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We study the magnetohydrodynamics of relativistic plasmas accounting for the chiral magnetic effect
(CME). To take into account the evolution of the plasma velocity, obeying the Navier-Stokes equation, we
approximate it by the Lorentz force accompanied by the phenomenological drag time parameter. On the
basis of this ansatz, we obtain the contributions of both the turbulence effects, resulting from the dynamo
term, and the magnetic field instability, caused by the CME, to the evolution of the magnetic field governed
by the modified Faraday equation. In this way, we explore the evolution of the magnetic field energy and
the magnetic helicity density spectra in the early Universe plasma. We find that the right-left electron
asymmetry is enhanced by the turbulent plasma motion in a strong seed magnetic field compared to the
pure CME case studied earlier for the hot Universe plasma in the same broken phase.
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I. INTRODUCTION

Magnetic fields are important for various physical proc-
esses, including cosmic ray propagation, influence on stellar
and solar activities, etc. However, the origin of cosmic
magnetic fields is still an open problem in astrophysics and
cosmology [1–3]. It remains unclear whether thesemagnetic
fields were first created by battery effects in protogalaxies
and then amplified by a dynamo action up to their present-
day strengths, or if seed fields for a dynamo action originated
in magnetic fields which seem to have existed in the early
Univese before the recombination. The first observational
indications of the presence of a cosmological magnetic field
(CMF) in the intergalactic medium [4] still do not preclude
the first possibility. However, they strongly support the latter
option.
The origin of the CMF, as well as a primeval chiral

asymmetry μ5 ¼ ðμeR − μeLÞ=2, where μeR and μeL are the
right- and left-electron chemical potentials, can be traced
from the lepto- and baryogenesis in primordial hypermag-
netic fields existing in the symmetric phase of the Universe
before the electroweak phase transition (EWPT); e.g., in the
model with a nonzero initial right-electron asymmetry
∼μeR ≠ 0 [5–8]. The important issue in such a scenario is
a nonzero difference of lepton numbers, LeR − LeL ≠ 0
at the EWPT time [6], that can be used as a possible
starting value for the chiral anomaly which provides the
evolution of Maxwellian fields down to the temperatures
T ∼ 100 MeV ≫ me, where me is the electron mass.
There are different ways to estimate the importance of

the advection (dynamo) term ∇ × ðv ×BÞ in the Faraday

equation describing CMF. In Ref. [9], accounting for the
chiral magnetic effect (CME) [10] given by μ5 ≠ 0, one
neglects the velocity field v completely. In Ref. [11],
considering a negligible backreaction of the magnetic field
on the fluid velocity, it is shown that the advection term is
unimportant. A different suggestion on the plasma velocity
v and the advection term is put forward in Ref. [12],
assuming that the backreaction of a strong magnetic field
on a fluid is important, cf. Refs. [13–15].
There is also an interesting discussion in literature [16]

on the inverse cascade induced by CME. However, in the
present work, we do not deal with this topic, trying to
illuminate other aspects of anomalousMHD in the presence
of a fluid turbulence in chiral plasma.
In this paper, we revisit the idea of Ref. [12]. In Sec. II, we

simplify the Navier-Stokes equation, substituting for the
velocity field v entering the dynamo term in the Faraday
equation its expression through the Lorentz force as sug-
gested in Ref. [12]. Then, in Sec. III, we derive the system of
the magnetohydrodynamic (MHD) equations describing the
evolution of the magnetic field energy andmagnetic helicity
density spectra. Making some assumptions in Sec. III A, we
represent the kinetic equations in the form of the integral
equations. In Sec. III B, we solve the nonlinear kinetic
equations numerically. Finally, in Sec. IV, we discuss our
results, comparing them with those obtained earlier. Some
details of the derivation of kinetic equations for the spectra
are provided in the Appendix. In the following, we use the
natural units, in which ℏ ¼ c ¼ 1.

II. SIMPLIFICATION OF THE SET
OF MHD EQUATIONS

In the present work, we extend the approach developed
in Ref. [9] considering a hot plasma of the early Universe in
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the broken phase after EWPT at the relativistic temper-
atures 10 MeV < T < TEWPT ≃ 100 GeV. For the system
obeying the equation of state P ¼ ρ=3 or Pþ ρ ¼ 4ρ=3,
the MHD equations in the radiation-matter single fluid
approximation are

∂tρþ
4

3
∇ · ðρvÞ ¼ 0; ð2:1Þ

4

3
∂tðρvÞ −

4

3
ρv × ð∇ × vÞ ¼ ðJ ×BÞ −∇Pþ 4

3
ρν∇2v;

ð2:2Þ
J ¼ ð∇ ×BÞ; ð2:3Þ
∂tB ¼ −∇ ×E; ð2:4Þ

where ρ is the energy density of the fluid, P is the pressure,
and E is the electric field.
Using Eq. (2.4), as well as accounting for the total electric

current J¼JOhmþJCME and the Ohm law JOhm ¼
σcond½Eþ ðv ×BÞ�, with the anomalous current JCME
directed along the magnetic field, JCME ¼ ð2αemμ5=πÞB,
one finds the Faraday equation modified due to CME:

