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We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for
large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large
preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via
decays into axions or moduli, which are strongly constrained by nucleosynthesis and ΔNeff bounds. String
models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints
due to the existence of multiple dark glueballs.
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I. INTRODUCTION

Hidden gauge sectors are ubiquitous in string theory.
Initially they arose in the perturbative heterotic string,
beginning with the ten-dimensional E8 × E8 heterotic
string [1] itself, its orbifold compactifications [2–7], free
fermionic realizations (e.g. [8,9]), and later its smooth
Calabi-Yau [10–12] compactifications. They also arise in
other contexts, for example on D-branes in type II models
(e.g. [13–15]); in rational conformal field theory orienti-
folds [16,17]; on singularities in G2 compactifications of
M-theory (e.g. [18–20]); and on seven-branes in F-theory.
In fact, in F-theory there is growing evidence [21–25]
that dark gauge sectors are generic in a sharp sense: the
set of seven-brane configurations at a generic point in
seven-brane moduli space has multiple disconnected gauge
sectors.
In this paper we study the cosmological implications of

gauged hidden sectors from an ultraviolet (UV) perspec-
tive, focusing on the simplest case of pure Yang-Mills
theory. This is well motivated: if N of the hidden gauge
factors in a much larger set of hidden sectors are either pure
super Yang-Mills theories or have no symmetry protection
for matter masses (other than supersymmetry), then N pure
Yang-Mills sectors arise in the infrared. The associated N
UV gauge couplings may each take a variety of values,
determined by moduli stabilization, giving N hierarchical
confinement scales due to the exponential dependence of
each on its UV gauge coupling.
These sectors are cosmologically relevant if reheating via

inflaton or modulus decay reheats not only the visible
sector but some of the hidden sectors as well. Such a
scenario was studied in the case of a single hidden sector in
[26]. Though not focused specifically on dark glueballs, the
relic abundance inferred from [26] depends critically on the
confinement scale and the ratio of visible to hidden sector
entropy densities determined by reheating; this is the result

from which many of ours follow. This scenario also has an
effective 3 → 2 self-interaction that causes the dark sector
to “cannibalize” itself, a phenomenon of recent interest
[27–33]. Dark matter that is comprised of dark glueballs
has also been the subject of a number of studies [34–38].
In this paper we will show the converse: in ultraviolet

theories (such as string theory)withmanyYang-Mills sectors
and a variety of dark confinement scales, the associated dark
glueballs are poor dark matter candidates, but place valuable
cosmological constraints on the ultraviolet theory. The
problem exists already in the case of a single dark glueball,
as its relic abundance oversaturates the observed dark matter
relic abundance for much of the natural UV parameter space.
This oversaturation is simple to understand, as the dark
confinement scalemay take a variety of values and there is no
reason to have a dark glueball “miracle” analogous to the
weakly interacting massive particle miracle. The problem is
exacerbated in theories with many dark glueballs since each
may have a different confinement scale, and if any fall into
the dangerous regions of parameter space that glueball will
oversaturate.
We study two possible ways in which the problem may

be ameliorated, via dark glueball decay into axions or
moduli, or via preferential reheating into the visible sector.
Each mechanism faces constraints of its own, the former
from nucleosynthesis bounds on glueball lifetimes and on
the effective number of neutrinos ΔNeff present at late
times, and the latter on inflationary or modulus decay
model building. In the case of symmetric reheating most of
the parameter space is ruled out, even after taking into
account possible decays.

II. THE RELIC ABUNDANCE OF
DARK GLUEBALLS

We consider a scenario in which a dark Yang-Mills
sector with gauge group G and confinement scale Λ is
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reheated to a temperature T 0
rh > Λ. The dark sector is a

thermal bath of dark gluons, and as the dark sector cools
through a transition temperature T 0

Λ ∼ Λ the energy density
in gluons is converted into glueballs. For dark sector
temperature T 0 < T 0

Λ, number depleting 3 → 2 interactions
change the dependence of T 0 on the scale factor aðtÞ
relative to that of noninteracting nonrelativistic particles,
giving a dark to visible temperature ratio

T 0

T
∝

a
lnðaÞ : ð1Þ

Physically, this unusual temperature dependence arises
because the interactions increase the average kinetic energy
per glueball, so the dark sector cannibalizes itself to stay
warm. Freeze-out occurs when these interactions cease to
be effective, leaving a dark glueball relic.
Through this process, comoving entropy density is

conserved in each sector due to thermal equilibrium and
minimal interactions between the sectors, so that the ratio

ξ ≔
s
s0

ð2Þ

is a constant. For sufficiently high Trh both sectors are
relativistic, since the dark sector is by the assumption
T 0
rh > Λ, giving the additional relation ξ ¼ gST3=g0ST

03. In
this case the initial entropy ratio could instead be thought of
as an initial temperature ratio, ξT ≔ T=T0 ¼ ðg0Sξ=gSÞ1=3.
We call ξ ¼ 1 the democratic scenario.
This cosmological scenario was studied by Carlson et al.

in [26], who treated the lightest glueball as a scalar field ϕ.
Let us review their results. The annihilation rate for an
average particle via 3 → 2 interactions is determined by an
effective operator

O3→2 ¼
1

Λ
f
5!
ϕ5; ð3Þ

with the rate given by

Γð3 → 2Þ ¼
ffiffiffi
5

p
f2n02

2304πΛ5
¼ λΛ

�
n0

Λ3

�
2

; ð4Þ

where λ ¼ ffiffiffi
5

p
f2=ð2304πÞ. Note thatΛ and f are unrelated.

