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Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has
recently been rekindled following LIGO’s first direct detection of a binary-black-hole merger. Here we
revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and
the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of
PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We
estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting
for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account
approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic
estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated
by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being
considered. We analyze Planck CMB temperature and polarization data and find, under our most
conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses
≳102 M⊙ as the dominant component of dark matter.
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I. INTRODUCTION

The idea of primordial black holes (PBHs) was first put
forward by Zel’dovich and Novikov in the 1960s [1].
Developing it further, Hawking argued that early-Universe
fluctuations could lead to the formation of PBHs with
masses down to the Planck mass [2]. Chapline was the first
to suggest that PBHs could make the dark matter (DM) [3].
Though this class of DM candidate has taken a back seat to
the notion that DM is a new elementary particle [4–8], the
idea of PBH dark matter was recently rekindled [9,10],
following the first detection of two merging ∼30 M⊙ black
holes by LIGO [11]. Given the increasingly constraining
null searches for particle DM, PBHs and their observational
consequences are worth reconsidering [12,13].
The abundance of PBHs is constrained by a variety of

observations in several mass ranges (for a comprehensive
review, see Refs. [12,13]). To cite only a few constraints,
null microlensing searches exclude compact objects with
masses ≲10 M⊙ [14,15], and wide-binary surveys exclude
those with masses ≳102 M⊙ [16,17]. For PBHs more
massive than ∼1 M⊙, strong constraints were derived by
Ricotti, Ostriker, and Mack [18] (ROM) from the cosmic
microwave background (CMB) frequency spectrum and
temperature and polarization anisotropies. The basic idea
behind these limits is that PBHs accrete primordial gas in
the early Universe and then convert a fraction of the
accreted mass to radiation. The resulting injection of energy
into the primordial plasma then affects its thermal and
ionization histories [19], and thus leads to distortions to the
frequency spectrum of the CMB and to its temperature/
polarization power spectra. ROM estimate that CMB

anisotropy measurements by WMAP [20] and limits on
CMB spectral distortions by FIRAS [21] exclude PBHs
with masses M ≳ 1 M⊙ and M ≳ 0.1 M⊙, respectively, as
the dominant component of dark matter. Using ROM’s
results, Ref. [22] strengthened these constraints with
Planck data. Here we reexamine in detail CMB limits to
the PBH abundance, building on and expanding the work
of ROM.
It is notoriously difficult to estimate from first principles

and self-consistently the accretion rate onto a central object
and the corresponding radiative efficiency (see, e.g., the
discussion in chapter 14 of Ref. [23]). In this work, we
strive to estimate the minimum physically plausible PBH
luminosity in order to set the most conservative constraints
to the PBH abundance. The bounds we derive are signifi-
cantly weaker than those of ROM: using Planck temper-
ature and polarization data [24], we find that only PBHs
with masses M ≳ 102 M⊙ can be conservatively excluded
as the dominant component of the dark matter. Moreover,
we find that CMB spectral-distortion measurements, both
current and upcoming, do not place any constraints on
PBHs.
The single largest difference between our work and

ROM’s lies in the adopted radiative efficiency ϵ≡ L= _Mc2

to convert the mass accretion rate _M to luminosity L. For
masses M ≲ 104 M⊙, both ROM and this work conserva-
tively assume a quasispherical accretion flow. Shapiro [25]
provided a first-principles estimate of the radiative efficiency
for this problem. This shows that ϵ ∝ _m≡ _Mc2=LEdd, where
LEdd is the Eddington luminosity. While ROM assume a
fixed ϵ= _m ¼ 0.011 for _m ≤ 1, we generalize Shapiro’s
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calculation, in particular accounting for Compton cooling by
ambient CMB photons, and explicitly compute ϵ= _m as a
function of PBH mass and redshift. We find that ϵ= _m never
exceeds ∼10−3 (corresponding to Shapiro’s result for accre-
tion from an HII region), and can be as low as ∼10−5 after
recombination (corresponding to Shapiro’s result for accre-
tion from an HI region), or even lower at high redshifts and
for large PBH masses for which Compton cooling is
important. A few other differences moreover contribute to
lowering the mass accretion rate with respect to that derived
by ROM, as detailed in the remainder of this article.
The rest of this paper is organized as follows. The core of

our calculation is laid out in Sec. II: there we compute the
accretion rate and luminosity of an accreting black hole in
the early Universe. We discuss the local feedback of this
radiation in Sec. III. In Sec. IV we estimate the efficiency
with which the energy injected by PBHs is deposited into
the plasma. We then estimate the effect of PBHs on CMB
observables and derive the resulting constraints in Sec. V.
Finally, we conclude in Sec. VI. To keep the calculation
tractable analytically we must make several approximations
and assumptions. In order to not disrupt the flow of the
calculation, we defer the verification of these assumptions
to Appendix A. In Appendix B, we compare our analytic
approximation for the efficiency of energy deposition in the
plasma to existing studies.

II. ACCRETION ONTO A BLACK HOLE
IN THE EARLY UNIVERSE

A. General considerations and calculation outline

The first aspect to consider is the geometry of the
accretion. If the characteristic angular momentum of the
accreted gas (at the Bondi radius) is smaller than
the angular momentum at the innermost stable circular
orbit, the accretion is mostly spherical. Otherwise, an
accretion disk forms. Disk accretion is typically much
more efficient than spherical accretion at converting
accreted mass into radiation. Indeed, while in the latter
case the dominant source of luminosity is bremsstrahlung
radiation from the hot ionized plasma near the event
horizon, in the former case the large viscous heating
required to dissipate angular momentum leads to radiating
a significant fraction of the rest-mass energy [23]. It is
difficult to estimate the angular momentum of the gas
accreting onto PBHs, as it requires knowledge of the PBH-
baryon relative velocity on scales of the order of the Bondi
radius, which is much smaller than any currently observed
cosmological scale. A correct estimate of this relative
velocity would moreover require accounting for the (non-
linear) clustering of PBHs. Following our philosophy to
derive the most conservative and physically motivated
accretion rate and luminosity, we shall therefore adopt a
spherical accretion model, expanding on the classic work of
Shapiro [25]. We note that this is also the underlying

assumption made in ROM for PBH masses M ≲
103–104 M⊙ (see their Sec. 3.3).
Another difficulty is that of local feedback. The radiation

emanating from the accreting PBH may indeed ionize and/
or heat the accreting gas, which would in turn affect the
radiative output. We show in Appendix III A that thermal
feedback is negligible for all masses and redshifts consid-
ered (consistent with ROM’s Sec. 4.2.1 results). We will
also see in Sec. III A that the Strömgren radius is always
significantly smaller than the Bondi radius (consistent with
our luminosity being significantly lower than that of ROM,
who find that the photoionized region is marginally smaller
than the Bondi radius). Hence, one can assume that in the
outermost region of the accretion flow, the ionization
fraction is approximately equal to the background value.
Close enough to the black hole, the gas eventually becomes
fully ionized, either through photoionizations by the out-
going radiation field, or collisional ionizations, or both. We
will see in Sec. III A that neither ionization process clearly
prevails. To circumvent a complex self-consistent calcu-
lation of the luminosity and ionization profile, we shall
consider the two limiting cases where one of the two
ionization processes is dominant, and quote our results for
both. In the first case, we shall completely neglect any
radiative feedback, and assume that the ionization fraction
xe is equal to the background value xe, until the temperature
of the gas reaches ∼104 K, at which point the gas gets
collisionally ionized. In our second limiting case, we
assume that the radiation from the PBH photoionizes the
gas up to a radius beyond that at which T ∼ 104 K (so
collisional ionizations are not relevant), yet inside the
Bondi radius. In all figures, we refer to the former case
by “collisional ionization” and the latter as “photoioni-
zation.” The correct result (within our overall model) lies
somewhere between these two limiting cases. The differ-
ence between the final results in the two limits illustrates
the relatively large theoretical uncertainty associated with
this calculation.
In what follows, we split the calculation of the hydro-

dynamical and thermal state of the gas accreting onto a
BH into three regions. First, in Sec. II B, we study the
outermost region where we assume a constant free-electron
fraction xe equal to the background value xe. We solve for
the steady-state fluid and heat equations, as well as the
accretion rate, accounting for Compton drag (as in
Ref. [26]). We also include, for the first time in this
context, for Compton cooling by CMB photons.
Secondly, in Sec. II C, we consider the (re)ionization of
hydrogen in the collisional ionization case, if the back-
ground gas is already partially neutral. We assume that
hydrogen gets collisionally ionized once the gas reaches a
characteristic temperature T ion ∼ 104 K, and that this ion-
ization proceeds roughly at constant temperature. Thirdly,
in Sec. II D, we study the innermost region where the gas is
fully ionized and adiabatically compressed. We account for
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the change of the adiabatic index once electrons become
relativistic. The final outcome of this calculation is the gas
temperature near the event horizon, which, alongside the
accretion rate, determines the luminosity of the accreting
BH, as we shall see in Sec. II E. Figure 1 illustrates the
temperature profile in the various regions considered. We
conclude this section by considering the effect of PBH
velocities.