∂tB ¼ ∇ × ðv × BÞ þ ηm∇2Bþ 2αemμ5
πσcond

∇ ×B: ð2:5Þ

Here αem ¼ e2=4π ≈ 1=137 is the fine structure constant,
ηm ¼ σ−1cond is the magnetic diffusion coefficient, σcond ¼
σcT is the hot plasma conductivity, and σc ≃ 100. Using
the Faraday equation (2.5) without the dynamo term
∇ × ðv ×BÞ completed by the chiral imbalance evolution
equation [see Eq. (3.15) below], the evolution of the binary
products, such as the magnetic energy density EB ∼ B2 and
the magnetic helicity density HB ¼ V−1 R d3xðA ·BÞ, is
studied in Ref. [9]. In the present work, we analyze the
importance of the dynamo term neglected in Ref. [9] and
interpreted in Ref. [12] as the turbulent fluid contributions to
the evolution of the magnetic energy and helicity density
spectra.
Since the fluid velocity v should obey the Navier-Stokes

equation (2.2), which is rather difficult to solve, we use as
in Ref. [12] the following approximation instead:

∂v
∂t ¼

1

Pþ ρ
ðJ × BÞ; ð2:6Þ

where we drop all the gradients referring to the matter
variables, including the pressure and the kinematic
viscosity (∼ν) terms as well as the nonlinear velocity
term. Thus, only the Lorentz-force term is retained on
the right-hand side of the Navier-Stokes equation (2.2),
FL ∼ ðJ × BÞ. Then we simplify Eq. (2.6), representing
it as

v ¼ τd
Pþ ρ

ðJ × BÞ; ð2:7Þ

where τd ¼ lfree ≈ 1=α2emT is the correlation (drag) time.
The drag time is the average time of the Coulomb
scattering in a hot plasma [17], which is much greater
than the period of the Larmor rotation. It means that the
charged fluid can be accelerated by the Lorentz force
until it interacts with other particles in the background.
The physical meaning of our choice for the drag time

τd ¼ lfree can be also understood from the chain of inequal-
ities for different length scales in our problem: lB ≪ lfree ≪
lCPI ≪ lg. Here lB ¼ p⊥=eB ∼ 3= ~B0T is the Larmor radius,
and ~B0 ¼ B0=T2

0 is the dimensionless magnetic field. Below
in Sec. III B, we take ~B0 ¼ ð10−1 − 10−2Þ. We also use
lCPI ∼ ðαemμ5Þ−1, which is the length scale of the chiral
plasma instability [18]. Finally, lg ∼ σcondðαemμ5Þ−2 is the
anomaly growth time scale [19]. In strong magnetic fields,
the first condition lB ≪ lfree is always fulfilled, and obvi-
ously, μ5 ≪ αemT is the real condition in hot plasma
resulting from the inequality lfree ≪ lCPI here. We agree
with clear arguments in Ref. [19] that in the absence of
CME—i.e., when μ5 ¼ 0—the fluid turbulence exists
already at the background level in standard MHD. Thus,
τd should be the main scale parameter to zeroth-order
approximation.

III. KINETIC EQUATIONS FOR THE MAGNETIC
ENERGY AND HELICITY SPECTRA

Based on the master Eqs. (2.5) and (2.7), we derive the
kinetic equations for the spectra of the magnetic energy
EB ¼ EBðk; tÞ and the density of the magnetic helicity
HB ¼ HBðk; tÞ analogously as in Refs. [20,21]:

∂EB

∂t ¼ −2k2ηeffEB þ αþk2HB; ð3:1Þ
∂HB

∂t ¼ −2k2ηeffHB þ 4α−EB; ð3:2Þ

where

ηeff ¼ ηm þ 4

3

τd
Pþ ρ

Z
dpEB; α� ¼ αCME ∓ αd;

αCME ¼ ΠðtÞ
σcond

; αd ¼
2

3

τd
Pþ ρ

Z
dpp2HB; ð3:3Þ

and ΠðtÞ ¼ 2αemμ5ðtÞ=π is the CME parameter. Note that
the anomalous current JCME does not contribute to the drag
velocity v in Eq. (2.7). The details of the derivation of
Eqs. (3.1)–(3.3) are provided in the Appendix.
The difference of our results from the findings of Ref. [9]

is seen from the second nonlinear terms in Eq. (3.3), which
contain the drag time τd ∼ α−2em=T when we take into
account the turbulent motion ∼v. Note that the effective
magnetic diffusion coefficient ηeff in Eq. (3.3) coincides
with that in Ref. [12] (accounting also for the factor Pþ ρ
in the denominator missed there). The analog of the
α-dynamo parameter α� in Eq. (3.3) differs from that
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derived in Ref. [12], mainly because of the absence of CME
term there, and due to different signs (�) in turbulent
contributions for the evolution of spectra EB and HB
instead of the same sign (þ) in both equations.
Integrating Eq. (3.1) and (3.2) over the spectrum, we get

the following evolution equations:

dEB

dt
¼ αCME

Z
dkk2HBðk;tÞ−2ηm

Z
dkk2EBðk;tÞ

−
2τd

3ðPþρÞ
Z

dkdpk2½4EBðk;tÞEBðp;tÞ

þp2HBðk;tÞHBðp;tÞ�;
dHB

dt
¼ 4αCME

Z
dkEBðk;tÞ−2ηm

Z
dkk2HBðk;tÞ; ð3:4Þ

where

EBðtÞ ¼
Z

dkEBðk; tÞ; HBðtÞ ¼
Z

dkHBðk; tÞ ð3:5Þ

are the magnetic energy density and the helicity density. It
is interesting to note that the matter turbulence directly
contributes only to the evolution of the magnetic energy,
whereas the dependence of the helicity densityHBðtÞ on τd
is indirect, being hidden in the first term EBðtÞ that is
proportional to αCME for the derivative _HB in Eq. (3.4). One
can see that the only source of the instability in Eq. (3.4) is
the CME. If we set αCME ¼ 0 in Eq. (3.4), one can see
that both _EB and _HB are negative, and hence only the
dissipation of the magnetic field is present in the system
provided by the finite electric conductivity ηm ≠ 0 for both
EBðtÞ and HBðtÞ, and additionally by the fluid turbulence
∼τd for the magnetic energy density EBðtÞ.

