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We establish purely geometric or metric-based criteria for the validity of the separate universe ansatz,
under which the evolution of small-scale observables in a long-wavelength perturbation is indistinguishable
from a separate Friedmann-Robertson-Walker cosmology in their angle average. In order to be able to
identify the local volume expansion and curvature in a long-wavelength perturbation with those of the
separate universe, we show that the lapse perturbation must be much smaller in amplitude than the
curvature potential on a time slicing that comoves with the Einstein tensor. Interpreting the Einstein tensor
as an effective stress-energy tensor, the condition is that the effective stress energy comoves with freely
falling synchronous observers who establish the local expansion, so that the local curvature is conserved.
By matching the expansion history of these synchronous observers in cosmological simulations, one can
establish and test consistency relations even in the nonlinear regime of modified gravity theories.
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I. INTRODUCTION

In the separate universe approach, the impact of a long-
wavelength cosmological perturbation on local, short-
wavelength observables is modeled as a change in the
background cosmology. This technique has proven to be
very useful both conceptually and as a practical tool for
constructing consistency relations between observables that
hold nonlinearly. Separate universe arguments provide
insights into relations between N-point functions [1,2],
the evolution of isocurvature fluctuations in multifield
models [3–6], shifts in baryon acoustic oscillations [7],
super sample power spectrum covariance [8,9], position
dependent power spectra [10–12], cosmic microwave
background lensing covariance [13], and dark matter halo
bias [14–17].
In all of these studies, general relativity is assumed from

the outset and so the Einstein equations allow the validity of
the separate universe to be established through a mix of
conditions on the metric and the stress energy of the matter
such that a local observer will see a constant comoving
local curvature [18–21], which is the essential requirement
for the construction to work. In the following, we elucidate
purely geometric conditions for the validity of the separate
universe ansatz, with an eye toward extending these
applications to non-Einsteinian gravity theories.
Previous works on this question have focused on the

infinite wavelength limit, where the perturbed metric is
matched exactly to a separate Friedmann-Robertson-
Walker (FRW) cosmology [22] or have tested the ansatz
in the context of specific models [23–26] and parametriza-
tions [27–31] of modified gravity. Since the scale at which
the separate universe ansatz ceases to hold determines
where observational violations of consistency relations

occur, e.g. scale dependent halo bias and squeezed N-point
functions [32,33], we seek to establish conditions under
which the separate universe ansatz approximately holds.
In doing so, we also clarify the role of anisotropic stress,
real or effective, and shear in the expansion in these
conditions.
The outline of the paper is as follows. In Sec. II we

consider the geometric correspondence between perturba-
tions in the Einstein tensor and the local expansion and
curvature. We establish the comoving lapse condition for
the validity of the separate universe ansatz and relate it to
conservation of curvature for synchronous and comoving
local observers in Sec. III. In Sec. IV, we discuss the scales
associated with validity of the separate universe ansatz and
we discuss these results in Sec. V.

II. LOCAL EXPANSION AND CURVATURE

In this section, we establish the relationship between
metric perturbations and the local expansion and curvature,
utilizing the geometric interpretation of the Einstein tensor
and its covariant conservation. These associations can be
made in any gauge and any metric theory of gravity.
However absorbing the perturbations into a local FRW
expansion requires further restrictions that highlight special
choices of time slicing for Sec. III. We work in the mostly
plus metric convention throughout.

A. Background geometry

Given a background FRW spacetime with the line
element

ds2 ¼ aðηÞ2ð−dη2 þ γijdxidxjÞ; ð1Þ

PHYSICAL REVIEW D 95, 043529 (2017)

2470-0010=2017=95(4)=043529(14) 043529-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.043529
http://dx.doi.org/10.1103/PhysRevD.95.043529
http://dx.doi.org/10.1103/PhysRevD.95.043529
http://dx.doi.org/10.1103/PhysRevD.95.043529


where γij is a 3-metric of constant comoving curvature K,
the Einstein tensor is

G0
0 ¼ −3

�
H2 þ K

a2

�
¼ −3H2 −

Rð3Þ

2
;

Gi
j −G0

0

δij
3

¼ −
2

a2

�
ä
a
− a2H2

�
δij ¼ −

2

a
d2a
dt2

δij; ð2Þ

where overdots denote derivatives with respect to the 0,
conformal time component, η ¼ R

dt=a, and H≡dlna=dt.
Here Rð3Þ ¼ 6K=a2 is the 3-Ricci scalar and defines the
physical curvature scale, jRð3Þj−1=2, that comoves with the
expansion. The combination of 00 and ii components
characterizes the acceleration of the expansion. To avoid
an overly cumbersome notation, we omit overbars to
denote these background values since perturbations are
always designated as such below. When referring to the
resummed local background, we use the subscriptW for the
locally windowed average below.

B. Metric perturbations

Let us perturb the metric in an arbitrary gauge following
Refs. [18,19]. The most general metric perturbation we can
write is of the form

δg00 ¼ −a2ð2AÞ;
δg0i ¼ a2Bi;

δgij ¼ a2ð2EijÞ: ð3Þ

It is convenient to decompose these metric perturbations
in two ways. First we Hodge decompose the vector, Bi, and
tensor, Eij, perturbations:

Bi ¼ ∇iB þ BT
i ;

Eij ¼ ELγij þ
�
∇i∇j −

1

3
γij∇2

�
ET

þ∇ðiET
jÞ þ ETT

ij ; ð4Þ

where the vectors BT
i , ET

j are divergence free, and the
tensor ETT

ij is transverse and traceless. We are interested in
absorbing the scalar metric perturbations into a local
background and drop the divergence free and transverse
traceless pieces from consideration hereafter.
Second, it is helpful to make a harmonic decomposition

of the scalar components of the metric. The harmonics
themselves are the complete and orthogonal set of eigen-
modes of the spatial Laplace operator

∇2QðxÞ ¼ −k2QðxÞ: ð5Þ

Orthogonality, or more fundamentally the homogeneity and
isotropy of the background, means that we can consider

each eigenmode independently for linear perturbations.
Because we consider one eigenmode at a time, we omit the
k index for clarity. These eigenmodes are plane waves
when K ¼ 0, Q ¼ eik·x, and in this case our treatment
reduces to the usual Fourier decomposition of a general
spatial perturbation, examined one mode at a time. For
details of the decomposition in the K ≠ 0 cases, see
Ref. [34]. To build the scalar component of Bi and Eij it
is useful to introduce

QiðxÞ≡ −k−1∇iQðxÞ;

QijðxÞ≡
�
k−2∇i∇j þ

1

3
γij

�
QðxÞ; ð6Þ

whose indices are raised and lowered by γij, which also
defines the covariant spatial derivative ∇i. Our normaliza-
tion conventions for Qi and Qij are established to keep the
harmonic space representation of metric perturbations
dimensionless. We then obtain for a single scalar
eigenmode

Aðx; ηÞ ¼ AðηÞQðxÞ;
Biðx; ηÞ ¼ BðηÞQiðxÞ;
Eijðx; ηÞ ¼ HLðηÞQðxÞ þHTðηÞQijðxÞ; ð7Þ

or equivalently kBðx; ηÞ ¼ −BðηÞQðxÞ, ELðx; ηÞ ¼
HLðηÞQðxÞ and k2ETðx; ηÞ ¼ HTðηÞQðxÞ. In order to
relate these metric perturbations to the local expansion
and curvature we next consider their implications for the
Einstein tensor.

