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Pulsar timing arrays are powerful tools to test the existence of cosmic strings by searching for the
gravitational wave (GW) background. The amplitude of the background connects to information on cosmic
strings such as the tension and string network properties. In addition, one may be able to extract more
information on the properties of cosmic strings by measuring anisotropies in the GW background. In this
paper, we provide estimates of the level of anisotropy expected in the GW background generated by cusps
on cosmic strings. We find that the anisotropy level strongly depends on the initial loop size α, and thus we
may be able to put constraints on α by measuring the anisotropy of the GW background. We also find that
certain regions of the parameter space can be probed by shifting the observation frequency of GWs.
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I. INTRODUCTION

Cosmic strings are one-dimensional topological defects,
which arise naturally in field theories [1,2], as well as in
scenarios of the early Universe based on superstring theory
[3–5]. One promising strategy to test for their existence is to
search for gravitational wave (GW) emission from them. In
particular, strong GW bursts are emitted from nonsmooth
structures such as cusps and kinks [6], and overlapped
bursts form a stochastic GW background over a wide range
of frequencies [7–17].
Pulsar timing arrays uniquely probe the GW background

at nanohertz frequencies [18–21]. GWs affect the times of
arrival (ToAs) of pulses so that the residuals of the ToAs
indicate the existence of GWs. In the case of the stochastic
GW background, cross-correlations of the residuals
between multiple pulsars are taken to reduce the noise,
and the correlation coefficient as a function of the angle
between two pulsars is called the Hellings and Downs
curve [22]. The current limits on the strain amplitude of the
GW background have already produced strong constraints
on cosmic strings [18,20]. In the future, the International
Pulsar Timing Array [23] and the Square Kilometre Array
(SKA) [24] will enhance the sensitivity and offer the best
opportunity to search for cosmic strings.
Recently, a method to analyze anisotropies in the GW

background has been progressively developed [25–27].
The anisotropies can arise due to the finiteness of the GW
sources and reflect the number of sources and their
distribution. In the presence of anisotropies, the cross-
correlation of the timing residuals between different pulsars
deviates from that of the Hellings and Downs curve, which
is derived assuming an isotropic GW background.

Simulation studies have showed that we would obtain
substantial evidence for the anisotropy signal when the
signal-to-noise ratio is higher than 10 [28]. The European
Pulsar Timing Array [29] reported that the spherical
harmonics multipole component of the GW amplitude
for l > 0 is less than 40% of the isotropic component
with 95% confidence. Although this analysis is developed
in the context of a GW background from supermassive
black hole (SMBH) binaries, we expect to apply it to the
background from cosmic strings as well. Information on the
source population would help us to understand the string
network evolution.
In this paper, we perform theoretical estimates of the

expected level of anisotropy in a GW background com-
posed of a superposition of GW bursts originating from
cusps on string loops, which are typically the dominant
source of the GW background at nanohertz frequencies.1

First, we calculate the number density of cosmic string
loops as a function of the redshift using the velocity-
dependent one-scale model [32,33] and convert it to the rate
of the GW bursts coming to the Earth. Then we generate
data sets of GW backgrounds by randomly distributing the
burst events in the sky, and calculate the anisotropy level of
the GW background using the formalism established
in Ref. [28].
This paper is organized as follows: In Sec. II, we

describe the one-scale model to obtain redshift distributions
of the loop-number density. Then we present a model to
convert the number density to the rate of GW emissions,
which we use to construct the data sets of GW back-
grounds. In Sec. III, we briefly present the formalism to

*skuro@nagoya‑u.jp

1The dominant source could be taken over by kinks on infinite
string [30] or loops [31] depending on the string network
properties, which is beyond the scope of our paper.
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estimate a level of anisotropy by decomposing the angular
distribution of the GW power on the sky into multipole
moments. Then we present the results with the dependence
of the initial loop size α, which is the key parameter to
produce a large anisotropy. Section IV is devoted to
conclusions.