B. Outermost, constant-ionization-fraction region

1. Setup

We consider the spherical accretion of a pure hydrogen.1

gas onto an isolated point mass M, bathed in the quasiuni-
form CMB radiation field (we check the validity of the
isolated-PBH assumption in Appendix A 1). In general, one
should solve for the time-dependent fluid, heat and ioniza-
tion equations, all of which are coupled. For simplicity we
shall assume a constant ionization fraction xe ¼ xe in the
outermost region, equal to the background value. As long
as the characteristic accretion time scale is much shorter
than the Hubble time scale, one can make the steady-state

approximation. Ref. [26] showed that this is the case for
M ≲ 3 × 104 M⊙, so we shall limit ourselves to this mass
range. In this outermost region, far from the BH horizon, a
Newtonian treatment is very accurate.
We denote by v≡ vr < 0 the peculiar radial velocity (i.e.

the velocity with respect to the Hubble flow) of the accreted
gas. The steady-state mass and momentum equations for
the fluid are

4πr2ρjvj ¼ _M ¼ const; ð1Þ

v
dv
dr

¼ −
GM
r2

−
1

ρ

dP
dr

−
4

3

xeσTρcmb

mpc
v; ð2Þ

where the pressure P is

P ¼ ρ

mp
ð1þ xeÞT; ð3Þ

and the last term in the momentum equation is the drag
force due to Compton scattering of the ambient nearly
homogeneous CMB photons with energy density ρcmb [26],
σT being the Thomson cross section. Note that we have
neglected the self-gravity of the accreted gas, which is valid
forM ≲ 3 × 105 M⊙ [26]. Consistent with our steady-state
approximation, we also neglected the Hubble drag term
Hv, which is of the same order as the neglected partial time
derivative ∂v=∂t.
The fluid equation must be complemented by the heat

equation. For simplicity we shall only consider Compton
cooling by CMB photons [27] as a heat sink in this region.
The steady-state heat equation is then

vρ2=3
d
dr

�
T

ρ2=3

�
¼ 8xeσTρcmb

3mecð1þ xeÞ
ðTcmb − TÞ; ð4Þ

where Tcmb is the temperature of CMB photons. Since we
only consider PBH masses for which the accretion time
scale is shorter than the Hubble time scale, whenever
Compton cooling becomes relevant to the accretion prob-
lem, it is even more important for the background temper-
ature evolution, and enforces T∞ ¼ Tcmb.
If Compton drag and cooling were negligible, one would

recover the classic Bondi accretion problem [28], the
characteristic velocity, length and time scales of which are

vB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P∞=ρ∞

p
; rB ≡ GM

v2B
; tB ≡GM

v3B
; ð5Þ

where P∞ and ρ∞ are the gas pressure and density far from
the point mass (ρ∞ ¼ ρb, the mean baryon density).
It is best to rewrite the problem in terms of dimensionless

variables x≡ r=rB, u≡ v=vB, ρ̂≡ ρ=ρ∞, T̂ ≡ T=T∞. We
also define the dimensionless constants

FIG. 1. Schematic temperature profile for the gas accreting onto
a BH. If Compton cooling is efficient (γ ≫ 1), the gas temper-
ature remains close to the CMB temperature down to r ∼ γ−2=3rB,
where rB is the Bondi radius. The temperature then increases
adiabatically as T ∝ ρ2=3 ∝ 1=r. If photoionizations can be
neglected, and if the background gas is partially neutral, the
gas gets collisionally ionized at nearly constant temperature once
it reaches T ion ≈ 1.5 × 104 K. Once the gas is fully ionized, the
temperature resumes increasing adiabatically as T ∝ 1=r until
electrons become relativistic, at which point the change in the
adiabatic index implies T ∝ ρ4=9 ∝ r−2=3. If the luminosity of the
accreting PBH is large enough, the gas is photoionized instead of
collisionally ionized. In that case the gas temperature reaches
larger values near the black hole horizon.

1Accounting for helium is conceptually straightforward but
would add unneeded complications for the order-of-magnitude
calculation presented here.
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λ≡ _M
4πρ∞r2BvB

; ð6Þ

β≡ 4

3

xeσTρcmb

mpc
tB; ð7Þ

γ ≡ 8xeσTρcmb

3mecð1þ xeÞ
tB ¼ 2mp

með1þ xeÞ
β ≫ β: ð8Þ

We show in Fig. 2 the dimensionless Compton drag and
cooling rates β and γ, as a function of redshift and PBH
mass. In terms of these variables the problem to solve is

ρ̂x2juj ¼ λ; ð9Þ

u
du
dx

¼ −
1

x2
−
1

ρ̂

d
dx

ðρ̂ T̂Þ − βu; ð10Þ

uρ̂2=3
d
dx

�
T̂

ρ̂2=3

�
¼ γð1 − T̂Þ; ð11Þ

with asymptotic conditions ρ̂ → 1 and T̂ → 1 at x → ∞.

Before moving on, let us note that the PBH mass does
not grow significantly in a Hubble time [29]. Indeed,

_M
HM

¼ 4πλρbðGMÞ2
HMv3B

¼ 4πλGρbtB
H

¼ 3

2
λ
ρb
ρtot

HtB; ð12Þ

where in the last equality we used Friedman’s equation
for the Hubble rate H. Therefore, provided the steady-
state approximation is valid (i.e. tB ≪ H−1), we see that
_M ≪ HM.

2. Solution for β ≪ γ ≪ 1

When both Compton drag and cooling are negligible, we
recover the classic Bondi problem [28] for an adiabatic gas,
with T̂ ¼ ρ̂2=3. In this case, the momentum equation can be
rewritten as a conservation equation:

1

2
u2 −

1

x
þ 5

2
ðρ̂2=3 − 1Þ ¼ 0: ð13Þ

Using Eq. (9) and multiplying by 2x, we get

xu2 þ 5λ2=3

ðxu2Þ1=3 ¼ 5xþ 2: ð14Þ

The left-hand side reaches a minimum at xu2 ¼
ð5=3Þ3=4λ1=2, with value 4ð5=3Þ3=4λ1=2. For a solution to
exist for all x, this has to be less than 2, the minimum of the
right-hand side, implying2 λ ≤ λad ≡ 1

4
ð3=5Þ3=2. Though all

solutions with sub-critical λ ≤ λad are a priori acceptable,3

we shall assume, like Bondi, that the physically realized
solution is that of maximum accretion, i.e. that

λ ¼ λad ≡ 1

4

�
3

5

�
3=2

≈ 0.12: ð15Þ

Combining Eqs. (13) and (9), one can show that the
asymptotic behaviors of fluid variables for x ≪ 1 are

uðxÞ ≈ −
1ffiffiffi
2

p x−1=2; ð16Þ

ρ̂ðxÞ ≈
�
3

10

�
3=2

x−3=2; ð17Þ

FIG. 2. Characteristic dimensionless Compton drag rate β
[Eq. (7), upper panel] and Compton cooling rate γ [Eq. (8),
lower panel], as a function of redshift, and for PBH masses M ¼
1; 102 and 104 M⊙, from bottom to top. Both are evaluated for a
standard recombination and thermal history, with the substitution
vB → veff as described in Sec. II F.

2The difference of our maximum value of λ and the usually
quoted value of 1=4 comes from our normalization of
velocities with vB rather than the adiabatic sound speed at
infinity, which is ð5=3Þ1=2vB.

3This is not the case for the Bondi problem with adiabatic
index < 5=3, for which subcritical solutions have a velocity that
tends to zero near the origin, which is unphysical.

YACINE ALI-HAÏMOUD and MARC KAMIONKOWSKI PHYSICAL REVIEW D 95, 043534 (2017)

043534-4



T̂ðxÞ ≈ 3

10
x−1: ð18Þ

3. Solution for β ≪ 1 and γ ≫ 1

If γ ≫ 1 Compton cooling efficiently maintains T̂ ≈ 1

down to x ∼ γ−2=3 ≪ 1. At that point pressure forces are
negligible relative to gravity, and the temperature is no
longer relevant to the other fluid variables. We may
therefore first solve the isothermal Bondi problem for
the fluid variables, and deduce the temperature profile
from them. For the isothermal Bondi problem with T̂ ¼ 1,
the conserved quantity is now

1

2
u2 −

1

x
þ lnðρ̂Þ ¼ 0: ð19Þ

Here again one can show that there exists a maximum value
of λ for which the problem has a solution. For subcritical λ,
however, the velocity tends to zero towards the origin and
the density diverges unphysically as e1=x. Therefore, the
physically valid solution is that with the critical accretion
rate

λ ¼ λiso ≡ 1

4
e3=2 ≈ 1.12: ð20Þ

It is sensible that the accretion rate is larger in the
isothermal case than in the adiabatic case. Indeed, the
temperature is larger in the adiabatic case, providing a
larger pressure support counterbalancing gravity. For
x ≪ 1 the velocity reaches the free-fall solution uðxÞ ≈
−

ffiffiffiffiffiffiffiffi
2=x

p
and the density is then ρ̂ðxÞ ∝ x−3=2. Inserting

these asymptotic forms into the heat equation, we get

ffiffiffi
2

p

x3=2
d
dx

ðxT̂Þ ¼ γðT̂ − 1Þ: ð21Þ

One can write an explicit integral solution to this equation.
In particular, we find the asymptotic limit for x ≪ γ−2=3,

T̂ðxÞ ≈
�
4

3

�
1=3 Γð2=3Þ

γ2=3x
≈

1.5

γ2=3x
; ð22Þ

where Γ is Euler’s gamma function.

4. Solution for β ≪ 1 and arbitrary γ

For arbitrary values of γ (while β ≪ 1), the momentum
equation can no longer be rewritten as a conservation
equation and one must solve explicitly the coupled fluid
and heat equations, and determine the accretion “eigen-
value” λ numerically.