As the Universe expands this rate is eventually not high
enough to further deplete the glueball number and therefore
the glueballs decouple at a temperature T 0

d ≤ Λ. Using the
fact that ξ is constant and comparing it to the visible sector
entropy density today, the relic abundance is

Ωh2 ¼ T 0
d

3.6 eVξ
: ð5Þ

At decoupling, Einstein’s equations may be radiation or
matter dominated. In the case of radiation domination at
decoupling, T 0

d may be determined by solving the

transcendental equation (the small deviation from [26] in
the numerical constants comes from a slightly improved
value of Neff )

Λ
T 0
d
þ2 ln

�
Λ
T 0
d

�
¼ 3

4
ln

�
λg07=4

Ωh2

�
−
5

4
lnðg01=4ξÞþ43.4: ð6Þ

In the case where the Universe is matter dominated at
decoupling, T 0

d is determined by

Λ
T 0
d
þ3

2
ln

�
Λ
T 0
d

�
¼ 2

3
ln

�
λg07=4

Ωh2

�
−
2

3
lnðg01=4ξÞþ38.07: ð7Þ

The appearance of Λ is a substitute for the dark matter mass
m0 of [26], and g0 is the number of effective relativistic
degrees of freedom in the dark sector. This is motivated by
the fact that glueballs are expected to have mass m0 ¼ cΛ
with c≳ 1 an Oð1Þ coefficient. We take c ¼ 1 for sim-
plicity, since it does not significantly affect our conclusions.
Using these results, [26] studied the implications of the

observed dark matter relic abundance from decoupling.
We instead take an ultraviolet perspective, where high

scale physics such as moduli stabilization in string theory
could set a wide range of values for the ultraviolet gauge
coupling αUV; Λ depends exponentially on αUV. We will
see that the glueball relic abundance is linear in Λ to a good
approximation, and therefore the glueball is a poor dark
matter candidate since αUV must be exponentially fine-
tuned to obtain a relic abundance close to the observed
value. However, we will see that dark glueballs can place
strong constraints on the ultraviolet theory.
Let us compute the relic abundance in terms of the

confinement scale rather than the decoupling temperature.
To do so, we use (5) to trade T 0

d for the relic abundance in
(6) and (7). In the case of radiation domination at
decoupling this leads to

Ωh2 ¼ Λ
3.6 eV

4

5ξWð7.45 × 1012f6=5g04=5ξ−2=5ð3.6 eV
Λ Þ3=5Þ ;

ð8Þ

where WðxÞ is the Lambert W-function or product loga-
rithm, which is the inverse of fðxÞ ¼ xex much as log is the
inverse of fðxÞ ¼ ex. In the case of matter domination at
decoupling the relic abundance is

Ωh2 ¼ Λ
3.6 eV

6

5ξWð1.28 × 1017f8=5g06=5ð3.6 eV
Λ Þ4=5Þ : ð9Þ

These calculations are valid for Λ=T 0
d > 1.

What is the relic abundance outside of this regime?
Naively considering Λ=T0

d < 1 is not physically sensible,
since for temperatures T 0 > Λ the dark sector is comprised
of relativistic gluons and the effective field theory in which
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3 → 2 interactions were computed is not valid. Instead, as
the Universe cools in this other regime glueballs form and
immediately decouple, i.e. T 0

d ≃ Λ. This together with (5)
gives a relic abundance

Ωh2 ≃ Λ
3.6 eVξ

; ð10Þ

which closely matches the results of [36], which set the
3 → 2 interactions to zero.
How strongly do 3 → 2 interactions affect the relic

abundances (8) and (9)? Specifically, how much do they

deplete the relic abundance (10) that would be obtained in
the absence of these interactions? This can be approximated
by noting the mild dependence of WðxÞ on x > 0, which is
similar to the mild dependence of logðxÞ on similar x. For
example, thoughWð10Þ isOð1Þ,Wð101000Þ is onlyOð103Þ.
Since both (8) and (9) have Ωh2 ≃ ðΛ=eVÞ × ð1=ξWðxÞÞ,
the order of magnitude of the dark glueball relic abundance
is primarily set by Λ and ξ.
In particular, if (10) oversaturates the observed relic

abundance by many orders of magnitude, 3 → 2 inter-
actions cannot ameliorate the situation.

FIG. 1. Glueball relic abundance as a function of αUV and ΛUV for ξ ¼ 1, f ¼ .1, g0 ¼ 1. In each figure the relic abundance is
oversaturated outside of the blue region. (Upper left panel) G ¼ SUð2Þ and radiation domination at decoupling. (Upper right panel)
G ¼ E8 and radiation domination at decoupling. (Lower left panel) G ¼ SUð2Þ and matter domination at decoupling. (Lower right
panel) G ¼ E8 and matter domination at decoupling.
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A. Overproduction of democratic dark glueballs

Let us study the glueball relic abundance in the dem-
ocratic case ξ ¼ 1, focusing on its dependence on Λ and ξ
for natural values of ultraviolet parameters.
We compute Λ via the beta function of super Yang-Mills

theory, which gives

Λ≡ ΛIR ¼ ΛUVe
− 2π
3C2ðGÞαUV ; ð11Þ

where C2ðGÞ is the dual Coxeter number of the gauge
group G, αUV is the ultraviolet gauge coupling evaluated at
scale ΛUV, and ΛIR is the scale at which α diverges. We use
the supersymmetric beta functions all the way down to low
scale for both simplicity and generosity. The former applies
since this choice avoids the introduction of the scale ΛSUSY,
and the latter applies since the supersymmetric beta
functions give rise to lower confinement scales; the over-
saturation problem that we will encounter is only exacer-
bated by using nonsupersymmetric beta functions below
ΛSUSY.
The groups that we study are SUð2Þ, SUð3Þ, G2, SOð7Þ,

SUð5Þ, SOð8Þ, SOð10Þ, F4, E6, E7, and E8, which are two
of the most commonly studied grand unified groups [SUð5Þ
and SOð10Þ] together with the group factors that may
appear geometrically for general values of complex struc-
ture moduli in d ¼ 4 F-theory [21]. These groups have
C2ðGÞ given by 2, 3, 4, 5, 5, 6, 8, 9, 12, 18, and 30,
respectively. These values imply that, for a fixed ΛUV, a
change from one group to another can give rise to the same
Λ by an Oð1Þ–Oð10Þ change in αUV. The same relic
abundance for glueballs of different groups can therefore be
obtained by a relatively small αUV change.

