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Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the
dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are
balanced against their cosmological abundances. Previous studies of this framework have focused on a
particular class of DDM ensembles—motivated primarily by Kaluza-Klein towers in theories with extra
dimensions—in which the density of dark states scales roughly as a polynomial of the mass. In this paper,
by contrast, we study the properties of a different class of DDM ensembles in which the density of dark
states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the
“hadronic” resonances associated with the confining phase of a strongly-coupled dark sector; they also
arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties
of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and
abundances can emerge naturally—even with an exponentially rising density of states. We also study the
effective equations of state for such ensembles, and investigate some of the model-independent
observational constraints on such ensembles that follow directly from these equations of state. In general,
we find that such constraints tend to introduce correlations between various properties of these DDM
ensembles such as their associated mass scales, lifetimes, and abundance distributions. For example, we
find that these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way
to the Planck scale, but that the total present-day cosmological abundance of the dark sector must be spread
across an increasing number of different states in the ensemble as these energy scales are dialed from the
Planck scale down to the GeV scale. Numerous other correlations and constraints are also discussed.
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I. INTRODUCTION

Dynamical Dark Matter (DDM) [1,2] is an alternative
framework for dark-matter physics in which dark-matter
stability is not required. Instead, the dark sector within the
DDM framework comprises a vast ensemble of individual
constituent particles exhibiting a variety of different masses,
lifetimes, and cosmological abundances. The phenomeno-
logical viability of such a dark sector is then ensured
through a nontrivial balancing between cosmological
abundances and Standard-Model (SM) decay widths across
the ensemble. Indeed, under this balancing, those ensemble
constituents with shorter lifetimes must have smaller
cosmological abundances, while states with longer lifetimes
may have larger cosmological abundances. As a result, the
dark sector in such a scenario is dynamic: states in the dark
sector are continually decaying into visible-sector states
throughout the evolution of the universe—not just in
previous epochs but even at the present time and into the
future. Quantities such as the total energy densityΩCDM and

the effective equation-of-state parameter weff are thus time-
dependent quantities, and it is only an accident that these
quantities happen to take particular values at the present
time. Many methods have been developed for testing this
framework, spanning from collider signatures [3,4] to
signatures in direct-detection [5] and indirect-detection
[6–8] experiments.
Of course, many of the constraints on such DDM

ensembles depend on model-specific details associated
with the ensemble in question, such as the specific particle
nature of the individual dark constituent fields and the
precise form of their decays into SM states. By contrast,
other phenomenological properties of (and constraints on)
these DDM ensembles depend simply on the manner in
which the lifetimes and abundances of ensemble constitu-
ents scale with respect to each other, and thus have a greater
degree of model independence. For example, the effective
equations of state for these ensembles are governed in large
part solely by these scaling relations. As a result, all
phenomenological/observational constraints on the equa-
tions of state of the dark sector are essentially constraints on
the types of balancing relations that DDM ensembles may
exhibit. These are thus model-independent constraints
which can be placed on such ensembles simply as a result
of their inherent scaling relations.
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One general class of DDM ensembles consisting of large
numbers of dark particle species exhibiting suitable scaling
relations between lifetimes and cosmological abundances
are those whose constituents are the Kaluza-Klein (KK)
modes of a gauge-neutral bulk field in a theory with extra
spacetime dimensions in which cosmological abundances
are established through misalignment production [1].
Indeed, explicit realizations of DDM ensembles of this
type have been constructed [2,9]. Although many aspects
of these ensembles depend on the details of the particular
fields under study, certain general properties are common
across all such ensembles in this class. One of these is that
the cosmological abundance of each component scales as a
power of the lifetime of that component. Likewise, the
density of states within such ensembles is either insensitive
to mass or scales roughly as a polynomial function of mass
across the ensemble. For these reasons, most phenomeno-
logical studies of the DDM framework have focused on
ensembles exhibiting polynomial scaling relationships.
Polynomial scaling relations also emerge in other

(purely four-dimensional) contexts as well. For example,
under certain circumstances, thermal freeze-out mecha-
nisms for abundance generation can also lead to appro-
priate polynomial inverse scaling relations between
lifetimes and abundances [10]. In fact, such inverse
scaling relations can even emerge statistically in contexts
in which the dynamics underlying the dark sector is
essentially random [11].
There are, however, other well-motivated theoretical

constructions which do not give rise to dark sectors with
polynomial scaling relations. One example is a dark sector
consisting of a set of fermions (dark “quarks”) charged
under a non-Abelian gauge group G which becomes
confining below some critical temperature Tc. At temper-
atures T ≲ Tc, when the theory is in the confining phase,
the physical degrees of freedom are composite states (dark
“hadrons”). Another well-motivated type of DDM ensem-
ble consists of the bulk (i.e., closed-string) states in Type I
string theories. Such bulk states are typically neutral with
respect to all brane gauge symmetries, and interact with
those brane states only gravitationally. As such, from the
perspective of brane-localized observers, these bulk states
too are dark matter.
At first glance, these two latter types of ensembles may

seem to have little in common with each other. Indeed,
many aspects of the detailed phenomenologies associated
with these ensembles will be completely different.
However, they nevertheless exhibit certain underlying
model-independent commonalities which are relevant for
their viability as DDM ensembles. Indeed, these features
are identical to those which characterize the “visible” sector
of ordinary hadrons, namely

(i) mass distributions which follow linear Regge tra-
jectories (i.e., α0M2

n ∼ n where α0 is a corresponding
Regge slope), and

(ii) exponentially growing (“Hagedorn-like”) degener-
acies of states (i.e., gn ∼ e

ffiffi
n

p
∼ e

ffiffiffi
α0

p
Mn ).

These features—especially the appearance of an exponen-
tial scaling of the state degeneracies with mass—represent
a behavior which is markedly different from that exhibited
by DDM ensembles with polynomial scaling relations.
For example, as a result of their exponentially growing
densities of states, such ensembles have a critical temper-
ature [12] beyond which their partition functions diverge.
In this paper, we shall study the generic properties of

DDM ensembles which exhibit the two features itemized
above. We shall calculate the effective equations of state
weffðtÞ for such ensembles, and subject these ensembles to
those immediate model-independent observational con-
straints that follow directly from these equations of state.
We shall therefore be able to place zeroth-order model-
independent bounds on some of the quantities that para-
metrize these features, such as the effective Regge slope
as well as the rate of exponential growth in the state
degeneracies. Our primary motivation is to understand the
phenomenology that might apply to strongly-coupled dark
sectors in their confined (“hadronic”) phase, imagining
nothing more than that our DDM ensemble resembles the
visible hadronic sector in the two respects itemized above.
However, the results of such analyses might also be useful
in constraining the bulk sector of various classes of string
theories, since these bulk sectors also give rise to ensembles
of dark-matter states which share these two grossest
features. We shall therefore aim to keep our discussion
as model-independent as possible, subject to our
assumption of the above two properties itemized above.
In this way, our analysis and the constraints we obtain can
serve as useful phenomenological guides in eventually
building realistic dark-matter models of this type.
This paper is organized as follows. In Sec. II, we begin

by reviewing the properties that we shall assume for the
mass spectrum and density of states of our DDM dark
“hadron” ensemble. We shall also discuss the physical
interpretations of these properties in terms of a variety of
underlying flux-tube models and string theories. This
section will also serve to establish our conventions and
notation. Then, in Sec. III, we discuss how the required
balancing between lifetimes and abundances naturally
arises for such DDM ensembles. In particular, we examine
the mechanism through which primordial abundances for
these hadron resonances are generated, and we determine
how these abundances scale across the ensemble as a
function of the hadron mass. We also discuss the scaling
behavior of the decay widths that characterize the decays of
the hadronic ensemble constituents to SM states, as well as
the assumptions that enter into such calculations. In Sec. IV,
we then derive expressions for the total abundance ΩtotðtÞ,
the tower fraction ηðtÞ, and the effective equation-of-state
parameter weffðtÞ for these DDM ensemble as functions of
time. As discussed in Refs. [1,2] and reviewed in Sec. IV,
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these three functions characterize the time evolution of
DDM ensembles and allow us to place a variety of general,
model-independent constraints on such ensembles. In
Sec. V, we then present the results of our analysis of the
phenomenological viability of such DDM ensembles,
identifying those regions of the corresponding parameter
space which lead to the most promising ensembles and
uncovering generic phenomenological behaviors and cor-
relations across this space. One of our key findings is that
these DDM ensembles can satisfy our constraints across a
broad range of energy scales ranging from the GeV scale all
the way to the Planck scale, but that the present-day
cosmological abundance of the dark sector must be
distributed across an increasing number of different states
in the ensemble as the fundamental mass scales associated
with the ensemble are dialed from the Planck scale down to
the GeV scale. Finally, in Sec. VI, we summarize our
results and discuss possible avenues for future work.

II. DDM ENSEMBLES OF DARK HADRONS:
FUNDAMENTAL ASSUMPTIONS

As discussed in the Introduction, in this paper we are
primarily concerned with the properties of DDM ensembles
whose constituents are the “hadronic” composite states or
resonances of a strongly-coupled dark sector. As has been
well known since the 1960s, many of the attributes of such
an ensemble can be successfully modeled by strings. These
attributes include linear Regge trajectories, linear confine-
ment, an exponential rise in hadron-state degeneracies, and
s- and t-channel duality. It is not a complete surprise that
there is a deep connection between hadronic spectroscopy
and the spectra of string theory. Hadronic resonances
(particularly mesons) can be viewed as configurations of
dark “quarks” linked together by flux tubes. The spectrum
of excitations in such a theory therefore corresponds to the
spectrum of fluctuations of these flux tubes. However, it is
well known that these flux tubes can be modeled as
noncritical strings. Thus string theory can provide insight
into the properties of such collections of composite states.
In what follows, we shall use this analogy between

hadronic physics and string theory to motivate our para-
metrization for themass spectrumand for thedensity of states
of our dark-“hadronic”DDMensembles.We shall alsomake
recourse to modern string technology, when needed, for
refinements of our basic picture. Throughout, however, we
shall attempt to keep our parametrizations as general as
possible so that they might apply to thewidest possible set of
DDM ensembles sharing these properties. As discussed in
the Introduction, this will allow our analysis and eventual
constraints to serve as useful guides in future attempts to
build realistic models exhibiting these features.