A. Representation of kinetic equations in the form
of integral equations

Supposing that the parameters ηeff and α� are slowly
varying functions, we can represent Eqs. (3.1) and (3.2) in
an alternative form which is useful for comparison with
the results of Ref. [12]. Let us choose the initial condition in
the form: EBðk; t0Þ ¼ E0ðkÞ and HBðk; t0Þ ¼ 2qE0ðkÞ=k,
where 0 ≤ q ≤ 1, and E0ðkÞ is the arbitrary function. Then,
if jαCMEj > jαdj, one has

EBðk;tÞ¼E0ðkÞexpð−2k2l2dissÞ

×

�
coshð2klCMEÞþq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αCME−αd
αCMEþαd

r
sinhð2klCMEÞ

�
;

HBðk;tÞ¼
2E0ðkÞ

k
expð−2k2l2dissÞ

×

�
qcoshð2klCMEÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αCMEþαd
αCME−αd

r
sinhð2klCMEÞ

�
:

ð3:6Þ

In the opposite case, when jαCMEj < jαdj, the following
representation is valid:

EBðk;tÞ¼ E0ðkÞexpð−2k2l2dissÞ

×

�
cosð2kldÞþq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αd−αCME

αdþαCME

r
sinð2kldÞ

�
;

HBðk;tÞ¼
2E0ðkÞ

k
expð−2k2l2dissÞ

×

�
qcosð2kldÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αdþαCME

αd−αCME

r
sinð2kldÞ

�
: ð3:7Þ

In the special situation of the aperiodic attenuation, if
jαCMEj ¼ jαdj, one can write down that

EBðk; tÞ ¼ E0ðkÞ exp ð−2k2l2dissÞ;

HBðk; tÞ ¼ E0ðkÞ exp ð−2k2l2dissÞ
�
8lð0ÞCME þ

2q
k

�
; ð3:8Þ

when αCME ¼ αd, and

EBðk; tÞ ¼ E0ðkÞ exp ð−2k2l2dissÞ½4qlð0ÞCMEkþ 1�;

HBðk; tÞ ¼
2qE0ðkÞ

k
exp ð−2k2l2dissÞ; ð3:9Þ

if αCME ¼ −αd. We use the following notations:

lCME¼
Z

t

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2CMEðt0Þ−α2dðt0Þ

q
dt0; lð0ÞCME¼

Z
t

t0

αCMEðt0Þdt0;

ld¼
Z

t

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2dðt0Þ−α2CMEðt0Þ

q
dt0; l2diss¼

Z
t

t0

ηeffðt0Þdt0;

ð3:10Þ

in Eqs. (3.6)–(3.9).
It should be noted that the solution of the kinetic Eqs. (3.1)

and (3.2) considered in Ref. [12] corresponds to the case
when αCME ¼ 0. One can see in Eq. (3.7) that there is no
amplification of the magnetic field in this situation. If
αCME ¼ 0, the magnetic field is oscillatory, attenuated by
the effective magnetic diffusion ηeff . In general, the param-
eters αd, especially αCME ∼ μ5ðtÞ, are changed over time. To
take into account this fact, we should look for numerical
solutions of the nonlinear kinetic Eqs. (3.1) and (3.2).

B. Numerical solution to kinetic equations

When we study the evolution of magnetic fields in a hot
plasma in the expandingUniverse, it is convenient to rewrite
Eqs. (3.1)–(3.3) using the conformal dimensionless varia-
bles. They are introduced in the following way: t → η ¼
M0=T and ~k ¼ ak, where a ¼ 1=T; M0 ¼ MPl=1.66

ffiffiffiffiffi
g�

p
;

MPl ¼ 1.2 × 1019 GeV is the Planckmass; and g� ¼ 106.75
is the number of the relativistic degrees of freedom. In these
variables, Eqs. (3.1) and (3.2) take the form
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∂ ~EB

∂η ¼ −2~k2 ~ηeff ~EB þ ~αþ ~k
2 ~HB;

∂ ~HB

∂η ¼ −2~k2 ~ηeff ~HB þ 4~α− ~EB: ð3:11Þ

Here ~EB ¼ ~EBð~k; ηÞ and ~HB ¼ ~HBð~k; ηÞ are the conformal
spectra, and

~ηeff ¼
ηeff
a

¼ σ−1c þ 4

3

α−2em
~ρþ ~p

Z
d ~p ~EB;

~α� ¼ α� ¼
~Π
σc

∓ 2

3

α−2em
~ρþ ~p

Z
d ~p ~p2 ~HB: ð3:12Þ

The CME parameter takes the form

~Π ¼ aΠ ¼ 2αem
π

~μ5; ð3:13Þ

and in a hot relativistic plasma, one substitutes

P ¼ ρ

3
; ρ ¼ π2

30
g�T4; ð3:14Þ

or Pþ ρ ¼ 2π2g�T4=45 and ~Pþ ~ρ ¼ 2π2g�=45.
The evolution equation for the chiral imbalance ~μ5 ¼