II. GW BACKGROUND FROM CUSPS
ON COSMIC STRING LOOPS

The basic components of a cosmic string network are
loops and infinite strings. Loops are continually formed by
the intersection of cosmic strings, and the typical loop size
at formation is often characterized as ∼αHðtÞ−1, where
HðtÞ is the Hubble scale at loop formation. Estimates in
earlier works have suggested that the initial loop size is
determined by gravitational backreaction, and α has values
smaller than ∼Gμ, where Gμ is the tension of cosmic
strings [34–37], while recent simulations suggest that a
significant fraction of loops are produced at scales roughly
a few orders of magnitude below the horizon size α ∼
Oð0.1Þ [38–41]. Since the loop size distribution is still an
ongoing topic [42–47], we take α as a free parameter, and in
fact α is a key parameter for the level of anisotropy.
The other parameters, such as the tension Gμ and

reconnection probability p, are also important for the
evolution of the cosmic string network. The value of the
string tension Gμ depends strongly on the generation
mechanism. For field-theoretic cosmic strings, μ is roughly
the square of the energy scale of the phase transition which
produces cosmic strings. For cosmic superstrings, μ is
determined by the fundamental string scale as well as the
warp factor of the extra dimension, and it can take a broad
range of values. The tension determines the energy loss of
loops through the emission of GWs, and it relates to the
lifetime of loops. The value of reconnection probability p
also depends on the origin of cosmic strings. It is essentially
1 for field-theoretic cosmic strings, while it can be smaller
than 1 in the case of cosmic superstrings because of the
effect of extra dimensions [48–50]. Analysis in Ref. [48]
suggests the value is in the range of 0.1 ≤ p ≤ 1 for
D-strings and 10−3 ≤ p ≤ 1 for F-strings. The reduced
reconnection probability decreases the loss of infinite string
length into loops and eventually enhances the density of the
string network [51,52].
It has been shown that cusps on string loops generically

arise once per oscillation time [53] and emit strong GW
bursts [6]. The typical frequency of GWs is determined by
the loop size at the emission, and so it does depend on α.
Overlapped GW bursts are detectable as a GW background
at nanohertz frequencies when α is not too small [10]. In
order to predict the amplitude and anisotropy level of the
GW background, we need to estimate the number and
amplitude of GW bursts coming to the Earth during the
observation period of the pulsar timing arrays. Here, we

describe a theoretical model which is used to obtain the
number density of loops and to convert it to the GW rate.

A. Cosmic string network

Our calculation of the string network evolution is based
on the velocity-dependent one-scale model [32,33]. In this
model, the string network of infinite strings is characterized
by a correlation length ξ, which corresponds to the typical
curvature radius and interval of infinite strings. Then the
total length L of infinite strings in volume V is given by
L ¼ V=ξ2, and the average string energy density is given
by ρ ¼ μ=ξ2. From the equation of energy conservation,
one can obtain an evolution equation for ρ, whereas the
equations of motion for the Nambu-Goto string yield a
equation for the evolution of the typical root mean square
velocity v of infinite strings. By defining γ ≡ ξ=t, the
resulting equations are

t
γ

dγ
dt

¼ −1þ νþ ~cpv
2γ

þ νv2; ð1Þ

dv
dt

¼ ð1 − v2ÞH
�
kðvÞ
νγ

− 2v
�
; ð2Þ

where kðvÞ ¼ 2
ffiffi
2

p
π

1−8v6
1þ8v6

, H ≡ _a=a, and the scale factor a is
parametrized as aðtÞ ∝ tν. The third term on the right-hand
side of Eq. (1) represents the loss of energy from infinite
strings by the production of loops. The constant parameter
~c represents the efficiency of loop formation and is set to be
~c ¼ 0.23, and the effect of the reconnection probability p,
which deviates from 1 for cosmic superstrings, can be
simply included by replacing ~c with ~cp.
Cosmic string networks are known to evolve towards a

so-called scaling regime in which the characteristic length
of infinite strings ξ evolves at a rate proportional to the
Hubble scale and the number of them in a Hubble horizon
remains constant. The above sets of equations indeed have
asymptotic solutions, which can be obtained by setting
dγ=dt and dv=dt to be 0. For example, for p ¼ 1, we obtain
γr ¼ 0.27 and γm ¼ 0.62, where γr and γm are the values in
the radiation- and matter-dominated eras, respectively.
Since the effect of the time dependence of γ around the
matter-radiation equality is small for the settings in this
paper, we approximate γ as a step function,

