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Cosmic strings are topological defects possibly formed in the early Universe, which may be observable
due to their gravitational effects on the cosmic microwave background radiation or gravitational wave
experiments. To this effect, it is important to quantitatively ascertain the network properties, including their
density, velocity, or the number of strings present, at the various epochs in the observable Universe.
Attempts to estimate these numbers often rely on simplistic approximations for the string parameters, such
as assuming that the network is scaling. However, in cosmological models containing realistic amounts of
radiation, matter, and dark energy, a string network is never exactly scaling. Here, we use the velocity-
dependent one-scale model for the evolution of a string network to better quantify how these networks
evolve. In particular, we obtain new approximate analytic solutions for the behavior of the network during
the radiation-to-matter and matter-to-acceleration transitions (assuming, in the latter case, the canonical Λ
cold dark matter model) and numerically calculate the relevant quantities for a range of possible dark
energy models.
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I. INTRODUCTION

Topological defects are physical structures produced in
symmetry-breaking phase transitions in the early Universe
first theorized by Kibble [1]. Among all the possible types
of defects, the one-dimensional cosmic strings are the
focus of most of the studies in this area [2], due to their
compatibility with current cosmological models and their
association with several brane inflation scenarios [3,4] and
supersymmetric grand unified theories [5]. Currently, they
are mostly constrained by the cosmic microwave back-
ground [6–12], but in the coming years, they will also be
constrained by gravitational wave facilities [13–17].
The general features of the cosmological evolution of

topological defect networks are well understood and can be
quantitatively described using the velocity-dependent one-
scale (VOS) model [18–20], an extension of Kibble’s
one-scale model [21]. Broadly speaking, in cosmological
scenarios with a single component, string networks rapidly
become relativistic and evolve in the well-known linear
(scale-invariant) scaling regime. The attractor nature of this
solution, and the fact that in this case the scaling velocity is
a substantial fraction of the speed of light are well
established, for example, in the radiation and matter eras.
For other early approaches to analytic modeling, see
Refs. [22–25].
However, realistic universes are not as simple as that,

containing transitions between radiation and matter domi-
nation and later betweenmatter and dark energy domination.

It is perhaps less understood that around the former a string
network is not scaling and indeed that in an accelerating
universe no scaling solution exists at all. Given that it is
common in the literature to make the assumption that the
network is scaling throughout its evolution, onemay ask how
good this approximation is. This is particularly pertinent in
light of forthcoming higher-quality data, which need to be
matched by accurate theoretical predictions and templates.
Here, we address this issue, and use the VOS model to

better quantify how these networks evolve. For both the
radiation-to-matter and the matter-to-acceleration transi-
tions, we obtain new approximate analytic solutions for the
behavior of defect networks which interpolate between
the well-known asymptotic scaling solutions in each of the
eras. These solutions are valid for defects of any dimension;
in addition to the obvious conformal time or redshift
dependence, they also explicitly depend on the defect
dimension and on the phenomenological parameters of
the VOS model.
For the end of matter domination and the onset of

acceleration, the nature of dark energy is a known unknown.
Therefore, while we assume a Λ cold dark matter (ΛCDM)
model to obtain the aforementioned analytic solution,wewill
also numerically solve the VOS equations for the specific
case of cosmic strings and explore the dependence of the
VOS model variables—the network’s correlation length and
rms velocity—on the cosmological parameters characteriz-
ing the dark energymodel. A further quantity of interest is the
number of cosmic strings present in the observable Universe
[26], which is relevant for inferring many of the observable
consequences of these networks, such as their possible
observation though gravitational lensing.
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II. VELOCITY-DEPENDENT ONE-SCALE MODEL

The VOS model provides a quantitative and physically
clear methodology to describe the evolution of topological
defect networks and has been calibrated against numerical
simulations. Here, we will simply provide a concise over-
view, introducing the aspects that will be relevant for our
subsequent analysis. For more detailed descriptions, we
refer the reader to the recent overview [20].