C. Einstein tensor perturbations

With the decomposition (7), the perturbation to the
Einstein tensor can be written as

δG0
0 ¼ GρQ;

δG0
i ¼ GvQi;

δGi
j − δG0

0

δij
3

¼ GpQδij þ GπQi
j; ð8Þ

where the individual components are given by

Gρ ¼ −
2

a2
ðk2 − 3KÞ

�
HL þHT

3

�
þ 6H2A

− 6
H
a

�
_HL þ kB

3

�
; ð9Þ

Gv ¼
2k
a2

�
aHA −

�
1 −

3K
k2

��
_HL þ

_HT

3

�

−
3K
k2

�
_HL þ kB

3

��
; ð10Þ
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Gp ¼ 2

a2

��
2
dðaHÞ
dη

þ aH
d
dη

−
k2

3

�
A

−
�
d
dη

þ _a
a

��
_HL þ kB

3

��
; ð11Þ

Gπ ¼ −
1

a2

�
k2
�
AþHL þHT

3

�

þ
�
d
dη

þ 2
_a
a

�
ðkB − _HTÞ

�
: ð12Þ

Each of these G components of the Einstein tensor
contains up to second derivatives of the metric potentials.

D. Gauge

The general decomposition of the scalar components of
the metric and Einstein tensor perturbations in the previous
sections applies to any gauge. However, the values of the
individual components of course depend on the gauge and
we shall see below there are special gauges for which the
association of a local FRW background is the closest.
Under a gauge transformation, or diffeomorphism,

xμ ↦ xμ þ ξμ, the scalar metric perturbations transform as

δξA ¼ −HðaTÞ0;

δξB ¼ aH

�
L0 þ k

aH
T

�
;

δξHL ¼ −
k
3
L − aHT;

δξHT ¼ kL; ð13Þ

where we have split the diffeomorphism parameter as
ξμ ¼ ðT; LQiÞ. Here and throughout when highlighting
scalings, we employ dimensionless e-fold derivatives
0 ≡ d=d ln a ¼ ðaHÞ−1d=dη. The variables T and L define
the change in the time slicing and threading of the gauge,
respectively. Between any two gauges that are fully fixed,
T and L are uniquely defined.
Despite the fact that the metric potentials, as compo-

nents of a tensor, manifestly transform under a diffeo-
morphism, and therefore take different numerical values in
each gauge, we use the same symbols fA;B;HL;HTg or
fGρ;Gv;Gp;Gπg to parametrize the metric and Einstein
tensor in any gauge. For example the lapse perturbation, A,
in a gauge that is completely fixed is a perfectly well-
defined geometric quantity when viewed as a spacetime
object in its own right but is not equal to the lapse
perturbation in a different gauge.
To avoid confusion, when we specify relations that

apply only to a specific gauge below, we will assign
special variables to the components; for example we call
the lapse perturbation in comoving gauge ξ ¼ Ajcom below.
Since a gauge transformation between two fixed gauges

is a one-to-one transformation that uniquely defines T
and L, a perturbation in one gauge may always be written
as a unique combination of the variables in a different
gauge, e.g.

ξ ¼ A −H½aTðA; B;HL;HTÞ�0; ð14Þ

where T is specified in this case by Eq. (51) below.
Combinations of variables of this type are often called
“gauge invariant” or “Bardeen” variables in the literature.
Since the gauge-fixed and Bardeen variables, thought of as
scalar functions in the spacetime, represent the same
geometric objects—and take on the same numerical
values—we use the same special symbols for both, e.g. ξ
in the example above. We simply give T and L from which
the Bardeen representation can be obtained with Eq. (13).

E. Local expansion and curvature

We would now like to assign a geometric interpretation
to the components of the Einstein tensor in the 3þ 1
decomposition. In order to do this, we note that the
covariant derivative of a unit timelike vector can in general
be decomposed with the help of the induced metric

Pμν ¼ gμν þ nμnν; ð15Þ

into the expansion

θ≡∇μnμ; ð16Þ

vorticity

ωμν ≡ Pμ
αPν

βð∇βnα −∇αnβÞ; ð17Þ

shear

σμν ≡ 1

2
Pμ

αPν
βð∇βnα þ∇αnβÞ −

θ

3
Pμν; ð18Þ

and acceleration

aμ ≡ ð∇αnμÞnα ð19Þ

of the vector field such that

∇νnμ ≡ ωμν þ σμν þ
θ

3
Pμν − aμnν: ð20Þ

For the particular vector nμ ¼ ð−að1þ AQÞ; 0Þ which is
normal to the constant time surfaces, ωμν ¼ 0, σ00 ¼ σ0i ¼
0 ¼ a0 with (see e.g. [19])
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σij ¼ a2HΣQij;

ai ¼ −kAQi;

θ ¼ 3Hð1 − AQÞ þ 3HδN0Q; ð21Þ

where the amplitude of the shear is

Σ ¼ H0
T −

k
aH

B; ð22Þ

and we isolate particular terms in the expansion

δN0 ¼ H0
L þ k

aH
B
3
¼ H0

L þH0
T

3
−
Σ
3
; ð23Þ

for reasons that we will now make clear [4].
We can now use these relations to interpret the compo-

nents of the perturbed Einstein tensor, starting with Gρ. In a
FRW background the Gρ component represents the metric
side of the Friedmann equation. In order to generalize this
to the perturbed case, we must define the local Hubble rate.
Geometrically, the local volume expansion in an isotropic
universe is the fractional change per unit proper time, τ, of
the cube of the local scale factor, d ln a3W=dτ, seen on the
worldline of an observer at fixed spatial coordinates.
Therefore, we should define the local Hubble rate in a
perturbed universe, HW , using the expansion rate of the
volume on spatial slices as

HW ≡ d ln aW
dτ

≡ 1

3
θ ¼ H þ δHQ; ð24Þ

where we have defined

δH ¼ ðδN0 − AÞH: ð25Þ

Here and below the subscript W denotes a local windowed
average on scales much smaller than the wavelength of the
perturbation. Note that this expression takes the form of
the background Hubble parameter, plus a perturbation.
The term proportional to A comes from the conversion
from proper time of the local observer through conformal
time to cosmic time dτ ¼ að1þ AQÞdη ¼ ð1þ AQÞdt.
The remaining piece can be attributed to the change in
the difference between the e-folds of the local and global
expansion,

ln aW ¼ ln aþ δNQ; ð26Þ

per unit cosmic time. Note that Eq. (23) defines ln aW only
up to a constant, which just amounts to choosing a
normalization epoch for the local scale factor. We choose
this constant so that aW ¼ a at some suitable initial epoch.
By defining HW in this more general way utilizing the

volume expansion we also allow shear or anisotropic
perturbations, even though they do not exist in the FRW

case. Conversely, in these cases the separate universe ansatz
is taken to mean that angle-averaged local observables are
indistinguishable from those in the separate universe.
Furthermore, note that the observers that define the local
expansion in this section need not be geodesic observers,
though in Sec. III we use geodesic observers to define the
separate universe condition.
Next we consider the perturbation to the scalar Ricci