~μ5ðηÞ has the form

d ~μ5
dη

¼ −
6αem
π

Z
d~k

∂ ~HB

∂η − ~Γf ~μ5; ð3:15Þ

where

~Γf ¼ aΓf ¼ α2em

�
me

3M0

�
2

η2 ð3:16Þ

is the helicity flip rate [9].
Before we analyze the general case numerically, let us

discuss the approximation of the monochromatic spectrum,

EBð~k;ηÞ¼ ~E0ðηÞδð~k− ~k0Þ; HBð~k;ηÞ¼ ~H0ðηÞδð~k− ~k0Þ;
ð3:17Þ

where ~k0 is a characteristic conformal momentum, and ~E0

and ~H0 are new unknown functions. The evolution equa-
tions (3.11) and (3.15) take the form

d ~E0

dη
¼ −

2~k20
σc

~E0 þ
2αem ~k

2
0

πσc
~μ5 ~H0 −

2

3
~ξ~k20½4 ~E2

0 þ ~k20 ~H
2
0�;

d ~H0

dη
¼ −

2~k20
σc

~H0 þ
8αem
πσc

~μ5 ~E0;

d ~μ5
dη

¼ −
6αem
π

d ~H0

dη
− ~Γf ~μ5; ð3:18Þ

where ~ξ ¼ ð45=2g�ÞðαemπÞ−2 is the turbulence parameter
coming from the velocity field v ∼ τd in Eq. (2.7).

Using the new variables,

τ ¼ 2~k20
σc

η; RðτÞ ¼ 24α2em
π2 ~k20

~E0ðηÞ;

HðτÞ ¼ 12α2em
~k0π2

~H0ðηÞ; MðτÞ ¼ 2αem
π ~k0

~μ5ðηÞ; ð3:19Þ

Eq. (3.18) can be rewritten as

dR
dτ

¼ −RþMH − ξðR2 þH2Þ;
dH
dτ

¼ −H þMR;

dM
dτ

¼ H −MR −GM; ð3:20Þ

where

ξ ¼ 5π2 ~k20σc
2α4emg�

; G ¼ σc ~Γf

2~k20
: ð3:21Þ

Equation (3.20) should be completed with the initial
condition R0¼Rðτ0Þ, H0¼Hðτ0Þ¼qR0, where 0≤ q≤ 1,
and M0 ¼ Mðτ0Þ.
The system in Eq. (3.20) can be solved analytically if

we neglect the evolution of the chiral imbalance; i.e., when
we set M ¼ 0. For q > 0, the solution of Eq. (3.20) has
the form

RðτÞ¼H0e−τ cot ½ξH0ð1−e−τÞþφ0�; HðτÞ¼H0e−τ;

ð3:22Þ

where tanφ0 ¼ q ¼ H0=R0. If q ¼ 0, then

RðτÞ ¼ R0e−τ

ξR0ð1 − e−τÞ þ 1
; HðτÞ ¼ 0: ð3:23Þ

In Eqs. (3.22) and (3.23), we assume that τ0 ¼ 0.
To illustrate the behavior of the magnetic energy in

Eq. (3.22), in Fig. 1 we show RðτÞ for Δh ¼ ξH0 ¼ 0.5
versus 0 < τ < 6. In Fig. 1, we suppose that q ¼ 1. We also
present the case when no turbulence is accounted for—i.e.,
when ξ ¼ 0, shown as the dashed line in Fig. 1. One can see
that the turbulent motion of matter results in the faster
decay of the magnetic field, whereas the evolution of the
magnetic helicity is not affected by the turbulence; cf.
Eq. (3.22). This result is in agreement with our findings in
Sec. III, where the general case was studied. Indeed, as one
can see in Eq. (3.4), the contribution of the turbulence terms
to _EB is negative; i.e., they cause EB to decay faster than in
the absence of the turbulence.
Now we turn to the study of the numerical solution of

Eq. (3.11) in the general case. Let us use the initial energy
spectrum in the form ~EBð~k; η0Þ ¼ C ~kνB . The factor C can be
found from the condition
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~B2
0

2
¼

Z
d~k ~EBð~k; η0Þ; ð3:24Þ

where ~B0 ¼ ~Bðη ¼ η0Þ is the initial magnetic field. If we
use the Batchelor initial spectrum with νB ¼ 4 and 0 < ~k <
~kmax, then, analogously to Eq. (3.19), it is convenient to
introduce the following dimensionless variables:

Hðκ;τÞ¼ 12α2em
π2

~HBð~k;ηÞ; Rðκ;τÞ¼ 24α2em
π2 ~kmax

~EBð~k;ηÞ;

MðτÞ¼ 2αem
π ~kmax

~μ5ðηÞ;

τ¼ 2~k2max

σc
η; κ¼

~k
~kmax

; G¼ σc
2~k2max

~Γf: ð3:25Þ

Using these variables, the system of kinetic equations takes
the form

∂H
∂τ ¼ −κ2H

�
1þ Kd

Z
1

0

dκ0Rðκ0; τÞ
�

þR
�
Mþ Kd

Z
1

0

dκ0κ02Hðκ0; τÞ
�
; ð3:26Þ

∂R
∂τ ¼ −κ2R

�
1þ Kd

Z
1

0

dκ0Rðκ0; τÞ
�

þ κ2H
�
M − Kd

Z
1

0

dκ0κ02Hðκ0; τÞ
�
; ð3:27Þ

dM
dτ

¼
Z

1

0

dκðκ2H −RMÞ − GM; ð3:28Þ

where Kd ¼ 5σc ~k
2
max=4α4emg�. It is interesting to note that

the contribution of the turbulent terms cancels out in
Eq. (3.28). Nevertheless there is a turbulence contribution
in Eq. (3.26) contrary to Eq. (3.20) valid for the mono-
chromatic spectrum.