A. Canonical VOS model

The model arises from considering that the network can
be described by averaged quantities, such as its energy E
and rms velocity v [18,19]. The term “one scale” expresses
the assumption that the correlation length and defect
curvature radius coincide with a characteristic length scale
L. Let us consider the generic case of defects with an
n-dimensional world sheet and start by defining this
characteristic length scale

L4−n ¼ M
ρ
; ð1Þ

whereM will have dimensions appropriate for the defect in
question (i.e., monopole mass, string mass per unit length,
or wall mass per unit area) and can also be written

M ∼ ηn; ð2Þ

with η being the corresponding symmetry-breaking
scale. For the case of cosmic strings (n ¼ 2), the relevant
parameter will be the string mass per unit length, denoted μ.
For simplicity, in what follows, we will ignore the effects

of friction due to particle scattering, which typically are
only relevant in epochs of cosmological defect evolution
that are much earlier than can be probed by astrophysical
observations. Under these assumptions, one can derive the
following evolution equations for the characteristic length
scale L and rms velocity v [20],

ð4 − nÞ dL
dt

¼ ð4 − nÞHLþ nHLv2 þ cv ð3Þ

dv
dt

¼ ð1 − v2Þ½f − nHv�: ð4Þ

There are two dimensionless parameters, c describing the
energy losses by the network (in the case of cosmic strings,
this is the loop chopping efficiency) and the momentum
parameter k characterizing the defect curvature. In the
velocity equation, the generic f term describes driving
forces affecting the defect dynamics. For extended objects
(walls and strings) that have been studied in detail in the
past, this driving force is just the local curvature, and we
have

f ∼
k
R
¼ k

L
; ð5Þ

in the last equality, we are implicitly assuming that
our characteristic length scale L is the same as the defect
curvature radius R, consistently with our one-scale
assumption.
In a universe in which the scale factor grows as a ∝ tλ,

with 0 ≤ λ < 1, one can then show that the attractor
(asymptotic) solution of this system of equations is the
linear scaling solution

L ¼ ϵt; v ¼ v0 ¼ const; ð6Þ

with the proportionality factors depending on the model
parameters and the expansion rate as follows:

ϵ2 ¼ kðkþ cÞ
ð4 − nÞnλð1 − λÞ≡

m2

λð1 − λÞ ð7Þ

v20 ¼
4 − n
n

1 − λ

λ

k
kþ c

: ð8Þ

However, no such solution exists if the scale factor is not a
power law, as is the case in the transition between the
radiation and matter eras or at the onset of the recent
acceleration phase. Note that in the former equation we
have, for future convenience, defined the parameter

m2 ≡ kðkþ cÞ
ð4 − nÞn ; ð9Þ

which will depend on the dimension of the defect—apart
from the explicit dependence on n, the phenomenological
parameters c and k are expected to depend on it, too.
We will also be interested in the number of cosmic

strings in the observable Universe at a given time (or
redshift), NðzÞ, which can be calculated assuming that on
average each cube with side LðzÞ contains one string.
Therefore, NðzÞ can be obtained from

NðzÞ ¼ 8

�
dHðzÞ
LðzÞ

�
3

; ð10Þ

where dHðzÞ is the size of the horizon, given as a function
of redshift by

dHðzÞ ¼
1

1þ z

Z
dz0

Hðz0Þ : ð11Þ

This number of string segments NðzÞ, and in particular its
present-day value, is needed for accurate estimates of
astrophysical signatures of these networks, including its
effects as gravitational lenses and in cosmic microwave
background maps.
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B. Invariant and physical quantities

Throughout the previous subsection, the characteristic
length scale L was an invariant quantity or, in other words,
a measure of the invariant string energy (and hence length).
We now discuss how to express the VOS model in terms
of a physical length scale, which will be useful for
some of our subsequent analysis. A more thorough dis-
cussion can be found in Ref. [27]. Invariant and physical
quantities are related through the standard Lorentz factor,
γ ¼ ð1 − v2Þ−1=2; for energies, this is simply

Einv ¼ γEph; ð12Þ

and since, according to Eq. (1), the defect density is
ρ ∝ L−ð4−nÞ, we see that the characteristic length scales
are related via

