13)].
Simulations show that FDM halos are comprised of an

envelope that resembles the NFW profile found in CDM
[3], surrounding a central core or peak that is a stationary,
minimum-energy solution of the Schrödinger-Poisson
equation, sometimes called a “soliton.” As described in
Sec. III C, the density of the soliton can be much larger than
the density of the surrounding halo, and produces a distinct
signature in the rotation curve of FDM-dominated systems
that contain baryonic disks. The sharp peak in the rotation
curve due to a massive central soliton may be observable in
ultradiffuse galaxies such as Dragonfly 44 [189]. On the
other hand the cuspy density profile ρ ∼ r−1 expected in
CDM-dominated systems should not exist in FDM because
the soliton has a homogeneous core.
In contrast to isolated CDM halos, FDM halos of density

ρ relax in a manner analogous to gravitating N-body
systems, as if they were composed of quasiparticles with
mass ∼ρðλ=2Þ3 (Sec. III C). We suggest that relaxation both
adds mass to the central soliton and expels mass to infinity
on a time scale given roughly by Eq. (32), but this
suggestion needs to be tested by simulations. Relaxation
due to FDM quasiparticles or wave packets is probably too
weak to affect the disk thickness in the solar neighborhood
or to disrupt globular clusters or wide binary stars at or
beyond the solar radius, but it may thicken the inner parts of
galactic stellar disks and pump energy into stellar bulges.
We also suggest that relaxation could produce FDM disks
in the central regions of galaxies. The resistance of FDM to
compression puts a stringent lower bound on the scale
height of a FDM disk; in the solar neighborhood any such
disk could not easily have a half-thickness (the distance
from the midplane containing half the mass) less than
several hundred parsecs or local density greater than
∼0.02 M⊙ pc−3 (for m ¼ 10−22 eV; the thickness and
density scale as m−2=3 and m2=3 respectively).

As noted earlier, dark-matter halos significantly less
massive than about 107ðm=10−22 eVÞ−3=2 M⊙ are not
possible in FDM and the limit for subhalos is even stronger
because of tunneling of FDM through the tidal radius of the
subhalo [Eq. (44)]. Thus the elucidation of the properties of
halo substructure within our Galaxy (by studying stellar
streams) or along lines of sight through other galaxies (via
gravitational lensing) and the study of the dark-matter
distribution in low-mass galaxies offer promising tests that
could distinguish FDM from CDM.
It has long been a puzzle that the five globular clusters in

the Fornax dwarf galaxy have not yet spiraled to the center
of that system due to dynamical friction. If the dark matter
in Fornax is FDM rather than CDM, our calculations show
a substantial increase in the time scale for dynamical
friction, and thus FDM essentially solves the problem of
the survival of these clusters. Further observational work on
the globular cluster systems of other dwarf spheroidal
galaxies would be rewarding.
The results discussed so far do not depend directly on the

power spectrum of cosmic perturbations, but the expected
cutoff of the FDM spectrum at small scales [Eq. (61)] has
many further implications. It reduces early galaxy forma-
tion below what would have been expected from the CDM
model, but this modified formation history is consistent
with current observations at 4≲ z≲ 10 [162] and the late
reionization, z ∼ 8, recently reported by Planck [163].
There is a substantial reduction in the number of halos
expected in the local Universe as compared to CDM for
halos below a few times 109ðm=10−22 eVÞ−4=3 M⊙ but a
sufficient number remain to provide for the local dwarf
galaxies, which have estimated halo masses of roughly
3 × 109 M⊙ [86]. Thus the too-big-to-fail and missing-
satellite problems are addressed directly by FDM, but until
our understanding of baryonic physics and feedback is
more complete we will not know whether the change in the
properties of the dark-matter subhalos implied by FDM is
either required or useful.
In summary, the hypothesis that the principal component

of the ubiquitous dark matter is an ultralight axion is an
attractive and testable alternative to CDM, having no
serious inconsistencies with current data if the particle
mass m≳ 10−22 eV. There are significant and attractive
observational consequences if the mass is in the range
1–10 × 10−22 eV. There is tension with observations of the
Lyman-α forest, which favor masses 10–20 × 10−22 eV or
higher. More sophisticated calculations of reionization and
of structure formation in FDM are required to determine
whether this variety of constraints is consistent with
observations.
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APPENDIX A: THE QUANTUM
VIRIAL THEOREM