γðzÞ ¼
�
γr ; z > zeq
γm ; z < zeq

; ð3Þ

where z ¼ 1=aðtÞ − 1 represents the redshift and zeq is the
redshift at the matter-radiation equality.
In the scaling regime, infinite strings continuously lose

their length by formation of loops, and the length to lose in
a Hubble volume per Hubble time is comparable to the
length of infinite strings in a Hubble volume. Assuming
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that the size of the loops formed at time t is given by αt,
the number density of loops generated between time t and
tþ dt is

dn
dt

ðtÞdt ¼ dt
αγ2t4

: ð4Þ

By taking into account the dilution of the number density
due to cosmic expansion ∝ a−3, the number density of
loops formed between ti and ti þ dti at time t is given by

dn
dti

ðt; tiÞdti ¼
dti
αγ2t4i

�
aðtiÞ
aðtÞ

�
3

: ð5Þ

B. Rate of GW bursts from cusps on string loops

After loop formation, the loop continues to shrink by
emitting energy as GWs and eventually vanishes. The
length of a loop at time t formed at ti is written as

lðt; tiÞ ¼ αti − ΓGμðt − tiÞ; ð6Þ

where Γ is a constant which represents the efficiency of
GW emission and we take Γ ¼ 50. The Fourier amplitude
of a GW burst ~hðfÞ ¼ R

dte2πifthðtÞ from a cusp is
formulated in Refs. [6–8] and given by2

~hðf; z; lÞ≃ Gμl

ðð1þ zÞflÞ1=3rðzÞf ; ð7Þ

where rðzÞ ¼ R
z
0 dz

0=Hðz0Þ. Using the above two equa-
tions, the loop length l and the generation time ti can be
given as functions of ~h, z, and f:

tiðf; ~h; zÞ ¼
lðf; ~h; zÞ þ ΓGμtðzÞ

αþ ΓGμ
; ð8Þ

lðf; ~h; zÞ ¼
�
~hrðzÞ
Gμ

ð1þ zÞ1=3f4=3
�3=2

: ð9Þ

Cusp formation is expected to occur Oð1Þ times in an
oscillation period, which is characterized by parameter c.
The value of c can be made to correspond to the
emission efficiency Γ [14], and we use c ¼ 21=3Γ=
ð3π2Þ ≂ 2.13. Then the number of GWs coming to the
Earth per unit time, emitted at redshift between z and
zþ dz by loops formed between ti and ti þ dti, is given
using the loop-number density obtained in the previous
subsection as

dR
dzdti

dzdti ¼
1

4
θmðf; z; lÞ2

2c
ð1þ zÞlðtðzÞ; tiÞ

×
dn
dti

ðtðzÞ; tiÞdti
dV
dz

dz × Θð2 − θmðf; z; lÞÞ;

ð10Þ

where θm is the beaming angle of the GW burst and
given by

θmðf; z; lÞ ¼ ðð1þ zÞflÞ−1=3; ð11Þ

and

dV
dz

ðzÞ ¼ 4πa2ðzÞr2ðzÞ
HðzÞð1þ zÞ : ð12Þ

The factor 1
4
θmðf; z; lÞ2 reflects the beaming of the GW

bursts, and the Heviside step function Θ reflects the low-
frequency cutoff of fl≲ 2 at the emission [14]. Using
Eqs. (6) and (7), we can rewrite Eq. (10) to express the
number of GWs coming per unit time which were
emitted at redshift z and which have frequency f and
amplitude ~h at the present time:

dR

dzd ~h
ðf; ~h; zÞ ¼ 3

4
θ2mðf; z; lÞ

c

ð1þ zÞ ~h
1

γðtiÞ2αt4i
×

1

αþ ΓGμ

�
aðtiÞ
aðtÞ

�
3 dV
dz

× Θð2 − θmðf; z; lÞÞ: ð13Þ

By integrating the rate along the redshift, we get the total
arrival rate of GWs today,

dR

d ~h
ðf; ~hÞ ¼

Z
∞

0

dz
dR

dzd ~h
ðf; ~h; zÞ: ð14Þ

C. GW background

The amplitude of the GW background is characterized by
the dimensionless parameter ΩGWðfÞ≡ ðdρGW=d ln fÞ=ρcr,
where ρGW is the energy density of the GWs and ρcr is the
critical density of the Universe. By summing up all the bursts,
ΩGW is given by