Lph ¼ γ
1

4−nLinv: ð13Þ

Note that this length scale is a measure of the total
energy content of the network or (in the context of the
VOS model assumption of a single independent character-
istic scale) the typical separation between defects. It also
proves useful to work with ðγvÞ. One can then change
variables using

dγ
dt

¼ vγ3
dv
dt

: ð14Þ

Noting that in the canonical model the curvature radius
R is an invariant quantity, which in a one-scale context
is identified as Rinv ≡ Linv, and transforming it to the
physical one, we finally obtain

dðγvÞ
dt

¼ kγ1þ 1
4−n

Lph
− nHγv ð15Þ

ð4 − nÞ dLph

dt
¼ ð4 − nÞHLph þ vðkþ cÞγ 1

4−n: ð16Þ

If we now look for attractor scaling solutions, we get

ϵ2ph ¼ γ
2

4−nϵ2inv ð17Þ

ðγvÞ2ph ¼ γ2v2inv; ð18Þ

which is trivially correct and consistent given the various
definitions above. Finally, one needs to confirm how the
model parameters c and k are transformed as one switches
between the physical and invariant approaches. Again, one
can show [27] that

cph ¼ γ
1

4−ncinv ð19Þ
kph ¼ γ

1
4−nkinv; ð20Þ

in the former case, this can be rigorously derived following
an argument by Kibble [21], while in the latter, the relation
is more phenomenological—which is a reflection of the
phenomenological nature of the parameter k itself [19].
With these relations between the physical and invariant

model parameters, we can finally write

ð4 − nÞ dLph

dt
¼ ð4 − nÞHLph þ ðcph þ kphÞv ð21Þ

dv
dt

¼ ð1 − v2Þ
�
kph
Lph

− nHv

�
; ð22Þ

or equivalently

dðγvÞ
dt

¼ γkph
Lph

− nHγv; ð23Þ

which are the evolution equations for the VOS model based
on physical rather than invariant parameters.

III. RADIATION-TO-MATTER TRANSITION

In this section, we will obtain an approximate analytic
solution for the behavior of a defect network satisfying the
generic evolution equations given by Eqs. (21) and (22)
during the transition from radiation domination to matter
domination. We start by noting that the exact solution for
the behavior of the scale factor during this transition is [28]

aðτÞ
aeq

¼
�
τ

τ�

�
2

þ 2

�
τ

τ�

�
; ð24Þ

where τ is conformal time, related to physical time t via

dt ¼ adτ; ð25Þ

and we have defined

τ� ¼
τeqffiffiffi
2

p
− 1

; ð26Þ

with aeq and τeq respectively denoting the scale factor and
conformal time at the epoch of equal radiation and matter
densities.
Given the simplicity of this solution, it is useful to

rewrite the VOS dynamical equations in terms of conformal
time, which can be straightforwardly done using Eq. (25).
Moreover, it is also convenient to work with the comoving
version of the physical length scale Lph, defining

Lph ¼ aξph: ð27Þ

We therefore find
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ð4 − nÞ dξph
dτ

¼ ðcph þ kphÞv ð28Þ

dv
dτ

¼ ð1 − v2Þ
�
kph
ξph

− nHv

�
; ð29Þ

where H ¼ d ln a=dτ is the comoving Hubble parameter.
From these, one can similarly show that the attractor
scaling solution is

ξph ¼ ζτ; v ¼ v0 ¼ const: ð30Þ

with

ζ2 ¼ m2
ph

1 − λ

λ
; ð31Þ

where

m2
ph ¼ γ

2
4−nm2 ð32Þ

is the physical analog of the invariant quantity defined in
Eq. (9), and

v20 ¼
4 − n
n

1 − λ

λ

kph
kph þ cph

: ð33Þ

As expected, these exactly match the previously obtained
ones, Eqs. (7) and (8); the solutions for the velocities are
exactly the same, and the ones for the correlation length
also match since for a power-law expansion (a ∝ tλ)