In this appendix we derive the quantum-mechanical
analog to the classical virial theorem [41].
We begin with the Schrödinger equation

iℏ
∂ψ
∂t ¼ Hψ ¼ −

ℏ2

2m
∇2ψ þmΦðr; tÞψ ðA1Þ

where H is the Hamiltonian operator; Φðr; tÞ is the
gravitational potential; and mjψðr; tÞj2 ¼ ρðr; tÞ, the mass
density. The moment of inertia is I ¼ 1

2
m
R
drr2jψ j2. Then

_I ¼ −
im
2ℏ

Z
drr2ðψ�Hψ − ψHψ�Þ

¼ −
im
2ℏ

Z
drψ�½r2; H�ψ ðA2Þ

where ½·; ·� is the commutator. Since ½r2;Φ� ¼ 0 this
simplifies to

_I ¼ 1

4
iℏ

Z
drψ�½r2;∇2�ψ : ðA3Þ

Similarly,

̈I ¼ 1

4

Z
drψ�½½r2;∇2�; H�ψ : ðA4Þ

Using the result ½½r2;∇2�;H�¼−4mðr ·∇ΦÞ−4ðℏ2=mÞ∇2

we have

̈I ¼ −
Z

drψ�
�
mψr · ∇Φþ ℏ2

m
∇2ψ

�

¼ −m
Z

drjψ j2r ·∇Φþ ℏ2

m

Z
drj∇ψ j2: ðA5Þ

At this point it is useful to write the wave function in the
form ψ ¼ ffiffiffiffiffiffiffiffiffi

ρ=m
p

expðiθÞ with θ real, and define v≡
ℏ∇θ=m [cf. Eq. (22)]. Then

̈I ¼ −
Z

drρr ·∇Φþ
Z

drρv2 þ ℏ2

m2

Z
drj∇ ffiffiffi

ρ
p j2

≡ V þ 2K þ 2Q: ðA6Þ

This is the quantum virial theorem. The termK ≡ 1
2

R
drρv2

is analogous to kinetic energy, although the analogy is
exact only in the classical limit. The term Q can be
called the quantum energy. If the system is self-
gravitating then

ΦðrÞ ¼ −G
Z

dr0ρðr0Þ
jr − r0j ðA7Þ

so

V ¼ −G
Z

drdr0
ρðrÞρðr0Þr · ðr − r0Þ

jr − r0j3

¼ −
G
2

Z
drdr0

ρðrÞρðr0Þ
jr − r0j ¼ W ðA8Þ

where W is the total potential energy of the system. The
total energy of the system is K þW þQ, which is
conserved.
In a steady state ̈I ¼ 0, and since K ≥ 0 we have

Q
jWj ≤

1

2
ðA9Þ

which sets a lower limit on the particle mass m for an
equilibrium system with a given density distribution ρðrÞ.
The limit is saturated (Q=jWj ¼ 1

2
) if the phase of the wave

function is position independent so ∇θ ¼ 0, a condition
that is satisfied in the soliton.

APPENDIX B: EIGENSTATES OF THE
SCHRÖDINGER-POISSON EQUATION

A useful standard for comparison to theoretical models
and simulations of FDM halos is provided by the eigen-
states of the time-independent Schrödinger-Poisson equa-
tion, which are solutions of the combined equations

−
ℏ2

2m
∇2ψ þmΦψ ¼ mEψ ;

∇2Φ ¼ 4πGmjψ j2: ðB1Þ

Here ψðrÞ and ΦðrÞ are the wave function and gravitational
potential, and E is the energy per unit mass of the
eigenstate. We consider isolated systems so we assume
that ψ , Φ approach zero as jrj → ∞ and that they are
regular near the origin. The total massM ¼ m