We rewrite the system (10)–(11) in the form

�
u −

5

3

T̂
u

�
du
dx

¼ 10

3

T̂
x
−

1

x2
− γ

1 − T̂
u

; ð23Þ

dT̂
dx

¼ −
2

3

T̂
u
du
dx

−
4

3

T̂
x
þ γ

1 − T̂
u

: ð24Þ

The boundary conditions at large radii are uðxÞ ¼
−λ=x2; T̂ðxÞ ¼ 1. We see that the system is singular at
the point x� where the velocity reaches the local adiabatic
sound speed,

u� ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5T̂�=3

q
; ð25Þ

unless this condition is met simultaneously with

10

3

T̂�
x�

−
1

x2�
− γ

1 − T̂�
u�

¼ 0; ð26Þ

so that the right-hand side of Eq. (23) vanishes, leading to a
finite derivative. There is a single value λ� for which these
two conditions are satisfied simultaneously: larger λ lead to
a singularity while for lower values du=dx changes sign
before the singularity, and the velocity unphysically tends
to zero at the origin. We find λ� by bisection: starting with
λmin ≡ 0 < λ� < λmax ≡ 2, we set λ ¼ ðλmin þ λmaxÞ=2 and
integrate the system numerically from x ¼ 100 towards
x ¼ 0, until either the singularity or du=dx ¼ 0 is reached.
In the former case, we set λmax ¼ λ at the next step, and in
the latter case, we set λmin ¼ λ, so that λmin < λ� < λmax at
each step. We do so until the fractional difference between
λmax and λmin is less than a small error tolerance, typically
10−6. We show the resulting function λðγÞ in Fig. 3. We find
that the following analytic expression is a good fit to the
numerical results:

FIG. 3. Dimensionless accretion rate λ as a function of the
dimensionless Compton cooling rate γ. Black circles are our
numerical results and the purple line is our analytic fit, Eq. (27).
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λðγ; β ≪ 1Þ ≈ λad þ ðλiso − λadÞ
�

γ2

88þ γ2

�
0.22

: ð27Þ

While it is relatively simple to obtain a very precise value
of λ numerically, obtaining a precise asymptotic limit of
T̂ðxÞ at x → 0 proved to be more challenging. Keeping in
mind that this calculation is an order-of-magnitude
estimate, we simply assume the following expression,
interpolating between the adiabatic case (18) and the
quasi-isothermal case (22):

τ≡ lim
x→0

ðxT̂Þ ≈ 1.5

5þ γ2=3
: ð28Þ

Inserting T ≈ τ=x, u ≈ −ω=x1=2, ρ ∝ x−3=2 in the momen-
tum equation (10), we find ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 5τ
p

. In summary, the
asymptotic values of the temperature, velocity and density
fields are

T̂ðxÞ ≈ τ

x
; ð29Þ

uðxÞ ≈ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 5τ

x

r
; ð30Þ

ρ̂ðxÞ ≈ λffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 5τ

p x−3=2: ð31Þ

5. Solution for 1 ≲ β ≪ γ

When Compton drag is significant (β ≳ 1), there is no
longer any conserved quantity, even in the quasi-isothermal
case. We can simply determine the asymptotic value of λ for
β ≫ 1 by considering the momentum equation at x ≪ 1,
where the pressure force is negligible with respect to
gravity. In this regime we find u ≈ −1=ðβx2Þ, implying
that λ → β−1 for large β. Physically, the drag force balances
the gravitational force, i.e. the velocity reaches the terminal
velocity. Once x ≲ β−2=3 ≫ γ−2=3, the advection term
uðdu=dxÞ becomes dominant over the drag term −βu
and the velocity reaches the free-fall solution
u ≈ −

ffiffiffiffiffiffiffiffi
2=x

p
. Since this occurs at a radius much larger

than γ−2=3, the asymptotic behavior or T̂, is still given by
Eqs. (29) and (28). The effect of Compton drag is therefore
only to change the accretion rate.
Ref. [26] find the following analytic approximation for

λðβÞ, valid for all values of β (but for γ ≫ 1 only, as they
consider isothermal accretion):

λðγ ≫ 1; βÞ ≈ exp

�
9=2

3þ β3=4

�
1

ð ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p þ 1Þ2 : ð32Þ

For general γ and β we may use the following approxi-
mation for the dimensionless accretion rate:

λðγ; βÞ ¼ λðγ; β ≪ 1Þλðγ ≫ 1; βÞ
λiso

: ð33Þ

This approximation is well justified since β ≪ γ. As a
consequence, either β ≪ 1 or γ ≫ 1.
The dimensionless accretion rate λ is the first main

result of this section. We show its evolution as a function
of redshift for several PBH masses in Fig. 4. While ROM
do account for Compton drag following the analysis of
Ref. [26], they implicitly assume that γ ≫ 1 at all times. In
other words, they do not account for the factor of ∼10
decrease of λ at low redshift when Compton cooling
becomes negligible and the accretion becomes mostly
adiabatic. Figure 4 also shows the evolution of the accretion
rate normalized to the Eddington rate, _m≡ _Mc2=LEdd.

C. Collisional ionization region

If the emerging radiation field is too weak to photoionize
the gas, it eventually gets collisionally ionized as it is
compressed and heated up. We assume that this proceeds
roughly at constant temperature T ≈ T ion ≈ 1.5 × 104.
Indeed, if ionization proceeds through collisional

FIG. 4. Characteristic dimensionless accretion rate λ (upper
panel) and accretion rate normalized to the Eddington value _m≡
_Mc2=LEdd (lower panel) as a function of redshift, for PBH
masses 1, 102 and 104 M⊙. These quantities are evaluated with
substitution vB → veff as described in Sec. II F.
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ionizations balanced by radiative recombinations, the
equilibrium ionization fraction only depends on temper-
ature, with a sharp transition at T ≈ 1.5 × 104 K (for
instance, using Eq. (2) or Ref. [30], we get xe ¼ ð0.01;
0.5; 0.99Þ at T ¼ ð1.1; 1.5; 2.5Þ × 104 K, respectively).
Getting back to dimensionful variables, we found in the

previous section that at small radii,

TðrÞ ≈ τT∞
rB
r
; ð34Þ

where τ is a dimensionless constant at most equal to 3=10,
and smaller when Compton cooling is important. The effect
of the ionization region is only relevant once the global
free-electron fraction xe falls significantly below unity, i.e.
for T∞ ≲ 3000 K ≪ T ion. Therefore we expect the ioniza-
tion region to be reached deep inside the Bondi radius,
where the asymptotic behavior (34) is accurate. The
ionization region therefore starts at radius

rstartion ≈ τ
T∞

T ion
rB; ð35Þ

where the density is, from Eq. (31)

ρstartion ≈
λffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 5τ
p ρ∞

�
T ion

τT∞

�
3=2

: ð36Þ

We assume that ionization proceeds through collisions of
neutral hydrogen atoms with free electrons. This process
only redistributes the internal energy of the gas, i.e. does not
generate any net heat. However it does lead to a temperature
decrease as the number of free particles increase and some of
their energy is used to ionize the gas. If the temperature is to
remain constant through the ionization region, this effect
must be compensated by the temperature increase due to the
adiabatic compression of the gas. In equations, we write the
first law of thermodynamics:

Δ
�
3

2
ð1þ xeÞT − ð1 − xeÞEI

�
¼ −ð1þ xeÞTρΔð1=ρÞ;

ð37Þ

where the second term in the internal energy on the left-
hand side accounts for the binding energy EI ¼ 13.6 eV of
neutral hydrogen atoms. Assuming the temperature
remains constant throughout the ionization region we
arrive at the simple relation between changes in density
and ionization fraction:

Δ ln ρ ¼
�
3

2
þ EI

T ion

�
Δ lnð1þ xeÞ: ð38Þ

Therefore the ratio of the density at the end of the ionization
region to that at its beginning is

ρendion

ρstartion
¼

�
2

1þ xe

�3
2
þ EI

Tion ≈
�

2

1þ xe

�
12

; ð39Þ

where we took T ion ≈ 1.5 × 104 K. Assuming that ρ ∝
r−3=2 throughout the region, we get

rendion

rstartion
≈
�
1þ xe

2

�
8

: ð40Þ

We see that the ionization region may extend by a factor of
∼300 in radius if xe ≪ 1. This is consistent with Shapiro’s
results [25], who finds an ionization region extending over
a factor ∼103 in radius for accretion from a neutral gas.
Note that we have neglected the heat loss due to collisional
excitations followed by radiative decays, as they cannot be
simply included in our basic treatment. We have also
neglected Compton cooling by CMB photons, which may
become relevant again once the ionization fraction
increases. Accounting for these cooling mechanisms
would imply a larger density contrast ρend=ρstart, hence a
more extended ionization region, and an overall larger
suppression of the temperature near the PBH horizon.
If the radiation field from the accreting PBH is intense

enough, it may photoionize the gas beyond rion, in which
case there is no collisional ionization region. To group both
cases we define ρendion ¼ ρstartion in that case, so that in general

ρendion

ρstartion
¼ χ ≡

� ð 2
1þxe

Þ8 ðcollisional ionizationÞ;
1 ðphotoionizationÞ:

ð41Þ

D. Innermost adiabatic region

Once the gas is fully ionized, it resumes adiabatic
compression (we justify in Appendix A 2 that free-free
cooling can neglected for the mass range considered). The
thermal energy density of the ionized plasma is

u ¼ 3

2
neð1þ fðT=mec2ÞÞT; ð42Þ

where the dimensionless function f accounts for the fact
that electrons are potentially relativistic, and has asymptotic
limits fðX ≪ 1Þ ¼ 1 and fðX ≫ 1Þ ¼ 2. The pressure
remains unchanged P ¼ 2neT, and the first law of thermo-
dynamics can then be written

3

2
½1þ fðXÞ þ Xf0ðXÞ� dT

T
¼ 2

dρ
ρ
; X ≡ T

mec2
: ð43Þ

This can be integrated to give

ρ2
ρ1

¼ 3

4

Z
X2

X1

½1þ fðXÞ þ Xf0ðXÞ� dX
X

: ð44Þ

We have computed the function f explicitly and find that it
is well approximated by the simple functional form,
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fðXÞ ≈ 1þ X
X þ 0.73

: ð45Þ

With this simple analytic form, Eq. (44) can be integrated
analytically to obtain ρ2ðT2Þ. We invert this relation
numerically and obtain the following approximation, valid
for T1 ≪ mec2 and arbitrary T2:

T2

mec2
≈ F

�
T1

mec2

�
ρ2
ρ1

�
2=3

�
; ð46Þ

F ðYÞ≡ Y

�
1þ Y

0.27

�
−1=3

: ð47Þ

This recovers the expected asymptotic behaviors T ∝ ρ2=3

for T ≲mec2 and T ∝ ρ4=9 for T ≳mec2 and moreover
gives an accurate result for arbitrary temperatures.
We may now finally compute the gas temperature near

the Schwarzschild radius rS. The velocity there nears the
speed of light, jvj ≈ c, so the density is