Lph

t
¼ ϵph ¼

1

1 − λ

ξph
τ

¼ ζ

1 − λ
: ð34Þ

A simple solution can now be found for the transition
between radiation and matter domination. We expect cph
and kph to either be constants or slowly varying parameters,
and based on the results of both Goto-Nambu and field
theory simulations of cosmic strings [11,29–31], as well as
of field theory simulations of domain walls [32], we further
expect the defect velocities to change slowly during the
transition—a point already anticipated by Kibble [21].
This implies that the dv=dτ term in Eq. (29) should also
be small, and therefore this equation yields

vξphH ¼ kph
n

: ð35Þ

This can now be substituted in Eq. (28), leading to

ξph
dξph
dτ

¼ m2
ph

1

H
: ð36Þ

Since for the radiation-to-matter transition there is an
exact analytic expression for HðτÞ, which can be trivially

calculated from Eq. (24), we can now integrate this
equation. The result is

ζ2ðyÞ ¼ m2
ph

�
1

2
þ y − ln ð1þ yÞ

y2

�
; ð37Þ

where for the sake of simplicity we have further defined a
dimensionless conformal time y ¼ τ=τ�. Substituting this
solution in Eq. (35) we find for the velocity

v2ðyÞ ¼ 4 − n
n

kph
kph þ cph

y2ð2þ yÞ2
4ð1þ yÞ2½yþ 1

2
y2 − ln ð1þ yÞ� :

ð38Þ

It is straightforward to show that in the limits of small and
large conformal times (corresponding to the deep radiation
and matter eras, respectively) these expressions reduce to
the ones given by Eqs. (31)–(33).
Figure 1 depicts the behavior of the time-dependent

factors on the right-hand side of Eqs. (37) and (38); both of
them are unity in the deep radiation era and 1=2 in the deep
matter era. It is noteworthy that the transition takes about 5
orders of magnitude of conformal time and that the
transition occurs somewhat earlier for the velocities than
it does for the correlation length (or equivalently the
density). The reason for this is intuitively clear: as the
expansion rate starts increasing relative to the t1=2 radiation-
era behavior, the additional damping slows the defects
down, and this affects their interaction rate (specifically, in
the case of strings, the number of intercommutings and
loop production events), which within the subsequent
Hubble time will in turn be reflected in the network’s
density.

-5 -4 -3 -2 -1 0 1 2 3 4 5
log10( /

*
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FIG. 1. The behavior of the time-dependent factors on the right-
hand side of Eq. (37) (blue dashed line) and Eq. (38) (solid
red line).
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IV. MATTER-TO-ACCELERATION TRANSITION

We now turn to the transition between the matter-
dominated era and the onset of acceleration. For the
particular case in which the dark energy is due to a
cosmological constant and with the further assumption
of a flat universe (Ωm þ ΩΛ ¼ 1), there is also an analytic
solution for the behavior of the scale factor, though in this
case as a function of physical time

�
aðtÞ
a0

�
3=2

¼
ffiffiffiffiffiffiffi
Ωm

ΩΛ

s
sinh

�
3

2

ffiffiffiffiffiffiffi
ΩΛ

p
H0t

�
; ð39Þ

where a0 and H0 are the present-day values of the scale
factor and the Hubble parameter. We can, in principle,
proceed under the same assumptions as in the previous
section, and in this case, we will obtain

ξ
dξ
dt

¼ m2
1

a2ðtÞHðtÞ : ð40Þ

This equation could also be integrated, but the resulting
integral would depend on hypergeometric functions, and
therefore it would not be particularly illuminating. Instead,
we can change variables, using redshift instead of time.
Thus, we easily find

d ln ξ
d ln ð1þ zÞ ¼ −m2

ð1þ zÞ2
HðzÞ2ξ2 ; ð41Þ

for the particular case of a flat ΛCDM model, we have

HðzÞ2 ¼ H2
0½Ωmð1þ zÞ3 þ ΩΛ�: ð42Þ

This can then be substituted in Eq. (41), which can be
integrated, leading to

H2
0ξ

2ðzÞ ¼ m2gðzÞ; ð43Þ

where gðzÞ is a redshift-dependent function,

3Ω2=3
m Ω1=3

Λ gðzÞ

¼ log

� ½Ω1=3
m ð1þ zÞ þ Ω1=3

Λ �2
Ω2=3

m ð1þ zÞ2 − ðΩmΩΛÞ1=3ð1þ zÞ þ Ω2=3
Λ

�

− 2
ffiffiffi
3

p
arctan

2Ω1=3
m ð1þ zÞ − Ω1=3

Λffiffiffi
3

p
Ω1=3

Λ

þ
ffiffiffi
3

p
π; ð44Þ

and mathematically this expression assumes that both
Ωm and ΩΛ are nonzero. The velocity vðzÞ can again
be obtained under the same approximation as before
[cf. Eq. (35)], yielding