R
drjψ j2 and

it is straightforward to show thatME ¼ 2W þ K þQ; thus
the energy eigenvalue E is not the total energy per unit mass
of the system. Using the time-independent virial theorem
we can show that the energy eigenvalue is related to the
potential energy by W ¼ 2

3
ME.
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We restrict our attention to spherical solutions.21 Then
the wave function can be taken to be real and

−
ℏ2

2mr2
d
dr

r2
dψ
dr

þmΦψ ¼ mEψ ;

1

r2
d
dr

r2
dΦ
dr

¼ 4πGmψ2: ðB2Þ

Following other authors [41,57,95,96,190,191] we com-
pute numerically the solutions of these equations, and label
the eigenstates n ¼ 0; 1; 2;… in order of increasing energy.
The eigenstate labeled by n has n nodal radii at which the
density is zero. Because the Schrödinger-Poisson equations
admit a scaling invariant, all systems corresponding to a
given level n form a one-parameter family that can be
specified by the total mass M. Then quantities such as the
central density, central potential, half-mass radius, virial
velocity, energy eigenvalue, and potential energy can be
written

ρc ¼
�
Gm2

ℏ2

�
3

M4ρn;

Φc ¼ −
�
GMm
ℏ

�
2

ϕn;

r1=2 ¼
ℏ2

GMm2
fn; ðB3Þ

vvir ¼ ð−W=MÞ1=2 ¼ GMm
ℏ

w1=2
n ;

E ¼ −
�
GMm
ℏ

�
2

ϵn;

W ¼ −
G2M3m2

ℏ2
wn: ðB4Þ

The dimensionless constants ρn, ϕn, fn, ϵn, and wn are
given in Table II. Note that wn ¼ 2

3
ϵn.

We see that the central density is a strongly decreasing
function of the level number n so the densest system is
the ground state, n ¼ 0. The ground state is linearly stable

but the nth excited state has n spherically symmetric
unstable modes which decay to the ground state through
the dispersion of probability density to infinity; see
Sec. III C and Refs. [56–58]. Thus the ground state,
sometimes called a “soliton,” is the long-term attractor
for any FDM system.

APPENDIX C: QUANTUM-MECHANICAL
TREATMENT OF THE TIDAL RADIUS

To derive the classical formula for the tidal radius,
consider a mass M in a circular orbit of radius a around
a point-mass host and work in a rotating Cartesian
reference frame that is centered on M, with the z-axis
pointing in the same direction as the orbital angular
momentum and the x-axis pointing away from the host.
Let a and Ω be the orbital radius and angular speed. Then
for r ¼ ðx2 þ y2 þ z2Þ1=2 ≪ a the equations of motion for
a test particle are [see for example Eq. (8.97) of [55]]

ẍ ¼ 2Ω_yþ 3Ω2x −
GMx
r3

;

ÿ ¼ −2Ω_x −
GMy
r3

;

̈z ¼ −Ω2z −
GMz
r3

: ðC1Þ

There is an equilibrium solution (_x ¼ _y ¼ _z ¼ 0) at
x ¼ �rt, y ¼ z ¼ 0 where rt ¼ ðGM=3Ω2Þ1=3 is the tidal
radius. If the host has mass M then

rt ¼ a

�
M
3M

�
1=3

: ðC2Þ

We will consider a simplified system, in which the mass
M is subjected to a spherically symmetric tidal potential
Φt ¼ − 3

2
Ω2r2 ¼ − 3

2
GMr2=a3. Then we can work in an

inertial frame centered on M, in which the equations of
motion are

̈r ¼ −3Ω2r −
GM
r3

r ¼ GM

�
1

r3t
−

1

r3

�
r; ðC3Þ

these have equilibrium solutions at r ¼ rt and capture
much of the dynamics relevant to tidal disruption.
The Schrödinger-Poisson equation analogous to (C3) is

−
ℏ2

2m2r2
d
dr

r2
dψ
dr

þ
�
Φ −

3

2
Ω2r2

�
ψ ¼ Eψ ;