3-curvature on this slicing

δRð3Þ ¼ 4

a2
ðk2 − 3KÞ

�
HL þ 1

3
HT

�
: ð27Þ

In this sense HL þHT=3 is the potential for curvature
fluctuations.
Combining the expressions for the perturbed Hubble

parameter and the perturbed 3-curvature, we can write Gρ as

Gρ ¼ −6HδH −
1

2
δRð3Þ; ð28Þ

which combined with the background, Eq. (2), takes the

locally resummed form −3H2
W − Rð3Þ

W =2. Defining the local

curvature by KW ¼ a2WR
ð3Þ
W =6 we can write the local

Einstein tensor as

G0
0jW ¼ −3

�
H2

W þ KW

a2W

�
; ð29Þ

where the local curvature is given explicitly by

KW ¼
�
aW
a

�
2

K þ a2W
6

δRð3ÞQ

≡ K þ δKQ; ð30Þ

which defines the local curvature fluctuation to linear
order as

δK ¼ 2

3
ðk2 − 3KÞ

�
HL þHT

3

�
þ 2δNK: ð31Þ

Note the last term is nonzero only if K ≠ 0 and is
associated with the difference between a nonzero back-
ground curvature that comoves with the global or local
expansion. If we take k2 ≪ 3jKj, both δN andHL þHT=3,
which we would consider a curvature potential in the
opposite limit, are themselves curvature perturbations, i.e.
fractional changes to the background curvature, K. In
Ref. [22], this association was exploited to map a k ¼ 0
fractional change in the background curvature, K, onto the
Newtonian gauge potentials (see Sec. IV B) in order to
relate the dynamics of the perturbations for k2 ≪ 3jKj to
that of the background. Since we seek to define the local
expansion for wavelengths that are larger than the horizon
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but smaller than the curvature scale, we do not utilize this
approximation here. Where no ambiguity should arise, we
occasionally use the shorthand convention of the literature
and call the curvature potential perturbation HL þHT=3 a
curvature perturbation even for k2 ≫ 3jKj.
If the local expansion for a given slicing behaves as a

separate FRW universe, then the local curvature of this
slicing is constant, K0

W ¼ δK0 ¼ 0. However the geometric
correspondence (29) holds regardless of slicing or the
validity of the separate universe ansatz. The form simply
reflects geometric labels that we put on the components of
the Einstein tensor.
Note that according to Eq. (23), the curvature potential

changes if the e-folding rate, δN0, is not spatially uniform
or if there is shear in the expansion Σ. If the shear is
negligible then the change in the curvature potential can be
computed from the change in e-folds, a technique that is
known as the δN formalism, often employed in the context
of inflation [4].
Next let us interpret the Einstein tensor component Gv.

It has no analogue in a background FRW spacetime but
using Eq. (31) for the local curvature perturbation, we can
rewrite it as

Gv

H2
¼ 2

k
aH

�
A −

3

2

δK0

k2

�
: ð32Þ

Gv takes δK0, the evolution of the local curvature on the
slicing, and combines it with the lapse perturbation A. We
shall see below that comoving gauge sets Gv ¼ 0 to obtain
a conservation law for the comoving gauge curvature
potential.
Gp is related to the perturbation to the local acceleration

of the expansion. From the long wavelength limit

lim
k→0

Gp ¼ 4

a2
dðaHÞ
dη

Aþ 2H
a

_A −
2

a2

�
d
dη

þ _a
a

�
_δN; ð33Þ

we can see that

Gi
j −

1

3
G0

0δ
i
j

���
W
≈ −

2

aW

d2aW
dτ2

δij: ð34Þ

Note that the limit in Eq. (33) involves dropping the k2A
term in Gp. If the lapse A is set to zero by a gauge choice, as
in synchronous gauge, then there is no restriction on k.
More generally, a sufficient condition for (33) to be true is

���� d lnAd ln a
þ 2

d lnðaHÞ
d ln a

���� ≫ 1

3

�
k
aH

�
2

: ð35Þ

The anisotropic Gπ term, like the Gv term, does not exist
for a FRW cosmology. At the perturbative level, it takes the
form

Gπ

H2
¼ −

�
k
aH

�
2
�
AþHL þHT

3

�
þ Σ0 þ

�
3þH0

H

�
Σ:

ð36Þ

It is nonzero if there is a shear in the expansion, Σ,
or—should the shear be set to zero as in the Newtonian
gauge below—if the lapse perturbation is not equal and
opposite to the curvature potential.
As alluded to above, when fixing a gauge we will

typically do it by specifying that one of these geometric
quantities vanishes. It is therefore useful to give their gauge
transformation properties explicitly:

δξ

�
HL þHT

3

�
¼ −aHT;

δξðδN0Þ ¼ −ðaHTÞ0 þ 1

3

k
aH

kT;

δξ

�
δK0

k2

�
¼ −

2

3
ðaHTÞ0 þ 2

3

KT
aH

;

δξΣ ¼ −
k
aH

kT;

δξ

�
δH
H

�
¼ −

�
H0

H
þ 1

3

�
k
aH

�
2
�
aHT; ð37Þ

and

δξ

�
Gρ

H2

�
¼ 6

�
H0

H
−

K
a2H2

�
aHT;

δξ

�
Gv

H2

�
¼ 2

k
aH

�
aH0 −

K
aH

�
T;

δξ

�
Gp

H2

�
¼ 2

ðH2 þHH0Þ0
H2

aHT;

δξ

�
Gπ

H2

�
¼ 0: ð38Þ

Notice that these quantities, along with the lapse perturba-
tion, A, whose gauge transformation is given in Eq. (13),
depend only on the time slicing. Therefore gauge con-
ditions on these quantities define the time slicing through T
and generally no more than one of these quantities may be
set to zero by a gauge choice.