A. The mass spectrum: Regge trajectories

The first feature that we shall assume of our hadronic
dark sector is a mass spectrum consistent with the existence

of Regge trajectories. The existence of such trajectories
follows directly from nothing more than our assumption
that our dark-sector bound states can be modeled by dark
quarks connected by the confining flux tube associated
with a strong, attractive, dark-sector interaction. Taking
meson-like configurations as our guide and temporarily
assuming massless quarks, it can easily be shown that the
mass Mn associated with a relativistic rotating flux tube
scales with the corresponding total angular momentum n as
n ∼ α0M2

n, where α0 is the so-called Regge slope. In the
visible sector, this successfully describes the so-called
leading Regge trajectory of the observed mesons, with
α0 ∼ 1 ðGeVÞ−2 appropriate for QCD. Moreover, there also
exist subleading (parallel) Regge trajectories of observed
mesons which have the same Regge slope but different
intercepts: n ∼ α0M2

n þ α0.
Regge trajectories of this form, both leading and sub-

leading, also emerge in string theory. For example, the
perturbative states of a quantized open bosonic string have
massesM and spins J ¼ 0; 1;…; Jmax which satisfy Jmax ¼
α0M2 þ 1 where α0 is now the Regge slope associated with
string theory [typically assumed to be ∼ðMPlanckÞ−2]. The
states with J ¼ Jmax thus sit along the leading Regge
trajectory, while those with smaller values of J sit along the
subleading Regge trajectories. Similar results also hold for
superstrings and heterotic strings.
Given these observations, in this paper we shall assume

that the states of our dark “hadronic” DDM ensemble have
discrete positive masses Mn of the general form

M2
n ¼ nM2

s þM2
0; ð2:1Þ

where n is an index labeling our states in order of increasing
mass. Here Ms ≡ 1=

ffiffiffiffi
α0

p
is the corresponding “string

scale,” while M0 represents the mass of the lightest
“hadronic” constituent in the DDM ensemble. Indeed,
since we do not expect to have any tachyonic states in
our DDM ensemble, we shall assume throughout this paper
that M2

0 ≥ 0. We shall avoid making any further assump-
tions about the nature of the dark sector by treating bothMs
and M0 as free parameters to be eventually constrained by
cosmological data.
Our choice of sign for M2

0 perhaps deserves further
comment. For the visible sector, most hadrons lie along
Regge trajectories withM2

0 ≥ 0. While there do exist Regge
trajectories with M2

0 < 0, the lowest states in such trajec-
tories are of course absent. In string theory, by contrast, all
Regge trajectories have M2

0 < 0. However, just as in the
hadronic case, all tachyonic states which might result for
small n are ultimately removed from the string spectrum by
certain “projections” which are ultimately required for the
self-consistency of the string. In other words, for Regge
trajectories with M2

0 < 0, one could equivalently relabel
our remaining states by shifting n → n − 1 and thereby
obtain an “effective” M2

0 ≥ 0. This is not normally done in
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string theory because in string theory the index n is
correlated with other physical quantities such as the spin
of the state. However we are making no such assumption
for the states of our dark sector, and are treating the index n
as a mere labelling parameter. Our assumption of a
tachyon-free dark sector then leads us to take M2

0 ≥ 0.
There is also another motivation for taking M2

0 ≥ 0. All
of the above results which treat n as an angular momentum
assume massless quarks at the endpoints of the flux tube.
However, while such an approximation holds well for the
lightest states in the visible sector, we do not wish to make
such an approximation for our unknown dark sector. We
shall therefore assumeM2

0 ≥ 0 in what follows, recognizing
that this parameter may in principle also implicitly include
the positive contributions from dark quark masses as well.

B. Degeneracy of states: Exponential behavior

The second generic feature associated with hadronic
spectroscopy is the well-known exponential rise in the
degeneracies of hadrons as a function of mass: gn ∼ e

ffiffi
n

p
.

This behavior was first predicted and observed for hadrons
(both mesons and baryons) in Ref. [12], and also holds as a
generic feature for both bosonic and fermionic states in
string theory [13].
In general, we can understand this behavior as follows. If

we model our hadrons as quarks connected by flux tubes,
the degeneracy gn of hadronic states at any mass level n can
be written as the product of two contributions: one factor κ
representing a multiplicity of states due to the degrees of
freedom associated with the quarks (such as the different
possible configurations of quantities like spin and flavor),
and a second factor ĝn representing the multiplicity of states
due to the degrees of freedom associated with the flux tube.
We thus have

gn ≈ κĝn: ð2:2Þ
While κ is a constant which is independent of the particular
mass level n, the remaining degeneracy factor ĝn counts the
rapidly increasing number of ways in which a state of given
total energy n can be realized as a combination of the
vibrational, rotational, and internal excitations of the
different harmonic oscillators which together comprise a
quantized string. It is this quantity which grows exponen-
tially with mass, and in string theory the leading behavior
of ĝn for large n generally takes the form [13]

ĝn ≈ An−BeC
ffiffi
n

p
as n → ∞; ð2:3Þ

where A, B, C are all positive quantities which depend on
the particular type of string model under study. Indeed, for
any B and C, it turns out that the proper normalization for
ĝn in string theory is given by

A ¼ 1ffiffiffi
2

p
�
C
4π

�
2B−1

: ð2:4Þ

Thus our asymptotic degeneracy of states is parametrized
by two independent quantities B and C, and we shall
assume that this continues to be true in our dark sector
as well.
The most salient property of the expression in Eq. (2.3) is

that it rises exponentially with
ffiffiffi
n

p
, or equivalently with the

mass Mn of the corresponding state. This represents a
crucial difference relative to the KK-inspired DDM ensem-
bles previously considered in Refs. [1,2,9] (or even the
purely four-dimensional DDM ensembles considered in
Refs. [10,11]). For example, the KK states corresponding to
a single flat extra spacetime dimension have degeneracies
ĝn which are constant, or which become so above the n ¼ 0
level. The key difference here is that the degrees of freedom
associated with our flux tube consist of not only KK
excitations (if the flux tube happens to be situated within a
spacetime with a compactified dimension), but also
so-called oscillator excitations representing the internal
fluctuations of the flux tube itself. It is these oscillator
excitations which give rise to the exponentially growing
degeneracies and which are a direct consequence of the
nonzero spatial extent of the flux tube. As such, they are
intrinsically stringy and would not arise in theories involv-
ing fundamental point particles.
Unfortunately, the asymptotic form in Eq. (2.3) is not

sufficient for our purposes. Although we are interested in
the behavior of all states across the DDM ensemble, it is the
lighter states rather than the heavier states which are most
likely to have longer lifetimes and therefore greater
cosmological abundances. Thus, even though we want to
keep track of all of the states in our ensemble, we need to be
particularly sensitive to the degeneracies of the lighter
states, i.e., the states with smaller values of n. This poses a
problem because the asymptotic expression in Eq. (2.3) is
fairly accurate in the large-n limit but is not especially
accurate in the small-n limit.
Fortunately, for values of B and C which correspond to

self-consistent strings (to be discussed below), the tools of
modern string technology (specifically conformal field
theory and modular invariance) furnish us with a more
precise approximation for ĝn which remains accurate even
for very small values of n. This expression is given by
[14–17]

ĝn ≈ 2π

�
16π2n
C2

− 1

�1
4
−B
Ij2B−1

2
j

 
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n −

C2

16π2

s !
; ð2:5Þ

where IνðzÞ denotes the modified Bessel function of the
first kind of order ν. Use of the approximation IνðzÞ ≈
ez=

ffiffiffiffiffiffiffiffi
2πz

p
for z ≫ 1 then reproduces the result in Eq. (2.3).

However, the expression in Eq. (2.5) remains valid to
within only a few percent all the way down to n ¼ 1,
assuming C ≤ 4π (so that the argument of the Bessel
function remains real even for n ¼ 1).
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In what follows, we therefore shall adopt the expression
in Eq. (2.5) as our general parametrization for the degen-
eracy of states ĝn for arbitrary values of B and C ≤ 4π and
for all n ≥ 1. For values of B and C corresponding to bona-
fide string theories, this expression yields results for the
state degeneracies which, though not necessarily integral,
are highly accurate for all values of n ≥ 1. An explicit
example of this will be provided below. More generally,
however, this expression is smooth and well-behaved for all
values of the B and C parameters, and in all cases exhibits
the exponential Hagedorn-like behavior whose primary
effects we seek to analyze in this paper. For n ¼ 0, by
contrast, we shall define ĝ0 ≡ 1, representing the unique
ground state of our flux tube.

C. Physical interpretation of ensemble parameters

Thus far we have introduced four parameters to describe
our dark “hadron” DDM ensemble: Ms, M0, B, and C. The
first two parameters have immediate interpretations: M0 is
themass of the lightest state in theDDMensemble, whileMs
parametrizes the splitting between the states. We would now
like to develop analogous physical interpretations ofB andC.
Clearly B and C describe the dynamics of the flux tube.

However, in the case of the ordinary strong interaction,
many possible theories governing this dynamics have been
proposed. These range from early examples such as the
scalar (Nambu) string [18], the Ramond string [19], and the
Neveu-Schwarz (NS) string [20] to more modern examples
such as Polyakov’s “rigid string” [21], Green’s “Dirichlet
string” [22], and the Polchinski-Strominger “effective
string” [23]. Many other possibilities and variants have
also been proposed.
All of these theories begin by imagining a one-

dimensional line of flux energy (i.e., a string) which sweeps
out a two-dimensional flux-sheet (or worldsheet) as it
sweeps through an external D-dimensional spacetime.
Here D is the number of spacetime dimensions which
are effectively uncompactified with respect to the funda-
mental energy scale Ms associated with the flux tube.
As such, as it propagates, our string/flux tube is free to
fluctuate into any of the D⊥ ≡D − 2 spatial dimensions
transverse to the string. We can describe such fluctuations
by specifying D⊥ embedding functions Xiðσ1; σ2Þ,
i ¼ 1; ::; D⊥, which are nothing but the transverse space-
time locations of any point on the flux-tube worldsheet with
coordinates ðσ1; σ2Þ. As such, these embedding functions
may be regarded as fields on the two-dimensional flux-tube
worldsheet. The dynamics of this system is then governed
by the Polyakov action

S ∼M2
s

Z
d2σ

XD⊥

i¼1

� ∂
∂σα X

i

�� ∂
∂σα X

i

�
: ð2:6Þ

Minimizing this action is classically equivalent to mini-
mizing the area of the flux-tube worldsheet.