1

r2
d
dr

r2
dΦ
dr

¼ 4πGmψ2: ðC4Þ

In contrast to the case of particles such as CDM, which can
orbit forever if they are inside the tidal radius, FDM is
described by the wave equation (C4) which allows matter

TABLE II. Properties of the lowest eigenstates of the Schrö-
dinger-Poisson equation [Eq. (B4)].

n ρn ϕn fn ϵn wn

0 0.00440 0.3155 3.9251 0.16277 0.10851
1 0.000180 0.07146 23.562 0.03080 0.02053
2 0.000031 0.03139 60.903 0.012526 0.008351
3 9.400 × 10−6 0.01772 116.18 0.006747 0.004498
4 3.733 × 10−6 0.01240 178.60 0.004209 0.002806

21An interesting unsolved problem is whether there are
nonspherical solutions of the time-independent Schrödinger-
Poisson equation.
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with r ≪ rt to tunnel through the potential barrier centered
on rt and escape to infinity. Thus all self-gravitating
systems in an external tidal field are eventually tidally
disrupted. It is worth stressing that by tunneling, we do not
mean tunneling in the sense of quantum field theory—
classical field theory provides an adequate description of all
phenomena discussed in this paper (see comments at the
end of Sec. II B).
To determine the disruption time scale,we solve Eqs. (C4)

numerically. We impose an outgoing wave boundary con-
dition as r → ∞; using the WKB approximation we can
show that this must have the form

ψðrÞ → A

r3=2
exp

�
i

ffiffiffi
3

p
mΩ
2ℏ

r2
�

ðC5Þ

where A is a constant. We impose regular boundary
conditions at the origin [ψ 0ðrÞ ∼ r and Φ0ðrÞ ∼ r] and allow
the energy eigenvalueE to be complex; then the rate of mass
loss is

_M ¼ 2MImðEÞ: ðC6Þ

We may then define a dimensionless tidal disruption
time by

τ≡ MΩ
2π _M

; ðC7Þ

so a system will lose a substantial fraction of its mass due to
tides in τ orbits.
In Fig. 1 we show τ as a function of ρc=ρhost where ρc

is the central density of the satellite and ρhost ¼
3M=ð4πa3Þ ¼ 3Ω2=ð4πGÞ is the mean density of the host
galaxy averaged over the distance a to the satellite.

APPENDIX D: QUANTUM-MECHANICAL
TREATMENT OF DYNAMICAL FRICTION

The goal of this appendix is to compute the dynamical
friction on a point-mass object (the “test object”) moving
through the FDM superfluid. As the object travels through
the fluid, a gravitational wake forms behind it, and the
associated overdensity exerts a drag. The wave nature of
FDM is expected to suppress the overdensity, reducing
the drag.
Let us work in a frame in which the test object, of mass

mcl, is stationary at the origin, and the dark-matter fluid
flows past with a velocity v and a uniform density ρ in the
far past. The dark matter interacts with the object gravi-
tationally, but its self-gravity is ignored [the validity of this
approximation is discussed following Eq. (D14)]. This
is the classic Coulomb scattering problem. The time-
independent Schrödinger equation for the wave function
ψ has the solution (e.g., [192])

ψ ¼ NeikzM½iβ; 1; ikðr − zÞ�; ðD1Þ

where M is a confluent hypergeometric function. Here z is
the coordinate parallel to v ¼ vẑ, ℏk ¼ mv is the associ-
ated momentum, and r is the radial distance from the point
mass. The dimensionless parameter is

β≡Gmclm2

ℏ2k
¼ Gmclm

ℏv
¼ 2π

Gmcl

v2λ
; ðD2Þ

apart from the factor of 2π this is the ratio of the
characteristic length scale Gmcl=v2 (the impact parameter
at which significant deflection of the orbit occurs in the
classical limit) to the de Broglie wavelength λ [Eq. (18)].
We are interested in the regime β ≪ 1, whereas the classical
description of dynamical friction [55,132] is in the regime
β ≫ 1. If we normalize the wave function so that jψ j2 is
the density, then the normalization N is determined by the
condition that jψ j2 ¼ ρ as −z ¼ r → ∞. Up to an unim-
portant phase,