F. Effective stress tensor

Many relationships in the literature for how the
curvature potential evolves assume general relativity
and therefore are expressed in terms of the total stress
energy of the matter. In order to connect with this
language but remove the assumption of general relativity,
it is useful to also relabel the Einstein tensor as an
effective stress tensor
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Tμν ≡ 1

8πG
Gμν; ð39Þ

so that at the background level T0
0 ¼ −ρ and Ti

j ¼ p
whereas for the most general scalar perturbations

δT0
0 ¼ −δρQ;

δT0
i ¼ ðρþ pÞðv − BÞQi;

δTi
j ¼ δpQδij þ pπQi

j: ð40Þ

Note that this reinterpretation does not require that the
Einstein equations hold, it is merely a convenient way of
organizing the geometric object that is the Einstein
tensor.
On the other hand, in general relativity these components

correspond to familiar quantities in the actual stress tensor
of all matter species, with δρ being the energy density
fluctuation, ðρþ pÞðv − BÞ the momentum density, p the
pressure fluctuation, and pπ the scalar anisotropic stress.
For modified gravity theories, where the Einstein equa-

tion does not hold, we can view these effective stress-
energy components as simply a convenient relabeling of the
G linear combinations of the metric perturbations and their
derivatives, leading to a dual set of interpretations of their
values as effective stress-energy components

Gρ ≡ −8πGδρ;

Gv ≡ 8πGðρþ pÞðv − BÞ;
Gp ≡ 8πGðδpþ δρ=3Þ;
Gπ ≡ 8πGpπ: ð41Þ

Since∇μGμν ¼ 0 by virtue of the Bianchi identities, we can
use the implied conservation equations ∇μTμν ¼ 0,

½a3δρ�0
a3

þ 3δp ¼ −ðρþ pÞ
�
kv
aH

þ 3H0
L

�
;

aH
k

½a4ðρþ pÞðv − BÞ�0
a4

¼ δp −
2

3

�
1 −

3K
k2

�
pπ

þ ðρþ pÞA ð42Þ

as dynamical relations between the metric components.
These are “conservation” equations for the effective stress
components. Substituting their metric definitions from
Eqs. (9)–(12) and (41), we see that these relations are
indeed identities and are automatically satisfied for the set
of metric fluctuations fA;B;HL;HTg in any gauge.
To move between gauges, it is useful to note that the

effective stress components—or equivalently the respective
metric combinations, G—transform as

δξðδρÞ ¼ −_ρT;

δξðδpÞ ¼ − _pT;

δξv ¼ _L;

δξπ ¼ 0: ð43Þ

Note that π is gauge invariant in the full sense that the
anisotropic stress takes the same value for all slicings and
threadings. These transformation properties also apply to
any component of real stress energy in the universe as they
follow from the transformation properties of a tensor.
Likewise if there is a real component “a” of stress energy

that is separately covariantly conserved, ∇μT
μν
a ¼ 0, then

its energy and momentum densities obey the conservation
laws (42). In particular it will be useful in the next sections
to consider a component of nonrelativistic matter initially at
rest with respect to the expansion. In an arbitrary gauge, its
conservation equations become

δ0m ¼ −
kvm
aH

− 3H0
L;

½aðvm − BÞ�0 ¼ k
H
A; ð44Þ

where δm ¼ δρm=ρm, pm ¼ 0, and π ¼ 0. Note that this
component need not be associated with real matter in the
universe. It could be a fictitious trace component with
Tμν
m → 0 that has no impact on the expansion. Such a trace

component simply defines a set of local observers. In this
sense, all of our constructions here and in the next section
are the same whether the metric is cast in the Jordan or
Einstein frame of a modified gravity theory or whether the
true matter is minimally coupled to the metric. In Einstein
frame, where e.g. cold dark matter no longer falls on
geodesics of the metric, the componentm is purely a device
to establish a coordinate system of geodesic observers.

III. SEPARATE UNIVERSE AND CURVATURE
CONSERVATION

In this section, we establish the conditions under which
local angle-averaged observables in a perturbed universe
are to good approximation those of a separate FRW
universe defined by the local expansion and curvature—
which we call the separate universe ansatz. These con-
ditions take on various forms in various time slicings since
in an exact FRW expansion the preferred slicing is
simultaneously synchronous, comoving, uniform density,
uniform e-folding, and zero shear whereas in the perturbed
universe, no single slicing can satisfy all of these properties
simultaneously.
The primary condition, as discussed in Sec. III A, is

that the local curvature for synchronous observers initially
at rest with respect to the expansion is conserved. In
Sec. III B, we show that this occurs when the synchronous
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and the comoving gauge approximately coincide, satisfying
the condition that the comoving lapse perturbation is
much smaller than the curvature potential. In Sec. III C,
we discuss the relationship between these equivalent
conditions and the conservation of curvature on slicings
of constant density or constant e-folding.

A. Synchronous gauge

Local geodesic observers that are initially at rest with
respect to the background expansion define a synchronous
coordinate system. We use these observers to define the
local FRW expansion. Conservation of the local curvature
in this synchronous gauge is therefore the primary con-
dition for the validity of the separate universe ansatz.
In a synchronous gauge, the time reparametrization

freedom is used to fix A ¼ 0 and the spatial gauge freedom
is utilized to set B ¼ 0. This is the coordinate system
defined by a set of geodesic observers that synchronize
their clocks. There is residual gauge freedom in defining
which observers establish the synchronous coordinates. As
discussed in Sec. II F, we can take this set of observers to be
tracer particles of nonrelativistic matter, m, initially at rest
with respect to the expansion and possessing spatially
uniform density. They subsequently fall on geodesics of
the local metric and hence obey Eq. (44). Over a distance
that is short compared with the wavelength of the mode,
synchronous coordinates coincide with comoving Fermi
normal coordinates for an isotropic configuration (see
e.g. [21]).
From an arbitrary gauge, we can reach this synchronous

gauge with

T ¼ vm − B
k

; _L ¼ −vm; ð45Þ

and Eq. (44), leaving a nondynamical constant freedom in
L that is fixed by demanding that the spatial coordinates are
unperturbed initially.
Using these relations in the gauge transformation equa-

tions allows us to represent the synchronous gauge per-
turbation variables in terms of the variables in an arbitrary
gauge, i.e. the Bardeen representation. In particular, the
matter velocity in this gauge vanishes vmjsynch ¼ vmþ
_L ¼ 0, but will not in an arbitrary gauge.
Let us give the curvature potential in this synchronous

gauge a unique symbol,

−ηT ≡HL þHT

3

����
synch

; ð46Þ

and define the remaining scalar metric perturbation as
hL ≡ 6HLjsynch. From this point on in this section all
quantities are evaluated in this synchronous gauge unless
otherwise specified.

Using Eq. (31), the local curvature that the observers
would define is given by KW ¼ K þ δKQ where

δK ¼ −
2

3
ðk2 − 3KÞηT þ 1

3
KhL: ð47Þ

In order for the separate universe ansatz to hold exactly, we
must have δK0 ¼ 0. From Eq. (32) we can see that this
condition is equivalent to requiring Gv ¼ 0.
From the association of the momentum term in the

effective stress (41), we see that this condition geometri-
cally means that the effective velocity vanishes, v ¼ 0.
Since this is the gauge where vm ¼ 0, the gauge invariant
condition is that the effective matter comoves with the
synchronous matter: v − vm ¼ 0. In other words, the
validity of the separate universe approximation rests on
whether synchronous gauge and comoving gauge coincide.
Conversely, the local curvature evolves only if the effective
matter moves away from the geodesics that define the
synchronous observers.
Moving away from this exact statement, we can define a

condition under which the separate universe ansatz holds
approximately, which only requires that the fractional
change of δK per e-fold is small, jδK0j ≪ jδKj, so that

���� δKk2
���� ≫

���� 13
aH
k

Gv

H2

���� ¼
���� 8πGðρþ pÞ

3H2

aH
k

v

����: ð48Þ

When K ¼ 0, this reads

jηT j ≫
���� 4πGðρþ pÞ

H2

aH
k

v

����: ð49Þ

Recall that the effective momentum conservation
equation (42) provides the evolution equation for v,

aH
k

½a4ðρþ pÞv�0
a4

¼ δp −
2

3

�
1 − 3

K
k2

�
pπ; ð50Þ

so we see that the conditions (48) and (49) restrict how
much the effective stress gradients are allowed to generate
momentum and move the effective matter off the synchro-
nous geodesics. We will establish the relationship between
this condition and the equivalence of the synchronous and
comoving gauges next.