By itself, the expression in Eq. (2.6) describes the action of
the so-calledD⊥-dimensional “scalar” string. In some sense
this theory provides the simplest possible description of a
strongly-interacting flux tube, with the term in Eq. (2.6)
representing the bare minimum that must always be present
for any flux-tube description. The various possible refine-
ments of this basic theory then differ in the extra terms that
might be added to this action. Some of these theories
mentioned above introduce extra terms which correspond
to additional, purely internal degrees of freedom [e.g.,
additional fields analogous to Xiðσ1; σ2Þ but without inter-
pretations as the coordinates of uncompactified spacetime
dimensions] on the flux-tube worldsheet. By contrast, other
theories introduce extra interaction terms for the Xi-fields
which alter their short-distance behavior.
The action in Eq. (2.6) can be interpreted as that of a two-

dimensional (2D) field theory (where the two dimensions
are those of the flux-tube worldsheet), and we immediately
see that it is endowed with a 2D conformal symmetry.
There are good reasons to expect that the long-distance
limit of any self-consistent flux-tube theory should exhibit
such a symmetry, since we expect the physics of this system
to be invariant under reparametrizations of our flux-tube
worldsheet coordinates. As a result, those flux-tube theories
that augment the scalar string by introducing extra purely
internal degrees of freedom on the flux-tube worldsheet
must not break this conformal symmetry; this requirement
constrains what kinds of terms can be added. By contrast,
the theories that introduce extra interaction terms for the Xi

fields do break this conformal symmetry, but they do so
only in the short-distance limit. The 2D conformal sym-
metry of the long-distance limit is then preserved as an
effective symmetry.
In any 2D conformal field theory, either exact or effective,

the total number of degrees of freedom is encoded within the
so-called central charge c. EachXi field contributes a central
charge c ¼ 1, and thus the minimal scalar-string action in
Eq. (2.6) describes a theory with central charge c ¼ D⊥.
However the introduction of additional degrees of freedom
on the flux-tube worldsheet will necessarily increase the
central charge, producing a theory with c > D⊥.
Given a particular action for our flux-tube dynamics, it is

straightforward to quantize the fields in question. In this way,
we candetermine the corresponding spectrumof the theory at
all mass levels. These calculations are standard in string
theory (see, e.g., Ref. [13]), and ultimately one obtains
[15–17] asymptotic state degeneracies ĝn of the forms given
in Eq. (2.3) or Eq. (2.5). Remarkably, one finds a relatively
straightforward connection between the parameters ðB;CÞ
appearing in our state degeneracies and the parameters
ðD⊥; cÞ of our underlying flux-tube theory [14–17]:

�B ¼ 1
4
ð3þD⊥Þ

C ¼ π
ffiffiffiffiffiffiffiffiffiffi
2c=3

p
:

ð2:7Þ
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Indeed, for any value of B and C, we may regard the total
central charge c as having two contributions: one contribu-
tion cfluc ¼ D⊥ associated with the degrees of freedom
associated with the transverse uncompactified spacetime
fluctuations of the flux tube, and a remaining contribution

cint ≡ c −D⊥ ≡ 3C2

2π2
− 4Bþ 3 ð2:8Þ

associated with those additional, purely internal degrees of
freedom which might also exist within the full flux-tube
theory (including those associated with any compactified
spacetime dimensions which may also exist).
At first glance, it might seem that our dark sector must

have D⊥ ¼ 2, just as does our visible sector. This would
certainly be true if our dark-sector flux tube were to
experience the same spacetime geometry as does the visible
sector. However, we emphasize that in a string-theoretic or
“braneworld” context, the dark sector could correspond to
physics in the “bulk”—i.e., physics perpendicular to the
brane on which the visible sector resides. The degrees of
freedom in the bulk would then be able to interact with
those on the brane at most gravitationally, and would thus
constitute dark matter by construction. However, the geo-
metric properties of the bulk will generally differ from
those of the brane—the bulk might contain not only extra
spacetime dimensions which are effectively large (i.e.,
uncompactified) with respect to the fundamental string
scale, but also extra spacetime dimensions which are small
(i.e., compactified). The bulk may also be populated by
additional fields with no spacetime interpretations at all. It
is for this reason that we make no assumptions about the
values of c or D⊥ associated with the dark sector.
Once our flux-tube theory is specified and the corre-

sponding values of B and C determined, we may calculate
the corresponding effective static-quark potential VðRÞ
between two quarks a distance R apart. We find [14]

VðRÞ ¼
�
Ms

2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMsRÞ2 − ðC=2Þ2

q

≈
M2

sR
2π

−
C2

16π

1

R
þ � � � for R ≫ M−1

s : ð2:9Þ

The first term in the final expression indicates a linear
confinement potential, as expected; this is nothing but the
classical energy in the flux tube. By contrast, the second
term resembles a Coulomb term but is actually an attractive
universal quantum correction (or Casimir energy) which
arises due to the transverse zero-point vibrations of the
flux tube.
For visible-sector hadrons, it is natural to takeD ¼ 4. As

a result, the D⊥ ¼ 2 scalar string with cint ¼ 0 (corre-
sponding to B ¼ 5=4 and C ¼ 2π=

ffiffiffi
3

p
≈ 3.63) is the

“minimal” string that we expect to underlie all descriptions
of the actual visible-sector QCD flux tube. In fact, it has

been shown in Ref. [14] that this minimal D⊥ ¼ 2 scalar
string with κ ¼ 36 provides an excellent fit to hadronic
data, both for low energies (which are sensitive to the
Casimir energy within the confinement potential) as well as
high energies (which are governed by the asymptotic
degeneracy of hadronic states and the corresponding
Hagedorn temperature). As discussed in Ref. [14], this
success—coupled with the appearance of the same quantity
C in both places—provides a highly nontrivial test of the
classical conformal invariance of the QCD string.
In this paper, we shall imagine that our DDM ensemble

of dark-sector hadrons mimics that of the visible-sector
hadrons to the extent that it corresponds to a set of masses
Mn and state degeneracies ĝn parametrized by the func-
tional forms given in Eqs. (2.1) and (2.5). However, we
shall not insist on an actual string interpretation governing
our dark-sector confinement dynamics, and as discussed
above we shall therefore regard B and C as free parameters
which may be adjusted at will (subject to certain constraints
to be discussed below). Nevertheless it is only when B and
C correspond to appropriate values of D⊥ and c via the
relations in Eq. (2.7) that we may describe our resulting
spectrum as corresponding to that of a classically self-
consistent string moving in a specific geometry. Moreover,
motivated by our experience with visible-sector hadrons,
we shall continue to regard the special scalar-string case
with B ¼ 5=4 and C ¼ 2π=

ffiffiffi
3

p
as our “minimal” theory,

corresponding to the action in Eq. (2.6) with D⊥ ¼ 2.
Adjusting the value of B above or below 5=4 can then be
interpreted as changing the effective number of uncom-
pactified spacetime dimensions felt by our dark-sector flux
tube (i.e., the number of uncompactified spacetime dimen-
sions into which it can experience fluctuations), while
increasing the value of C beyond 2π=

ffiffiffi
3

p
corresponds to

introducing additional purely internal degrees of freedom
with central charge cint into our flux-tube theory.
Note, in this regard, that the degrees of freedom

associated with fluctuations into extra compactified space-
time dimensions count towards cint rather than D⊥. Thus,
in terms of its effects on the dark sector, the act of
compactifying a spacetime dimension to a radius below
the associated string scale preserves the central charge c
(and thus the coefficient C) and merely shifts the associated
degrees of freedom fromD⊥ to cint. The resulting change in
the asymptotic state degeneracies ĝn due to the change in B
then reflects the appearance of new Kaluza-Klein reso-
nances in the total flux-tube spectrum.

D. Constraints on parameters

Even though Ms, M0, B, and C are henceforth to be
viewed as unrestricted quantities parametrizing our hadron-
like DDM ensemble, they are nevertheless subject to
certain self-consistency constraints.
First, we note that while the asymptotic form for ĝn in

Eq. (2.5) is remarkably accurate within those regions of
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ðB;CÞ parameter space for which actual string realizations
exist, there are other regions of ðB;CÞ parameter space
within which this approximation provides unphysical
results. For example, given that the expression for ĝn in
Eq. (2.5) multiplies a growing Bessel function against a
falling monomial, for any given value of B it is in principle
possible for there to exist a critical value of C below which
ĝn is not always monotonically increasing for all n ≥ 0.
Such a situation is clearly unphysical, implying that the
number of accessible flux-tube states fails to grow with the
total energy in the flux tube. We therefore demand that

ĝnþ1 > ĝn for all n ≥ 0: ð2:10Þ
Given that we have taken ĝ0 ¼ 1, it turns out throughout the
parameter range of interest that this requirement is tanta-
mount to demanding

ĝ1 > 1: ð2:11Þ
If we further wish to demand that our ensemble of dark

“hadrons” admit a string-theoretic description, then certain
additional consistency conditions on the parameters B andC
must be satisfied as well. For example, sinceD⊥ ∈ Z > 0 in
any self-consistent string construction, we must have

B ∈ Z=4 > 3=4: ð2:12Þ
Likewise, as discussed above, any self-consistent string
theory will also have c ≥ D⊥ (or cint ≥ 0), which in turn
implies

C2 ≥
2π2

3
ð4B − 3Þ: ð2:13Þ

There are, of course, further string-derived constraints that
might be imposed. For example, the allowed set of world-
sheet central charges c that can be realized in such noncritical
string theories depends crucially on the types of string
models under study and the types of conformal field theories
used in their constructions. However, the constraints in
Eqs. (2.12) and (2.13) can be taken as a minimal model-
independent set of constraints that must be satisfied as a
prerequisite to any possible string interpretation.
In Fig. 1, we indicate the region of ðB;CÞ parameter

space which is consistent with the constraints in
Eqs. (2.11), (2.12), and (2.13). We emphasize that the first
of these constraints must always be satisfied as a matter of
internal self-consistency. By contrast, as discussed above,
the latter two conditions need to be satisfied only if one
imposes the additional stipulation that our ensemble of dark
“hadrons” admit a string-theory description. We observe in
this connection that the first constraint is always weaker
than the remaining string-motivated constraints. In other
words, a string-based description with B ∈ Z=4 ≥ 1 is
always guaranteed to have monotonically growing degen-
eracies ĝn. In Fig. 1 we also highlight the point ðB;CÞ ¼
ð5=4; 2π= ffiffiffi

3
p Þ corresponding to the “minimal” D⊥ ¼ 2

scalar string. While this theory need not necessarily provide
the best-fit description for our dark hadrons (as it does for
the visible hadrons), its minimality nevertheless provides a
useful benchmark for exploring the parameter space of our
DDM model. Finally, we observe from Fig. 1 that our
combined constraints imply that

C≳ 1.693: ð2:14Þ

Indeed, this is the allowed range in C for which ĝ1 > 1
when B ¼ 3=4.
As an illustration of the results of this section, let us

focus further on this “minimal” D⊥ ¼ 2 scalar string. As
noted above, the action for this string is given in Eq. (2.6).
Quantizing this theory then gives rise to a discrete spectrum
of states whose exact degeneracies are1 ĝn≥0 ¼
f1; 2; 5; 10; 20; 36; 65; 110; 185;…g. Indeed it is only

FIG. 1. The region of ðB;CÞ parameter space of interest for a
DDM ensemble of dark “hadrons.” The red shaded region is
excluded by the theoretical self-consistency condition ĝ1 ≥ 1. By
contrast, the blue shaded regions are excluded by the constraint
B > 3=4 as well as by the constraint in Eq. (2.13), and thus
correspond to regions in which it would not be possible to
interpret the ensemble constituents as the states of a quantized
string. Note that locations for which B∉Z=4 would also suffer
from this difficulty. Within the (unshaded) string-allowed region,
we have indicated contours of D⊥, c, and cint, as defined in
Eqs. (2.7) and (2.8). The black dot indicates the point in
parameter space corresponding to the minimal D⊥ ¼ 2 scalar
string with cint ¼ 0. As demonstrated in Ref. [14], this model
provides the best fit to the visible hadron spectrum.