N ¼ ffiffiffi
ρ

p
eπβ=2jΓð1 − iβÞj ðD3Þ

where Γ is the gamma function.
The dynamical friction force is given by a surface integral

of the fluid’s momentum flux density tensor [Eq. (28)]:

FIG. 1. The lifetime of a stellar system in the ground state of the
Schrödinger-Poisson equation when a spherically symmetric tidal
field is present. The vertical axis gives the dimensionless lifetime
τ in units of the orbital period [Eq. (C7)] and the horizontal axis
gives the ratio of the central density to the mean density of the
host averaged over the orbital radius.
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F ¼ Fẑ where F ¼ −
I

dSjΠjz: ðD4Þ

The system is assumed to be in a steady state with no Hubble
expansion, so we may set the Hubble constant H ¼ 0 and
the scale factor R ¼ 1. Then using Eq. (27) and the
divergence theorem we can show that

F ¼
Z

drρ
∂Φ
∂z ðD5Þ

with Φ ¼ −GM=r. Not surprisingly, −Fẑ is the integral of
the gravitational force of the object on the surrounding fluid.
We take the surface to be that of a sphere of radius r

centered on the test object. We write the frictional force as

F ¼ 4πG2m2
clρ

v2
Cðβ; krÞ: ðD6Þ

Then using the solution (D1) and Eqs. (D4) and (D5)
respectively, we obtain the two equivalent expressions

C ¼ eπβjΓð1 − iβÞj2
2β

Z
2kr

0

dq

��
kr
β
þ 1

�

×

�
q
kr

− 1

�
jMðiβ; 1; iqÞj2 þ qIm½Mðiβ; 1; iqÞ�

×Mðiβ þ 1; 2; iqÞ� þ βqjMðiβ þ 1; 2; iqÞj2
�

ðD7Þ

¼ eπβjΓð1 − iβÞj2
2β

Z
2kr

0

dqjMðiβ; 1; iqÞj2

×

�
q
kr

− 2 − log
q
2kr

�
: ðD8Þ

The Coulomb scattering problem has infrared divergence
(C → ∞ as r → ∞) so we keep r finite; we may think of r
as representing either the size of the test object’s orbit or the
size of its host system, whichever is smaller.
The analogous classical expression22 can be obtained by

determining the momentum flow through a sphere of radius
r from hyperbolic Keplerian orbits that are parallel to the
z-axis as z → −∞:

Ccl ¼
1þ Λ
Λ

tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 2Λ

p

1þ Λ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=Λ

p
ðD9Þ

where

Λ≡ kr
β
¼ v2r

Gmcl
; ðD10Þ

this factor is usually called the “Coulomb logarithm.” It is
straightforward to verify numerically that Eqs. (D7)
and (D8) agree with Eq. (D9) in the limit in which
kr → ∞ and β → ∞ while Λ ¼ kr=β is constant.
If the test object is much less massive than the host system

in which it resides (mcl ≪ M) then the classical virial
theorem23 implies that v2∼GM=r so Λ∼M=mcl≫1. Then

Ccl ¼ log 2Λ − 1þ 1

Λ
log 2Λþ OðΛ−2Þ: ðD11Þ

This formulation differs slightly from the usual treatment
due to Chandrasekhar [55,132], who imposed an infrared
cutoff by placing an upper bound on the impact parameter
rather than the distance from the test object. Thus we should
not expect our result to agree exactly with Chandrasekhar’s
even in the classical limit kr; β → ∞ [although both give
CCh ¼ logΛþ Oð1Þ as Λ → ∞]. An exact comparison
would require solving a wave packet scattering problem.
If the host system is composed of FDM, the frictional

force depends on the dimensionless number kr ¼ mvr=ℏ.
It is useful to rewrite kr in terms of the half-mass radius r1=2
and the virial velocity vvir of the halo. For the ground state,
we have from Eq. (B3)

kr ¼ f0w
1=2
0

v
vvir

r
r1=2

¼ 1.29
v
vvir

r
r1=2

: ðD12Þ

Thus kr is of order unity; then Eq. (D2) implies that
β ∼mcl=M so β ≪ 1 when the test object is much less
massive than the host system. ATaylor series expansion of
the confluent hypergeometric function gives