The initial values of the functions R and H are
Rðκ; τ0Þ ¼ R0κ

νB and Hðκ; τ0Þ ¼ qR0κ
νB−1, where

R0 ¼
12α2em ~B2

0

π2 ~k2max

ðνB þ 1Þ; ð3:29Þ

and correspondingly to the MHD bound on the magnetic
helicity value [22], 0 ≤ q ≤ 1.
We solve kinetic equations (3.26)–(3.28) numerically.

The influence of the turbulent matter motion ∼v on the
MHD characteristics, such as the magnetic field strength
and the magnetic helicity, as well as on the chiral
asymmetry parameter μ5ðtÞ in a hot plasma in the broken
phase of the early Universe is illustrated in Fig. 2. The solid
lines correspond to the case where both effects—i.e., CME
and the turbulent motion of matter v ∼ τd—are taken into
account, while the dashed lines correspond to the CME
effect only applied in Ref. [9]. Note that we present the
numerical solutions of Eqs. (3.26)–(3.28) for the maximum
helicity parameter q ¼ 1 only. This means that we use the
relation HBðk; t0Þ ¼ 2EBðk; t0Þ=k for the initial Batchelor
spectrum in Eq. (3.24), where 0 ≤ ~k ≤ ~kmax ¼ 10−6. In
Figs. 2(a), 2(c) and 2(e), we show results for the maximum
initial magnetic field ~B0 ¼ 0.1 still obeying the BBN bound
on the magnetic field B ≤ 1011 G [23] at the temperature
TBBN ¼ 0.1 MeV [24]. In Figs. 2(c), 2(d) and 2(f), we
show the results for a smaller seed field, ~B0 ¼ 10−2.
It should be noted that Eqs. (3.26)–(3.28) turn out to be

stiff for the chosen parameters. The technique used to
obtain the numerical solution of this system involves a
multipoint implicit finite difference method. In this method,
not all initial conditions result in a smooth behavior of the
solution. Thus, we have to omit some initial part of the
curves which reveal a nonsmooth behavior. That is why
Figs. 2(a)–2(d) look as if the initial conditions were
different for the variables corresponding to the solid and
dashed lines. Surprisingly, this inconsistency does not
affect the evolution of the magnetic helicity density shown
in Figs. 2(e) and 2(f).

IV. DISCUSSION

One can see in Fig. 2 that the stronger the initial
magnetic field, the more noticeable the difference between
the turbulent and nonturbulent cases is. The chiral anomaly
parameter μ5ðtÞ is supported by a matter turbulence at a
higher level just starting from the EWPT time, then
somewhere at a few hundred MeV reduces more smoothly
and drops down a bit earlier than accounting for the CME
effect only. This can be explained by the inverse cascade
with an increase of large-scale contributions in spectra
when the role of turbulent motions ceases.
The dependence of μ5 on the turbulence parameter Kd is

not trivial, being hidden in Eq. (3.28). Such a hidden
dependence comes rather from the magnetic field

0 1 2 3 4 5 6
0

0.1
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0.3

0.4
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1

FIG. 1. The normalized magnetic energy density R=R0 versus τ
on the basis of Eq. (3.22). The solid line shows the evolution of R
accounting for the turbulence and corresponds to Δh ¼ 0.5. The
dashed line corresponds to the situation without the turbulence.
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characteristics H and R, which evidently depend on that
parameter, as seen in Eqs. (3.26) and (3.27). While the
diffusion terms for the magnetic helicity H and the
magnetic energy density spectra R are both enhanced by
turbulent motions ∼Kd, the instability (generation) terms
∼M ∼ μ5 are supplemented differently through the same
parameter Kd. The magnetic helicity H is supported by
turbulent motions even for a decreasing chiral anomaly μ5;
cf. Figs. 2(e) and 2(f). The magnetic energy R reduces

additionally through the turbulent parameter Kd. This is a
reason why the solid curve for magnetic field strength in
Figs. 2(c) and 2(d) occurs below the dash curves corre-
sponding to the pure CME effect.
Let us stress that such opposite contributions of the

turbulent motion ∼v to the evolution of H and R come
directly from different signs of the parameter αd in
Eq. (3.3), as we found in contrast to the results in
Ref. [12]. Another important result obtained in the present

FIG. 2. The evolution of the chiral imbalance, the magnetic energy density, and the helicity density in the plasma of the early Universe
at 102 MeV < T < 102 GeV. (a) and (b): The evolution of the chiral imbalance, μ5ðTÞ ¼ ðμR − μLÞ=2. (c) and (d): The evolution of the
magnetic field, B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
R
dkEBðk; tÞ

p
. (e) and (f): The evolution of the magnetic helicity density. Panels (a), (c), and (e) correspond to