v2 ¼ 4 − n
n

k
kþ c

ð1þ zÞ2
½Ωmð1þ zÞ3 þΩΛ�gðzÞ

: ð45Þ

Note that, despite keeping both Ωm and ΩΛ in the above in
order to have slightly shorter expressions, we are assuming
a flat universe, and therefore Ωm þ ΩΛ ¼ 1. For nonflat
universes, the evolution equations of the VOS model will
include curvature-dependent terms [19].
For both of these equations, one can show that in the

limit z → ∞ one recovers the matter-era linear scaling
solution, while in the opposite limit ð1þ zÞ → 0 (corre-
sponding to the far future), one obtains the inflating
solution where the network is frozen and conformally
stretched, with L ∝ a and v ∝ a−1 [19]. It is worth pointing
out that physically this is the correct way to obtain the
matter-era and inflationary solutions.
Figure 2 depicts the behavior of gðzÞ defined in Eqs. (44)

and of the redshift-dependent part of the right-hand side of
Eq. (45). Note that for large redshifts gðzÞ ∝ a ∝ ð1þ zÞ−1,
while it tends to a constant in the far future. For this reason,
it is also useful to consider the dimensionless parameter

θ ¼ HL; ð46Þ

which has the opposite behavior: it is a constant in the deep
matter era, and it grows when the universe accelerates. In
terms of our previously defined parameters, this can be
written as

θ ¼ m
1þ z

HðzÞ
H0

ffiffiffiffiffiffiffiffiffi
gðzÞ

p
: ð47Þ

0 1 2 3 4 5 6 7 8 9 10
(1+z)

0

1

2

3
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FIG. 2. The behavior of the redshift-dependent function gðzÞ
defined in Eq. (44) (blue dashed line), of the redshift-dependent
part of the right-hand side of Eq. (45) (solid red line), and of
θ=ð4mÞ [cf. Eq. (47), green dotted line].
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Note that gðzÞ is independent of the defect dimension, but v
and θ will depend on it. Figure 2 also depicts the behavior
of θ=ð4mÞ, the factor of 1=4 being chosen simply in order
to make it more visible within the range of variation of the
other parameters.
Since one of our goals is to study how the network

properties depend on the underlying dark energy model, a
more general numerical approach will be used in what
follows. For a fiducial class of dark energy models, we
will use the standard Chevallier-Polarski-Linder (CPL)
parametrization

wðzÞ ¼ w0 þ wa
z

1þ z
; ð48Þ

corresponding to the Friedmann equation

H2ðzÞ
H2

0

¼ Ωrð1þ zÞ4 þ Ωmð1þ zÞ3

þ ð1 −Ωr −ΩmÞð1þ zÞ3ð1þw0þwaÞe−
3waz
1þz ; ð49Þ

where Ωr ∼ 9 × 10−5 is the present-day value of the
fraction of the critical density in radiation and we are still
assuming a flat universe (consistently with the latest
observational data). We will simultaneously integrate the
length scale and velocity equations, written as a function of
redshift; in full generality, we have