ΩGWðfÞ ¼
2π2

3H2
0

f3
Z ~h�

0

d ~h ~h2
dR

d ~h
ðf; ~hÞ; ð15Þ

where H0 ¼ 100h km=s=Mpc is the Hubble parameter at
the present time. The condition of forming a stochastic GW
background is commonly implemented by introducing the
upper limit of the integration ~h�, which satisfies [9]

2Note that Refs. [6–8] use the logarithmic Fourier transform,
and the equation has a difference of factor f−1 in our definition
~hðfÞ.
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Z
∞

~h�
d ~h

dR

d ~h
¼ f: ð16Þ

By setting this, the integration of the GWamplitude is carried
out to include only bursts with small ~h which come to the
observer with a time interval shorter than 1=f. Such bursts
overlap each other and are considered to be unresolved as a
single burst, while rare bursts with large ~h are observed
individually.
Using the formalisms described above, we show ΩGWh2

as a function of frequency for various values of the initial
loop size parameterα in Fig. 1. Figure 2 shows the parameter

regions excluded by the current strongest pulsar experi-
ments, as well as regions which can be probed by SKA. For
the excluded regions, we use the most stringent limit of the
scale-invariant spectrum obtained by NANOGrav [18],
ΩGWh2 < 2.2 × 10−10. And for the SKA-accessible region,
we show the region where ΩGWh2 > 10−13.

III. ANISOTROPIES IN THE
GW BACKGROUND

A. Method

In order to estimate the anisotropies in the GW back-
ground,we simulate theGWbackground bydistributingGW
sources on the sky map. First, we compute the GW rate as a
function of the amplitude ~h. The GW burst rate for a given
amplitude ~h and for a fixed frequency can be calculated by
Eq. (14). Then we distribute GWbursts on the sky according
to the obtained burst rate. The position is randomly assigned
to each source. We generate 100 realizations of the sky map
and calculate the average and variance of the anisotropy level
by following the method described in Ref. [28]. The
formalism is developed in Ref. [25]. First, we decompose
the energy density of GWs ρðΩ̂Þ ∝ ~h2 in terms of the
spherical harmonic functions as

ρðΩ̂Þ ¼
X∞
l¼0

Xl
m¼−l

clmYlmðΩ̂Þ; ð17Þ

where Ω̂ represents the propagation direction of the GW.
For point sources, the anisotropy coefficients can be calcu-
lated by

clm ¼
XN
i¼1

ρiYlmðΩ̂iÞ; ð18Þ

where ρi describes the GW energy density of each source.
Using the definition of the angular power spectrum

FIG. 1. The GW spectra originating from cusps on cosmic
string loops are plotted in terms ofΩGWh2 by changing the values
of the initial loop size α. The cosmic string tension is fixed at
Gμ ¼ 10−11, and the reconnection probability is p ¼ 1. The
sensitivity of the SKA is shown by the black dotted line. The
shaded areas represent the 68% (dark gray) and 99.7% (light
gray) confidence intervals of the theoretically predicted GW
amplitude from SMBH binaries according to Ref. [54].