1These degeneracies ĝn may be extracted as the coefficients of
qn in a small-q power-series expansion of the infinite productQ

nð1 − qnÞ−2. With only minor modifications and a proper
physical definition for q, this infinite product turns out to be
the partition function of the D⊥ ¼ 2 scalar string theory in
Eq. (2.6).
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because of the existence of a quantized string formulation
that we are even able to calculate the degeneracies of the
corresponding ensemble from first principles. However, as
we have asserted, these degeneracies are extremely well
approximated by the expression in Eq. (2.5) with ðB;CÞ ¼
ð5=4; 2π= ffiffiffi

3
p Þ. This is shown in Fig. 2, where we plot both

the discrete exact degeneracies ĝn and the approximate
functional form in Eq. (2.5). As evident from Fig. 2, our
functional formmatches these discretevalues of ĝn extremely
well for all values ofn ≥ 0—even though thedegeneracies ĝn
are necessarily integers and even though our functional form
was originally designed to be accurate only in the asymptotic
n → ∞ limit. Indeed, as claimed above, this functional form
is accurate to within two percent over the entire range of n.
This demonstrates the power of the functional form we have
adopted, as well as the utility of an underlying string
formulation for our flux tube.

III. LIFETIMES AND COSMOLOGICAL
ABUNDANCES FOR HADRONIC

DDM ENSEMBLES

In the previous section, we discussed the spectra of our
dark “hadronic” DDM ensembles. Our next step, then, is to
consider the lifetimes and cosmological abundances of the
individual states within these ensembles.

A. Cosmological abundances

As we have seen, the degeneracy of states gn for our
ensemble of dark “hadrons” grows exponentially with the
mass of the state, with asymptotic behavior gn ∼ e

ffiffi
n

p
∼

eMn=Ms . This exponential rise in the state degeneracies
places severe constraints on the possible, physically con-
sistent cosmological production mechanisms by which the

corresponding abundances Ωn might be established.
Indeed, unless the corresponding abundances Ωn fall
sufficiently rapidly with n, our ensemble is likely to
encounter severe phenomenological difficulties.
Fortunately, our interpretation of the individual compo-

nents of such an ensemble as dark hadrons suggests a
natural mechanism through which the corresponding abun-
dances Ωn are generated with an exponential suppression
factor capable of overcoming this exponential rise in gn. As
we have discussed, we have been imagining that these dark
“hadrons” emerge as the result of a dark-sector confining
phase transition triggered by the strong interactions of some
dark-sector gauge group G. This phase transition occurs
when the temperature T in the dark sector drops below the
critical temperature Tc associated with this phase transition.
This event marks the time tc at which the primordial
abundances of our individual hadrons are established.
Moreover, it is reasonable to assume that residual G
interactions establish thermal equilibrium among these
hadrons at T ∼ Tc. Thus, the primordial abundances Ωn
of our hadrons can be assumed to follow a Boltzmann
distribution at t ¼ tc:

ΩnðtcÞ≡ ρnðtcÞ
ρcritðtcÞ

¼ 1

3 ~M2
PHðtcÞ2

Z
d3p
ð2πÞ3 Epe−Ep=Tc ð3:1Þ

where Ep ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p · pþM2

n

p
and ρcritðtÞ≡ 3 ~M2

PHðtÞ2 where
~MP ≡MP=

ffiffiffiffiffiffi
8π

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
is the reduced Planck

mass and HðtÞ the Hubble parameter. Indeed, we may
equivalently regard these abundances as emerging from
an infinitely rapid succession of thermal freeze-outs.
Evaluating Eq. (3.1) explicitly, we find

ΩnðtcÞ ¼ X

�
ðMnTcÞ2K2ðMn=TcÞ

þ 1

2
M3

nTc½K1ðMn=TcÞ þ K3ðMn=TcÞ�
�

ð3:2Þ

where KνðzÞ are modified Bessel functions of the second
kind and where X ≡ ½6π2 ~M2

PHðtcÞ2�−1 is a common overall
multiplicative factor.
In general, a given state with mass M produced at

temperature Tc will be nonrelativistic (behaving like
massive matter) if Tc ≲M and relativistic (behaving like
radiation) otherwise. In such limiting cases, the abundances
in Eqs. (3.1) and (3.2) take the simplified forms

ΩnðtcÞ ≈
� ffiffiffiffiffiffiffiffi

π=2
p

XMnðMnTcÞ3=2e−Mn=Tc nonrel

6XT4
c rel:

ð3:3Þ

At first glance, it may seem that any value for Tc might
be phenomenologically permissible. However, this produc-
tion mechanism can only be self-consistent if it injects a
finite total energy density into our system. In other words,
as a bare minimum, we must require that

FIG. 2. State degeneracies ĝn for the D⊥ ¼ 2 scalar-string flux-
tube model of Eq. (2.6) (red circles), with the asymptotic
functional form in Eq. (2.5) superimposed (blue line). It is clear
that our asymptotic functional form succeeds in modelling the
state degeneracies extremely accurately all the way down to the
ground state, as we shall require for our analysis.
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ΩtotðtcÞ≡
X∞
n¼0

gnΩnðtcÞ < ∞: ð3:4Þ

However, this condition is sensitive to the behavior of the
abundances ΩnðtcÞ for extremely large n, corresponding to
states which are nonrelativistic. For such states, we see
from Eq. (3.3) that ΩnðtcÞ ∼ e−Mn=Tc . With gn ∼ n−BeC

ffiffi
n

p

as n → ∞, we find using Eqs. (2.1) and (3.1) that Eq. (3.4)
can only hold if

Tc

Ms
≤

1

C
: ð3:5Þ

This then becomes a hard bound on the allowed values of
Tc, one which ensures that the Boltzmann exponential
suppression factor in Eq. (3.1) ultimately overcomes the
exponential rise in the degeneracy of states gn. Indeed,
Eq. (3.5) reflects nothing more than the statement that
Tc ≤ TH, where TH ≡Ms=C is the Hagedorn temperature
of our dark ensemble. For the visible hadronic sector, one
often assumes that Tc and TH are related to each other
parametrically, with Tc either directly identified as TH or
positioned not too far below TH. We shall implicitly make
the same assumption for the dynamics of our dark sector
as well.
The next question is to determine which of our ensemble

components are produced relativistically or nonrelativisti-
cally at T ¼ Tc. To do this, we shall henceforth assume that
Tc;Ms;M0 > TMRE where tMRE and TMRE are the time and
temperature associated with matter-radiation equality. This
assumption, which parallels what occurs for the hadrons of
the visible sector, ensures that our abundances ΩnðtÞ are
established during the radiation-dominated era prior to
matter-radiation equality and that all ensemble constituents
have become effectively nonrelativistic by tMRE. Note that
the assumption that Tc > TMRE follows from our expect-
ation that our dark degrees of freedom prior to tc (i.e., prior
to “hadronization” in the dark sector) are likely to be
relativistic, thereby reinforcing the radiation-dominated
nature of the era prior to TMRE and making matter-radiation
equality impossible to achieve using only visible-sector
matter, as would have been required had we taken
Tc < TMRE. Similarly, the assertion that Ms > Tc follows
directly from our assumption that Tc > TMRE, given the
constraints in Eqs. (2.14) and (3.5). Finally, although it is
not impossible to imagine self-consistent scenarios in
which M0 < TMRE, taking M0 > TMRE also helps to
preserve tMRE at its standard cosmological value. We shall
nevertheless make no assertion regarding the relative sizes
of M0 and Tc.
The above assumptions enable us to determine which of

the components of our ensemble are relativistic or non-
relativistic at T ¼ Tc. To do this, we simply compare Tc
against the ensemble masses Mn given in Eq. (2.1). Given
the constraint in Eq. (3.5), it is straightforward to demon-
strate that

Tc ≤
Ms

C
≤
M1

C
: ð3:6Þ

Since C > 1 [as follows from Eq. (2.14)], we conclude that
all of our ensemble components with n ≥ 1 are necessarily
nonrelativistic at t ¼ tc. By contrast, the n ¼ 0 component
will be relativistic at t ¼ tc if Tc ≳M0, and nonrelativistic
otherwise.
Equation (3.1) describes the abundances of our dark-

sector hadrons at the time tc when these hadrons come into
existence as the result of a dark-sector confining transition.
However, once established, these abundances then evolve
nontrivially with time as a result of two effects. The first
of these is Hubble expansion; the second is particle decay.
We shall treat each of these effects separately.
In order to evaluate the effect of Hubble expansion on the

abundances ΩnðtÞ, we shall assume a standard cosmologi-
cal history in which the universe remains radiation-
dominated (RD) from very early times up to the time
tMRE of matter-radiation equality. We shall also approxi-
mate the universe as matter-dominated (MD) throughout
the subsequent epoch. In general, we recall that the
abundance ΩðtÞ of nonrelativistic matter scales as t1=2

during an RD epoch but remains constant in an MD epoch;
by contrast, the abundance of relativistic matter remains
constant during an RD epoch but scales as t−2=3 during an
MD epoch. Likewise, we recall that the temperature T of
the universe scales as T ∼ t−1=2 during RD but T ∼ t−2=3

during MD. Thus any ensemble component of mass M
which is “born” relativistic at T ¼ Tc ≫ M will eventually
transition to nonrelativistic behavior as the temperature
ultimately drops below T ∼M.
Collecting these observations, we then find that the net

effect of Hubble expansion is to rescale the original
abundance of a given state of mass M by a factor which
depends on whether that state was nonrelativistic or
relativistic at the time tc of its production:

ΩðtÞ ¼ ΩðtcÞ ×
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tMRE=tc
p

nonrelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tMRE=tM

p
rel

ð3:7Þ

where tM denotes the time at which T ¼ M. Note that this
result is valid for any time t ≥ tMRE. Since it follows from
our assumptions that tc; tM < tMRE, we see that the abun-
dances of all of our ensemble states are necessarily
enhanced before reaching the current MD era. However,
as evident from Eq. (3.7), these abundances are not
enhanced equally: the abundance of a nonrelativistic
component is enhanced more greatly than that of any
relativistic component of mass M a factor

ffiffiffiffiffiffiffiffiffiffiffi
tM=tc

p
.