−
d lnL

d ln ð1þ zÞ ¼ 1þ nv2

4 − n
þ cv
ð4 − nÞHL

ð50Þ

−
dv

d ln ð1þ zÞ ¼ ð1 − v2Þ
�
kðvÞ
HL

− nv

�
: ð51Þ

FIG. 3. Comparing the evolution of the VOS model parameters θðzÞ and vðzÞ and the number of string segments N in models
containing the same amount of radiation but different amounts of matter and dark energy: the green line shows a flat matter-only
universe, the red ones show an open universe, and the blue one shows a flat ΛCDM universe. All models contain the same amount of
radiation Ωr ∼ 9 × 10−5, and the parameters in the ΛCDM case are in agreement with the recent Planck satellite data [33]; see the main
text for specific parameter values. Each model is integrated, starting with various different initial conditions, representative of high and
low network densities and velocities, showing that the initial conditions are erased well before the radiation-to-matter transition. Note
that the green and red curves diverge due to the radiation-to-matter transition, while the blue and red curves diverge due to the onset of
the acceleration of the universe.
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In our particular case, we are interested in cosmic strings
(corresponding to n ¼ 2) and for the convenience of
representing the numerical results will replace the length
scale L by the dimensionless parameter θ defined in
Eq. (46). Therefore, the system of equations to be numeri-
cally integrated is

d ln θ
d ln ð1þ zÞ ¼

d lnHðzÞ
d ln ð1þ zÞ − ð1þ v2Þ − cv

2θ
ð52Þ

dv
d ln ð1þ zÞ ¼ ð1 − v2Þ

�
2v −

kðvÞ
θ

�
; ð53Þ

with HðzÞ given by the Friedmann equation [cf. Eq. (49)]
and the momentum parameter given by [19]

kðvÞ ¼ 2
ffiffiffi
2

p

π
ð1 − v2Þð1þ 2

ffiffiffi
2

p
v3Þ 1 − 8v6

1þ 8v6
: ð54Þ

Figure 3 compares the evolution of three cosmological
models with the same amount of radiation (Ωr ¼ 9.2 × 10−5)
but different amounts of matter and dark energy (in the form
of a cosmological constant); for the ΛCDM case, the chosen

values of the cosmological parameters are in agreement
with the recent Planck satellite data [33]. Specifically,wehave

(i) Blue line: flat ΛCDM model, with Ωm ¼ 0.3089
and Ωϕ ¼ 1 −Ωm −Ωr.

(ii) Green line: flat model with Ωϕ ¼ 0 and Ωm ¼
1 −Ωr.

(iii) Red lines: open model with Ωϕ ¼ 0 and Ωm ¼
0.3089.

We do the integrations with different initial conditions,
representative of networks with high and low densities and
velocities, specifically the four permutations of θ ¼ 0.1, 0.7
and v ¼ 0.1, 0.9, as well as an intermediate casewith θ ¼ 0.4
and v ¼ 0.5. Physically, different values of the initial density
(hence, correlation length) and velocity would depend, for
example, on the order of the string-forming phase transition
[2]. For numerical convenience, we start integrating at redshift
z ¼ 1010; although this is much closer to the present day than,
say, the epoch of the formation of a grand unified theory-scale
network, the figure shows that the initial conditions are erased
before the radiation-to-matter transition starts, so this is fine for
our purposes in the present work.
Comparing the threemodels, one finds that the differences

between the behaviors of θ and v are small, while for N,

FIG. 4. Same as Fig. 3, highlighting the behavior close to the present day.
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which involves a comparison with the horizon and therefore
depends on the expansion history, they are somewhat larger.
Note that at early time (large redshifts) the green and red
curves overlap; they become different around the radiation-
to-matter transition (which occurs at different redshifts in
the twomodels, since both have the same amount of radiation
but different amounts of matter). Similarly, the red and blue
curves (whichhave the sameamounts of radiation andmatter,
but different amounts of dark energy) become different with
the onset of acceleration. Figure 4 depicts a zoomed version
of the low-redshift behavior. For ΛCDM, the number
of strings in the present-day observable Universe is expected
to be