In Fig. 1 we take G ¼ SUð2Þ and E8 glueballs as
prototypes, since they have the lowest and highest confine-
ment scales, respectively, for a fixed ΛUV and αUV. The
relic abundances are computed in both the case of radia-
tion domination and matter domination at decoupling,
taking ξ ¼ 1 and studying the natural parameter space
10−3 ≤ αUV ≤ 1, 103 GeV ≤ ΛUV ≤ 1018 GeV. On a log-
log scale we see that there is little difference between the
two cases. The blue band represents undersaturation of the
observed relic abundance [39] Ωobsh2 ¼ 0.1199� 0.0027,
with saturation occurring at the edge. The Ωh2 ¼ 1 contour
sits very close to the observed relic abundance contour, and
the Ωh2 ¼ 105; 1010; 1015; 1020 contours make up the
remaining parameter space. This figure demonstrates that
for ξ ¼ 1, the smallest [SUð2Þ] and largest (E8) glueball
relic abundances for these groups oversaturate the observed
value by many orders of magnitude for much of this
parameter space.
Having demonstrated how rapidly Ωh2 increases in the

ΛUV-αUV plane, in Fig. 2 we present the contours on which
each of the groups we study saturates the observed relic
abundance. Over half of the parameter space is ruled out for
all of the groups, and for some groups it is much more. For
ΛUV > 109 GeV the observed relic abundance is over-
saturated for α ¼ αGUT ≃ .03 for all groups, though moduli
stabilization may fix the ultraviolet gauge coupling at
significantly different values.
In conclusion, stable dark glueballs in the democratic

scenario ξ ¼ 1 oversaturate the relic abundance for much of
the ultraviolet parameter space, putting strong constraints
on ultraviolet theories that realize dark Yang-Mills sectors.
Henceforth we will call this the dark glueball problem, for

FIG. 2. (Left panel) Contours where the glueball relic abundance saturates the observed relic abundance for various groups as a
function of αUV and ΛUV (in GeV), with oversaturation occurring in the region above each contour. The horizontal red line marks
αUV ¼ αGUT. (Right panel) The glueball relic abundance matches the observed relic abundance along dark contours, with oversaturation
above. To the right of the dashed contours the dark sector is not reheated above its confinement scale.
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brevity, and in the next two sections we will study
mechanisms that could potentially solve it.

III. CONSTRAINTS FROM PREFERENTIAL
REHEATING

One potential solution to the dark glueball problem is to
reheat preferentially into the visible sector, constraining
models of reheating via inflaton or modulus decay.
Preferential reheating into the visible sector, i.e. ξ > 1,
may solve the problem by either depleting the dark glueball
relic abundance or by leaving the regime of validity
T 0
rh ≳ Λ for the production mechanism of [26].
Let us study the former by deriving bounds on ξ that are

sufficient to not oversaturate the observed dark matter relic
abundance, beginning with models that do not exhibit
3 → 2 interactions. This will give an approximate lower
bound on ξ that is rough, but good enough for some
purposes since 3 → 2 interactions cannot significantly
suppress a very large relic abundance. The bound that
avoids oversaturation is

ξ≳ Λ
3.6 eVΩobsh2

¼ 2.3
Λ
eV

: ð12Þ

Thus, in the absence of 3 → 2 interactions, confinement
scales Λ≳ 1 eV require there to be more entropy in the
visible sector, i.e. ξ > 1. As a reference point, hidden
sectors with confinement scales Λ ¼ ΛQCD ≃ 106 eV
require ξ≳ 106. The bounds are weakest for lower rank
groups, since they have lower confinement scales, but the
constraint can be significant even for low rank groups. For
example, with α ¼ αGUT ≃ .03 and G ¼ SUð2Þ, the
approximate bound is ξ≳ 1.5 × 1010. We will study the
accuracy of this approximate bound momentarily by taking
into account 3 → 2 interactions.
Alternatively, the dark glueball problem may be solved if

the production mechanism of [26] is not in effect. This
arises as follows. The visible sector reheat temperature
after inflation (or modulus decay) must satisfy Trh ≲MGUT.
The relationship ξ ¼ s=s0 ¼ gST3=ðg0ST 03Þ implies T 0

rh ¼
ðgS;rh=ðg0S;rhξÞÞ1=3Trh ≃ ξ−1=3Trh, where the latter approxi-
mation gives a gauge group independent relationship that
will suffice for our purposes since the gS dependence will
make little qualitative difference on a log-log scale. Then
the bounds T 0

rh ≳ Λ and Trh ≲MGUT together imply
ξ≲ ðMGUT=ΛÞ3, so that the bound associated with leaving
the regime of validity for glueball production is

ξ≳
�
MGUT

Λ

�
3

: ð13Þ

For confinement scales that we study Λ < MGUT and this
bound implies that glueball production is valid for ξ ≤ 1,
which includes the democratic scenario. If ξ is increased

from ξ ¼ 1 with fixed Λ, however, eventually the bound
will be satisfied, in which case the dark sector reheats to a
temperature below the confinement scale and the glueball
production mechanism we study is not in effect. Other
production mechanisms may potentially arise, most plau-
sibly when T 0

rh ≃ Λ, but we will leave such studies to future
work and will clearly delineate regions of parameter space
where (13) is violated.
Summarizing, if either of the bounds (12) or (13) are

satisfied then the glueball relic abundance is not over-
saturated.
Let us see when these bounds are satisfied for various

groups and values of αUV, fixing ΛUV ¼ 1016 GeV. The
bound (12) can be slightly weakened by the incorporation
of 3 → 2 interactions, which are taken into account in the
right panel of Fig. 2 with f ¼ 0.1. The solid and dashed
lines are those in which the bounds for the relic abundance
(with 3 → 2 interactions) and the regime of validity are
saturated, respectively, for a particular group. Over-
saturation occurs for a glueball with a fixed G for points
in the parameter space above the associated solid contour,
but below the associated dashed contour.
Both bounds must be taken into account: for example,

for a fixed α ≳ .1 satisfying the relic abundance bound
would require ξ≳ 1020, but the regime of validity bound
may be satisfied for smaller values of ξ, avoiding over-
saturation. Conversely, for fixed αUV ≲ 7 × 10−3 there are
values of ξ that violate the relic abundance bound but not
the regime of validity bound. For any fixed αUV and G the
minimum value of ξ sufficient to avoid the dark glueball
problem can be read from the associated solid and dashed
contours. For a fixed G, the value of αUV that requires the
largest ξ to satisfy the bounds occurs when both bounds are
saturated, which occurs for the αUV at which the associated
solid and dashed contours intersect. Interestingly, this
always occurs for .005 < αUV < .1, which is a range that
contains αGUT.