B. Comoving gauge

Comoving gauge is useful in that the separate universe
condition can be phrased as simple algebraic relations
rather than the pair of synchronous relations, Eqs. (49) and
(50). Since Eq. (32) for Gv involves δK0, taking comoving
slicing where Gv ¼ 0 gives an evolution equation for the
curvature fluctuation. To get to comoving gauge from an
arbitrary slicing, we apply the time shift
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T ¼ −
Gv

2k

�
HH0 −

K
a2

�
−1
: ð51Þ

In this slicing, the effective momentum density vanishes,
T0

i ¼ 0, and hence comoves with the coordinates, v ¼ B
[see Eq. (41)]. Let us give unique symbols for the curvature
potential and lapse which are fully fixed by the slicing

R≡HL þHT

3

����
com

; ξ≡ Ajcom: ð52Þ

From this point on in this section all quantities are
evaluated on comoving slicing unless otherwise specified.
From Eq. (32) we obtain the curvature evolution

equation

δK0 ¼ 2

3
ðk2 − 3KÞR0 þ 2KδN0 ¼ 2

3
k2ξ: ð53Þ

The curvature on comoving slicing is conserved if the lapse
is sufficiently small in comparison,

jξj ≪ jδK=k2j: ð54Þ
We can alternately express this lapse condition in terms
of the curvature potential by eliminating δN0 in favor of
the shear

R0 −
K
k2

Σ ¼ ξ: ð55Þ

For K ¼ 0 this reduces to the simple condition that
jξj ≪ jRj and we shall see below [see Eq. (61)] that
assuming jξj ≪ jRj generically implies jΣj ≪ jRj above
the horizon. We therefore for convenience refer to the lapse
condition as

jξj ≪ jRj ⇒
����R

0

R

���� ≪ 1 ð56Þ

for k2 ≫ jKj and jKj ≪ ðaHÞ2, i.e. for all relevant scales to
be below the background curvature scale. More generally
Eq. (54) is the direct and precise statement and does not
require any condition on K.
The utility of working in comoving slicing is that we can

simply state the condition for curvature conservation as
algebraic relationships between the metric variables. To
further establish the connection with the separate universe
condition, we can specify the threading to fully fix the
gauge, even though it does not enter into the lapse
condition. A convenient choice is “comoving threading,”
so that Gi

0 ¼ 0. In this case vjcom ¼ 0 and we can reach
this gauge from a gauge with a finite v by a diffeomorphism
with _L ¼ −v. This does not uniquely fix the threading since
it allows an arbitrary time-independent diffeomorphism
L ¼ const which shifts the coordinates by δxi ∝ QiðxÞ, but

we again fix this ambiguity by taking the coordinates to be
unperturbed initially.
When the lapse condition equation (56) is satisfied, this

fully fixed comoving gauge approximately coincides with
the synchronous gauge. More explicitly, defining synchro-
nous observers as in Sec. III A, following the same geo-
desics as freely falling matter, the synchronous gauge
curvature is given in comoving variables by

−ηT ¼ R −
aH
k

vm; ð57Þ

and matter conservation, Eq. (44), gives

vm ¼ 1

a

Z
da
a

k
H
ξ; ð58Þ

where the condition that the matter is initially at rest fixes
the integration constant. Combining these equations, we
see that the curvatures in the two gauges are the same,
−ηT ≈R, when the comoving lapse condition jξj ≪ jRj is
satisfied.
We emphasize that in general comoving slicing and

synchronous slicing will not coincide, since Gv ¼ 0 and
A ¼ 0 both define the time slicing. However it is precisely
the case where they approximately coincide due to the
comoving lapse condition that the separate universe
ansatz holds.
The condition (56) is nice because it is a purely geo-

metric test for when the comoving curvature will be
conserved (and hence, when the separate universe ansatz
holds). However, it is sometimes helpful to think in terms of
the effective stresses on the metric, so we can also express
the lapse condition in terms of algebraic constraints on the
effective stress tensor. In particular the momentum con-
servation equation (42) gives an algebraic relation for the
comoving gauge lapse in terms of the stresses [18]

ðρþ pÞξ ¼ −δpþ 2

3

�
1 −

3K
k2

�
pπ: ð59Þ

Thus the small lapse condition can be reexpressed as a
comparison between the curvature perturbation and the
stress perturbations in comoving slicing

R0 ¼ −
δp

ρþ p
þ 2

3

pπ
ρþ p

ð60Þ

for k2 ≫ 3jKj. In particular, on large scales k=aH ≪ 1, the
comoving curvature is still conserved even if there is an
effective anisotropic stress pπ that is of order of the
isotropic stress fluctuation δp as long as both are sup-
pressed by powers of k=aH compared with the curvature
(cf. [21]). This also includes any contribution from non-
adiabatic pressure, δp − ðp0=ρ0Þδρ. Furthermore since pπ is
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the source of shear in the expansion Σ through Eq. (41), the
comoving lapse condition (56) also generally implies

jΣj ≪ jRj for k ≪ aH: ð61Þ

We shall see next that although the lapse condition (56)
generically implies the shear condition (61) the converse is
not true and leads to another perspective on the conserva-
tion of curvature above the horizon.

C. Uniform density gauge

A related, but fundamentally different, criterion for
the conservation of curvature can be obtained from the
uniform density gauge of a real density component awhose
stress energy is separately conserved: ∇μT

μν
a ¼ 0. If this

component has a barotropic equation of state paðρaÞ,
then choosing a gauge where δρa ¼ 0 sets δpa ¼ 0 as
well. The continuity equation (42) then becomes an
evolution equation for the curvature [4].
For simplicity and definiteness let us assume that the

component is the nonrelativistic matter of Eq. (44), a ¼ m.
Again this need not be a component of real matter that
impacts the expansion. It merely establishes the coordinate
system.
The spatially uniform density condition defines the

slicing of the gauge and the gauge transformation from
any other gauge is given by

T ¼ δρm
_ρm

¼ −
1

aH
δm
3
: ð62Þ

In order to fix the threading of the gauge, we set HT ¼ 0
and call the curvature potential in this gauge ζm, the lapse
perturbation Am, and the shift perturbation Bm. The
curvature in this gauge is related to the curvature and
matter density perturbations in an arbitrary gauge as