~B0 ¼ 10−1, whereas panels (b), (d), and (f) correspond to ~B0 ¼ 10−2. Solid lines show the evolution accounting for both the turbulence
effects (Kd ≠ 0) and CME, whereas dashed lines show the evolution for the CME case only (Kd ¼ 0).
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work is the examination of the possibility for the plasma
turbulence to drive the magnetic field instability. In our
work, we have approximated the plasma velocity by the
Lorentz force; cf. Eq. (2.7). In frames of thismodel, using the
results of Sec. III A, we can see that, if one accounts for only
the plasma turbulence contribution—i.e., assuming that
αd ≠ 0 and αCME ¼ 0—the initial magnetic field cannot
be amplified. This result follows from Eq. (3.7). Thus, our
new finding confronts the statement of Ref. [12], where it is
claimed that plasma turbulence described within the chosen
model can provide the enhancement of a seedmagnetic field.
The physical reason for the aforementioned discrepancy

of our results with the findings of Ref. [12] is based on the
following fact: The model to account for the plasma
velocity in the Faraday equation (2.5) implies the replace-
ment v → FL in Eq. (2.7). The Lorentz force is known not
to be able to linearly accelerate charged particles in plasma.
Thus, self-sustained electric currents, which could generate
an unstable magnetic field, cannot be excited in such
plasma. This means that the instability of the magnetic
field cannot be implemented if we choose this model to take
into account the turbulent motion of matter, contrary to the
claim in Ref. [12]. Therefore, the representation of the
spectra in terms of hyperbolic functions in Eq. (3.6) is
possible only if CME is accounted for and its contribution
is dominant; i.e., when jαCMEj > jαdj. The turbulence alone
can provide only a faster decay of large-k modes in the
spectra; cf. Eqs. (3.4) and (3.22).
One can expect that the inclusion of the velocity field

could influence the evolution of the right and left circularly
polarized modes B�ðkÞ coming from the Faraday equa-
tion (2.5), cf. Ref. [25], where such a velocity was not taken
into account. There remains also an interesting possibility
to replace the vanishing CME by the contribution of the
axion field to MHD, as pointed out recently in Ref. [26]
[see Eq. (40b) there].
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APPENDIX: TURBULENCE CONTRIBUTION TO
THE KINETIC EQUATIONS FOR THE SPECTRA

In this appendix, we derive the kinetic equations for EB
and HB used in Sec. III and show their difference from
analogous equations in Refs. [12,19].
We shall start with the derivation of the equation forHB.

Let us neglect the contribution of CME to the magnetic field
evolution. Then the Faraday equation (2.5) takes the form

∂tB ¼ ∇ × ðv ×BÞ þ ηm∇2B: ðA1Þ
Using the Fourier representation for the velocity
v ¼ τdðJ ×BÞ=ðPþ ρÞ in Eq. (2.7), we find the evolution
equation for the magnetic field,

∂tBiðk; tÞþηmk2Biðk; tÞ

¼ εijkkj
τd

Pþρ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3qrBsðqÞ

× ½εkrsBnðp−qÞBnðk−pÞ− εrsmBkðk−pÞBmðp−qÞ�;
ðA2Þ

which coincides with the analogous result in Ref. [12],
except for the factor ðPþ ρÞ−1 missed in Ref. [12].
Using the evolution equation for the vector potential

∂tA ¼ ðv ×BÞ − ηmJ, where J ¼ ð∇ ×BÞ is the electric
current in MHD, one finds in the Fourier representation

∂tAið−k; tÞ þ ηmk2Aið−k; tÞ

¼ εiklεkmtεmst
τd

Pþ ρ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 ð−iqsÞ

× Btðq; tÞBnðp; tÞBlð−k − p − qÞ: ðA3Þ
In Eq. (A3) we change the sign of the momentum k → −k
in the argument of Ai [27], meaning to apply the two-point
correlator

hBiðk; tÞBjðp; tÞi ¼
ð2πÞ3
2

δð3Þðkþ pÞ½ðδij − k̂ik̂jÞSðk; tÞ
þ iεijkk̂kAðk; tÞ� ðA4Þ

for the Faraday equation (A2) multiplied by the potential
Aið−k; tÞ, then summed with Eq. (A3) multiplied by the
magnetic field Biðk; tÞ. In Eq. (A4), the form factors Sðk; tÞ
and Aðk; tÞ are related to the spectra

EBðk; tÞ ¼ k2
Sðk; tÞ
ð2πÞ2 ; HBðk; tÞ ¼ k

Aðk; tÞ
2π2

; ðA5Þ

obeying the kinetic equations (3.1) and (3.2).
Using the Maxwell equation valid for any choice of the

Fourier representation k2Aiðk; tÞ ¼ Jiðk; tÞ and neglecting
the derivative ∂2

t Ai ¼ 0 as usual in MHD, as well as
choosing the Fourier representation as in Ref. [12],

Bjðx; tÞ ¼
Z

d3q
ð2πÞ3 e

−iqxBjðq; tÞ; ðA6Þ

one obtains for the averaged sum of binary products

hBiðkÞ½∂tAið−kÞ þ ηmk2�Aið−kÞi
þ hAið−kÞ½∂tBiðkÞ þ ηmk2BiðkÞ�i ðA7Þ

the evolution equation,

ð2πÞ5δð3Þð0Þ
2k2

½∂t þ 2ηmk2�HBðk; tÞ ¼ I1 þ I2; ðA8Þ
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where we use Eq. (A5). The integrals I1;2 in Eq. (A8),
which read