FIG. 2. Parameter space accessible by SKA (light blue) for p ¼ 1 and p ¼ 10−3. The blue region is the space which is already
excluded by the current pulsar constraints. The black dotted lines correspond to contour lines of ΩGWh2 ¼ 10−13, 10−12, 10−11, 10−10,
and 2.2 × 10−10 from bottom to top.
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Cl ¼ P
mjclmj2=ð2lþ 1Þ, we calculate the anisotropic

power normalized by the monopole component Cl=C0.
The above method is identical to decomposing ΩGW

as [25]

ΩGWðfÞ ¼
2π2

3H2
0

f3 · 4HðfÞ
Z

dΩ̂PðΩ̂Þ; ð19Þ

with

PðΩ̂Þ ¼
X∞
l¼0

Xl
m¼−l

~clmYlmðΩ̂Þ: ð20Þ

In this case, the anisotropy coefficients are calculated by

~clm ¼
Z

dΩ̂PðΩ̂ÞYlmðΩ̂Þ: ð21Þ

Here, HðfÞ corresponds to the spectral power of the
isotropic (monopole) component, and PðΩ̂Þ describes
the angular distribution of the anisotropic components,
which is related to Eq. (15) by

R
d ~h ~h2 dR

d ~h
¼ ~h2rmsðf; Ω̂Þ≡

4HðfÞ R dΩ̂PðΩ̂Þ. Note that ~clm is normalized by
~c00 ¼

ffiffiffiffiffiffi
4π

p
, which gives

R
dΩ̂PðΩ̂Þ ¼ 4π, while clm in

Eq. (17) includes coefficients of the GW power. This does
not make a difference in the results, as long as we use the
normalized power spectrum Cl=C0.

To calculate the anisotropy coefficients, we use Eq. (18)
and sum up all the energy density sources in the simulated
sky map. Note that the inclusion of all the sources means
that we do not apply the upper limit ~h� in Eq. (15). This
treatment may not be proper when strong bursts are
identified and removed from the background data.
However, since the observation time of pulsar timing is
comparable to the time scale of the GW period Tobs ∼ 1=f,
it would be difficult to resolve a single burst, and rare bursts
would not be distinguished from the GW background. In
fact, the inclusion of ~h� affects the spectrum shape only at
higher frequencies and is important for direct detection by
interferometers.

B. Rate of GW bursts

Using Eq. (14), we can predict the rate of the GW bursts
for a given frequency and given parameter values. Let us
first see the parameter dependence of the rate of the GW
bursts. Figure 3 shows the GW rate at f ¼ 1=10 years ¼
3.17 × 10−9 Hz per 10 years for different values of the
cosmic string parameters—the tension Gμ, the initial loop
size α, and the reconnection probability p. The contribution
toΩGW is determined by ~h2 dR

d ~h
, as seen in Eq. (15). In Fig. 4,

we plot the derivative contribution to ΩGW in terms of ~h to
find the strain amplitude which mainly composes the GW
background. In Fig. 5, we show the redshift evolution of the

10-2
100
102
104
106
108

1010
1012
1014
1016
1018

10-35 10-34 10-33 10-32 10-31 10-30 10-29 10-28 10-27 10-26

dR
/d

ln
h∼

h
∼

Gμ=10-10

Gμ=10-11, p=1, α=10-1

Gμ=10-12

Gμ=10-13

10-2
100
102
104
106
108

1010
1012
1014
1016
1018

10-35 10-34 10-33 10-32 10-31 10-30 10-29 10-28 10-27 10-26

dR
/d

ln
h∼

h
∼

Gμ=10-11, p=1, α=10-1

α=10-4

α=10-7

α=1.5×10-9

α=1.45×10-9

100

105

1010

1015

1020

1025

10-35 10-34 10-33 10-32 10-31 10-30 10-29 10-28 10-27 10-26

dR
/d

ln
h∼

h
∼

Gμ=10-11, p=1, α=10-1

p=10-1

p=10-2

p=10-3

FIG. 3. The expected number of GW bursts per logarithmic strain, dR=d ln ~h, for the fixed frequency
f ¼ 1=10 years ¼ 3.17 × 10−9 Hz. From the left to the right, we show parameter dependencies of Gμ, α, and p. The vertical axis
is expected numbers of GW bursts per 10 years.
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FIG. 4. The contribution to the integral of Eq. (15) for each logarithmic strain bin with the same parameter set as in Fig. 3.
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rate using Eq. (13). To calculate the redshift dependence of
the rate dR

d ~hdz
, we need to fix the value of ~h. We choose ~h to

be the local maximum of each line in Fig. 4—that is, the
value of ~h which contributes the most to ΩGW.
The small jumps seen in the middle panels of Figs. 3