ζm ¼ HL þHT

3
þ δm

3
: ð63Þ

The curvature potentials only agree for conditions and
gauges where the density fluctuation is already small
compared with the curvature potential. Then the shift to
constant density slicing does not significantly change the
curvature. From this point on in this section all quantities
are evaluated in uniform density gauge unless otherwise
specified.
The benefit of this gauge is that the matter continuity

equation (44) provides the evolution equation for the
curvature

ζ0m ¼ −
k
aH

vm
3
; ð64Þ

so that the condition for conservation becomes

jζmj ≫
���� k
aH

vm
3

����: ð65Þ

Though this condition (65) can be stated independently of
the Einstein equation, its domain of validity in k cannot
without knowing the dynamics that sets the relative
amplitudes of ζm and vm. In this sense it is no different
than the analogous synchronous gauge condition (49) or
the comoving lapse condition (56).
To probe the differences with the other conditions,

we can again examine the momentum conservation
equation (44)

vm ¼ 1

a

Z
da
a

k
H
Am þ Bm; ð66Þ

so that

ζ0m ¼ −
k

a2H

Z
da
a

k
H
Am −

k
aH

Bm: ð67Þ

For jζ0m=ζmj ≪ 1, both the lapse, Am, and the shift, Bm,
must be in some sense small. On the other hand, their
amplitudes can be as large as the curvature itself, ζm, and
still allow jζ0m=ζmj ≪ 1 as k=aH → 0.
This condition on the metric is apparently weaker than

the comoving lapse or synchronous conditions. For exam-
ple in a multifluid system with isocurvature modes, the
curvature perturbations, ζa, in the constant density gauges
of each component, a, are conserved outside the horizon
even when the comoving curvature R is not [4].
More explicitly, in our context the conservation of ζm

does not necessarily imply conservation of either R or ηT.
To see this, we can take the derivative of Eq. (63) and use
the matter continuity equation (44) in an arbitrary gauge

ζ0m ¼ −
k
aH

vm
3

þH0
T

3

¼ −
k
aH

vm − B
3

þ Σ
3
: ð68Þ

This equation does not relate the evolution of the curvature
perturbation in any other gauge to the evolution of ζ0m
precisely because H0

L þH0
T=3 drops out of the right-hand

side. Thus, we see that conservation of the curvature in
constant density gauge as k=aH → 0 relies on the condition
that the shear is much less than the curvature in ampli-
tude jΣj ≪ jζmj.
In the previous section we showed that the lapse

condition generally implied the shear condition above
the horizon. Since the converse is not necessarily true,
the shear condition alone does not establish the separate
universe condition for geodesic observers. For example
when jΣj ≪ jζmj but jAmj ∼ jζmj, the local FRW coordinate
system constructed from synchronous observers would still
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violate the separate universe criteria. Using the gauge
transformation to synchronous gauge from constant density
gauge and the continuity equation (44) we can obtain the
evolution equation for the synchronous gauge curvature:

−η0T ¼ ζ0m −
�
aH
k

ðvm − BmÞ
�0

¼ ζ0m − Am −H0
Z

da
a
Am

H
; ð69Þ

so that ηT can evolve significantly even if ζm does not as
k=aH → 0 if jAmj ∼ jηT j. For the two conditions to
coincide, it must be the case that jAmj ≪ jζmj, which is
again a condition on the lapse rather than on the shear.
In fact, we can interpret and generalize the relationship

between curvature and shear by recalling that Eq. (23) also
provides an evolution equation for the curvature potential in
terms of the change in e-folds δN0 and the shear in an
arbitrary gauge

H0
L þH0

T

3
¼ δN0 þ Σ

3
: ð70Þ

Thus in a uniform e-folding gauge, where δN0 ¼ 0, the
curvature only evolves if there is shear in the expansion.
Uniform density gauge for any matter component with a
barotropic equation of state is a constant e-fold gauge as
k=aH → 0, if the density only evolves because of the
change in the spatial volume rather than the momentum
density of the matter. Observers on fixed spatial coordinates
will then see a local expansion that conserves the local
curvature. However, since the shear condition does not
guarantee they are geodesic observers, we do not consider
uniform e-folding gauges further.

IV. SEPARATE UNIVERSE SCALE

The comoving lapse condition, or the equivalence of the
synchronous and comoving gauges, provides general con-
ditions for the conservation of curvature and the validity of
the separate universe ansatz but does not directly provide a
physical scale above which they are satisfied. To get further
insight on this question, there are two general approaches
one can take. The first is to parametrize relationships
between the effective stress energy and metric which we
discuss in Sec. IVA. This has the benefit of generality, as it
applies to cases where the matter is nonminimally coupled
and reduces to well-known results in general relativity
when the effective stress energy is the actual matter stress
energy. The second, which we discuss in Sec. IV B, is to
parametrize relationships between the actual stress energy
of matter and the metric, i.e. the modifications to the
Einstein equations applicable to wide class of modified
gravity models [25–31,35].

A. Comoving Jeans scale

The separate universe condition (56) expressed in
comoving gauge is that the lapse perturbation must be
much smaller than the curvature potential. The lapse itself
is directly related to the effective stresses through Eq. (59).
We therefore need to make a connection between the
curvature and the effective stress energy to close the system
and determine the scale or domain of validity of the
separate universe ansatz. In this section we express all
perturbations in terms of the comoving gauge quantities.
Using the Gρ effective stress-energy equation (41), we

have for k2 ≫ 3jKj and a2H2 ≫ jKj,

R ≈ 3

�
aH
k

�
2
�
R0 − δN0 þ 1

2

δρ

ρ

�

¼
�
aH
k

�
2
�
Σþ 3

2

δρ

ρ

�
: ð71Þ

We can eliminate δρ by defining the sound speed on
comoving slicing as

c2s ≡ δp
δρ

; ð72Þ

and relate it to R0 ≈ ξ by defining an analogous “Jeans”
speed that includes anisotropic stress,

c2J ≡ δp − 2pπ=3
δρ

¼ −
ðρþ pÞR0

δρ
: ð73Þ

Finally, we can eliminate Σ by taking the derivative of
Eq. (71) and using the Gp effective stress-energy equa-
tion (41) in the form