We have already seen that the states with n ≥ 1 are all
nonrelativistic, while the n ¼ 0 ground state is either
relativistic or nonrelativistic depending on the value of
M0=Tc. Thus, putting all of the pieces together, we find for
all n ≥ 1 that
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ΩnðtÞ ¼
ffiffiffi
π

2

r
XMnðMnTcÞ3=2e−Mn=Tc

ffiffiffiffiffiffiffiffiffiffi
tMRE

tc

r

¼
ffiffiffi
π

2

r
X
�

gc
gMRE

�
1=4 ðMnTcÞ5=2

TMRE
e−Mn=Tc

¼
ffiffiffiffiffi
π

72

r
1

g3=4c g1=4MRE

M5=2
n

T3=2
c TMRE

e−Mn=Tc : ð3:8Þ

Note that in passing to the second line we have exploited
the standard time/temperature relationship suitable for an
RD epoch, specifically2

t ¼
ffiffiffiffiffi
π

32

r
g�ðTÞ−1=2

MP

T2
; ð3:9Þ

where g�ðTÞ tallies the number of effectively relativistic
degrees of freedom driving the Hubble expansion at any
temperature T, with gα ≡ g�ðTαÞ. Likewise, in passing to
the final line of Eq. (3.8) we have recognized that H ¼
1=ð2tÞ for an RD epoch, from which it follows that
X ¼ 1=ð6gcT4

cÞ.
For n ¼ 0, however, the corresponding cosmological

abundance is given by

Ω0ðtÞ ¼

8>><
>>:

ffiffiffiffi
π
72

p
1

g3=4c g1=4MRE

M5=2
0

T3=2
c TMRE

e−M0=Tc Tc ≲M0

1
gc

�
gM0

gMRE

�
1=4
�

M0

TMRE

�
Tc ≳M0:

ð3:10Þ

As expected, the cosmological abundances in Eqs. (3.8)
and (3.10) depend nontrivially on the three mass scales
which parametrize our dark-hadron mass spectrum, namely
M0, Tc, and Ms (the latter appearing implicitly through
Mn). They also depend on the fixed mass scale TMRE.
However, if we disregard the numerical g-factors which
appear in these results and which only serve to parametrize
the external time/temperature relationship, we see that the
ratios between these abundances depend only on the ratios
between our input mass scales. In particular, such abun-
dance ratios are no longer anchored to a fixed external mass
scale such as TMRE. To make this point explicit, let us
define the dimensionless quantities

r≡M0

Ms
and s≡ Tc

Ms
ð3:11Þ

and imagine that g�ðTÞ1=4 does not change significantly
between Tc and M0. (Note, indeed, that g1=4 varies much

more slowly than g.) We then find from Eqs. (3.8)
and (3.10) that

Ωn≥1ðtÞ
Ω0ðtÞ

¼
8<
:

ðnþr2Þ5=4
r5=2

e−ð
ffiffiffiffiffiffiffiffi
nþr2

p
−rÞ=s s≲ rffiffiffiffi

π
72

p ðnþr2Þ5=4
rs3=2

e−
ffiffiffiffiffiffiffiffi
nþr2

p
=s s≳ r:

ð3:12Þ

Thus, up to an overall rescaling factor Ω0, we see that all of
our abundances Ωn depend purely on the dimensionless
ratios r and s. It then follows that the cosmological
abundance of each state in our dark-hadron ensemble is
determined once Ω0 is anchored to a particular numerical
value and specific values of r and s are chosen. This
observation will be important in what follows.

B. Lifetimes and decays

As indicated above, our derivation of the dark-sector
cosmological abundances ΩnðtÞ has thus far disregarded
the effects of particle decays. In other words, we have
implicitly assumed that each ensemble component is
absolutely stable once produced at Tc. As our final step,
we shall therefore now incorporate the effects of such
decays into our analysis. In doing so, we shall make several
simplifying assumptions. First, we shall assume that the net
injection of energy density in the form of radiation from
these decays has a negligible effect on the total radiation-
energy density of the universe. Hence, this effect decouples
from the effect of Hubble expansion. Second, we shall
further assume that the contribution to the total decay
width Γn of each ensemble constituent from intra-ensemble
decays is negligible. In other words, we shall assume that
Γn is dominated by decays to visible-sector final states
which do not include lighter ensemble constituents. We
shall discuss the consequences of relaxing this assumption
in Sec. VI. Third, we shall assume that all states at a given
mass level n share a common decay width Γn, and that this
width scales with n across our dark-hadron ensemble
according to

Γn ¼ Γ0

�
Mn

M0

�
ξ

ð3:13Þ

where Mn are the dark-hadron masses in Eq. (2.1) and
where Γ0 (or, equivalently, the corresponding lifetime τ0)
and the scaling exponent ξ > 0 are taken to be additional
free parameters of our model. Thus each state in our dark-
sector ensemble has a lifetime τn ≡ 1=Γn given by

τn ¼ τ0

�
n
r2

þ 1

�
−ξ=2

: ð3:14Þ

Finally, for simplicity, we shall imagine that all states with
lifetimes τn indeed actually decay at t ¼ τn.
Under these assumptions, the abundance ΩnðtÞ of any

ensemble constituent at any time t ≥ tc is given by the

2Note that the factor of
ffiffiffiffiffiffiffiffiffiffi
π=32

p
in Eq. (3.9) is consistent with

our adoption of Boltzmann statistics in Eq. (3.1); for Bose-
Einstein statistics this would instead become

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45=16π3

p
.
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expressions quoted above, but now multiplied by an addi-
tional decay factor

e−ðt−tcÞ=τn ≈ e−ð
ffiffiffiffiffiffiffiffi
nþr2

p
=rÞξðt=τ0Þ ð3:15Þ

where we have approximated t ≫ tc. For s≲ r, we thus
have

Ωn≥1ðtÞ ¼ ΩðNRÞ
0 ðtÞ ðnþ r2Þ5=4

r5=2
EðNRÞ
n ðtÞ ð3:16Þ

where

EðNRÞ
n ðtÞ≡ e−ð

ffiffiffiffiffiffiffiffi
nþr2

p
−rÞ=s−½ð

ffiffiffiffiffiffiffiffi
nþr2

p
=rÞξ−1�t=τ0 ð3:17Þ

and where

ΩðNRÞ
0 ðtÞ ¼

ffiffiffiffiffi
π

72

r
1

g3=4c g1=4MRE

�
r
s

�
3=2
�

M0

TMRE

�
e−r=s−t=τ0 :

ð3:18Þ

By contrast, for s≳ r, we have

Ωn≥1ðtÞ ¼
ffiffiffiffiffi
π

72

r
ΩðRÞ

0 ðtÞ ðnþ r2Þ5=4
rs3=2

EðRÞ
n ðtÞ ð3:19Þ

where

EðRÞ
n ðtÞ≡ e−

ffiffiffiffiffiffiffiffi
nþr2

p
=s−½ð

ffiffiffiffiffiffiffiffi
nþr2

p
=rÞξ−1�t=τ0 ð3:20Þ

and where

ΩðRÞ
0 ðtÞ ¼ 1

gc

�
gM0

gMRE

�
1=4
�

M0

TMRE

�
e−t=τ0 : ð3:21Þ

IV. COSMOLOGICAL CONSTRAINTS ON
THE DARK-HADRON ENSEMBLE

Having determined the abundances and lifetimes of each
of the individual components of our dark-hadron DDM
ensemble, we now proceed to study the overall properties
of our ensemble and its behavior as a function of time.
However, as we shall see, many of the phenomenological
properties and constraints that apply to such an ensemble
do not rest upon the properties of the individual ensemble
components per se, but rather upon various aggregate
quantities that collectively describe the ensemble as a
whole. Accordingly, in this section we shall begin by
describing three aggregate quantities which ultimately play
the most important roles in characterizing and constraining
such dark-hadron DDM ensembles. We shall then discuss
of some of the most immediate cosmological constraints
that can be placed upon these quantities.

A. Total abundance, tower fraction,
and effective equation of state

Perhaps not surprisingly, the first aggregate property of a
given dark-hadron DDM ensemble that shall concern us is
its total abundance

ΩtotðtÞ≡
X∞
n¼0

gnΩnðtÞ ¼ κ
X∞
n¼0

ĝnΩnðtÞ: ð4:1Þ

Given our results in Eqs. (3.16) and (3.19), this total
abundance takes the form

ΩtotðtÞ ¼
8<
:

κΩðNRÞ
0 ðtÞ

h
1þP∞

n¼1 ĝn
ðnþr2Þ5=4

r5=2
EðNRÞ
n ðtÞ

i
s≲ r

κΩðRÞ
0 ðtÞ

h
1þ ffiffiffiffi

π
72

p P∞
n¼1 ĝn

ðnþr2Þ5=4
rs3=2

EðRÞ
n ðtÞ

i
s≳ r

ð4:2Þ

where ΩðNR;RÞ
0 ðtÞ are given in Eqs. (3.18) and (3.21).

Indeed, we further note from Eqs. (3.18) and (3.21) that

ΩðNR;RÞ
0 ðtÞ ¼ e−ðt−tnowÞ=τ0ΩðNR;RÞ

0 ðtnowÞ ð4:3Þ

where tnow ≈ 4 × 1017 s denotes the current age of the
universe. We thus see from Eqs. (4.2) and (4.3) that the

overall magnitude of ΩðNR;RÞ
tot ðtÞ can be viewed as being set

by the single number ΩðNR;RÞ
0 ðtnowÞ.