ρS ¼ λ

ðc=vBÞðrS=rBÞ2
ρ∞ ¼ λ

4ðvB=cÞ3
ρ∞

¼ λ

4

�
mpc2

ð1þ xeÞT∞

�
3=2

ρ∞: ð48Þ

At the end of the ionization region, the temperature is T ion
and, from Eqs. (36) and (41), the density is

ρendion ¼ χ
λffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 5τ
p

�
T ion

τT∞

�
3=2

ρ∞; ð49Þ

Using Eq. (47) with T1 ¼ T ion and ρ1 ¼ ρendion , we finally
obtain the temperature TS at the Schwarzschild radius:

TS ¼ mec2F ðYSÞ; ð50Þ

where F is given by Eq. (47) and

YS ≡ T ion

mec2

�
ρS
ρendion

�
2=3

¼ χ−2=3
�

2

1þ xe

�
τ

4

�
1 −

5

2
τ

�
1=3mp

me
: ð51Þ

It is interesting to compare this result to those of Shapiro
[25], who did not consider Compton cooling (i.e.
τ ¼ 3=10), assumed that photoionizations are negligible
(in which case we have χ−2=3 ≈ ½ð1þ xeÞ=2�8), and only
studied the cases xe ¼ 1 or 0. In the former case, we find

YS ≈
3

40
4−1=3

mp

me
≈ 102 ≫ 1; ð52Þ

and as a result electrons are relativistic at the Schwarzschild
radius, with temperature

TS ≈mec20.271=3Y
2=3
S ≈ 0.08ðmpc2Þ2=3ðmec2Þ1=3

≈ 0.7 × 1011 K; ð53Þ

in excellent agreement with Shapiro’s result (see also [23]).
In the case of a neutral background, taking T ion ¼
1.5 × 104 K, YS is a factor ∼2−7 smaller, i.e. YS ≈ 0.7,
so electrons are marginally relativistic at the horizon, with
TS ≈ 0.4 mec2 ≈ 2.5 × 109 K. This is a factor of ∼2 higher
than Shapiro’s result, consistent with our neglect of colli-
sional excitations in the ionization region.
Equations (51), (47), (41) and (28) constitute the second

main result of this section. They give the gas temperature
near the BH horizon, accounting for Compton cooling and
an arbitrary background ionization fraction, in the two
limiting cases of collisional ionization or photoionization.
We show the temperature TS as a function of redshift and
PBH mass in Fig. 5. At high redshift, the temperature is
suppressed by the strong Compton cooling. In the colli-
sional ionization case, once the Universe becomes neutral,
some thermal energy is used in ionizing the gas, lowering
TS by a factor up to ∼300, corresponding to the radial
extent of the ionization region.

E. Luminosity of an accreting black hole

The luminosity of the accreting BH arises mostly from
Bremsstrahlung (free-free) radiation near the Schwarzschild
radius.We show inAppendixA 3 that free-bound radiation is
negligible with respect to free-free radiation.
The frequency-integrated emissivity (in ergs=s=cm3) of a

fully ionized thermal electron-proton plasma can be written
in the general form (see e.g. Ref. [31])

jff ¼ n2e αcσTTJ ðT=mec2Þ; ð54Þ

where α is the fine-structure constant and J ðXÞ is a
dimensionless function. Ref. [32] provide a simple fitting
formula for the e − p free-free emissivity, accurate to a few

FIG. 5. Characteristic temperature of the accreting gas near the
Schwarzschild radius, evaluated with the substitution vB → veff
as described in Sec. II F.
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percent, and Ref. [33] provide a sub-percent accuracy code
for the e − e free-free emissivity. We fit the sum of the two
within a few percent by the following analytic approxi-
mation, generalizing that of Ref. [32]:

J ðXÞ ≈
(

4
π

ffiffiffiffiffiffiffiffi
2=π

p
X−1=2ð1þ 5.5X1.25Þ; X < 1;

27
2π ½lnð2Xe−γE þ 0.08Þ þ 4

3
�; X > 1;

ð55Þ

where γE ≈ 0.577 is Euler’s gamma constant. Assuming the
plasma is optically thin (which we show explicitly in
Appendix A 4), the luminosity is then obtained by inte-
grating the emissivity over volume, L ¼ R

4πr2drj. Let us
note that this purely Newtonian expression does not
properly account for relativistic effects which become
relevant near the horizon [25]; they results in order-unity
corrections which are below our theoretical uncertainty.
Near the Schwarzschild radius the gas is in free fall,

jvj ≈ c
ffiffiffiffiffiffiffiffiffi
rS=r

p
, and the electron density results from the

mass-conservation equation:

ne ¼
_M

4πmpr2jvj
¼

_M
4πmpr2Sc

ðr=rSÞ−3=2: ð56Þ

The radial dependence of the temperature near the horizon
depends onT=mec2. For the range of temperature considered
we find that 0.8 ≲ −d lnðTJ Þ=d ln r ≲ 1.1. Approximating
TJ ðTÞ ∝ r−1, we therefore get

L ≈ α
TS

mpc2
J ðTSÞ

_Mc2

LEdd

_Mc2; ð57Þ

where we recall that the Eddington luminosity is

LEdd ≡ 4πGMmpc

σT
: ð58Þ

With this we see that the radiative efficiency ϵ≡ L= _Mc2 is
proportional to _m≡ _Mc2=LEdd, with

ϵ

_m
≈ α

TS

mpc2
J ðTSÞ: ð59Þ

The highest temperature, hence efficiency, is achieved
when Compton cooling is negligible and the background
is fully ionized, in which case we find TS ≈ 1011 K and
ϵ= _m ≈ 0.0015. This is nearly one order of magnitude below
the value ϵ= _m ¼ 0.011 assumed in ROM, and is further
suppressed at most times, as we show in Fig. 6.

F. Accounting for BH velocities

All of the calculations so far assume perfectly spherically
symmetric accretion. In practice, the accreting PBHs are
movingwith respect to the ambient gaswith some velocity v.

It is not at all clear what the best way is to account for the
black hole peculiar velocity without performing a full time-
dependent hydrodynamical simulation. Bondi and Hoyle
[34] studied analytically accretion on a point mass moving
highly supersonically, and found _M ≈ 2.5πðGMÞ2ρ∞=v3.
Inspired by this result, Bondi [28] suggested substituting the
sound speed at infinity cs by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2s þ v2

p
in the accretion rate,

which, he argued, ought to give the correct order of
magnitude for the result. Though this provides a prescription
for the accretion rate, it is not clear how to self-consistently
account for relative velocities in the estimate of the gas
temperature. For definiteness, and lacking a better theory, we
shall approximate the effect of relative velocities by sub-
stituting v2B → v2B þ v2 throughout the calculation. This is
equivalent to substituting T∞ → T∞ þmpv2=ð1þ xeÞ. The
same route was followed in ROM.
The relative velocity v is comprised of two pieces: a

Gaussian linear contribution on large scales, vL, whose
power spectrum and variance can be extracted from linear
Boltzmann codes, and a small-scale contribution due to
nonlinear clustering of PBHs, vNL. We shall not consider
the latter here, but point out that it would further suppress
the effect of PBHs on the CMB.
If PBHs make up the dark matter, the linear velocity vL is

nothing but the relative velocity of baryons and dark matter.
After kinematic decoupling at z ≈ 103, dark matter and
baryons fall in the same gravitational potentials on scales
larger than the baryon Jeans scale and, hence, vL ∝ 1=a,
independent of scale [35]. Before then, however, the
relative velocity has a more complex time and scale-
dependence since baryons undergo acoustic oscillations
while the dark-matter overdensities grow. Reference [36]
explicitly computes hv2Li as a function of time and find that
it is mostly constant for z≳ 103 (see their Fig. 1). Since, as
we shall see, most of the effect of accreting PBHs on the
CMB takes place after decoupling, we need not have a
very precise estimate of vL before then, and assume the
following simple redshift dependence:

FIG. 6. Radiative efficiency ϵ≡ L= _Mc2 divided by the dimen-
sionless accretion rate _m≡ _Mc2=LEdd, evaluated with the sub-
stitution vB → veff as described in Sec. II F.
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hv2Li1=2 ≈min ½1; z=103� × 30 km=s: ð60Þ
Let us point out that the relative velocity adopted in ROM is
quite different from what we use here (see their Fig. 2); in
particular they under-estimate it for z≳ 200, leading to an
over-estimate of the accretion rate.
As we saw in Sec. II E, the BH luminosity is quadratic in

the accretion rate, and therefore, in the standard Bondi case,
proportional to ðv2B þ v2LÞ−3. The total energy injected in
the plasma is obtained by averaging the BH luminosity over
the Gaussian distribution of relative velocities. We define4

veff ≡ hðv2B þ v2LÞ−3i−1=6. It has the following approximate
limits:

veff ≈

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vBhv2Li1=2

q
; vB ≪ hv2Li1=2

vB; vB ≫ hv2Li1=2
: ð61Þ

We show vB, hv2Li1=2 and veff in Fig. 7. Figures 2, 4, 5 and 6
were all obtained by setting vB → veff , in order to illustrate
the characteristic accretion rate and radiative efficiency.
The final result of this section is the luminosity of accreting
PBHs, averaged over the distribution of relative velocities,
which we show in Fig. 8. We emphasize that to obtain hLi,
we have replaced vB →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2B þ v2L

p
throughout the calcu-

lation and then averaged the luminosity over the three-
dimensional Gaussian distribution of vL.

III. LOCAL RADIATION FEEDBACK

Before estimating the effect of the PBH radiation on the
global thermal and ionization history, let us first examine
whether it can affect the local accretion flow itself.