N0 ¼ 973.0� 0.6; ð55Þ
where the error bar has been numerically estimated from the
one-sigma uncertainties coming from the relevant cosmo-
logical parameters [33] and also takes into account the
network’s initial conditions (although the latter are clearly
subdominant).
That said, we should also point out that in integrating

these equations we have kept the energy loss parameter c

fixed at the value c ¼ 0.23 obtained from calibration
against numerical simulations [29,30], while for k, we
have used the phenomenological formula given by Eq. (54).
Naturally, there are also uncertainties associated with these
parameters (estimated to be at the 10% to 20% level, though
they are difficult to quantify in detail), and propagating
these uncertainties would increase the above uncertainty in
N. In any case, the clear bottom line of this analysis is that
when calculating detailed observational consequences of
cosmic strings one should keep in mind that a realistic
network will never be exactly scaling in the observationally
relevant redshift range.
Finally, we study how the present-day values of the

observable parameters describing the string network
depend on the dark energy equation of state, described
by the CPL parametrization in Eq. (48). In doing so, only
the CPL parameters w0 and wa are varied, with the present-
day values of the matter and dark energy densities kept
fixed at the best-fit values of the Planck satellite data [33].
For these integrations, we use initial conditions θ ¼ 0.4
and v ¼ 0.5, but as our previous analysis demonstrates, this
specific choice does not affect the results since the initial

FIG. 5. Dependence of the present-day values of the parameters θ, v, and N (shown on the top left, top right, and bottom panels,
respectively) on the dark energy equation of state, described by the CPL parametrization—cf. Eq. (48). The parameter values associated
with each contour are shown on each color bar. The cross highlights the ΛCDM case, corresponding to w0 ¼ −1 and wa ¼ 0.
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conditions are erased by the evolution well before the
present day.
Figure 5 shows the results of this analysis. A changing

equation of state will affect both the speed of the matter-to-
acceleration transition and the redshift of its onset, and this
is reflected in the dynamics of the string network. Naturally,
for large values of w0 and wa, the universe would never start
accelerating, and the string network would still have a
behavior similar to that of the matter-era scaling solution
(but such large values are observationally excluded). On the
other hand, for the region of the w0–wa parameter space in
the neighborhood of the cosmological constant (w0 ¼ −1,
wa ¼ 0), the observable string parameters are relatively
insensitive to the equation of state. Specifically, for ΛCDM,
we find to four significant digits

θ0 ¼ 0.6468 ð56Þ

v0 ¼ 0.5438 ð57Þ

N0 ¼ 973.0; ð58Þ

in full agreement with our previous analysis—as can be
seen by inspecting the blue lines in Fig. 4. So, in this sense,
assuming a backgroundΛCDM cosmology when exploring
cosmological constraints on defect networks seems rea-
sonably justified.

V. CONCLUSIONS

It is well known that in idealized conditions, such as
universes with a single component and a scale factor
growing as a power law a ∝ tλ, networks of cosmic strings
and several other topological defects evolve toward asymp-
totic scaling solutions where the average network velocity
is a constant and the characteristic length scale grows as
L ∝ t. This is well established both through analytic
calculations and detailed numerical simulations—see
Ref. [20] for a recent review. However, realistic cosmo-
logical models contain radiation, matter, and dark energy.

In those cases, one expects that string network will never be
exactly scaling. In this work, we have used the canonical
VOS model for the evolution of defect networks to better
quantify how these networks evolve.
Specifically, making use of an approximation originally

suggested by Kibble in the context of friction-dominated
universes [21], we have obtained new analytic solutions of
the VOS model for the behavior of the network during the
radiation-to-matter and matter-to-acceleration transitions.
In the latter case, we have assumed the canonical ΛCDM
model, but our subsequent numerical exploration of a
wider range of dark energy models has confirmed that,
given the current constraints on the dark energy equation
of state, this is a reasonable approximation. A comparison
of our analytic solutions to high-resolution numerical
simulations is beyond our present scope but will be
performed in subsequent work.
Our results will be important for accurate studies of the

cosmological implications of cosmic strings and topologi-
cal defects as a whole. Future high-resolution cosmic
microwave background experiments will certainly con-
strain—and may eventually detect—the predicted effects
from these networks [34,35]. Similarly, more comprehen-
sive studies of energy loss mechanisms (most notably, for
cosmic strings, loop production) and their gravitational
wave emission will lead to quantitative predictions for the
stochastic background and rates of specific transient defect-
related events, as well as their specific fingerprints, that
could be detected by the current facilities (such as LIGO or
Virgo) or future ones (such as LISA or DECIGO) [15,17].
These issues will be addressed in future work.
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