I1 ¼ εiklεkmnεmst
τd

Pþ ρ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 ð−iqsÞ

× hBtðqÞBnðpÞBlð−k − p − qÞBiðkÞi

¼ ð2πÞ5δð3Þð0Þ
2k2

�
−

2τd _HBðtÞ
3ðPþ ρÞηm

EBðk; tÞ

−
4

3

τd
ðPþ ρÞEBðtÞk2HBðk; tÞ

�
; ðA9Þ

I2 ¼ εiklεiqgkjkq
τd

Pþ ρ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 ðiqrÞ

× hBsðqÞ½εkrsBnðp − qÞBnðk − pÞBgð−kÞ
− εrsmBkðk − pÞBmðp − qÞBgð−kÞi

¼ ð2πÞ5δð3Þð0Þ
2k2

�
−

2τd _HBðtÞ
3ðPþ ρÞηm

EBðk; tÞ

−
4

3

τd
ðPþ ρÞEBðtÞk2HBðk; tÞ

�
; ðA10Þ

result from the multiplication of Eq. (A3) by BiðkÞ and
Eq. (A2) by Aið−kÞ ¼ iεiqgkqBgð−kÞ=k2, correspondingly,
when using the four-point correlator

hBiðkÞBjðpÞBkðqÞBlðsÞi
¼hBiðkÞBjðpÞihBkðqÞBlðsÞiþhBiðkÞBkðqÞihBjðpÞBlðsÞi
þhBiðkÞBlðsÞihBjðpÞBkðqÞi ðA11Þ

in the same form as in Refs. [12,22]. In Eqs. (A9) and
(A10), EBðtÞ is the magnetic energy density defined
in Eq. (3.5).
It is interesting to note that I1 ¼ I2, giving finally from

Eq. (A8)

½∂tþ2ηmk2�HBðk;tÞ¼−
4

3

τd
ηmðPþρÞ

_HBðtÞEBðk;tÞ

−
8

3

τd
Pþρ

k2EBðtÞHBðk;tÞ: ðA12Þ

Adding the CME term to Eq. (A12) and accounting for the
standard MHD relation _HBðtÞ ¼ −2ηm

R∞
0 p2dpHBðp; tÞ,

one gets Eq. (3.2),

∂HBðk; tÞ
∂t ¼ −2k2ηeffHBðk; tÞ þ 4α−EBðk; tÞ; ðA13Þ

where α− ¼ αCMEþαd, αdðtÞ ¼ 2τd
R∞
0 dpp2HBðp; tÞ=

3ðP þ ρÞ, correspondingly to notations in Eq. (3.3). Let
us stress the coincidence of signs of the turbulent term αdðtÞ
and the analogous αBðtÞ in Refs. [12,19], αdðtÞ ¼
αBðtÞ ¼ −τd _HBðtÞ=½3ηmðPþ ρÞ�, resulting in the coinci-
dence of our Eq. (A13) in the case μ5 ¼ 0 and, e.g., Eq. (8)
in Ref. [12].
Equation (3.1) can be obtained by the multiplication of

Eq. (A2) by BiðkÞ. The calculations are more straightfor-
ward in this situation. Below, we give the detailed deriva-
tion of this kinetic equation in order to show why the
contribution of the turbulent term αd entering the parameter
αþ in Eq. (3.3) is opposite in sign to the case α− in
Eq. (A13). Note that the parameter αdðtÞ ¼ αBðtÞ enters the
factor αþ with the opposite sign compared to the parameter
αBðtÞ alone found in Ref. [12], as well as in Eqs. (37) and
(38) in Ref. [19].
Multiplying Eq. (A2) by BiðkÞ and using the two-

point correlator in Eq. (A4), one obtains on the left-
hand side

1

2
hB2ðk; tÞi þ ηmk2hB2ðk; tÞi

¼ ð2πÞ5δð3Þð2kÞ
2k2

½∂tEBðk; tÞ þ 2ηmk2EBðk; tÞ�; ðA14Þ

where we use Eq. (A5). On the right-hand side, multi-
plying Eq. (A2) by Biðk; tÞ and using consistently the
four-point correlator in Eq. (A11) and then Eq. (A4), one
obtains the double integral

εijkkj
τd

Pþ ρ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3 qrhBsðqÞBiðkÞ½εkrsBnðp − qÞBnðk − pÞ − εrsmBkðk − pÞBmðp − qÞ�i

¼ εijkkj
τd

4ðPþ ρÞ
Z

d3p
Z

d3qqr ðA15Þ

× ½εkrsðδð3Þðqþ kÞδð3Þðk − qÞ2Sðp; tÞ½ðδis − k̂ik̂s�ÞSðk; tÞ þ iεistk̂tAðk; tÞ� ðA16Þ
þ δð3ÞðpÞδð3Þð2k − pÞ½ðδsn − q̂sq̂nÞSðq; tÞ þ iεsntq̂tAðq; tÞ� ðA17Þ
× ½ðδin − k̂ik̂nÞSðk; tÞ þ iεinqk̂qAðk; tÞ� þ δð3Þðqþ k − pÞδð3Þðkþ p − qÞ ðA18Þ

× ½ðδsn − q̂sq̂nÞSðq; tÞ þ iεsntq̂tAðq; tÞ�½ðδin − k̂ik̂nÞSðk; tÞ þ iεinqk̂qAðk; tÞ�Þ ðA19Þ
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− εrsmðδð3Þðqþ kÞδð3Þðk − qÞ½ðδis − k̂ik̂s�ÞSðk; tÞ þ iεistk̂tAðk; tÞ� ðA20Þ
× ½ðδkm − p̂kp̂mÞSðp; tÞ þ iεkmqp̂qAðp; tÞ� ðA21Þ
þ δð3Þðqþ k − pÞδð3Þðkþ p − qÞ½ðδsk − q̂sq̂kÞSðq; tÞ þ iεsktq̂tAðq; tÞ� ðA22Þ
× ½ðδim − k̂ik̂mÞSðk; tÞ þ iεimqk̂qAðk; tÞ� ðA23Þ
þ δð3ÞðpÞδð3Þð2k − pÞ½ðδsm − q̂sq̂mÞSðq; tÞ þ iεsmtq̂tAðq; tÞ� ðA24Þ