A. Local thermal feedback

Throughout the calculation we have neglected local
Compton heating by the radiation produced by the accret-
ing PBH. Here we discuss the validity of this assumption.
The rate of energy injection per electron by Compton
scattering with the PBH radiation isZ

dE
1

4πr2
1

E
dL
dE

hσΔEi ≈ 0.1
σTL
4πr2

; ð62Þ

where we used the approximation (81) for hσΔEi. Hence,
the rate of Compton heating by the PBH radiation is

_TCompt;L ≈
2

3

xe
1þ xe

0.1
σTL
4πr2

: ð63Þ

We need to compare this rate to the largest of the Compton
cooling rate by CMB photons and the rate of adiabatic
heating:

_TCompt;cmb ≡ 8

3

xe
1þ xe

σT
ρcmbTcmb

mec
; ð64Þ

_Tad ≈ T
jvj
r
: ð65Þ

If γ ≫ 1 the latter two rates are approximately equal at
r� ≈ γ−2=3rB, adiabatic heating being dominant for r ≲ r�
and Compton cooling by CMB photons for r≳ r� (see
Sec. II B 3). For r < r�, T ∝ 1=r and jvj ∝ 1=r1=2 so
_TCompt;L= _Tad ∝ r1=2. For r > r�, _TCompt;L= _TCompt;cmb ∝
r−2. Therefore the impact of thermal feedback is maxi-
mized at r ≈ r�. If γ ≪ 1, then we only need to compare the
Compton heating rate to adiabatic cooling, at the Bondi
radius where this ratio is maximized. We see that for
arbitrary γ the relevant radius at which to compare
Compton heating to adiabatic cooling is r ≈ rB=
ð1þ γ2=3Þ, where T ≈ Tcmb in both cases. After some
algebra, we arrive at

FIG. 8. Luminosity of accreting PBHs as a function of redshift,
averaged over the Gaussian distribution of large-scale relative
velocities.

FIG. 7. Characteristic velocities in the problem at hand: the
isothermal sound speed vB (dotted), rms BH-baryon relative
velocity hv2Li1=2 (dashed) and effective velocity veff defined in
Eq. (61) (solid), used in Figs. 2, 4, 5 and 6 to illustrate
characteristic values of intermediate quantities.

4This is equivalent to the quantity hveffiA in ROM.
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max

� _TCompt;L

_T

�
≈ 0.07

xe
1þ xe

L
LEdd

vB
c

mpc2

Tcmb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2=3

q
:

ð66Þ

We show this ratio in Fig. 9, where we see that it is always
less than unity for M ≤ 104 M⊙. We can therefore safely
neglect local thermal feedback for the mass range we
consider.

B. Local ionization feedback

Througout the paper we have computed all relevant
quantities in both the “collisional ionization” and the
“photoionization” limits. In the former case, we assumed
that the radiation field from the accreting BH does not
affect the ionization state of the gas in the immediate
vicinity of the BH, so the gas gets eventually gets colli-
sionally ionized, which reduces its temperature near the
horizon. In the latter case, we assumed that the neighboring
gas is fully photoionized. We now show that neither case is
accurate and that within the adopted model, the level of
feedback is expected to be somewhat intermediate between
the two. To do so, we estimate the extent of the photo-
ionized region (the Strömgren sphere) around an accreting
PBH, in the absence of collisional ionizations. Following
the standard derivation (see e.g. Ref. [37]),Z

∞

0

4πr2drnenpαBðTÞ ¼
Z

∞

ν0

dν
Lν

hν
; ð67Þ

where ν0 ¼ 13.6 eV=h is the ionization threshold and αB is
the case-B recombination coefficient. This equation states
that the total rate of recombinations is equal to the emission
rate of ionizing photons. Note that it does not depend on the
exact shape of the photoionization cross section (and, in
particular, also accounts for ionizations by inelastic
Compton scattering at high energies).
Now we assume that the gas is fully ionized up to a

radius R, after which it quickly becomes neutral. We also

approximate αBðTÞ ∝ T−q. Finally, in the free-fall limit,
ne ∝ 1=r3=2 and T ∝ 1=r, implying

αBðTÞ ¼ αB;ionðr=rionÞq; ð68Þ

where αB;ion ≡ αBðT ionÞ and rion is the radius at which
T ¼ T ion ≡ 1.5 × 104 K. Using Eq. (56), we arrive at

Z
∞

0

4πr2drnenpαBðTÞ ¼
_M2αB;ion

4πðmpcÞ2rS
ðR=rionÞq

q
: ð69Þ

To compute the number of ionizing photons, we assume an
approximately flat spectrum Lν ≈ L=νmax for ν ≤ νmax≡
TS=h, so that Z

∞

ν0

dν
Lν

hν
≈

L
TS

lnðTS=hν0Þ: ð70Þ

Using Eq. (57) for L, we arrive at the following expression
for the radius R, that does not explicitly depend on the
luminosity or the accretion rate, but does depend weakly on
TS, the temperature at the horizon:

R
rion

≈
�
αcσT
αB;ion

J ðTSÞ lnðTS=hν0Þ
�
1=q

: ð71Þ

From Ref. [38] we get αB;ion ≈ 1.8 × 10−13 cm−3 s−1, with a
local power law q ≈ 0.86; hence,

R
rion

≈ 2 × 10−4½J ðTSÞ lnðTS=hν0Þ�1.16: ð72Þ

Let us now consider the two limiting regimes once the
background ionization fraction drops significantly below
unity. Assuming the gas is photoionized by the radiation
field rather than collisionally ionized, we found TS ≈
1011 K at low redshift, implying

R
rion

≈ 0.1 ðTS ¼ 1011 KÞ: ð73Þ

Since this is less than unity, this implies that assuming
ionizations proceed exclusively through photoionizations is
not self-consistent, as the radiation from the BH cannot
photoionize the gas all the way to rion. Let us notice that this
implies a fortiori that the photoionized region does not
extend to the outermost region where T ≈ Tcmb, and that we
are, hence, justified in assuming xe ¼ xe there.
If we instead take the “collisional ionization” limit, for

which TS ≈ 3 × 109 K, at low redshift, we get

R
rion

≈ 0.02 ðTS ¼ 3 × 109 KÞ: ð74Þ

This radius is larger than the innermost edge of the
collisional ionization region, which we found to be

FIG. 9. Estimated maximum fractional importance of local
thermal feedback from Compton heating by the PBH radiation.
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∼0.003rion. This implies that it is also not self-consistent to
assume that the gas is exclusively collisionally ionized, as
the photoionization region from the resulting radiation field
would extend inside the collisional ionization region.
We therefore conclude that neither approximation is

self-consistent, and that the actual luminosity (within our
assumed spherical accretion model) is intermediate
between these two limiting cases. We now move on to
compute the global effects of the PBH luminosity on the
background gas.

IV. ENERGY DEPOSITION IN THE PLASMA

A. Total energy deposition rate

Assuming PBHs make a fraction fpbh of the dark matter,
the volumetric rate of energy injection (in ergs=cm3=s) by
accreting PBHs is

_ρinj ¼ fpbh
ρdm
M

hLi: ð75Þ

This energy is injected in the form of a nearly flat photon
spectrum (i.e. the free-free luminosity per frequency
interval dL=dν is approximately constant), up to maximum
energy Emax ≈ TS, typically ∼0.2 MeV for z ≲ 103 and up
to ∼6 MeV at higher redshifts.
What is relevant for cosmological observables is the

volumetric rate of energy deposited in the plasma (in the
form of heat or ionizations), which we denote by _ρdep.
The two rates are not necessarily equal, unless energy is
deposited on the spot.
At the characteristic energies considered, the dominant

photon cooling process is inelastic Compton scattering off
electrons, whether bound or free [39,40]. In principle, in
order to obtain the energy deposition rate one should
solve for the time evolution of the photon distribution, as
well as that of the secondary high-energy electrons
resulting from Compton scattering. To simplify matters
we shall assume that the latter deposit their energy on-the-
spot, so we only need to follow the photon distribution
N E (in photons=cm3=erg).
The differential scattering cross section for Compton

scattering is [40]

dσðEÞ
dE0 ¼ 3

8
σT

mec2

E2

×

�
E0

E
þ E
E0 − 1þ

�
1þmec2

E
−
mec2

E0

�
2
�
; ð76Þ

where E is the initial energy of the photon and E0 is its final
energy, restricted to the range

E0
minðEÞ≡ E

1þ 2E=mec2
≤ E0 ≤ E: ð77Þ

In principle the photon distribution N E should be obtained
by solving an integro-differential Boltzmann equation. To
simplify, we approximate the Boltzmann equation by the
continuity equation5

a−2
d
dt

ða2N EÞ ≈
1

E

d_ρinj
dE

þ ∂
∂E ð _EðEÞN EÞ; ð78Þ

where d=dt≡ ∂=∂t −HE∂=∂E is the derivative along the
photon geodesics and

_EðEÞ≡ nHchσΔEi ð79Þ

is the rate of energy loss due to Compton scattering, where

hσΔEi≡
Z

E

E0
minðEÞ

dE0 dσðEÞ
dE0 ðE − E0Þ: ð80Þ

The a2 factors in Eq. (78) ensure that N E ∝ a−2 in the
absence of the source and collision terms, and the form of
the differential operator for Compton scattering explicitly
conserves the number of photons. We show the ratio
hσΔEi=σTE in Fig. 10. We see that for the range of
energies considered, within a factor of 2 at most,

hσΔEi ≈ 0.1σTE: ð81Þ

The factor of 0.1 can be understood as follows. For
E≳mec2, photons lose most of their energy in each
scattering event, but the Compton cross section is sup-
pressed with respect to the Thomson limit. For E ≲mec2,
the Compton cross section tends to the Thomson limit, but
photons only lose a small fraction of their energy in each
scattering event.

FIG. 10. Ratio of the cross-section-averaged energy loss per
Compton scattering event to σTE, as a function of photon energy.