and 4 for α ¼ 10−4 are an artifact of the sudden transition
of γ from the radiation-dominated to the matter-dominated
era as provided in Eq. (3). For this low frequency
f ¼ 3.17 × 10−9 Hz, all GWs are emitted after radiation-
matter equality, but the loops are formed in the radiation-
dominated era when they have a long lifetime α ¼ 10−1,
while loops are formed in the matter-dominated era when
they have a short lifetime α ≤ 10−7. The intermediate case
is α ¼ 10−4, where GWs with small ~h are emitted from
loops formed during the radiation-dominated era, while
a large ~h corresponds to loops formed in the matter-
dominated era.
To achieve the detectable large anisotropy of ∼Oð10%Þ

in the GW background, a small number of strong bursts
should contribute the GW background comparable to the
overall amplitude. As seen from Figs. 4 and 5, in most of
the cases, the dominant component of the GW background
is the numerous small bursts coming from high redshifts,
where we cannot expect large anisotropy. The interesting
case is found when the initial loop size α is small (see the
middle panels). The lifetime of the cosmic string loop is
given by the initial energy of the loop divided by the rate of
the energy release by GWemissions, τ ∼ αti=ðΓGμÞ. Thus,
when α ≪ ΓGμ, loops decay within a Hubble time after
their formation. GWs emitted from such short-lived loops
have a typical frequency which corresponds to their loop
size ð1þ ziÞf ∼ 2=ðαtiÞ. Because of this, the GW back-
ground of a given frequency consists of GW bursts from a
specific redshift, as seen from Fig. 5. For a fixed frequency
f ¼ ½αtið1þ ziÞ�−1, ti should increase for smaller α. This
leads to a lower number density of loops, since aðtiÞ3=t4i in
Eq. (5) is a decreasing function with respect to ti.
Therefore, as seen in Fig. 3, we find the case where the
GW background consists of a small number of bursts for a
specific range of α. In this case, we can expect a large
anisotropy, as shown in the next section.

C. Results and discussions

Finally, we estimate the anisotropy level using the
method described in Sec. III A. In Fig. 6, we show
anisotropy power Cl=C0 up to the multipole l ¼ 20 for
α ¼ 1.45 × 10−9, 1.5 × 10−9, and 10−4. The other param-
eters are fixed at Gμ ¼ 10−11 and p ¼ 1. The central point
is the mean value of 100 realizations, and the error bars
represent the 2σ variances. Since we find the distribution is
near the log-normal Gaussian distribution, we calculate the
mean values and variances for logarithmic values ofCl=C0.
We see that the anisotropy becomes large even to a level
that could be detected by SKA ∼Oð0.1Þ in the case of
α ¼ 1.45 × 10−9, but it decreases quickly when α is
reduced to α ¼ 1.5 × 10−9.
Since the anisotropy is the same level for all the multi-

poles as seen from Fig. 6, let us focus on the dipole moment
from now on. In Fig. 7, we plot the dipole power C1=C0

as a function of α. The different lines correspond to
different observation frequency bands. As α decreases,
the anisotropy power suddenly increases because of the
decrease in the number density of the loops. We do not have
points in the region where α is smaller than the peak point,
since GWs are not generated in pulsar timing frequencies
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FIG. 5. The rate shown in terms of the redshift with the same parameter set as in Fig. 3. We fix the strain amplitude to be the one which
gives the biggest contribution to the value of ΩGW (the value of ~h at the local maximum in Fig. 4).
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FIG. 6. The anisotropy power Cl=C0 for different values of the
initial loop size: α ¼ 1.45 × 10−9 (black), 1.5 × 10−9 (red), and
10−4 (blue). We set Gμ ¼ 10−11 and p ¼ 1 and assume obser-
vation at f ¼ 1=10 year ¼ 3.17 × 10−9 Hz.
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due to the low-frequency cutoff of the GW emission,
f ≲ 2=l. In other words, detecting the strong anisotropy
power corresponds to observing the edge of the spectrum at
the lowest frequency. As in Fig. 1, the amplitude of the
spectrum decreases towards the edge because of the limited
number of the loops. The edge shifts to the higher
frequency for smaller α, and we get no GW power when
the spectrum goes out of the sensitivity range of the pulsar
timing experiments.
A large anisotropy is achieved only when the GW