× ½ðδik − k̂ik̂kÞSðk; tÞ þ iεikqk̂qAðk; tÞ�Þ�: ðA25Þ

Let us list consistently the results of integration in the
cumbersome Eqs. (A15)–(A25). The integrand in Eq. (A16)
for terms ∼δð3Þðqþ kÞδð3Þðk − qÞ results in

−
2ð2πÞ5δð3Þð2kÞτd

Pþ ρ
EBðtÞEBðk; tÞ; ðA26Þ

where EBðtÞ ¼ ð2πÞ−2 R∞
0 p2Sðp; tÞdp is the magnetic en-

ergy density in the volumeV, since, using Eq. (A5), one gets
that EBðtÞ ¼ ð2VÞ−1 RV d3xhB2i ¼ R

∞
0 dkEBðk; tÞ. The in-

tegration of Eqs. (A17)–(A19) using δð3ÞðpÞδð3Þð2k − pÞ
and δð3Þðqþ k − pÞδð3Þðkþ p − qÞ leads to the result

−
ð2πÞ5δð3Þð2kÞτd

3ðPþ ρÞ
_HBðtÞ
2ηm

HBðk; tÞ; ðA27Þ

where in standard MHD, _HBðtÞ ¼ −ð2ηm=VÞ
R
V d

3xhðJ ·
BÞi ¼ −2ηm

R
∞
0 dkk2HBðk; tÞ is the temporal derivative of

themagnetic helicity density. Note that Eqs. (A26) and (A27)
result from the sum of the terms within the parentheses (…)
which is proportional to the tensor εkrs in Eqs. (A15)–(A25),
while from the next sumwithin the parentheses (…) which is
proportional to the tensor εrsm, one obtains in Eqs. (A20) and
(A21) for the terms ∼δð3Þðqþ kÞδð3Þðk − qÞ

2ð2πÞ5δð3Þð2kÞτd
3ðPþ ρÞ EBðtÞEBðk; tÞ; ðA28Þ

as well as in Eqs. (A22) and (A23) for the terms
∼δð3Þðqþ k − pÞδð3Þðkþ p − qÞ)

ð2πÞ5δð3Þð2kÞτd
6ðPþ ρÞ

_HBðtÞ
2ηm

HBðk; tÞ: ðA29Þ

Finally, in Eqs. (A24) and (A25), for the terms
∼δð3ÞðpÞδð3Þð2k − pÞ), one gets

ð2πÞ5δð3Þð2kÞτd
2ðPþ ρÞ

_HBðtÞ
2ηm

HBðk; tÞ: ðA30Þ

Summing the contributions in Eqs. (A26) and (A28), we
obtain

−
4ð2πÞ5δð3Þð2kÞτd

3ðPþ ρÞ EBðtÞEBðk; tÞ; ðA31Þ

which, together with the magnetic diffusion parameter ηm ¼
ðσcondÞ−1 in Eq. (A14), gives ηeff ¼ ηmþ4EBðtÞτd=3ðPþρÞ,
coinciding with the result of Ref. [12], except for the
factor (Pþ ρ) in the denominator missed there; cf. Eq. (3.3)
above.
Then, summing Eqs. (A27), (A29), and (A30),

we get the turbulence contribution to the evolution
equation as

ð2πÞ5δð3Þð2kÞτd
3ðPþ ρÞ

_HBðtÞ
2ηm

HBðk; tÞ

¼ −
ð2πÞ5δð3Þð2kÞτd

3ðPþ ρÞ HBðk; tÞ
Z

∞

0

dpp2HBðp; tÞ

¼ −ð2πÞ5δð3Þð2kÞαdHBðk; tÞ=2; ðA32Þ

where αd is defined in Eq. (3.3), and we use the MHD
relation as after Eq. (A27).
Finally, combining Eqs. (A14), (A31), and (A32),

separating the factor ð2πÞ5δð3Þð2kÞ and multiplying both
sides by 2k2, we reproduce Eq. (3.1) for the energy
spectrum evolution,

∂EBðk; tÞ
∂t ¼ −2k2ηeffEBðk; tÞ þ αþk2HBðk; tÞ; ðA33Þ

where the factor αþ ¼ αCME − αd includes the CME term
αCME ¼ 2αemμ5ðtÞ=πσcond, as well as in the helicity spec-
trum evolution given by Eq. (A13).
In spite of the coincidence of signs of the turbulent term

αdðtÞ and the analogous αBðtÞ in Refs. [12,19], αdðtÞ ¼
αBðtÞ ¼ −τd _HBðtÞ=3ηmðPþ ρÞ, one can see that their
contributions to the evolution equation for the energy
density spectrum EBðk; tÞ are opposite when comparing
our Eq. (A33) and, e.g., Eq. (7) in Ref. [12]. Such a
difference between our results and those in Refs. [12,19]
exists only in the transport equation for EBðk; tÞ, while
kinetic equations for the helicity density spectrum coincide
when μ5 ¼ 0; see here Eq. (A13).
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