5One can also think of this equation as a Fokker-Planck
equation without a diffusion term.
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Within our set of approximations, the differential energy
deposition rate is

d_ρdep
dE

≈ _EðEÞN E ≈ 0.1 nHcσTEN E: ð82Þ

From Eq. (78), we find that this quantity satisfies the
following equation:

a−6
d
dt

�
a6

d_ρdep
dE

�
≈ 0.1nHcσT

×

�
d_ρinj
dE

þ E
∂
∂E

�
d_ρdep
dE

��
: ð83Þ

Integrating over energies (and recalling that d=dt ¼
∂=∂t −HE∂=∂E), we arrive at the following very simple
differential equation for the total energy deposition rate:

a−7
d
dt

ða7 _ρdepÞ ≈ 0.1nHcσTð_ρinj − _ρdepÞ: ð84Þ

We compare and contrast our results to existing analytic
calculations in Appendix B.
Physically, Eq. (84) implies that _ρdep ≈ _ρinj (i.e. that the

energy is deposited “on the spot”) as long as the Compton
cooling time scale ð0.1cσTnHÞ−1 is much shorter than the
characteristic time scale over which _ρinj changes. Once this
is no longer the case, the deposited energy rapidly decays as
1=a7. The Compton cooling time scale becomes longer
than the Hubble time scale at z ≈ 200. However _ρinj can
change on a time scale significantly shorter than a Hubble
time, in particular around recombination (see Fig. 8), so
_ρdep may deviate from _ρinj even earlier on.
We show the ratio _ρdep=_ρinj as a function of redshift for a

102 M⊙ PBH in Fig. 11. Note that this is conceptually
equivalent to the dimensionless efficiency fðzÞ usually

computed in the context of dark-matter annihilation (see
e.g. Ref. [40]). We see that this ratio goes to unity at
z≳ 103, and is suppressed for z ≲ 300, as expected.
Interestingly, in the collisional ionization case, this ratio
can actually be larger than unity around z ∼ 103. This is due
to the sharp decrease of the PBH average luminosity at
recombination for M ≲ 102 M⊙ (see Fig. 8), hence of the
instantaneous injected energy, and the non-negligible time
delay between injection and deposition already present at
that redshift.

B. Effect on the thermal and ionization histories

To conclude this section, we must describe how exactly
the energy is deposited in the plasma. We follow the
simple prescription of Ref. [39], assuming that for a
neutral gas the deposited energy is equally split among
heating, ionizations and excitations, and rescale these
fractions for arbitrary ionization fractions. We only con-
sider the effect on hydrogen recombination for simplicity.
Specifically, we take the following prescriptions for the

FIG. 11. Ratio of the energy deposition rate to the instantaneous
energy injection rate (equivalent of the dimensionless efficiency
fðzÞ usually computed in the context of dark-matter annihilation),
as a function of redshift. We only show the caseM ¼ 102 M⊙ as
other cases are very similar.

FIG. 12. Upper panel: global free electron fraction xeðzÞ in
the standard scenario (lower black curve), and accounting for
PBHs with parameters ðMpbh=M⊙; fpbhÞ ¼ ð102; 1Þ; ð103; 10−2Þ;
ð104; 10−4Þ, in that order from bottom to top at low redshift.
Lower panel: change in the ionization history due to accreting
PBHs for the same parameters. We only show the collisional
ionization casehere.
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additional rates of change of gas temperature, direct
ionizations and excitations:

Δ _Tgas ¼
2

3ntot

1þ 2xe
3

_ρdep; ð85Þ

Δ_xdirecte ¼ 1 − xe
3

_ρdep
EInH

; ð86Þ

Δ_x2 ¼
1 − xe
3

_ρdep
E2nH

; ð87Þ

where ntot is the total number density of free particles, x2 is
the fraction of excited hydrogen and E2 ≡ 10.2 eV is the
first excitation energy (we assume that all excitations are
to the first excited state for simplicity). Note that in our
previous notation xe ≡ xe is the background ionization
fraction and similarly Tgas ≡ T∞.
We implement these modifications in the recombination

code HYREC [41,42]. We self-consistently account for the
heating of the gas into the PBH luminosity, i.e. account for
the global feedback of PBHs. We show the resulting
changes in the ionization history in Fig. 12. Comparing
with Fig. 3 of ROM, we see that we obtain a significantly
smaller effect on the ionization history.

V. EFFECT ON THE COSMIC MICROWAVE
BACKGROUND

A. CMB spectral distortions

1. Effect of global heating

Energy deposited in the photon-baryon plasma at red-
shift z ≲ 2 × 106 does not get fully thermalized, and results
in distortions to the CMB spectrum. Depending on when
the energy is deposited, the distortion generated is either a
chemical potential (μ-type) or a Compton-y distortion.
Their amplitudes are approximately given by (see e.g. [43])

μ ≈ 1.4
Z

2×106

5×104
d lnð1þ zÞ _ρheatdep

Hρcmb
; ð88Þ

y ≈
1

4

Z
5×104

200

d lnð1þ zÞ _ρheatdep

Hρcmb
: ð89Þ

The relevant ratio is, therefore, that of the volumetric rate of
heat deposition per Hubble time to the CMB photon energy
density:

_ρheatdep

Hρcmb
≈
1þ 2xe

3

_ρdep
_ρinj

fpbh
ρdm
ρcmb

hLi
HM

≈ 4 × 10−4
1þ 2xe

3

_ρdep
_ρinj

fpbh
hLi
LEdd

ðzeq=zÞ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq=z

p ;

ð90Þ

where zeq ≈ 3400 is the redshift of matter-radiation equal-
ity. In the μ-era z≳ 5 × 104, we have xe → 1 (neglecting
Helium), _ρdep ¼ _ρinj, and z ≫ zeq, and we arrive at

μ ≤ 6 × 10−8fpbh max
z≥5×104

� hLi
LEdd

�
: ð91Þ

This is always significantly below the sensitivity of FIRAS
[21], and would be within the reach of proposed spectral
distortion experiments such as PIXIE [44] only if PBHs
radiated near the Eddington luminosity. In practice,
L ≪ LEdd at all times (see Fig. 8); hence, we conclude
that accreting PBHs are not and will never be detectable
through μ-type spectral distortions.
The y-parameter integral (89) is dominated by the lower

redshift cutoff z ≈ 200 corresponding to the thermal decou-
pling of gas and CMB photons. Since the luminosity is a
slowly varying function near z ≈ 200 and _ρdep ≈ _ρinj, we
find

y ≈ 0.02fpbh
hLi
LEdd

����
z≈200

: ð92Þ

From Fig. 8, we see that for the mass range considered
M ≤ 104 M⊙ this is always below the sensitivity of FIRAS
[21]. ForM ¼ 104 M⊙, the y parameter may be as large as
y ∼ 2 × 10−7fpbh. This is within the projected sensitivity of
PIXIE for fpbh ¼ 1, but is one order of magnitude below
the expected foreground y parameter from the low-redshift
intracluster medium [45].
To conclude, we find that the global heating of the

plasma due to accreting PBHs does not leave any observ-
able imprint on CMB spectral distortions, neither for
current instruments, nor for proposed ones.

2. Distortion from local Compton cooling

There is another source of energy injection in the CMB,
which occurs in the immediate vicinity of the PBH: when
Compton cooling is efficient, the volumetric rate of energy
transfer from the gas to the CMB is

d _E
4πr2dr

¼ nH
4xeσTρcmb

mecð1þ xeÞ
ðT − TcmbÞ

≈ −
3

2
nHρ2=3v

d
dr

ðTcmb=ρ2=3Þ; ð93Þ
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where the second equality is obtained by setting T ≈ Tcmb
in the left-hand side of Eq. (4), which holds as long as
Compton cooling is efficient. Therefore the rate of energy
injection per PBH is

_E ¼ Tcmb

Z
∞

rmin

dr4πr2vnH
dðln ρÞ
dr

¼
_M
mp

Tcmb logðρðrminÞ=ρ∞Þ; ð94Þ

where rmin ∼ γ−2=3rB is the radius at which Compton
cooling becomes inefficient, γ being the dimensionless
Compton cooling parameter defined in Eq. (8). With
ρðrminÞ ≈ ρ∞ðrmin=rBÞ−3=2, we arrive at

_E ∼
_M
mp

Tcmb logðγÞ: ð95Þ

We, therefore, get a characteristic distortion amplitude,

_ρinj
Hρcmb

∼ fpbh
_M

HM
Tcmbρdm
ρcmbmp

logðγÞ

∼ fpbh
_M

HM
nH
ncmb

; ð96Þ

where we have used ρdm ∼ ρb and ncmb ∼ ρcmb=Tcmb
is the number density of CMB photons. We see that
this is proportional to the baryon-to-photon ratio
nH=ncmb ∼ 10−10, and moreover multiplied by H−1 _M=M
which, as we discussed near Eq. (12), is always less than
unity for the mass range we consider. Therefore, local
Compton cooling by CMB photons does not lead to any
observable spectral distortion.

B. CMB temperature and polarization anisotropies

1. Effect on CMB anisotropy power spectra

The change in the ionization history shown in Fig. 12
affects the visibility function for CMB anisotropies, and as
a consequence the angular power spectra of temperature
and polarization fluctuations. We have incorporated the
modified HYREC into the Boltzmann code CLASS [46]. We
show in Fig. 13 the changes in CMB power spectra for the
same parameters used in Fig. 12. The effect is qualitatively
similar to an increase in the reionization optical depth:
fluctuations are damped on small angular scales due to
scattering of photons out of the line of sight, and the
polarization is enhanced on relatively large angular scales.
The latter are smaller than the scales affected by reioniza-
tion, as the effect of PBHs is at larger redshifts. For small
PBH masses, the suppression on small scales is accom-
panied by oscillations, resulting from the change of the
redshift of last scattering. Indeed, as can be seen in Fig. 12,
low-mass PBHs affect the recombination history near the

last-scattering surface z ∼ 103 more than high-mass PBHs,
whose effect is mostly on the freeze-out free-electron
fraction.