IV. CONSTRAINTS FROM DECAYS
TO MODULI AND AXIONS

An additional mechanism for evading the consequences
of the above analysis is to allow the glueballs to decay to
lighter degrees of freedom. In the present context we are
assuming a hidden sector devoid of matter charged under
the confining group, and we do not assume a renormaliz-
able coupling (or “portal”) to the fields of the Standard
Model [40]. Indeed, the hidden sectors in (type II/F-theory)
string theory are often truly hidden; either they are pure
Yang-Mills theories or there are no fields charged under
both the hidden and the visible sector. It is thus natural to
consider these sectors to be coupled via nonrenormalizable
couplings only, on which we will focus subsequently. This
well-motivated assumption leaves only potentially light
moduli and/or axionic fields as decay channels.
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We have in mind the geometrical moduli generic to all
string compactifications. While their masses are a priori
undetermined, general arguments in supergravity [41–43]
suggest that the lightest such modulus ought to have a mass
comparable to that of the gravitino mass—roughly the size
of the soft scalar masses in the observable sector—and thus
(presumably) on the order of 10 TeV. Argument from the
successful predictions of big bang nucleosynthesis (BBN)
imply that the masses of these moduli must be no less than
approximately 50 TeV, and we will take this number as a
benchmark throughout the remainder of the paper. Note
that the argument from BBN persists even in the absence of
low-energy supersymmetry.
Let us again denote the glueball in the low-energy

effective field theory by ϕ and designate its mass by mϕ,
where mϕ ≃ Λ. Let us denote a generic modulus field as χ.
Then assuming the decay into such moduli (ϕ → χχ) is
kinematically accessible, we can estimate the lifetime by
utilizing a dimension-6 operator such as

O6 ¼
TrðGa

μνG
μν
a Þχχ

M2
s

→
Λ3

M2
s
ϕχχ; ð14Þ

where the trace is over the gauge degrees of freedom, and
we replace the field strengths with ϕΛ3 in the effective
theory below the confinement scale. The scale Ms is the
scale at which the supergravity effective theory is valid. We
will take Ms ¼ MGUT in explicit computations.
The width associated with (14) is given by

Γ6 ¼
1

4π

1

mϕ

�
Λ3

M2
s

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

m2
ϕ

s
; ð15Þ

where mχ is the modulus mass. Successful BBN requires
that the Universe be radiation dominated at the time that the
relative abundances of protons and neutrons are set,
roughly 0.1 s. As the glueballs quickly come to dominate
the energy density of the Universe upon confinement,
we must therefore demand that the lifetime associated with
(15) be no longer than this value. Taking mχ ¼ 50 TeV,
Ms ¼ MGUT ¼ 1016 GeV, and mϕ ¼ Λ, this implies a
constraint

Λ ≥ 2.4 × 108 GeV: ð16Þ

Glueballs with masses below the bound in (16) but above
2mχ ≃ 100 TeV decay after the onset of BBN and spoil its
successful predictions.
Alternatively one might hope that decays into even

lighter objects could remedy the situation. A well-
motivated candidate would be a light axionic field. Such
states are common in string theory; indeed, the moduli
fields themselves will have an imaginary component that
behaves like an axion in the low-energy effective theory.

For our purposes it is sufficient to consider a single such
axionic state, with an associated decay constant fa. We will
assume that all interactions between the glueball and the
axion are suppressed by this scale. In practice, one
commonly finds fa ≃Ms in typical string models, but
we will be agnostic as to the precise value of this constant.
Prior to taking into account nonperturbative effects, the
axion enjoys a shift symmetry and therefore only appears in
the Lagrangian through derivative interactions. Thus an
operator such as (14) is forbidden, and one must instead
turn to a dimension-8 interaction governed by

O8 ¼
TrðGa

μνG
μν
a Þ∂ρa∂ρa

f4a
→

Λ3

f4a
ϕ∂ρa∂ρa; ð17Þ

resulting in a decay width given by

Γ8 ¼
1

64π
m3

ϕ

�
Λ3

f4a

�
2

≃ Λ
64π

�
Λ
fa

�
8

; ð18Þ

where we are making the assumption ma ≪ mϕ, for
simplicity. The eight powers of Λ=fa suppression make
the resulting glueball lifetime fantastically long. For exam-
ple, a glueball whose confinement scale saturated the
bound in (16) would require

fa ≤ 1.1 × 1012 GeV ð19Þ

to allow for a decay before the onset of BBN. A glueball
with confinement scale Λ ¼ 1 TeV would require
fa ≤ 9.7 × 105 GeV to decay before BBN. Fixing
fa ¼ Ms ¼ 1016 GeV, we find τðϕ → aaÞ > 0.1 s for all
confinement scales below 8 × 1011 GeV, showing that
those cases which cannot decay to geometrical moduli
promptly enough will not be rescued by decays to axions
if fa ≃ 1016 GeV.
Under these assumptions we have established that

hidden Yang-Mills sectors with Λ≳ 3 eV are cosmologi-
cally ruled out unless the upper bound on fa is satisfied for
50 TeV≲ Λ≲ 109 GeV, the confinement scale is quite
high (Λ≳ 109 GeV), or an extreme measure of preferential
reheating is engineered.
One might argue the latter constraint could be relaxed if

faster decay rates could be motivated. We have chosen the
operators (14) and (17) to reflect the underlying structure of
the UV theory above the scale of confinement. However,
treating the glueball as a gauge-singlet scalar does naively
allow the operator

O5 ¼
ϕ

Ms
∂μχ∂μχ → Γ5 ¼

1

64π

m3
ϕ

M2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
χ

m2
ϕ

s
; ð20Þ

which could mediate glueball decay to moduli fields. The
operator in (20) allows for prompt (τ < 0.1 s) decays of
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glueballs to moduli for all cases in which the decay is
kinematically accessible, assuming a modulus mass mχ ¼
50 TeV and Ms ¼ 1016 GeV. This is to be expected: the
operator in (20) is precisely the operator that is postulated
to allow sufficiently heavy moduli to decay into light
degrees of freedom prior to BBN, thereby solving the
cosmological moduli problem.1 For much lighter glueball
states (lower confinement scales), the moduli decay chan-
nel closes and (20) with χ → a and Ms → fa now governs
decay to axions (where we might assume ma ≪ mϕ). In
order to keep the lifetime sufficiently short, we must now
lower the value of fa away from 1016 to compensate for the
much lower glueball mass. For example, taking an inter-
mediate value fa ¼ 1012 GeV, we find that the glueball
decays sufficiently quickly into massless axions provided
Λ > 11 GeV. A glueball whose mass is comparable
to the QCD scale (Λ ¼ 100 MeV) would require
fa < 9 × 108 GeV to decay into axions during the brief
window between confinement and the beginning of BBN.
However, we do not believe that (20) is present due to the

structure of dark gluon interactions with moduli in the UV
theory and the emergent nature of the glueball ϕ below the
confinement scale.
Results on axion decays are summarized in Fig. 3. In the

case of decay via the dimension-8 (-5) operator the glueball
is stable and oversaturates the observed relic abundance to

the left of the red (blue) dashed line. It is unstable but spoils
nucleosynthesis between the red (blue) dashed and solid
lines. To the right of the red (blue) solid line the glueball is
unstable and decays prior to nucleosynthesis.