In characterizing the properties of our DDM ensemble
and how they evolve with time, we are certainly interested
in tracking ΩtotðtÞ. However, we are also interested in
tracking the distribution of this total abundance among the

individual ensemble constituents. One quantity of particu-
lar interest that provides essential information about this
distribution is the so-called “tower fraction” 0 ≤ ηðtÞ < 1
originally introduced in Ref. [1]. This quantity is typically
defined in the DDM literature as the fraction of the
abundance carried by all ensemble components other than
the dominant component, where the dominant component
is the one making the largest individual contribution to
ΩtotðtÞ. As such, the quantity η tracks the degree to which a
single component carries the bulk of the total abundance.
When η is close to zero, our ensemble effectively resembles
a traditional single-component dark-matter setup. By con-
trast, when η differs significantly from zero, our ensemble
is more truly “DDM-like,” with many of the ensemble
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constituents playing a nontrivial role in together shaping
the properties of the dark sector.
Such a definition for η is appropriate in cases in which

each ensemble constituent has a unique mass and lifetime.
Indeed, this has often been the case for the types of DDM
ensembles previously studied. However, for the dark-
hadron DDM ensembles on which we are focusing here,
the states at a given Regge level n have been assumed to
have essentially equal masses and lifetimes. Thus, in this
paper, we shall adopt a modified definition for ηðtÞ in
which the comparison is made between the aggregate
abundance contributions that accrue level by level rather
than state by state. Specifically, we define

Ω̂nðtÞ≡ gnΩnðtÞ ð4:4Þ

as the aggregate cosmological abundance arising from all
states at a particular oscillator level n. In terms of these
aggregate abundances, we then define

ηðtÞ≡ 1 −
maxnfΩ̂nðtÞg

ΩtotðtÞ
: ð4:5Þ

Thus we continue to have 0 ≤ ηðtÞ < 1, with η ≈ 0
signifying a dark sector resembling traditional single-
component dark matter and η > 0 indicating (and quantify-
ing) a DDM-like departure from this traditional scenario.
At first glance, one might assume that the n ¼ 0 ground

state(s) must always yield the largest aggregate abundance
Ω̂nðtÞ because the primordial abundances ΩnðtÞ for the
states at all higher levels n > 0 are exponentially sup-
pressed by the corresponding Boltzmann factor in Eq. (3.1).
However, for the DDM ensembles of dark hadrons studied
here, it often turns out that the Hagedorn-like exponential
growth of the degeneracies gn as a function of n can more
than compensate for the Boltzmann suppression for small
values of n. Indeed, this is true even for combinations of the
ensemble parameters B, C, r, and s which satisfy the
consistency conditions discussed in Sec. II and which yield
a finite value of ΩtotðtcÞ. As a result of this net balancing
between these two competing exponential effects, the level
carrying the greatest aggregate cosmological abundance
Ω̂nðtÞ need not always be the n ¼ 0 ground state. It need
not even be fixed as a function of time. This possibility
must therefore be taken into account when evaluating ηðtÞ.
Finally, another important quantity which can be taken to

characterize our dark sector is the so-called equation-of-
state parameter w. For a single-component dark sector, this
quantity is nothing but the ratio between the pressure p and
energy density ρ of the dark component: p ¼ wρ. However,
we are dealing here with a multicomponent dark sector in
which each component has its own individual lifetime and
abundance. As a result, the total energy density and
pressure associated with our dark sector will generally
experience a rather nontrivial time dependence which

causes our ensemble as a whole to behave collectively
as if it had a nontrivial w—even if each individual
component is taken to be pure matter with w ¼ 0.
To describe these collective effects, we therefore define

[1] an effective equation-of-state parameter weffðtÞ which
describes the behavior of our ensemble as a single
collective entity:

weffðtÞ≡ −
�

1

3H
d log ρtot

dt
þ 1

�
: ð4:6Þ

Here H is the Hubble parameter and ρtot ¼ 3 ~MPH2Ωtot is
the total energy density of the ensemble. Note that the
definition in Eq. (4.6) is nothing but the usual definition of
w prior to any assumptions of dark-sector minimality. As
discussed above, we are primarily concerned with the
evolution of the ensemble during the present matter-
dominated epoch, within which HðtÞ ≈ 2=ð3tÞ. Thus, the
effective equation-of-state parameter for our DDM ensem-
ble within this epoch is given by

weffðtÞ ¼ −
t

2Ωtot

dΩtotðtÞ
dt

: ð4:7Þ

As discussed in Sec. III, the only explicit dependence of
ΩtotðtÞ on t within a matter-dominated epoch is due to the
exponential decay factor (3.15) within each individual
abundance ΩnðtÞ. We thus find that

weffðtÞ ¼
t

2τ0ΩtotðtÞ
X∞
n¼0

gn

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ r2

p

r

�ξ

ΩnðtÞ: ð4:8Þ

Note that even though each of the individual components of
our ensemble has been taken to be matter-like (withw ¼ 0),
the collective equation-of-state parameter weffðtÞ for our
ensemble as a whole is positive, reflecting the fact that the
ensemble as a whole is continually losing abundance as its
individual components decay. Indeed, it is only in the
τ0 → ∞ limit thatweffðtÞ → 0. As we shall see in Sec. IV B,
weffðtÞ plays an important role in constraining the param-
eter space of these DDM ensembles.

B. Cosmological constraints

Given our time-dependent aggregate quantities ΩtotðtÞ,
ηðtÞ, and weffðtÞ, we now turn to the cosmological con-
straints that bound these functions. In this way, we shall
ultimately be placing nontrivial constraints on the param-
eter space underlying these hadronic DDM ensembles.
In this connection, we again stress that our aim in this

paper is not to perform a detailed analysis of the astro-
physical and/or cosmological constraints on this parameter
space. Such a detailed analysis would clearly be an
important but extensive task which is beyond the scope
of this paper. Moreover, such an analysis would require a
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host of further assumptions concerning the particular nature
of our ensemble, the specific decay modes of its constitu-
ents into SM states, and so forth. Rather, in this paper, our
goal is to simply to obtain a rough initial sense of those
regions of parameter space in which a DDM ensemble
of dark “hadrons” might have at least the potential of
phenomenological viability. Accordingly, in what follows,
we shall put forth a set of requirements which directly
constrain the fundamental quantities ΩtotðtÞ, ηðtÞ, and
weffðtÞ we have defined above, but which do not require
any further information concerning these hadronic ensem-
bles beyond those properties already discussed. In some
sense, then, these might be viewed as the immediate
“zeroth-order” model-independent constraints that any
DDM ensemble of this sort must satisfy.
Our first constraint is an obvious one: despite the

presence of an infinite tower of dark-hadronic resonances,
each with its own cosmological abundance and lifetime, we
shall demand that

ΩtotðtnowÞ ¼ ΩCDM ≈ 0.26: ð4:9Þ
This requirement is clearly predicated on the assumption
that our dark-hadronic ensemble represents the totality of
the dark sector; for other cases we would simply require
that ΩtotðtnowÞ≲ 0.26. As we shall see, in either situation
this is a severe and unavoidable constraint which ultimately
“anchors” our entire construction in terms of actual
numbers and mass scales.
Second,wemay also consider the time variationofΩtotðtÞ.

The time variation of this total abundance is constrained by
experimental probes which yield information about the dark-
matter abundance during different cosmological epochs. For
example, CMB data [24] provides information about the
dark-matter abundance around the time of last scattering—
i.e., at a redshift z ≈ 1100, or equivalently a time of roughly
2.7 × 10−5tnow. On the other hand, observational data on
baryon acoustic oscillations [25] and the relationship
between luminosity and redshift for Type Ia supernovae
[26] provide information about HðtÞ and the dark-energy
abundance ΩΛ at subsequent times, down to redshifts of
around z ≈ 0.5.Within the context of theΛCDMcosmology,
the agreement between these different measurements implies
that the dark-matter abundance has not changed dramatically
since the time of last scattering.
In order be consistent with this result, we shall therefore

demand that the total abundance of our DDM ensemble not
vary by more than 5% between an early “look-back” time
tLB and today:

ΩðtÞ −ΩðtnowÞ
ΩðtnowÞ

≤ 0.05 for all tLB ≤ t ≤ tnow: ð4:10Þ

In what follows, we shall choose a look-back time
tLB ¼ 10−6tnow, which lies comfortably before the recom-
bination epoch.

In addition to these constraints on the time variation of
the dark-matter abundance, there are further considerations
which constrain the decays of the DDM-ensemble con-
stituents more directly. These constraints depend on the
decay properties of the dark-sector particles and are thus
ultimately model-dependent. However, for those rather
general cases in which the ensemble constituents can decay
to final states involving visible-sector particles, one must
ensure that these decay products not disrupt big-bang
nucleosynthesis [27], not produce observable distortions
in the CMB [28,29], not reionize the universe [30], and not
violate current limits on the fluxes of photons or other
cosmic-ray particles [31,32]. Indeed, even if the ensemble
constituents decay exclusively into other, lighter dark-
sector particles, such decays can nevertheless leave observ-
able imprints on small-scale structure [33,34], alter the
scale- and redshift dependence of the cosmological gravi-
tational-lensing power spectrum [35], and affect the lumi-
nosity-redshift relation for Type Ia supernovae [36,37].
Since these effects all arise from the decays of ensemble
constituents, nonobservation of these effects also leads to
constraints on the time variation of Ωtot.
Some of these latter constraints admittedly depend on

model-dependent aspects of the decay kinematics of the
dark-ensemble constituents. However the strongest and
most general of these constraints effectively amount to
limits on the variation ofΩtotðtÞwithin the recent past—i.e.,
for redshifts 0≲ z≲ 3. Therefore, in addition to our look-
back-time constraint in Eq. (4.10), we shall also impose an
additional constraint on our effective equation-of-state
parameter:

weffðtnowÞ ≤ 0.05: ð4:11Þ

Through Eq. (4.7), this thus becomes a constraint on the
present-day time derivative ofΩtotðtÞ. It is important to stress
that this constraint is independent of that in Eq. (4.10): while
Eq. (4.10) constrains accumulated changes in ΩtotðtÞ over a
relatively long interval, Eq. (4.11) constrains the time
variation of ΩtotðtÞ near the present time.
Other considerations will also guide our interest in

certain regions of parameter space. For example, from a
DDM-inspired standpoint, we are particularly interested in
scenarios for which