2. Analysis of Planck data

To analyze the CMB anisotropy data from Planck, one
should, in principle, run a Monte Carlo Markov chain
(MCMC), accounting for foreground nuisance parameters
(see e.g. [24]). However, this approach is too computa-
tionally taxing if we are to set an upper bound on the
abundance of PBHs as a function of PBH mass, as it would
require running a MCMC simulation for every mass
considered. Instead, we performed a simplified yet accurate
data analysis as follows.
We use the Plik_lite best-fit Ĉl and covariance matrix Σ

for the high-l binned CMB-only TT, TE and EE power
spectra provided by the Planck collaboration6 [47]. These
spectra and their covariance matrix are obtained by margin-
alizing over foreground nuisance parameters. Since they are
only provided for multipoles l ≥ 30, we moreover assume a

FIG. 13. Fractional change in the CMB temperature (upper
panel) and E-mode polarization (lower panel) power spectra
resulting from accreting PBHs. The parameters are
ðMpbh=M⊙; fpbhÞ ¼ ð102; 1Þ; ð103; 10−2Þ; ð104; 10−4Þ, in that
order with increasing overall amplitude. We only show the
collisional ionization case here.

6Available at http://pla.esac.esa.int/pla/.
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prior on the optical depth to reionization τreio ¼ τ0 � στ ≡
0.0596� 0.0089 as obtained by the latest Planck data
analysis [48]. This prior on τreio accounts approximately
for the large-scale temperature and polarization data (see
Refs. [49,50] for an analysis similar in spirit). Given the
relatively large effect of accreting PBHs on low-l polariza-
tion (see Fig. 13), a full data analysis might change the
constraints by order-unity factors; however this is below our
theoretical uncertainty. For a given set of cosmological

parameters ~θ ¼ ðH0;Ωbh2;Ωch2; As; ns; τreio; fpbhÞ, the χ2

is then

χ2ð~θÞ ¼ 1

2
ðCX

l ð~θÞ − ĈX
l ÞðΣ−1ÞXX0

ll0 ðCX0
l0 ð~θÞ − ĈX0

l0 Þ

þ 1

2

ðτreio − τ0Þ2
σ2τ

; ð97Þ

wherewe sumover repeated indices,X ∈ ðTT; TE; EEÞ, and
theCX

l ð~θÞ are the theoretical power spectra obtainedwith our
modified HYREC and CLASS. Taylor-expanding about the

best-fit standard cosmological parameters ~θ0 given in
Ref. [48] (with fpbh;0 ¼ 0), we rewrite this as

χ2ð~θÞ ≈ χ2ð~θ0Þ þ Δθi
∂CX

l

∂θi
����
θ0

ðΣ−1ÞXX0
ll0 ðCX0

l0 ð~θ0Þ − ĈX0
l0 Þ

þ 1

2
ΔθiFijΔθj; ð98Þ

where Δθi ≡ θi − θ0;i and

Fij ≈
∂CX

l

∂θi ðΣ
−1ÞXX0

ll0
∂CX0

l0

∂θj þ δi;iτ δj;iτ
σ2τ

ð99Þ

is the Fisher information or curvature matrix [51], for which

we have neglected the smaller term linear in ðCX
l ð~θ0Þ − ĈX

l Þ.
Maximizing this quadratic approximation of the χ2 allows us

to find the best-fit cosmological parameters ~̂θ, with their
covariance given by ðF−1Þij. We have checked that without
PBHs this simple analysis recovers very accurately the best-
fit standard six cosmological parameters obtained in
Ref. [47], with biases of at most 0.17σ. The variances we
derive match those of Ref. [24] for H0;Ωbh2;Ωch2 and ns
and those of Ref. [48] for As and τreio, as expected since we
are using the same high-l covariance as in the former
reference, and the prior on τreio (strongly degenerate with
As) from the latter.
We apply this analysis to derive the best-fit and 1 − σ

error on fpbh, as a function of Mpbh. We explicitly checked
that for the limits we obtain, the change in the anisotropy
power spectra is indeed linear in fpbh (ROM find an effect

that goes as f1=2pbh because they obtain a much larger effect
on the freeze-out free-electron abundance than we do).

Though we consider a limit on the normalization of a
Dirac-function mass distribution, this analysis can be gen-
eralized to any extended mass function [52], by replacing

fpbhLðMÞ=M →
R
dM dfpbh

dM LðMÞ=M, where dfpbh=dM is
the differential DM-PBH fraction.
For all PBH masses we consider, M ≤ 104 M⊙ (as the

steady-state approximation breaks down beyond that
mass), the best-fit f̂pbh is always less than a fraction of
standard deviation7 σfpbh . We show σfpbh in Fig. 14, as a
simple proxy for the upper limit on this parameter8 We see
that in the collisional ionization limit, CMB anisotropy
measurements by Planck exclude PBHs with masses
M ≳ 102 M⊙ as the dominant component of the dark

FIG. 14. Approximate CMB-anisotropy constraints on the
fraction of dark matter made of PBHs derived in this work (thick
black curves). The “collisional ionization” case assumes that the
radiation from the PBH does not ionize the local gas, which
eventually gets collisionally ionized. The “photoionization” case
assumes that the local gas is ionized due to the PBH radiation, up
to a radius larger than the collisional ionization region, yet
smaller than the Bondi radius. The former case is the most
conservative, as collisional ionization leads to a smaller temper-
ature near the black hole horizon, hence a smaller luminosity, and
weaker bounds. The correct result lies somewhere between these
two limiting cases. For comparison, we also show the CMB
bound previously derived by ROM (thin dashed curve), as well as
various dynamical constraints: microlensing constraints from the
EROS [15] (purple curve) and MACHO [14] (blue curve)
collaborations (but see Ref. [53] for caveats), limits from Galactic
wide binaries [17], and ultrafaint dwarf galaxies [54] (in all cases
we show the most conservative limits provided in the referenced
papers).

7The astute reader may wonder why even given several probed
PBH masses, some best-fit f̂pbh do not deviate by more than one
standard deviation from 0; the reason is that the effect of PBHs of
different masses on the CMB is very similar; hence, the best-fit
values are expected to be correlated.

8Strictly speaking, given the prior fpbh ≥ 0, defining the
68% confidence interval is a bit more subtle; given the large
uncertainties of the calculation, we shall not delve into such
technical details here.
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matter. In the photoionization limit, this threshold
is lowered to ∼10 M⊙. In either case, our bound is
significantly weaker than that of ROM. The up to two
orders of magnitude difference in the constraint between
the two limiting cases illustrates the level of uncertainty
in the calculation. Nevertheless, we believe our most
conservative bound is robust and difficult to evade, at least
at the order-of-magnitude level.

VI. DISCUSSION AND CONCLUSIONS

In this work, we have revisited and revised existing CMB
limits to the abundance of primordial black holes. We
showed that CMB-anisotropy measurements by the Planck
satellite exclude PBHs as the dominant component of dark
matter for masses ≳102 M⊙. The physical mechanism
involved is that PBHs would radiate a fraction of the rest-
mass energy they accrete, heating up and partially reioniz-
ing the Universe. Such an increase in the free-electron
abundance would change the CMB temperature and polari-
zation power spectra. Planck measurements do not allow
for large deviations from the standard recombination
history [24], which leads to tight bounds for large and
luminous PBHs.
The constraints we derive are significantly weaker than

the previous result of Ricotti et al. (ROM) [18], so it is
instructive to briefly summarize the differences in our
respective calculations. First and foremost, we compute
the radiative efficiency ϵ≡ L= _Mc2 from first principles,
generalizing Shapiro’s classic calculation for spherical
accretion around a black hole [25]. We account for
Compton drag and cooling as well as ionization cooling
once the background gas is neutral. At fixed accretion rate,
the efficiency we derive is at least a factor of ten and up to
three orders of magnitude lower than what is assumed in
ROM for spherically accreting PBHs. The second largest
difference is in the accretion rate itself. ROM compute the
accretion rate for an isothermal equation of state, assuming
that Compton cooling by CMB photons is always very
efficient. In fact, for sufficiently low redshift and low PBH
masses Compton cooling is negligible and the gas is
adiabatically heated. In this case, the higher gas temper-
ature, and hence pressure, imply an accretion rate that is
lower by a factor of ∼10. Since the PBH luminosity is
quadratic in the accretion rate, this translates to a factor of
∼100 reduction in the effect of PBHs on CMB observables.
A third difference is the relative velocity between PBHs and
baryons, which ROM significantly underestimates around
z ∼ 103, leading to an overestimate of the accretion rate.
There are considerable theoretical uncertainties in the

calculation of the accretion rate and luminosity of PBHs, as
we have illustrated by considering two limiting cases for
the radiative feedback on the local ionization fraction,
leading to largely different results. Let us recall the most
critical uncertainties here. First, we have only considered
spherical accretion. Extrapolating the measured primordial