V. CONSTRAINTS FROM DARK RADIATION

In the better motivated case in which decay operators arise
from the underlying structure of the hidden gauge fields, we
find that decays to moduli require a confinement scale above
108 GeV and prompt decays to axions are possible for lower
confinement scales if the axion decay constant is sufficiently
small. If the decay operators descend from “naive” effective
field theory, the glueball will decay into (cosmologically
safe) moduli, prior to BBN, provided that such decays
are kinematically accessible (i.e. mϕ ≃ 2mχ ≃ 100 TeV).
Furthermore, decays into light axions are possible for
confinement scales between the modulus mass and the onset
of BBN, provided the axion decay constant takes intermedi-
ate values 1010 GeV≲ fa ≲ 1016 GeV. However, these
axionic decay products are not necessarily cosmologically
benign.
The prediction from BBN for the abundance of 4He is

sensitive to the Hubble parameter at the time BBN begins,
and is thus sensitive to the number of relativistic degrees of
freedom present in the cosmos at that time, ghid� jBBN [44].
The value of ghid� jCMB is constrained again at the time of
cosmic microwave background (CMB) formation [39]. The
upper bounds, at 95% confidence, on these quantities are
given by [45]

ghid� jBBN ≤ 2.52ξ4T jBBN;
ghid� jCMB ≤ 0.18ξ4T jCMB; ð21Þ

where we recall that ξT ¼ T=T 0.
Any non-Abelian group which avoids overproduction of

glueball dark matter by achieving a very low confinement
scale, governed by (10), would therefore have a potential
problem from dark radiation at the time of BBN
(TBBN ≃ 1 MeV) and/or the time at CMB formation
(TCMB ≃ 0.25 eV). The situation is ameliorated somewhat
by the fact that the visible sector has fewer degrees of
freedom at those late times than it did at some earlier,
primordial time [46]. Thus the visible sector should be
“warmer” than the hidden sector at the time of BBN and
CMB formation (assuming the hidden sector has remained
a plasma of relativistic gluons throughout this history).
Indeed one expects

ξ3T jBBN ¼ ξ3T jrh
�

gvis�s ðTrhÞ
gvis�s ðTBBNÞ

�

¼ ξ3T jrh
�
gvis�s ðTrhÞ
10.75

�
; ð22Þ

FIG. 3. Glueball lifetimes as a function of fa and Λ, with
contours for τn ¼ τuniv and τn ¼ τBBN ¼ 0.1s for n ¼ 5, 8
corresponding to decay via dimension-5 and -8 operators.

1One might choose to suppress the operator in (20) by the
confinement scale Λ, as opposed to the much larger scale Ms. Or
one might argue that a superrenormalizable coupling like Λϕχχ
be utilized. Both modifications would only serve to shorten the
lifetime, so we do not consider them here.
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ξ3T jCMB ¼ ξ3T jrh
�

gvis�s ðTrhÞ
gvis�s ðTCMBÞ

�

¼ ξ3T jrh
�
gvis�s ðTrhÞ
3.36

�
; ð23Þ

where ξT jrh is the ratio of temperatures at some primordial
scale at which both the visible and hidden sectors are
populated through some sort of reheating. Assuming the
reheat temperature is such as to populate the entire minimal
supersymmetric Standard Model (MSSM) field content,
one finds from (21)

ghid� jBBN ≤ 148.6ξ4T jrh;
ghid� jCMB ≤ 50ξ4T jrh: ð24Þ

Taking the case of SUðNÞ for concreteness, the uncon-
fined gluons will contribute ghid� jrh ¼ 2ðN2 − 1Þ at the time
they are first produced in the early Universe. This number
will persist for as long as the group remains unconfined.
Taking a democratic ansatz ξT jrh ¼ 1, which differs from
the previous ξ ¼ 1 ansatz by a mild gS; g0S dependence, this
limits the hidden sector gauge group to SUð8Þ or smaller
for 1 MeV≳ Λ≳ 0.1 eV, and SUð5Þ or smaller for
Λ≲ 0.1 eV. Larger unconfined groups can be accommo-
dated with (mild) preferential reheating favoring the visible
sector.
Axions produced at the time of glueball decay will be

relativistic, and thus contribute to the bounds in (21) as
well. For simplicity, let us consider the case in which the
lifetime of the intermediate glueball state is brief relative to
the Hubble parameter at that epoch. As argued in the
previous section, this will be true of most cases in which the
glueball decays before the onset of BBN. Under these
circumstances we may approximate the thermodynamics
by assuming all of the entropy in relativistic gluons is
transmitted into a single species of relativistic axions.
As a result, the resulting fluid of relativistic axions will

experience a “reheating” proportional to ðghid�s Þ1=3, partially
offsetting the visible sector reheating associated with the
factors in (22) and (23). Again assuming the reheat
temperature is such as to populate the entire MSSM field
content, the bounds in (24) are modified to

ghid� jBBN ≤
148.6

ðghid�s ðTrhÞÞ4=3
ξ4T jrh;

ghid� jCMB ≤
50

ðghid�s ðTrhÞÞ4=3
ξ4T jrh: ð25Þ

In the case of democratic reheating (ξT jrh ¼ 1) the bound in
(25) arising from CMB observations falls below unity for
ghid�s ðTrhÞ > 18, suggesting that a glueball which decays
into axions prior to the time of CMB formation will
produce too much dark radiation for any hidden sector

gauge group larger than SUð3Þ. Of course, larger progen-
itor gauge groups can be entertained if some preferential
reheating into the visible sector is engineered. It is worth
pointing out that in a world where the visible sector consists
solely of the Standard Model, the visible sector reheats less
(by a factor of 2) and consequently any decay into a single
axion species will violate ΔNeff bounds in the democratic
reheating limit.