Mðiβ; 1; iqÞ ¼ 1 − βSiðqÞ − iβCinðqÞ þ Oðβ2Þ; ðD13Þ

where SiðzÞ ¼ R
z
0 sin tdt=t and CinðzÞ ¼ R

z
0 ð1 − cos tÞdt=t

are sine and cosine integrals. Then the integral (D8) is
straightforward:

C ¼ Cinð2krÞ þ sin 2kr
2kr

− 1þ OðβÞ: ðD14Þ

For kr ≪ 1,C → 1
3
ðkrÞ2. For kr ≫ 1, the behavior ofC can

be derived from Eq. (D7), using results from [193,194]:

C ¼ lnð2krÞ − 1 − ReΨð1þ iβÞ þ Oð1=krÞ; ðD15Þ

where Ψ is the digamma function, with the following
asymptotics: ReΨð1þ iβÞ → ln β for large β, and −γE for

22In this analog we assume that an object of massmcl travels at
speed v through a background of much less massive objects, all at
rest, having total density ρ. Of course this analog is unrealistic
since the background system would be gravitationally unstable
on all scales.

23The classical virial theorem applies because the test object
behaves classically.
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small β (γE is the Euler-Mascheroni constant). This
expression has an accuracy of better than 10% down to
kr ¼ 1, if Λ > 100.
In deriving these results we have relied on the approxi-

mation that the self-gravity of the dark matter can be
ignored. This approximation is also used in the classical
calculations of dynamical friction, where it is justified
because the strongest contribution to the friction comes
from scales much smaller than the system size.24 The
approximation is less well justified for FDM since the
strongest contribution comes from scales comparable to
the size of the solitonic core—according to Eq. (D14) the
force is proportional to C which is ∼ðkrÞ2 for kr ≪ 1.
Figure 2 shows Cðkr=Λ; krÞ [Eq. (D6)] as a function of

the dimensionless wave number kr, for Λ ¼ 3, 10, 30, 100,
300. Recall that the Coulomb logarithm Λ is given by

Eq. (D10) and is of order the ratio M=mcl of the mass of
the host galaxy to the mass of the test object. The solid lines
are computed from Eq. (D8) and the dashed red line shows
the asymptotic behavior as Λ → ∞ [Eq. (D14)]. Figure 2
shows that when kr ∼ 1, the factor C is also near unity
for a wide range of Λ. If on the other hand the test object
orbits near the center of the host system then kr ≪ 1

and C → 1
3
ðkrÞ2.

To estimate the time scale for orbital decay, we assume
that the test object is on a circular orbit of radius r.
Its velocity is given by v2 ¼ GMðrÞ=r where MðrÞ
is the mass of the host system interior to r, and its
angular momentum is L ¼ mclrv. Dynamical friction
exerts a torque jFjr in the direction opposite to the
orbital motion, where F is given by Eq. (D6), so the
decay time scale is

τ≡ L
rjFj ¼

MðrÞ3=2
4πG1=2mclρr3=2C

: ðD16Þ

At orbital radii r ≪ r1=2, for a solitonic host galaxy,
we can further replace C with 1

3
ðkrÞ2 ¼ 1

3
ðmvr=ℏÞ2 ¼

1
3
ðm=ℏÞ2GMðrÞr, the density ρ with its central

value ρc from Eq. (B3), and MðrÞ with 4
3
πρcr3. We

obtain

τ ¼ 31=2

2π1=2ρ1=20 w1=2
0 f30

vvirr31=2
Gmclr

¼ 0.370
vvirr31=2
Gmclr

: ðD17Þ

APPENDIX E: THE COLLISION OF STREAMS

When two streams of CDM collide, they pass through
each other. What should we expect for FDM? On the one
hand, it can be thought of as a fluid. Thus multiple-
streaming cannot occur; i.e., the density and velocity
fields are single-valued. On the other hand, FDM is
described by the Schrödinger equation, where the linear
superposition of wave functions is permitted (for sim-
plicity, we ignore gravity in this appendix). To illuminate
this issue, it is instructive to study two simple analytic
solutions.
The free Schrödinger equation in one spatial dimension