power spectrum to the very small scale corresponding to the
Bondi radius, ROM estimated the angular momentum of
the accreted gas; they argued that the accretion is indeed
spherical for PBHs less massive than ∼103 − 104 M⊙.
However, there is no direct measurements of the ultra-
small-scale power spectrum, and all bets are open for a
Universe containing PBHs. If small-scale fluctuations are
larger (for instance, due to nonlinear clustering of PBHs),
an accretion disk could form, with a significantly enhanced
luminosity with respect to spherical accretion. On the other
hand, nonspherical accretion could conceivably also lead to
complex three-dimensional flows near the black hole
giving rise to a turbulent pressure that lowers the accretion
rate and radiative output. Secondly, we have accounted for
the motion of PBHs with an approximate and very
uncertain rescaling of the accretion rate. Given that dark-
matter-baryon relative velocities are typically supersonic,
we expect shocks and a much more complex accretion flow
in general. Thirdly, we have assumed a steady-state flow,
but have not established whether such a flow is stable, even
for a static black hole. Last but not least, if PBHs only make
a fraction of the dark matter, an assumption must be made
about the rest of it, the simplest one being that it is made of
weakly interacting massive particles (WIMPs). If so, these
WIMPs ought to be accreted by PBHs, whose mass may
grow significantly after matter-radiation equality [55], and
as a consequence increase the accretion rate of baryons
[18,26]. For the sake of simplicity, and given the added
uncertainty associated with the accretion of collisionless
particles, we have not accounted for this possibility in this
work. Given these major qualitative uncertainties, we have
made several simplifications leading to additional factors of
a few inaccuracies: for instance, our calculation is purely
Newtonian, and our analytic treatments of the ionization
region and of energy deposition into the plasma are only
approximate. We have also only explicitly analyzed
Planck’s temperature and polarization data for multipoles
l ≥ 30, approximating the effect of large-scale measure-
ments by a simple prior on the optical depth to reionization.
In a nutshell, the reader should keep in mind that this is a
complex problem and that many simplifying assumptions
underly our results, which we expect to be accurate at the
order-of-magnitude level only.
To conclude, we find that, up to the theoretical uncer-

tainties aforementioned, CMB anisotropies conservatively
rule out PBHs more massive than ∼102 M⊙ as the
dominant form of dark matter. This bound could be tighter
by up to one order of magnitude if the local gas is
predominantly photoionized rather than collisionally ion-
ized. Given the recent renewed interest in the ∼10–100 M⊙
window, it would be very interesting to generalize our
accretion model to self-consistently account for ionization
feedback, a task beyond the scope of this article, and to be
pursued in future work. In the meantime, there are a number
of other interesting astrophysical probes in that mass range.
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These include future measurements of the stochastic
gravitational-wave background [56–60] and of the mass
spectrum [61], redshift distribution [62], and orbital eccen-
tricities [63] for future binary-black-hole mergers; lensing
of fast radio bursts by PBHs [64]; pulsar timing [65,66];
radio/x-ray sources [67] or the cosmic infrared background
[68]; the dynamics of compact stellar systems [54]; strong-
lensing systems [69]; and perhaps clustering of GW events
[70–73]. The conclusions of our work suggest that it will be
important to pursue vigorously these alternative avenues.
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APPENDIX A: CONSISTENCY CHECKS

1. Isolated PBH assumption

Our calculation assumes gas accreting on an isolated BH.
This approximation is valid as long as the Bondi radius is
significantly smaller than the characteristic proper separa-
tion r between PBHs. Numerically, we get

rB ¼ GM
v2B

≈ 6 × 1014 cm
M
M⊙

103

1þ z
ðA1Þ

r ¼
�

3M
4πfpbhρdm

�
1=3

≈ 6 × 1017 cm

�
M

fpbhM⊙

�
1=3 103

1þ z
; ðA2Þ

where we estimated the Bondi radius for a PBH at rest
and assuming Tgas ¼ Tcmb and xe ≪ 1, valid for 200≲
z ≲ 1100. We, therefore, find that the isolated PBH
approximation holds for

M ≲ 3 × 104f−1=2pbh M⊙: ðA3Þ

Given that our conservative bound is fpbh ≲ ð100 M⊙=MÞ2,
PBHs can indeed be considered as isolated for all masses
considered.
Note, however, that this estimate only holds for quasiu-

niformly distributed PBHs. In practice PBHs may cluster

significantly if they make up a significant fraction of the
dark matter, due to Poisson fluctuations in their initial
clustering [74]. We do not attempt to account for this
effect here.

2. Free-free cooling

Free-free cooling is efficient when the associated time
scale tff ∼ neT=jff is much shorter than the local accretion
time scale tacc ∼ r=jvj. The ratio of the two time scales is

tacc
tff

∼
r=jvj

neT=jff
∼
αcσTner

jvj J ∼
αcσT _M
4πmprv2

J ; ðA4Þ

where we have used ne ¼ ρ=mp ¼ _M=ð4πmpr2jvjÞ.
In the innermost region, the gas is in near free fall, so
that rv2 ∼GM. Recalling that the Eddington luminosity is
given by Eq. (58), we may rewrite this as

tacc
tff

∼ _mαJ : ðA5Þ

Therefore, as long as _m ≲ a few, we may safely neglect
free-free cooling. This is, indeed, the case for the mass
range M ≲ 104 M⊙ that we consider (see Fig. 4).

3. Free-bound radiation

At low frequencies, near the ionization threshold of
hydrogen, radiative recombinations also contribute to the
radiation of the plasma [25]. We consider only recombi-
nations to the ground state of hydrogen, for which the cross
section is well known and has the approximate dependence
near threshold

σpiðνÞ ≈ σ0

�
νI
ν

�
3

; ðA6Þ

with σ0 ≈ 6 × 10−18 cm2 and νI ≡ EI=h is the threshold
photoionization frequency. Assuming Saha equilibrium,
detailed balance considerations allow us to compute the
corresponding free-bound emissivity (see e.g. Ref. [37]):

jfbν ¼ n2eð3πmeTÞ−3=2
8πh4ν3

c2
e−hðν−νIÞ=TσpiðνÞ: ðA7Þ

Therefore the free-bound emissivity near threshold is
nearly independent of frequency.9 The ratio of free-bound
to free-free emissivities is

jfb

jff
∼
�

hνIffiffiffiffiffiffiffiffiffiffiffiffiffi
mec2T

p �
3 σ0
ασT

≪ 1: ðA8Þ

9This result differs from Shapiro’s assumed free-bound
spectrum.
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Even though σ0 ≫ ασT, this ratio is largely suppressed due
to the first factor.

4. Optical thickness

In our estimate of the luminosity, we have assumed that
the plasma is optically thin. Here we show that the plasma
is indeed optically thin to both Compton scattering and
free-free absorption.
The Compton optical depth is dominated by the densest

regions near the horizon. Since the Compton cross section
is lower than Thomson for relativistic photons, the
Compton optical depth is less than

τCom ≲ rSneσT ∼ _m; ðA9Þ

where we used Eqs. (56) and (58). Therefore, as long
as _m ≲ 1 the plasma is optically thin to Compton
scattering [18].
The free-free absorption coefficient αffν (with dimensions

of inverse length) is [75]

αffν ¼ jffν
BνðTÞ

; ðA10Þ

where jffν ≈ jff

4π h=T is the emissivity and BνðTÞ is the Planck
function. Since jffν ∝ n2e the total optical depth is dominated
by the region near the horizon. The optical depth is then

τff ∼ rSαffν ∼ rS
jc2

hν4max
; ðA11Þ

where we approximated jν ∼ j=νmax and Bν ∼ hν3max=c2,
where νmax ∼ TS=h. Using Eq. (54), we get

τff ∼ ατTh

�
hc
TS

n1=3e

�
3

: ðA12Þ

The last term is the degeneracy factor: if it is greater than
unity one ought to account for electron degeneracy pres-
sure. It is easy to check that this term is always much
smaller than unity for all cases considered.

APPENDIX B: ENERGY DEPOSITION RATE:
COMPARISON WITH THE EXISTING

LITERATURE

Several papers attempt an analytic estimate of the energy
deposition rate as we do in Sec. IV, as opposed to a fully
numerical treatment as in Ref. [40]. Here we compare and
contrast our results to the existing literature. Reference [76]
gives the following integral expression for the photon
density per energy interval [their equation (2.12), rewritten
in our notation]:

N EðtÞ ¼
Z

t
dt0

1

E0
d_ρinj
dE0

�
a0

a

�
3

× exp

�
−
Z

t

t0
dt00n00AcσtotðE00Þ

�
; ðB1Þ

where E0 ≡ Ea=a0, E00 ≡ Ea=a00, nA is the number density
of absorbers and σtotðEÞ is total cross section for all the
interactions suffered by the DM-sourced photon and that
result in the production of free electrons. This integral
equation is equivalent to the following partial differential
equation:

a−3
d
dt

ða3N EÞ ¼
1

E

d_ρinj
dE

− nAcσtotðEÞN E: ðB2Þ

This equation differs from our Eq. (78) in two ways. First,
in the absence of photon sources or sinks, Eq. (B2) does not
recover the correct scaling N E ∝ a−2. Second, the second
term on the right-hand side implies that photons are
destroyed in the ionization process. While this is the case
for direct photoionization events γ þH → pþ e, it is not
the case for ionizations following Compton scattering
events γ þH → pþ eþ γ0, for which part of the energy
of the incoming photon is used for ionizing the atom, but
the photon is not destroyed.
From Eq. (B1), Ref. [77] deduces the energy deposition

rate (correcting a mistake in Refs. [78,79]). Assuming
σtotðEÞ ≈ σT (valid for E ≲mec2), the resulting energy
deposition rate is (Eq. (4.21) of Ref. [79], corrected in
Appendix B of Ref. [77]):

_ρdep ¼
Z

t
dt0e−κðt;t0Þ

�
a0

a

�
8

n0HcσT _ρ
0
inj

ðPoulin et al:Þ;

with κðt; t0Þ≡
Z

t

t0
dt00n00HcσT: ðB3Þ

Rewriting this as a differential equation would lead to

a−8
dða8 _ρdepÞ

dt
¼ nHcσT½_ρinj − _ρdep�: ðB4Þ

This differs from our Eq. (84) in two ways. First, the
incorrect scaling _ρdep ∝ a−8 instead of a−7 once energy
deposition becomes inefficient is a direct consequence of
the incorrect scaling in Eq. (2.12) of Ref. [76]. Secondly,
our right-hand side is smaller by an (approximate) factor
0.1. This translates the fact that, even for E ≲mec2, only a
small fraction of the energy of Compton-scattered photons
is lost to ionizations, as opposed to the totality of it as
implicitly assumed in Eq. (B2).
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