ηðtnowÞ ∼Oð1Þ; ð4:12Þ

i.e., scenarios in which the present-day value of η is
significantly different from zero. This ensures that a sizable
number of ensemble constituents continue to survive and
contribute meaningfully to Ωtot at the present time, with
dark-matter decays occurring throughout the present epoch
and not just in the distant past or future. Although
Eq. (4.12) is not a strict requirement for phenomenological
consistency, this condition guides the degree to which we
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may regard our ensemble as being fully DDM-like, with a
significant portion of the ensemble playing a nontrivial role
in the phenomenology of the dark sector. For example, this
condition rules out regions of parameter space in which
τn ≪ τ0 for all n ≥ 1, with τ1 ≪ tLB. In such regions of
parameter space, all excited dark-hadronic states have
decayed prior to our look-back time, leaving us with a
single dark-hadronic ground state in the present epoch.
Such a scenario trivially satisfies all of our phenomeno-
logical constraints on the time variations of the total dark-
sector abundance, but is effectively no different from that of
a traditional, single-component dark sector. It is thus less
interesting from a DDM perspective.
There are two further phenomenological constraints

which will be useful for us to consider in the following.
First, we shall demand that τ0 ≫ tnow. Although we do not
necessarily require τ0 ≈ 109tnow as in traditional single-
component dark sectors, we generally expect that τ0 must
exceed tnow by at least several orders of magnitude in order
to satisfy look-back and weff constraints. This assumption
will be discussed further in Sec. V. Likewise, although we
have thus far assumedM0 ≥ TMRE throughout our analysis,
we actually must impose the somewhat stronger bound
M0 ≳Oð103ÞTMRE ≈O ðkeVÞ in order to satisfy BBN and
structure-formation constraints. This last requirement
implicitly assumes that our lightest ensemble component
carries the largest cosmological abundance (or at least a
sizable fraction of the total cosmological abundance), but
we shall see in Sec. V that this turns out to be true for the
vast majority of phenomenologically interesting cases.
Finally, we shall also make certain simplifying assump-

tions. First, for concreteness, we shall restrict our attention to
situations with ξ ¼ 3. In other words, we shall assume that
the dominant contributions to the decay lifetimes τn of our
DDM constituents ϕn scale as τn ∼ 1=M3

n across the DDM
ensemble. Decay widths of the form Γn ∼M3

n=Λ2 emerge
naturally from operators such as ϕnFμνFμν=Λ where Λ
parametrizes the energy scale associatedwith such couplings
andwhereFμν denotes a field-strength tensor associatedwith
either the visible-sector (SM) photon or a dark-radiation
photon associated with an additional Abelian gauge group
under which the ensemble constituents are not charged. The
contributions from such operators will dominate the decays
of our DDM constituents in scenarios in which our DDM
ensemble is uncharged with respect to all SM symmetries,
and in which intra-ensemble decays can be neglected.
Likewise, we shall also make the simplifying assumption
that κ ¼ 1 in Eq. (2.2). This restricts us to the bare “minimal”
case inwhichwedonot ascribe nontrivial degrees of freedom
to our dark-sector quarks, and thereby focus exclusively on
the ensemble of states generated by our infinite tower of
hadronic resonances. Finally, throughout our analysis, we
shall continue to impose the self-consistency constraints
listed in Eqs. (2.10) [or equivalently (2.11)], (2.12), (2.13),
and (3.5).

Thus, going forward, the free parameters governing our
dark-hadron DDM ensemble may be tallied as follows.
First, there are the two parameters fB;Cg which govern the
individual state degeneracies ĝn according to Eq. (2.5).
Second, there are the four parameters fr; s;M0; τ0g which
govern the individual abundances ΩnðtÞ in Eqs. (3.15)
through (3.21). However, imposing Eq. (4.9) as an overall
normalization condition allows us to remove M0 as a free
parameter. Thus, for the rest of this paper, we shall consider
our DDM ensembles as functions of their locations within
the five-dimensional parameter space corresponding to
the variables fB;C; r; s; τ0g where B ≥ 1, C2 ≥ 2π2

ð4B − 3Þ=3, and s ≤ 1=C.

V. RESULTS

In general, we seek to determine which values of our
defining parameters fB;C; r; s; τ0g lead to self-consistent
and potentially viable dark sectors—i.e., sectors which
satisfy our abundance, look-back, and weff constraints in
Eqs. (4.9), (4.10), and (4.11) respectively, along with our
M0 > O ðkeVÞ constraint. For each such set, we also seek
to determine the corresponding values of relevant mass
scales such as the string scale Ms. We also seek to
determine the extent to which the corresponding ensemble
is truly DDM-like, with a relatively large number of
component states playing a significant role in the phenom-
enology of the dark sector and contributing to Ωtot at the
present time. In general, the larger the value of ηðtnowÞ, the
more DDM-like the corresponding ensemble.
At first glance, it might seem rather daunting to orient

ourselves within the five-dimensional fB;C; r; s; τ0g
parameter space. However, there are really two separate
parts to our analysis—one part which depends only on
relative mass scales, and one part which makes explicit
reference to absolutemass scales. It is clear from Eqs. (4.2)
and (4.3) that once we know fB;C; r; s; τ0g, we can

determine the function ΩðR;NRÞ
tot ðtÞ up to an overall multi-

plicative constant ΩðR;NRÞ
0 ðtnowÞ. Setting ΩðR;NRÞ

tot ðtnowÞ ¼
ΩCDM ≈ 0.26 therefore immediately determines a required

numerical value of ΩðR;NRÞ
0 ðtnowÞ. This also determines the

corresponding values of ηðtnowÞ and weffðtnowÞ. Up to this
point, we have not yet anchored our results in terms of
absolute mass scales. However, this can also easily be done:

we simply set our required numerical value ofΩðR;NRÞ
0 ðtnowÞ

to the expression in either Eq. (3.18) or Eq. (3.21). This
then determines an absolute value for the mass scale M0,
whereupon we find that Ms ¼ rM0 and Tc ¼ ðs=rÞM0.
Thus, in this way, we can extract the values for Ms and
ηðtnowÞ corresponding to every point in the fB;C; r; s; τ0g
parameter space.
Certain observations can be made rather rapidly. For

example, given Eq. (4.9), it immediately follows that
Ω0ðtnowÞ≲ 0.26—a bound which can be saturated only
when ηðtnowÞ ¼ 0. More generally and more schematically,
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we might write this constraint in the rough order-of-
magnitude form

Ω0ðtnowÞ≲Oð0.1Þ: ð5:1Þ

However, let us now consider the expression in Eq. (3.21) for
Ω0ðtÞ in the relativistic case. Since τ0 must significantly
exceed tnow by at least several orders of magnitude, as
discussed in Sec. IV, we see that the exponential factor e−t=τ0

is essentially 1. Likewisewe recall thatM0=TMRE ≥ Oð103Þ,
as also discussed in Sec. IV. Let us assume that this bound is
saturated, so that M0=TMRE ¼ Oð103Þ. We therefore find
that Eq. (5.1) can be satisfied only if gc ∼ 104. This would in
turn require a mass scale Tc which at the very minimum
exceeds the TeV scale (thereby introducing a hierarchy
between Tc and M0 which is at least a factor of 106) and
which actuallymust be so high that there are at least ten times
asmany effectively relativistic degrees of freedombelow this
scale than are known to exist below the TeV scale—a rather
unlikely proposition resting entirely on currently unknown
physics. Considering greater values of M0=TMRE only
worsens this situation and requires even greater values of
gc. Therefore, although there might exist finely tuned slivers
of parameter space in which one might manage to achieve a
balancing between gc and M0=TMRE sufficient to satisfy
Eq. (5.1), we shall abandon any further consideration of the
relativistic case in what follows.
This situation changes dramatically when we turn to the

nonrelativistic case in Eq. (3.18). In this case, we continue
to find that e−tnow=τ0 ≈ 1. However, the presence of the

factor ðr=sÞ3=2e−r=s allows us greater freedom in satisfying
the constraint in Eq. (5.1). Indeed, the first thing we learn is
that our system is going to be very sensitive to the ratio
r=s—not surprising, given that this was already the radio
that determined the extent to which our lightest mode was
relativistic or nonrelativistic. However, we now see that r=s
is also going to play a large role in governing the allowed
values of the overall mass scales in our system, with greater
(lesser) values of r=s generally corresponding to higher
(lower) absolute mass scales for our ensemble.
We shall therefore proceed through our parameter space as

outlined above, paying special attention to the values of r and
s and in particular to the ratio r=s. Specifically, for each value
of fB;C; r; s; τ0g, we shall determine whether our internal
consistency constraints B ≥ 1, C2 ≥ 2π2ð4B − 3Þ=3, and
s ≤ 1=C are satisfied and whether the phenomenological
consistency constraints inEqs. (4.10) and (4.11) are satisfied.
If so, we shall then determine the corresponding values ofMs
and ηðtnowÞ, with the overall goal of understanding which
regions of parameter space potentially lead to viable ensem-
bles and which subregions correspond to ensembles which
are particularly DDM-like.
Because of the somewhat natural and intuitive role

played by the D⊥ ¼ 2 scalar flux tube, as discussed in
Sec. II, we shall adopt the values

B ¼ 5=4; C ¼ 2π=
ffiffiffi
3

p
≈ 3.63 ð5:2Þ

as “benchmark” values and begin our exploration within
ðr; sÞ space. Taking τ0 ¼ 109tnow, we find the results shown
in Fig. 3.

FIG. 3. A survey of physics in the ðr; sÞ plane, with B, C, and τ0 set to the “benchmark” values shown. Left panel: the thin black line
labeled “1” indicates the contour with r=s ¼ 1; this is thus the dividing line between the region in which the lightest state is relativistic
(left of this line) versus nonrelativistic (right of this line). The blue curves indicate contours of ηðtnowÞ, while the magenta lines indicate
contours ofMs and are labelled by the value of log10ðMs=GeVÞ. The red region is excluded by look-back and weff constraints, while the
pale green region is excluded by the constraintM0 ≳O ðkeVÞ which is saturated along the single green contour. Increasing (decreasing)
the value of τ0 does not affect theMs or ηðtnowÞ contours, and simply shifts the red exclusion region to the left (right). Right panel: same
as left panel, but with features plotted relative to the variables r and r=s. The entire region shown in this panel corresponds to the
nonrelativistic case.
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Let us first concentrate on the left panel of Fig. 3. The red
region indicates those values of ðr; sÞ which are excluded
by look-back and weff constraints, while the pale green
region is excluded by the requirement that M0 ≳O ðkeVÞ.
The blue curves indicate contours of ηðtnowÞ and the
magenta curves indicate contours ofMs, labelled by values
of log10ðMs=GeVÞ. The single green curve indicates the
contour with M0 ¼ 1 keV. The thin black curve indicates
the contour with r=s ¼ 1, and thus serves as the nominal
dividing line between the regions in which the lowest
ensemble state is relativistic (above and to the left) or
nonrelativistic (below and to the right).
Several things are immediately apparent from this figure.