(ignoring gravity and cosmic expansion) iℏ∂tψ ¼
−ℏ2∂2

xψ=ð2mÞ admits a Gaussian superposition of plane
waves as a solution:

ψðt; xÞ ∝
Z

dk exp ½− 1

2
x20k

2� exp
�
i
�
kx −

ℏ2k2

2m
t
��

;

ðE1Þ

where the real number x0 characterizes the width of the
Gaussian. The corresponding density and velocity fields are
derived from Eqs. (22):

FIG. 2. The dynamical friction force on a test object of massmcl
traveling at speed v through FDM with density ρ is given by
Eq. (D6), with the dimensionless function C plotted in this figure.
The horizontal axis is kr where k ¼ mv=ℏ is the wave number of
the FDM particles in the rest frame of the test object, and r is an
upper cutoff to the distance from the test object that approx-
imately represents the smaller of the radius of the orbit and the
size of the host system. Each curve is for a fixed value of
Λ ¼ v2r=Gmcl, which by the virial theorem is approximately the
ratio of the mass of the host to the mass of the test object; from
bottom to top Λ ¼ 3, 10, 30, 100, 300. The dashed red line shows
the asymptotic behavior in the limit Λ → ∞ [Eq. (D14)].

24To see this, note that for Λ ≫ 1 the frictional force varies as
log 2Λ according to Eq. (D11). Since Λ ∼ r according to
Eq. (D10) each octave in r contributes equally to the friction.
A classical calculation that includes self-gravity is given by [195].
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ρðt; xÞ ¼ Mtot

π1=2x0ð1þ ~t2Þ1=2 exp
�
−

~x2

1þ ~t2

�
;

vðt; xÞ ¼ ℏ~t ~x
mx0ð1þ ~t2Þ ; ðE2Þ

where Mtot is the integrated mass, and ~t and ~x are the
dimensionless time and distance:

~t≡ ℏt
mx20

; ~x≡ x
x0

: ðE3Þ

This solution describes a flow converging upon the origin at
t < 0, and diverging from it at t > 0. The density profile is
narrowest at t ¼ 0, with a width of x0. It is instructive to
consider what CDM would predict if one were to initiate ρ
and vwith values that match the above at some early time ti
(<0). In other words, a CDM particle with initial position q
has the trajectory

xðtÞ ¼ qþ vðti; qÞðt − tiÞ: ðE4Þ

The velocity is unchanged as the particle free streams and
the density follows by mass conservation:

ρðt; xÞ ¼ Mtot

π1=2x0

ð1þ ~ti2Þ1=2
j1þ ~t~tij

exp

�
−

ð1þ ~ti2Þ
ð1þ ~t~tiÞ2

~x2
�
;

vðt; xÞ ¼ ℏ~ti ~x
mx0ð1þ ~t~tiÞ

; ðE5Þ

where ~ti ≡ ℏti=ðmx20Þ. Assuming j~tij ≫ 1, one can see that
the FDM and CDM predictions approximately match for
j~tj≳ 1. For j~tj≲ 1, however, they can be quite different—
especially at ~t ¼ −1=~ti when the CDM density (E5) blows
up at the origin, due to the formation of a caustic. In
contrast, the FDM density (E2) remains regular at all times.
These differences in behavior between FDM and CDM