VI. COMPATIBILITY WITH STRING
MODEL BUILDING

Let us briefly turn to the question of whether these
bounds are compatible with string-inspired supergravity
models. The answer depends on the string theory in
question as well as on the uplifting and moduli stabilization
scheme. In the heterotic theories, the string scale is fixed
one order of magnitude above the grand unified theory
(GUT) scale. Compatibility with low-energy observations
fixes the gauge coupling at the GUT scale to roughly
αGUT ¼ .03, and the gauge couplings of the other hidden
sector gauge groups are then expected to be in a similar
range, Oð10−1Þ–Oð10−2Þ. In the type II theories, the string
coupling is usually taken to be 0.1 < gs < 1, where the
lower bound comes from compatibility with the truncation
of the string α0 expansion. The string scale and the actual
gauge coupling on the stack ofD3þq-branes depends on the
volume V of the overall compactification manifold and the
volume Vq of the q-cycle wrapped by D3þq-branes and is
given by

αq ¼
gs
2Vq

;
Ms

MP
¼ gsffiffiffiffiffiffiffiffiffi

4πV
p : ð26Þ

Hence for a high string scale (around the GUT scale) we get
V ¼ Oð10Þ–Oð100Þ and consequently Vq ¼ Oð1Þ–Oð10Þ,
which means αq ¼ Oð10−1Þ–Oð10−2Þ. For intermediate
[V ∼Oð1013Þ] or TeV-scale [V ∼Oð1027Þ] string scales,
much larger values for Vq and thus much lower values for
gq are possible, and it then becomes a question of the
moduli stabilization and the uplifting scheme to answer
whether the Kähler moduli can be consistently stabilized in
this regime.

VII. DISCUSSION

We have shown that theories with multiple disconnected
gauge sectors—as is typical in string theory—will often
suffer a dark glueball problem.
In the simplest scenario of symmetric reheating via

inflaton or modulus decay, any confining Yang-Mills
hidden sector with the confinement scale Λ≳ 3 eV will
generate too much cold dark matter to be compatible with
current measurements. A wide range of values of the
ultraviolet gauge coupling naturally give rise to such a
Λ via renormalization group evolution, leading to the
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overproduction of dark matter. Thus, these considerations
can rule out any model with even one such Yang-Mills
sector, including string models. Confinement at scales
below 1 eV often does not solve the problem either, as
constraints on the number of relativistic degrees of freedom
at the time of BBN and CMB formation require hidden
sectors no larger than SUð5Þ [SUð3Þ] if the visible sector is
comprised of the MSSM (the Standard Model); hidden
sectors motivated by string theory are frequently much
larger.
The above statements depend, however, on two critical

assumptions: glueball stability and symmetric reheating.
We studied whether relaxing either of these assumptions
may solve the glueball problem.
In fact, string theory provides a natural avenue for

relaxing the first assumption: glueballs in hidden sectors
might decay into light string moduli or axions. If the
glueball decay ϕ → χχ to moduli happens before the epoch
of BBN, the dark glueball problem maps onto the more
familiar cosmological moduli problem [47–51]. The latter
is solved if the lightest modulus is sufficiently heavy (we
have taken mχ ¼ 50 TeV here), suggesting that gauge
groups withΛ≳Oð100 TeVÞ should produce an acceptable
cosmology.But amore precise treatment of the effective field
theory that governs glueball decays tomoduli suggests much
smaller decay rates, such that the glueball decays to moduli
prior to BBN only if Λ≳ 108 GeV. Thus, with other
assumptions fixed, 17 orders of magnitude in the confine-
ment scale (3 eV≲ Λ≲ 1017 eV) remains afflicted by the
dark glueball problem.
Alternatively the glueball could decay into axions, which

are generically present in string constructions. If the axion
has a mass ma ≪ mgb the glueball decays into a relativistic
species that is subject to ΔNeff bounds. In the simplest case
of a single relevant axion there are a very large number of
degrees of freedom transferring entropy to a single field.
This tends to make the ΔNeff constraints more severe,
restricting the hidden sector to be no larger than SUð3Þ in
the case when the visible sector is comprised of the MSSM
[no larger than SUð2Þ if the visible sector is solely the
Standard Model].
There are other bounds on glueball decays into axions: if

the glueball does not decay into moduli before BBN
commences, then it must decay into axions before BBN
commences, otherwise the glueball spoils BBN in the same
manner as in the cosmological moduli problem. Since axions
can only appear in the low-energy effective Lagrangian
through derivative interactions, a decay operator consistent
with the underlying theory must be suppressed by the factor
ðΛ=faÞ8. If one takes fa ≃Ms ≃ 1016 GeV, as is typical in
string theory, then none of the parameter space that is not
rescued by decay to moduli (Λ ≲ 108 GeV) can be rescued
by glueball decay to axions, in which case the glueball still
dominates the energy density of the Universe at the time
of BBN.

These results apply in the democratic reheating scenario
ξ ¼ 1. For for a modulus decay operator suppression scale
Ms ¼ MGUT, the combined constraints from the glueball
relic abundance, dark radiation, and nucleosynthesis are
taken into account in Fig. 4. We emphasize that our results
hold whether or not we assume low-scale supersymmetry,
with only mild changes in the numerical values quoted
here. Note that in Fig. 4 about two thirds of the parameter
space is ruled out.
We would like to emphasize one of our major points. For

one Yang-Mills sector the ruled out parameter space in
Fig. 4 is only somewhat constraining. However, many
hidden Yang-Mills sectors are typical in string theory, and
in such models each glueball must fall within the allowed
window. This is increasingly difficult to achieve as the
number of hidden Yang-Mills sectors increases if the
ultraviolet parameters are relatively well distributed by
the physics of moduli stabilization. Thus, though only two
thirds of the parameter space are ruled out for one Yang-
Mills sector, the constraints are much more stringent for
many such sectors.
We believe that this strongly motivates the study of

asymmetric reheating models [52] in string theory, i.e.
violating the second of our assumptions. In this case an
initial condition, presumably through the dynamics of
inflaton decay (or the decay of other scalar fields), ensures
that the bulk of the reheating occurs in the visible sector.
This may be quantified by a large visible to dark sector
entropy density ratio ξ ¼ s=s0 at the time of reheating.