Σ0

3
≈
4πG
H2

�
δpþ δρ

3

�
−
�
2þH0

H

�
Σ
3

−
�
H0

H
−
1

3

�
k
aH

�
2
�
R0 ð74Þ

to obtain the equation of motion for R

1

a3

�
a3H0R

0

c2J

�0
≈ 3H0R0

�
1 −

c2s
c2J

�
−
�

k
aH

�
2

H0R; ð75Þ

where the only approximation is a negligible background
curvature: k2 ≫ 3jKj and a2H2 ≫ jKj. In particular since
c2s and c2J are relations for the effective stress, they supply
closure relations in terms of the metric—not the true
matter—and hence do not assume the validity of the
Einstein equations. From this equation, we can read off
the regimes where jR0=Rj ≪ 1 is a solution.
For the case of negligible effective anisotropic stress,

c2J ¼ c2s and we can formally integrate Eq. (75) to find
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R0 ¼ −
c2s

a3H0

�Z
da
a
a3
�

k
aH

�
2

H0Rþ const

�
: ð76Þ

There are two generic cases of interest. If the integrand is
growing with a then the integral term will be dominated by
the last few e-folds and its contribution to R0 will scale as
∼ðcsk=aHÞ2R. If the integrand receives its contribution
mainly from earlier epochs then the integral will be
constant or at most logarithmically growing with a and
play a role similar to the constant of integration term.
In both cases, if jc2s=a3H0j decreases with a as a−p with

p > 0 then R will be nearly constant over the e-fold time
scale if jcsk=aHj ≪ 1. This is the normal case where the
comoving curvature is conserved outside the sound hori-
zon. If p ≤ 0 then R0 can grow with a, allowing R to
change significantly outside the sound horizon. This
phenomenon occurs in inflation when the background is
rapidly approaching de Sitter space on a nearly flat
potential [36] and violates the separate universe condition
and hence the consistency relation between the power
spectrum and the bispectrum [37]. Other cases of a growing
1=a3H0 were given in Ref. [38] where there is excess
kinetic energy in the field beyond that expected from the
local slope of the potential on the attractor.
In the case where anisotropic stress dominates,

jc2Jj ≫ jc2s j. In this situation the first term on the right-
hand side of Eq. (76) contributes. If jc2Jj ≪ 1 then the
arguments above for conservation of curvature above the
sound horizon apply with the generalization to the Jeans
horizon. That is, R is conserved for jcJk=aHj ≪ 1. If
jc2Jj ≫ 1 then the additional term can be larger and limit the
scale where R is conserved to the horizon, k=aH ≪ 1.
In this case the anisotropic stress dominates and makes the
δN0 and δρ=ρ terms in Eq. (71) negligible in comparison
to R0.
It is also important to note that although c2s and c2J play

the role of closure relations, similar to equations of state for
the matter in general relativity with a single matter fluid, in
general they need not have any correspondence to the true
matter equations of state, nor are they specified by matter
content and background alone. For example even in
Einstein gravity c2s is defined as the ratio of the total
pressure perturbation to the total energy density perturba-
tion on comoving slicing, which is defined by the total
matter. In a multifluid case, this does not correspond to the
sound speeds of the individual components. In the presence
of isocurvature modes, cs defined in this way can be very
large, c2s ≫ 1, because the energy densities of the multiple
components can cancel, and R can evolve by a significant
amount arbitrarily far outside the horizon.
Another interesting case is that of the cuscuton model,

where the kinetic term of the k-essence field in the
Lagrangian carries no energy density fluctuations [39].
Hence in the time slicing where the field is spatially
uniform, or equivalently comoving slicing with respect

to the field, the finite pressure fluctuation and zero energy
density fluctuation implies an infinite sound speed.
However, in the presence of other matter components,
the sound speed of the total matter remains finite if there is
an additional normal matter component and one can again
define a comoving sound horizon above which R is
constant. The comoving sound horizon therefore grows
beyond the horizon as the universe enters late-time accel-
eration due to field domination.
In both the flat roll and cuscuton examples, we can trace

the origin of the violation of the separate universe condition
to the more direct relation (60) and the simple and general
criteria that the lapse perturbation should be smaller than
the curvature potential equation (56). Since

8πGðρþ pÞ ¼ −2HH0 þ 2
K
a2

; ð77Þ

the impact of stress fluctuations on the evolution of the
comoving curvature is enhanced if the expansion rapidly
approaches de Sitter space at negligible background
curvature.
In models where the Einstein equations no longer hold

between the true matter and the metric these definitions still
hold but c2s and c2J depend on the modification to gravity
and hence need not bear any relationship to the equations of
state of the matter components alone.

B. Parametrized gravity

A second approach to developing a sense of scale for the
separate universe beyond general relativity is to parame-
trize modifications through relations between the true
matter stress energy and the metric variables. This approach
usually assumes that the true matter is minimally coupled to
the metric and so we restrict ourselves to minimal coupling
in this section alone.
Parametrizations of this type are most commonly done in

conformal Newtonian gauge, so we begin by reviewing its
properties. In conformal Newtonian gauge we take a shear-
free slicing, Σ ¼ 0, and isotropic threading: specifically
A≡ Ψ, B ¼ 0, HL ≡Φ, and HT ¼ 0. The diffeomorphism
parameters to get to conformal Newtonian gauge from an
arbitrary gauge are

T ¼ aH
k2

Σ; L ¼ −
HT

k
: ð78Þ

From this point on in this section all quantities are
evaluated in this conformal Newtonian gauge unless
otherwise specified.
In this gauge the anisotropic component of the Einstein

tensor is

Gπ ¼ −
�

k
aH

�
2

ðΦþ ΨÞ: ð79Þ

SEPARATE UNIVERSES BEYOND GENERAL RELATIVITY PHYSICAL REVIEW D 95, 043529 (2017)

043529-11



Consequently, the first parametrized modification to the
Einstein equation, motivated by scalar-tensor theories
which change the ratio γ ≡ −Φ=Ψ ≠ 1, even in the absence
of matter anisotropic stress, is to allow this relationship to
be general, γða; kÞ. Note that in the effective stress
language, this means that there is an effective anisotropic
stress that is parametrized in terms of the metric as

8πGpπ ¼ −
�

k
aH

�
2

ð1 − γÞΨ; ð80Þ

which is often called the gravitational slip [35].
This generalization does not in and of itself restrict the

separate universe criteria but rather restricts the evolution of
Φ and Ψ, given the evolution of γ. To see this, we can write
the comoving curvature in Newtonian gauge variables,
where it takes the form

R ¼ ΦþH2ðΨ −Φ0Þ
�
HH0 −

K
a2

�
−1
: ð81Þ

In a spatially flat (K ¼ 0) background, which we will
assume for the rest of this section, this becomes

R ¼ Φþ H
H0 ðΨ −Φ0Þ: ð82Þ

If we now take the curvature to be conserved, R0 ¼ 0,
we obtain a consistency relation between the metric
potentials [40]

Φ00 −Ψ0 −
H00

H0 Φ
0 −

�
H0

H
−
H00

H0

�
Ψ ¼ 0: ð83Þ

Note that the compatibility of gravitational slip with the
separate universe criteria can be seen directly in comoving
gauge. Recall that an effective anisotropic stress π=R ∼
ðk=aHÞ2 did not violate the separate universe criteria. For
example in general relativity, in the radiation dominated
epoch γ ≠ 1, due to neutrino anisotropic stress and yet we
can take inflationary curvature predictions at horizon exit as
fixed outside the horizon. Conversely it is not correct to say
that the curvature conservation allows gravitational slip but
strictly forbids anisotropic stress (cf. [21,22]).
The second parametrization involves the relationship

between the true matter variables and the metric. Consider
again the case where the true matter is nonrelativistic,
initially at rest with respect to the expansion, and falls on
geodesics of the metric. The matter then defines a syn-
chronous coordinate system and its curvature can be written
in Newtonian variables as