can be interpreted in two ways. As a fluid, FDM is affected
by quantum stress or pressure. The spatial gradient in the
density produces pressure that opposes the formation of a
density peak that is too narrow; the pressure causes a
bounce at the point of collision which eventually erases the
peak. Alternatively, one can interpret FDM as a collection
of particles, albeit with a long de Broglie wavelength. Wave
packets describing these particles do superimpose. The
particles stream past each other in both FDM and CDM, but
the fuzziness associated with the macroscopic de Broglie
wavelength smooths out the caustic in FDM. Both inter-
pretations are valid.
Suppose one observes a collision of two streams at a

relative velocity v0. Based on the above simple example,
we expect fuzziness effects to be noticeable for jxj ≲ x0;
jtj≲ t0 where

x0 ¼
ℏ

mv0
¼ 192 pc

10−22 eV
m

100 km s−1

v0
;

t0 ¼
ℏ

mv20
¼ 1.87 × 106 yr

10−22 eV
m

�
100 km s−1

v0

�
2

:

ðE6Þ

Thus, for clusters of galaxies, where v0 ∼ 103 km s−1, we
do not expect fuzziness to play an important role.
Ultimately, gravity should be included in the analysis.
When bound objects could form under a collision, the
difference between FDM and CDM would no longer be
transitory.
For additional insight into the nature of collisions,

it is useful to consider self-similar solutions. The free
Schrödinger equation has the symmetry x → λx, t → λ2t. It
is thus natural to look for a solution which is a function of
x=

ffiffi
t

p
alone:

ψðt; xÞ ¼ Affiffiffiffiffiffi
2π

p e−iπ=4
Z

∞

x
ffiffiffiffiffiffiffiffi
m=ℏt

p eiξ
2=2dξþ B; ðE7Þ

where A and B are constants. (For t < 0, we choose
x

ffiffiffiffiffiffiffiffiffiffiffi
m=ℏt

p ¼ ix
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ℏjtjp

.) The solution has simple spatial
asymptotics:

FIG. 3. Density evolution in a self-similar FDM solution,
according to Eq. (E9). The dimensionless time ~t and distance
~x are defined in Eq. (E3), where x0 is an arbitrary length scale.
The overall normalization of the density ρ is also arbitrary. With
the choice A ¼ B made here, the ratio of the asymptotic density
at x → �∞ is ðAþ BÞ2=B2 ¼ 4.
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ψðt; x → −∞Þ ¼ Aþ B; ψðt; x → ∞Þ ¼ B: ðE8Þ

We choose A and B to be real. The asymptotic behavior
of the density ρ ¼ jψ j2 is ρ → ðAþ BÞ2 as x → −∞ and
ρ → B2 as x → ∞. There is thus a jump in density.
Moreover, the jump becomes increasingly sharp as
t → 0. This resembles what one expects for shock
formation in a normal fluid. Let us write out ψ more
explicitly as

ψðt; xÞ ¼ A
2
þ B −

A
2
ð1 ∓ iÞC

�
x

ffiffiffiffiffiffiffiffiffiffi
m

πℏjtj
r �

−
A
2
ð1� iÞS

�
x

ffiffiffiffiffiffiffiffiffiffi
m

πℏjtj
r �

; ðE9Þ

where the upper/lower sign is for a positive/negative t. The
functions C and S are the Fresnel integrals, defined by

CðθÞ ¼
Z

θ

0

cos

�
1

2
πξ2

�
dξ;

SðθÞ ¼
Z

θ

0

sin

�
1

2
πξ2

�
dξ: ðE10Þ

The implied density ρ ¼ jψ j2 is depicted in Fig. 3.
The resemblance to a shock (in its rest frame) is

superficial. The evolution in the case of FDM is time-
reversal symmetric, whereas there is an irreversible entropy
production in a normal shock. From a fluid perspective, the
quantum pressure of FDM reacts against the steepening
density profile around x ¼ 0, ultimately causing a bounce
that reverses the evolution. From a particle perspective,
the two colliding streams go past each other after t ¼ 0,
much as CDM would, thereby smoothing out the jump in
density around x ¼ 0. The difference from CDM is the
absence of caustics where density formally diverges. The
FDM density profile has characteristic oscillations on
the scale x ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏjtj=mp

.
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