FIG. 4. The red and orange regions are ruled out by a stable
oversaturating glueball relic and an unstable glueball that spoils
BBN; the yellow region is ruled out for G ≠ SUð2Þ; SUð3Þ by
dark radiation constraints; the green region is allowed since the
glueball is unstable and decays to moduli or axions prior to BBN.
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Asymmetric reheating may aid the situation by
relaxing ΔNeff constraints or by lowering the glueball relic
abundance. For the case of very low scale confinement
(Λ ≪ 1 eV) the bounds from ΔNeff considerations are
capable of accommodating larger rank hidden groups with
a relativelymild preference for thevisible sector—though the
preferencemust become evermore acute if there aremultiple
such hidden sectors. By contrast, evading overproduction
of glueball dark matter requires ξ ≫ 1 in large regions
of the realistic UV parameter space, often as large as
ξ ¼ 1010 − 1020. Such a large asymmetric reheating is much
larger than typically necessary to avoid dark radiation
problems.
Of course, if a hidden sector is accompanied by gauge-

charged matter that gives rise to baryon or meson states
with masses below that of the glueball, then it may be
possible (though not immediate) to avoid the dark glueball
problem. But note that these fortuitous outcomes must arise
for all problematic hidden sectors for the construction to be
cosmologically viable.
In some cases out of equilibrium decays of other

particles may dilute the glueball relic. If the associated
T 0
rh < Λ then the cosmological assumptions we have used

are violated and the glueball problem may be solved.
However, if this T 0

rh > Λ then the cosmology we have
studied is restarted, potentially with a different ξ, but this
may still give rise to a dark glueball problem depending on
the parameters.
We therefore conclude that there is ample opportunity for

a typical string construction to experience a cosmologically
fatal dark glueball problem. Our results motivate further
research into the assurance of high confinement scales by
moduli stabilization, and also the thorny issue of reheating,
with an emphasis on establishing a strong preference for the
visible sector.

ACKNOWLEDGMENTS

Wewould like to thank Pran Nath and Matt Reece for the
useful discussions. The work of J. H. is supported by NSF
Grant No. PHY-1620526. B. D. N. is supported by NSF
Grant No. PHY-1314774. The work of F. R. is supported by
the German Science Foundation (DFG) within the
Collaborative Research Center (SFB) 676 “Particles,
Strings and the Early Universe.”

[1] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm,
Phys. Rev. Lett. 54, 502 (1985).

[2] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl.
Phys. B261, 678 (1985).

[3] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Nucl.
Phys. B274, 285 (1986).

[4] L. E. Ibanez, H. P. Nilles, and F. Quevedo, Phys. Lett. B 187,
25 (1987).

[5] L. E. Ibanez, J. Mas, H.-P. Nilles, and F. Quevedo, Nucl.
Phys. B301, 157 (1988).

[6] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M.
Ratz, P. K. S. Vaudrevange, and A. Wingerter, Phys. Lett. B
645, 88 (2007).

[7] M. Blaszczyk, S. Groot Nibbelink, M. Ratz, F. Ruehle, M.
Trapletti, and P. K. S. Vaudrevange, Phys. Lett. B 683, 340
(2010).

[8] I. Antoniadis, J. R. Ellis, J. S. Hagelin, and D. V.
Nanopoulos, Phys. Lett. B 231, 65 (1989).

[9] A. E. Faraggi, Int. J. Mod. Phys. A 14, 1663 (1999).
[10] V. Braun, Y.-H. He, B. A. Ovrut, and T. Pantev, Phys. Lett. B

618, 252 (2005).
[11] V. Bouchard and R. Donagi, Phys. Lett. B 633, 783 (2006).
[12] L. B. Anderson, J. Gray, A. Lukas, and E. Palti, J. High

Energy Phys. 06 (2012) 113.
[13] M. Cvetic, T. Li, and T. Liu, Nucl. Phys. B698, 163 (2004).
[14] F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lust, and T.

Weigand, J. High Energy Phys. 01 (2006) 004.

[15] R. Blumenhagen, V. Braun, T. W. Grimm, and T. Weigand,
Nucl. Phys. B815, 1 (2009).

[16] T. P. T. Dijkstra, L. R. Huiszoon, and A. N. Schellekens,
Phys. Lett. B 609, 408 (2005).

[17] T. P. T. Dijkstra, L. R. Huiszoon, and A. N. Schellekens,
Nucl. Phys. B710, 3 (2005).

[18] B. S. Acharya, Adv. Theor. Math. Phys. 3, 227 (1999).
[19] D. D. Joyce, J. Diff. Geom. 43, 291 (1996); 43, 329 (1996).
[20] J. Halverson and D. R. Morrison, J. High Energy Phys. 04

(2016) 100.
[21] A. Grassi, J. Halverson, J. Shaneson, and W. Taylor, J. High

Energy Phys. 01 (2015) 086.
[22] J. Halverson and W. Taylor, J. High Energy Phys. 09 (2015)

086.
[23] W. Taylor and Y.-N. Wang, J. High Energy Phys. 01 (2016)

137.
[24] W. Taylor and Y.-N. Wang, J. High Energy Phys. 12 (2015)

164.
[25] J. Halverson, arXiv:1603.01639.
[26] E. D. Carlson, M. E. Machacek, and L. J. Hall, Astrophys. J.

398, 43 (1992).
[27] Y. Hochberg, E. Kuflik, T. Volansky, and J. G. Wacker,

Phys. Rev. Lett. 113, 171301 (2014).
[28] N. Bernal, X. Chu, C. Garcia-Cely, T. Hambye, and B.

Zaldivar, J. Cosmol. Astropart. Phys. 03 (2016) 018.
[29] N. Bernal and X. Chu, J. Cosmol. Astropart. Phys. 01

(2016) 006.

HALVERSON, NELSON, and RUEHLE PHYSICAL REVIEW D 95, 043527 (2017)

043527-10

http://dx.doi.org/10.1103/PhysRevLett.54.502
http://dx.doi.org/10.1016/0550-3213(85)90593-0
http://dx.doi.org/10.1016/0550-3213(85)90593-0
http://dx.doi.org/10.1016/0550-3213(86)90287-7
http://dx.doi.org/10.1016/0550-3213(86)90287-7
http://dx.doi.org/10.1016/0370-2693(87)90066-9
http://dx.doi.org/10.1016/0370-2693(87)90066-9
http://dx.doi.org/10.1016/0550-3213(88)90166-6
http://dx.doi.org/10.1016/0550-3213(88)90166-6
http://dx.doi.org/10.1016/j.physletb.2006.12.012
http://dx.doi.org/10.1016/j.physletb.2006.12.012
http://dx.doi.org/10.1016/j.physletb.2009.12.036
http://dx.doi.org/10.1016/j.physletb.2009.12.036
http://dx.doi.org/10.1016/0370-2693(89)90115-9
http://dx.doi.org/10.1142/S0217751X99000841
http://dx.doi.org/10.1016/j.physletb.2005.05.007
http://dx.doi.org/10.1016/j.physletb.2005.05.007
http://dx.doi.org/10.1016/j.physletb.2005.12.042
http://dx.doi.org/10.1007/JHEP06(2012)113
http://dx.doi.org/10.1007/JHEP06(2012)113
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.036
http://dx.doi.org/10.1088/1126-6708/2006/01/004
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.011
http://dx.doi.org/10.1016/j.physletb.2004.04.094
http://dx.doi.org/10.1016/j.nuclphysb.2004.12.032
http://dx.doi.org/10.4310/ATMP.1999.v3.n2.a3
http://dx.doi.org/
http://dx.doi.org/10.1007/JHEP04(2016)100
http://dx.doi.org/10.1007/JHEP04(2016)100
http://dx.doi.org/10.1007/JHEP01(2015)086
http://dx.doi.org/10.1007/JHEP01(2015)086
http://dx.doi.org/10.1007/JHEP09(2015)086
http://dx.doi.org/10.1007/JHEP09(2015)086
http://dx.doi.org/10.1007/JHEP01(2016)137
http://dx.doi.org/10.1007/JHEP01(2016)137
http://dx.doi.org/10.1007/JHEP12(2015)164
http://dx.doi.org/10.1007/JHEP12(2015)164
http://arXiv.org/abs/1603.01639
http://dx.doi.org/10.1086/171833
http://dx.doi.org/10.1086/171833
http://dx.doi.org/10.1103/PhysRevLett.113.171301
http://dx.doi.org/10.1088/1475-7516/2016/03/018
http://dx.doi.org/10.1088/1475-7516/2016/01/006
http://dx.doi.org/10.1088/1475-7516/2016/01/006