background consists of bursts from new loops near us
without having any contribution from old loops, which are
numerous and reduce the anisotropy level. Such conditions
are satisfied around the low-frequency cutoff f ∼ 2=ðαt0Þ,
which is the typical frequency of bursts from recently
formed loops, and old loops cannot contribute to this
frequency, since their size must be smaller. Therefore,
the position of the anisotropy peak depends on the value of
α as well as the observation frequency f. For the typical
pulsar timing observation frequency f ∼ 1=10 years, the

peak arises at α ∼ 2=ðft0Þ ∼ 10−9. The peak position moves
when we change the observation frequency, as seen
in Fig. 7.
In Fig. 8, we show the dependence of our result on other

parameters, such as tensionGμ and reconnection probability
p. We find that the amplitude of the anisotropies changes
dependingon the parameters, but the positionof thepeak does
not change. The anisotropy amplitude is determined by the
number of bursts which form the GW background. We see
that the anisotropy is reduced for smaller value of p, because
small p simply increases the overall amplitude of the number
distribution. Thevalue ofGμ changes the number distribution
as well as the value of ~h, which gives themain contribution to
ΩGW, as seen in Figs. 3 and 4. The combination of the two
effects turns out to be a small decrease in the burst number for
larger Gμ, which is the reason we see the anisotropy get
slightly larger for Gμ ¼ 10−10. In contrast to the anisotropy
amplitude, we find that the peak position does not move for
any change ofGμ andp. This is because the condition to have
a large anisotropy is f ∼ 2=ðαt0Þ, which does not depend on
the values of Gμ and p.
As shown in Fig. 7, one can expect a large anisotropy for

different values of α by changing the observation fre-
quency. In Fig. 9, we plot the result as a function of the
frequency for different values of α. When one analyzes a
specific frequency bin, the anisotropy is small for the most
of the values of α, but one can expect a large anisotropy for
a specific value of α. This indicates that one can, in
principle, test the value of α by checking the anisotropy
power at different frequency bands of GWs. A typical GW
frequency of the pulsar timing array is f ∼ 1=10 years ¼
3.17 × 10−9 Hz, while we would be able to analyse higher-
frequency bands, possibly up to 10−6, which is limited by
the monitoring time interval of pulsar observation. Thus, by
analyzing frequency bands of 10−9 ≲ f ≲ 10−6, we may be
able to probe the range of 10−11 ≲ α≲ 10−9.
The European Pulsar Timing Array [29] has placed

limits on the multipole components of the GW amplitude
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FIG. 7. The anisotropy power Cl=C0 of the dipole moment
shown as a function of α. We assumeGμ ¼ 10−11 and p ¼ 1. The
different colors describe different observation frequencies; f ¼
1=10 year ¼ 3.17 × 10−9 Hz (black), 3.17 × 10−8 Hz (red),
3.17 × 10−7 Hz (blue), and 3.17 × 10−6 Hz (green).
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FIG. 8. The anisotropy power Cl=C0 of the dipole moment, shown as a function of α. The observation frequency is assumed to be
f ¼ 1=10 year ¼ 3.17 × 10−9 Hz. In the left panel, we change the value of the tension Gμ by fixing p ¼ 1; Gμ ¼ 10−10 (red), 10−11

(black), and 10−12 (green). In the right panel, we change the value of the reconnection probability by fixing Gμ ¼ 10−11; p ¼ 1 (black),
10−1 (red), 10−2 (blue), and 10−3 (green).
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for l > 0 is less than 40% of the isotropic component at
2–90 × 10−9 Hz. Thus, since the result does not depend on
the value of Gμ, we can say that 5 × 10−11 < α < 2 × 10−9

is excluded for Gμ≳ 1.3 × 10−7 with p ¼ 1 [20]. (Note
that we can only exclude the region where the tension is
constrained by the multipole component, since the
anisotropy level is defined as the ratio to the monopole
Cl=C0.) This corresponds to excluding the left edge of the
blue region in Fig. 2.
One may express concern about the assumption of the