−ηT ¼ Φ −
aH
k

vm: ð84Þ

If the synchronous curvature is conserved, η0T ¼ 0, then
Eq. (83) also holds by differentiating Eq. (84) and employ-
ing momentum conservation of the matter

ðavmÞ0 ¼
k
H
Ψ: ð85Þ

Of course, these are equivalent because conservation of
either ηT or R implies that the synchronous and comoving
gauges coincide. In fact in the modified gravity literature
[27,29,31], the curvature on synchronous or matter comov-
ing slicing is often denoted R or ζ when radiation is
negligible. With radiation, it is common to employ these
variables as the curvature on comoving slicing of the total
matter [28,30]. The way the we have defined R here only
coincides with these alternate definitions when the separate
universe condition applies.
Note further that in terms of the effective velocity, v, the

comoving gauge potentials can also be written in
Newtonian variables as

R ¼ Φ −
aH
k

v;

ξ ¼ Ψ −
H
k
ðavÞ0: ð86Þ

When the separate universe condition holds, v ≈ vm and so,
using Eq. (85), ξ ≈ 0. Any relationship between the
Newtonian potential Ψ and the matter can be made
compatible with the comoving lapse condition (56) as long
as this holds.
Therefore we would like to see under what conditions

v ≈ vm. By definition

v≡ k
aH0 ðΦ0 −ΨÞ; ð87Þ

to relate this quantity to vm, let us define the synchronous—
or matter comoving gauge—density perturbation Δm ¼
δmjsynch using the Newtonian gauge density variables

Δm ≡ δm þ 3
aH
k

vm: ð88Þ

Combining these equations with the matter conservation
equations, we obtain

vm ¼ k
aH0

�
1 −

k2

3a2HH0

�−1�
Φ0 −Ψþ Δ0

m

3

�
: ð89Þ

In order for the separate universe condition to hold, we
must have vm ≈ v. Sufficient conditions for this to be the
case are

k2 ≪ a2HH0; jΦ0 −Ψj ≫ 1

3
Δ0

m; ð90Þ

if the matter is separately conserved. The latter condition is
typically implemented phenomenologically by relating Δm
and Ψ through a “modified Poisson equation” [29–31,35]
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k2Ψ ¼ −4πGμa2ρmΔm; ð91Þ

where μða; kÞ parametrizes the general relation. In this case
the second condition (90) is generally satisfied if

�
k
aH

�
2
�

3H2

8πGρmμ

�
max

�����1 − μ0

μ

����;Ψ
0

Ψ

�
≪ 1 ð92Þ

unless Φ0 ≈Ψ. In this sense, conservation of curvature as
k → 0 requires only matter conservation and very mild
assumptions about how matter density sources metric
fluctuations.
Although the μ, γ parametrization is very general, just

like the sound speeds of the effective stress in the
previous section, the functions are in general determined
not just by the background but by the solutions of the
perturbation equations themselves. For example, in the
case where dark energy is an additional scalar field with a
sound horizon, μða; kÞ encodes the effect of its stress
energy on the metric.
There is also a hybrid approach that merges the

effective stress and parametrized gravity approaches. In
this case the effective stress is formally separated into a
“dark energy” component e and the normal matter
components a:

Tμν
e ≡ Tμν −

X
a

Tμν
a ¼ Gμν

8πG
−
X
a

Tμν
a : ð93Þ

Though this is fully general for matter whose joint stress-
energy tensor is covariantly conserved, the conservation
equations ∇μT

μν
e ¼ 0 implied by the Bianchi identities

require closure relations to complete. One approach to
these closure relations is to construct them to return μ
and γ for modified gravity [27,28] or mimic those of an
actual physical component of dark energy [41].
Another approach is to parametrize the modifications to

gravity at the level of the Lagrangian of an effective field
theory or Arnowitt-Deser-Misner formalism for the scalar-
tensor perturbations [26,42–46]. In this language, conser-
vation of the curvature in unitary or uniform scalar field
gauge as k → 0 is enforced by the structure of the
Lagrangian—or equivalently, the implied closure relations
for the stress energy of the effective dark energy compo-
nent. Unitary gauge and comoving gauges differ in models
with kinetic braiding [47] but the gauges do coincide for
adiabatic fluctuations as k → 0. We defer a treatment of the
scale associated with these asymptotic behaviors to a future
work [48].
In all cases and parametrizations, the primary consid-

eration for the validity of the separate universe ansatz is that
the lapse in comoving slicing is smaller than the curvature
or equivalently the effective matter comoves with synchro-
nous observers.

V. DISCUSSION

We have established purely geometric or metric-based
criteria for the validity of the separate universe ansatz.
Based on identifying the local volume expansion and
curvature in a long-wavelength perturbation with the global
quantities for the background of a homogeneous separate
universe, we have shown that the criterion is that the lapse
is much smaller in amplitude than the curvature potential on
comoving slicing where the Einstein tensor G0

i ¼ 0. In this
case, the Einstein tensor when interpreted as an effective
stress-energy tensor “comoves” with the freely falling
synchronous observers which establish the local expansion
so that the local curvature is conserved.
In general relativity, this condition reduces to the familiar

notion that the total matter comoves with synchronous
observers if only gravitational forces act. The lapse condition
therefore is equivalent to the statement that the comoving
gauge and the synchronous gauge coincide. This condition
allows anisotropic local expansion of the volume or equiv-
alently anisotropic effective stress that is as large as their
isotropic counterparts as long as they are both smaller than the
curvature potential. In this case, the local universe behaves
like a separate universe for angle-averaged observables.
The comoving lapse condition provides a general pre-

scription for when the evolution of small-scale observables
in the presence of a long-wavelength fluctuation can be
approximated as evolving in a separate FRW universe.
While the long-wavelength mode considered here must still
be in the linear regime, the small-scale observables do not
since this equivalence holds nonlinearly. As in the case of
general relativity, by matching the expansion history of the
synchronous observers to the background, we can provide
simple and accurate predictions for these observable effects
through small-scale cosmological simulations, but now in
any modified gravity theory that obeys this condition.
This equivalence leads to consistency relations between

changes in cosmological parameters and observable
responses to perturbations, for example through the
angle-averaged squeezed N-point correlation functions or
the bias of dark matter halos. It would be interesting to
work out the detailed statements of these relations for
certain gravitational theories. Violation of these consis-
tency relations indicate new physics beyond that encapsu-
lated by the cosmological background. We have also
determined the scale at which these violations could occur
as a function of the metric perturbations themselves.
Even below the scale at which the separate universe

ansatz fails, observables that respond directly only to the
local expansion history and not the local curvature can be
accurately modeled by matching the former through “fake”
stress-energy components designed to mimic the effects
of evolving curvature. These include the squeezed N-point
correlation functions and the halo bias in dynamical dark
energy models as has been explicitly tested in simulations
[32,33].
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In a modified gravity theory with screening mecha-
nisms on small scales (see, e.g. [49]), the same principles
should hold so long as the inhomogeneity of the long-
wavelength mode does not enter directly through its
spatial derivatives. We leave these considerations to a
future work.
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