[30] E. Kuflik, M. Perelstein, N. R. -L. Lorier, and Y.-D. Tsai,
Phys. Rev. Lett. 116, 221302 (2016).

[31] D. Pappadopulo, J. T. Ruderman, and G. Trevisan, Phys.
Rev. D 94, 035005 (2016).

[32] L. Forestell, D. E. Morrissey, and K. Sigurdson, Phys. Rev.
D 95, 015032 (2017).

[33] M. Farina, D. Pappadopulo, J. T. Ruderman, and G.
Trevisan, J. High Energy Phys. 12 (2016) 039.

[34] A. E. Faraggi and M. Pospelov, Astropart. Phys. 16, 451
(2002).

[35] J. L. Feng and Y. Shadmi, Phys. Rev. D 83, 095011 (2011).
[36] K. K. Boddy, J. L. Feng, M. Kaplinghat, and T. M. P. Tait,

Phys. Rev. D 89, 115017 (2014).
[37] A. Soni and Y. Zhang, Phys. Rev. D 93, 115025 (2016).
[38] G. D. Kribs and E. T. Neil, Int. J. Mod. Phys. A 31, 1643004

(2016).
[39] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 594, A13 (2016).
[40] B. S. Acharya, S. A. R. Ellis, G. L. Kane, B. D. Nelson, and

M. J. Perry, Phys. Rev. Lett. 117, 181802 (2016).
[41] F. Denef and M. R. Douglas, J. High Energy Phys. 03

(2005) 061.

[42] M. Gomez-Reino and C. A. Scrucca, J. High Energy Phys.
05 (2006) 015.

[43] B. S. Acharya, G. Kane, and E. Kuflik, Int. J. Mod. Phys. A
29, 1450073 (2014).

[44] B. Fields and S. Sarkar, arXiv:astro-ph/0601514.
[45] G. L. Kane, P. Kumar, B. D. Nelson, and B. Zheng, Phys.

Rev. D 93, 063527 (2016).
[46] J. L. Feng, H. Tu, and H.-B. Yu, J. Cosmol. Astropart. Phys.

10 (2008) 043.
[47] T. Banks, M. Berkooz, S. H. Shenker, G. W. Moore, and P. J.

Steinhardt, Phys. Rev. D 52, 3548 (1995).
[48] T. Banks, M. Berkooz, and P. J. Steinhardt, Phys. Rev. D 52,

705 (1995).
[49] G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby, and G. G.

Ross, Phys. Lett. 131B, 59 (1983).
[50] B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet, Phys.

Lett. B 318, 447 (1993).
[51] M. Kawasaki and T. Moroi, Prog. Theor. Phys. 93, 879

(1995).
[52] P. Adshead, Y. Cui, and J. Shelton, J. High Energy Phys. 06

(2016) 016.

STRING THEORY AND THE DARK GLUEBALL PROBLEM PHYSICAL REVIEW D 95, 043527 (2017)

043527-11

http://dx.doi.org/10.1103/PhysRevLett.116.221302
http://dx.doi.org/10.1103/PhysRevD.94.035005
http://dx.doi.org/10.1103/PhysRevD.94.035005
http://dx.doi.org/10.1103/PhysRevD.95.015032
http://dx.doi.org/10.1103/PhysRevD.95.015032
http://dx.doi.org/10.1007/JHEP12(2016)039
http://dx.doi.org/10.1016/S0927-6505(01)00121-9
http://dx.doi.org/10.1016/S0927-6505(01)00121-9
http://dx.doi.org/10.1103/PhysRevD.83.095011
http://dx.doi.org/10.1103/PhysRevD.89.115017
http://dx.doi.org/10.1103/PhysRevD.93.115025
http://dx.doi.org/10.1142/S0217751X16430041
http://dx.doi.org/10.1142/S0217751X16430041
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1103/PhysRevLett.117.181802
http://dx.doi.org/10.1088/1126-6708/2005/03/061
http://dx.doi.org/10.1088/1126-6708/2005/03/061
http://dx.doi.org/10.1088/1126-6708/2006/05/015
http://dx.doi.org/10.1088/1126-6708/2006/05/015
http://dx.doi.org/10.1142/S0217751X14500730
http://dx.doi.org/10.1142/S0217751X14500730
http://arXiv.org/abs/astro-ph/0601514
http://dx.doi.org/10.1103/PhysRevD.93.063527
http://dx.doi.org/10.1103/PhysRevD.93.063527
http://dx.doi.org/10.1088/1475-7516/2008/10/043
http://dx.doi.org/10.1088/1475-7516/2008/10/043
http://dx.doi.org/10.1103/PhysRevD.52.3548
http://dx.doi.org/10.1103/PhysRevD.52.705
http://dx.doi.org/10.1103/PhysRevD.52.705
http://dx.doi.org/10.1016/0370-2693(83)91091-2
http://dx.doi.org/10.1016/0370-2693(93)91538-X
http://dx.doi.org/10.1016/0370-2693(93)91538-X
http://dx.doi.org/10.1143/ptp/93.5.879
http://dx.doi.org/10.1143/ptp/93.5.879
http://dx.doi.org/10.1007/JHEP06(2016)016
http://dx.doi.org/10.1007/JHEP06(2016)016