one-scale model which enforces the uniform initial loop
size, while the initial loop size α could be distributed
around a typical value. The shape of the GW rate would
change when one takes into account the distribution of α,
but the total number of bursts is important, rather than the
shape, for the estimation of the anisotropy level. Thus, we
would still find the case where the background consists of a
few sources and has a large anisotropy. However, it would
be difficult to extract information on the distribution of α
from the anisotropy power unless we imposed a simple
model for the distribution. This argument would apply also
to the case for different models of the cosmic string
network. Since the number of bursts is the only key factor
for anisotropy, the existence of the strong anisotropy would
be universal for most cosmic string models.
Another point we may have to take into account is the

relativistic nature of small loops. References [42,47]
pointed out that small loops are created with ultrarelativistic
speeds. This would be the case for our targeting range of
loop size 10−11 ≲ α ≲ 10−9. The relativistic motion of
loops would give rise to a blueshift of the GW frequency,
which would shift the peak position to large α. It would also
reduce the beaming angle, and therefore the amplitude of
GW bursts increase while the event rate decreases. This
would also affect the peak position, but since these two
effects compensate each other, further study is necessary to

quantitatively estimate the impact of the relativistic speed
of loops on the peak position.
Finally, let us comment on the possibility of testing of the

anisotropic GW background by laser-interferometer experi-
ments such as Advanced LIGO [55,56]. We would expect
the same result with a different peak position for LIGO,
which is determined by fLIGO ∼ 2=ðαt0Þ ∼ 100 Hz. An
anisotropic background may be rephrased as a noncon-
tinuous background, which is known to be testable by
examining the non-Gaussianity of the data. Reference [57]
estimates the possibility of detecting such a noncontinuous
popcorn-like background from cosmic strings with ground-
based laser interferometers. It also estimates the case of
pulsar timing frequency f ¼ 10−8 Hz and shows that the
popcorn feature arises at ϵ ∼ 1 for Gμ ¼ 10−11, where
α ¼ ϵΓGμ. This is consistent with our result.

IV. CONCLUSION

We have investigated the possibility of having an aniso-
tropic GW background originating from cosmic string
loops. The anisotropy turns out to be too small to be detected
by pulsar timing experiments in most parameter spaces,
while it becomes large for a specific value of the initial loop
sizeα. The large anisotropy is foundwhen a small number of
GWbursts contributes to the observed GW background.We
found that the parameter space of α yielding a strong
anisotropy is very narrow when we analyze the data at a
fixed frequency, but one can access 10−11 ≲ α ≲ 10−9 by
analyzing in different frequency bands.
To have the detectable anisotropy ofOð10%Þ, we need the

bright outlier source which dominates the overall compo-
nents of the GW background, as is the same for the SMBH-
binary background [28]. The existence of such an outlier
may not be extremely rare in the case of SMBH binaries, as
some theoretical studies indicate that sources at redshift
0.1–1 could be bright enough to be individually resolved
[58]. On the other hand, in the case of the GW background
from cosmic strings, distant sources are typically dominant
in number. We have found that the nearest sources become
dominant and produce an anisotropic GW background only
for the specific parameter choicewhere the initial loop size α
is very small. However, since the properties of the cosmic
string network are not understood very well yet, the
anisotropy test is still useful for exploring a new parameter
space and helps us to understand its distribution.
So far, only the amplitude of the GW background has

been used to place constraints on the cosmic string
parameters, and the parameter degeneracies cannot be
removed only by the information of the amplitude.
Although the estimation of the sensitivity for the anisotropy
test in multiple frequency bins is beyond our work,
anisotropy may provide a new and independent opportunity
to constrain the value of α and help to test the string
network models.
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FIG. 9. The anisotropy power Cl=C0 of the dipole moment
shown as a function of the observation frequency. The different
colors describe different values of the initial loop size: α ¼ 10−9

(black), 10−10 (red), 10−11 (blue), and 10−12 (green). The other
parameters are set as Gμ ¼ 10−11 and p ¼ 1.
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