First, we see that the portion of the parameter space
corresponding to the relativistic case is excluded by our
constraint on M0. This is entirely in keeping with our
conclusions already reached above. Nevertheless, we also
see that beyond this region there exists an entire area of
parameter space in which all of our constraints are satisfied.
Moreover, within this region we see thatMs varies from the
keV/MeV-range all the way to the Planck scale. Likewise,
ηðtnowÞ varies through all of its possible values. This is
therefore not only an allowed region, but one which is
likely to be exceedingly rich in phenomenology. Indeed,
given the contours plotted in this figure, we see that the
“sweet spot” within the ðr; sÞ parameter space lies roughly
within the range

�
1≲ r≲ 6

0.05≲ s≲ 0.18:
ð5:3Þ

This is the region of ðr; sÞ parameter space where the
plotted blue and magenta contours intersect each other and
form a “cross-hatched” region, as illustrated in the left
panel of Fig. 3. This sweet spot is therefore the region that
will be of maximum interest to us. Indeed, within this
region, we observe from the left panel of Fig. 3 that ηðtnowÞ
increases if either r or s is increased, whileMs increases in
the former case but decreases in the latter.
The right panel of Fig. 3 focuses on this sweet-spot

region and shows the same Ms and η contours, only now
plotted with respect to the variables r=s and s using a linear
rather than logarithmic axis. The fact that the Ms contours
are approximately vertical in this region indicates thatMs is
dominantly determined by the ratio r=s, exactly as antici-
pated above, with increasing values of r=s corresponding to
increasing values of Ms. Indeed, we see from the right
panel of Fig. 3 that Ms increases extremely rapidly as a
function of r=s, in keeping with the exponential depend-
ence in Eq. (3.18). Likewise, increasing the value of r=s
while holding r fixed tends to decrease the value of ηðtnowÞ.
Thus, for fixed r, we find that Ms and ηðtnowÞ tend to vary
inversely with respect to each other as functions of r=s,
with our ensembles becoming less DDM-like at higher
mass scales and more DDM-like at lower mass scales.

Likewise, for fixed r=s, we find that increasing r tends to
increase ηðtnowÞ, as already evident from the left panel
of Fig. 3.
It is easy to understand these results physically. For fixed

r, increasing r=s corresponds to decreasing s. This lowers
the critical temperature Tc at which our initial cosmological
abundances are established, which has the effect of
decreasing the abundances of the heavier states relative
to the lighter states. This therefore decreases the value of
ηðtnowÞ. By contrast, holding r=s fixed and increasing r
corresponds to increasing s as well. The increase in r
renders all of the ensemble states more massive but
provides a smaller proportional mass increase for the
heavier states than for the lighter states. Thus the mass
ratios between heavier and lighter states decreases, which
tends to increase the value of ηðtnowÞ. Likewise, as
discussed above, increasing s also tends to increase the
value of ηðtnowÞ. These two effects then tend to reinforce
each other, as evident in Fig. 3.
Having identified our sweet-spot region in ðr; sÞ param-

eter space, we now investigate how these values of Ms and
ηðtnowÞ vary as our other parameters B, C, and τ0 are varied.
To do this, we study variations in these parameters relative
to an ðr; sÞ “benchmark”

r ¼ 3.5; r=s ¼ 30; ð5:4Þ

which we henceforth take as representative of our sweet-
spot region in the ðr; sÞ plane. In Fig. 4 we illustrate the
effects of variations in B and C relative to this benchmark,
plotting contours of Ms and ηðtnowÞ in the ðr; CÞ plane
(upper left panel), the ðs; CÞ plane (upper right panel), and
the ðB;CÞ plane (lower panel). Note that since we must
always have s ≤ 1=C, it is actually the normalized product
s · C which captures the dependence on s in situations
where C might also be varied. In the upper right panel we
therefore plot our contours relative to s · C rather than s
alone. Likewise, in the lower panel of Fig. 4 we have
continued to indicate our allowed regions of B and C as in
Fig. 1, where the dot continues to represent the D⊥ ¼ 2
scalar-string benchmark values in Eq. (5.2).
Together, the three panels of Fig. 4 tell a consistent story.

First, with r and s held fixed, we see from the upper left and
lower panels of Fig. 4 that increasing C generally tends to
increase ηðtnowÞ. This result makes sense: increasing C
corresponds to increasing the degeneracies of the heavier
states relative to the lighter states. However, with s held
constant, each of these heavier states continues to accrue
the same abundance as before. Thus increasing C increases
the total abundance carried by the heavier states relative to
that carried by the lighter states, thereby increasing ηðtnowÞ.
Second, we see from the lower panel of Fig. 4 that while
our values of Ms and ηðtnowÞ are quite sensitive to C, they
are far less sensitive to B. This too makes sense, since C
governs the exponential rate of growth in the state
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degeneracies while B governs only the subleading poly-
nomial behavior. Third, in each of the above two cases, we
also note that increasing C while holding r or B fixed also
corresponds to decreasing Ms. Thus, once again, we see
that Ms and ηðtnowÞ tend to vary inversely with each other,
giving rise to more DDM-like ensembles at lower energy
scales and more traditional ensembles at higher energy
scales.
Finally, we see from the upper right panel of Fig. 4 that

our values of ηðtnowÞ are largely insensitive to variations in
C as long as s · C is held fixed. However, this too is easy to
understand. Increasing C while holding s · C fixed corre-
sponds to decreasing s as we increase C. Increasing C
induces an exponential increase in the degeneracy of each
massive state, while decreasing s decreases the critical
temperature Tc, thereby inducing a corresponding expo-
nential decrease in the abundance associated with each such

state. Thus, to first approximation, these two effects tend to
mitigate each other: they produce more states, but also
cause each state to carry a correspondingly smaller
abundance.
Thus far we have not discussed the effects of varying our

remaining free parameter τ0. Varying τ0 does not affect the
degeneracies of states or their cosmological abundances.
Indeed, variations in τ0 affect only the lifetimes of these
states. In principle, this has the potential to affect the values
of quantities such as ηðtnowÞ since the determination of
ηðtnowÞ requires totalling the abundances of only those
states which have not yet decayed at the present time.
However, under the assumption that τ0 ≫ tnow (or under the
equivalent assumption that our scenario already satisfies the
look-back and weff constraints), we know that ΩtotðtnowÞ is
not changing rapidly at the present time. In other words, the
total abundances of those states which are decaying at the

FIG. 4. Contours of ηðtnowÞ (blue curves) and Ms (magenta curves), labelled as in Fig. 3 and plotted in three different planar “slices”
through the ðB;C; r; sÞ parameter space. The top two panels show these contours plotted in the ðr; CÞ and ðs; CÞ planes, respectively,
while the bottom panel shows these contours plotted in the ðB;CÞ plane. In all panels, colored shaded regions are excluded by either
string consistency constraints (blue shaded regions), internal consistency constraints (red region in lower panel), or phenomenological
look-back, weff , orM0 ≳O ðkeVÞ constraints (pale green regions as well as the red region along the right edge of the upper right panel).
As in Fig. 3, the thin black vertical r=s ¼ 1 contour (visible at the extreme left of the upper left panel) continues to represent the
boundary between the regions in which the lightest state is either relativistic (left of the line) or nonrelativistic (right of the line).
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present time is relatively small. In such cases, the Ms and
ηðtnowÞ contours are therefore largely insensitive to τ0.
Indeed, in Fig. 3, the sole effect of varying τ0 is therefore
merely to “slide” the red exclusion regions in Fig. 3
horizontally relative to the rest of the plot: these exclusion
regions move to the right (and therefore become more
threatening to our sweet-spot region) if τ0=tnow is
decreased, and move to the left (and therefore become
even less of a concern) if τ0=tnow is increased.
While this is entirely as expected, the natural question

then arises: for any values of fB;C; r; sg, what is the
minimum value of τ0 that can be tolerated before violating
our look-back and weff constraints? Contours indicating the
resulting minimum values τmin

0 are plotted in Fig. 5 in both
the ðr; sÞ and ðB;CÞ planes, taking our “benchmark” values
in Eqs. (5.4) and (5.2) respectively. In general, we see from
Fig. 5 that a wide variety of values of τmin

0 are possible,
depending on our specific location in parameter space, with
larger values of τmin

0 corresponding to very small values of r
or relatively large values of s or C. However, for our sweet-
spot benchmark values in Eqs. (5.2) and (5.4), we see from
Fig. 5 that τmin

0 can be as small as approximately 102tnow.
This, too, is not entirely a surprise. After all, a bound on

the lifetime of the longest-lived DDM constituent on the
order τ0=tnow ∼Oð100Þ is roughly on the same order as the
most conservative bounds on the lifetime τχ of a traditional
single-component dark-matter candidate which decays into
other purely dark-sector states. Indeed, model-independent
bounds on decaying dark matter in traditional single-
component models in which the dark-matter particle carries
essentially all of the observed dark-matter abundance and
decays into dark radiation have been derived by a number
of groups (see, e.g., Refs. [38–42]). Depending on the
assumptions inherent in the various analyses and on the
breadth of cosmological data incorporated, such studies
place a bound on the lifetime of such a dark-matter

candidate on the order of τχ=tnow ≳Oð10–100Þ. Thus, a
bound on τ0 in this range is a priori reasonable—especially
since our analysis in Fig. 5 determines the value of τmin

0 based
only on cosmological look-back and weff constraints. Of
course, if the ensemble constituents decay into visible-sector
particles with a non-negligible branching fraction, the con-
straints on τ0 are expected to increase significantly. Indeed,
the most stringent bounds on a single dark-matter particle χ
which decays primarily into visible-sector radiation require
that this particle be hyperstable, with τχ ∼ 109tnow.
Despite the possibilities for lowering τ0 afforded by the

results in Fig. 5, we shall continue to retain our benchmark
value τ0 ¼ 109tnow. We do this in order to be consistent
with the most conservative decay scenarios possible.
Although this value for τ0 is quite large, we emphasize
that this is only the lifetime of the lightest ensemble
constituent, and that a significant fraction of the ensemble
constituents will generally have lifetimes much less than τ0.
Moreover, even in cases for which the majority of the
ensemble is long-lived, DDM ensembles can nevertheless
yield striking astrophysical signatures [6–8] which differ
from those of traditional dark-matter candidates. Thus,
even with such values of τ0, the phenomenology of the
resulting ensemble can differ significantly from that of
traditional dark-matter candidates.
Having explored the relevant fB;C; r; s; τ0g parameter

space of our ensemble and identified our sweet-spot region,
we now examine the characteristics of the corresponding
ensembles in more detail. In particular, we seek to under-
stand what these ensembles look like, and how their overall
structure evolves with time. As discussed in Sec. IVA, the
most relevant aggregate properties of any dark-sector
ensemble are its total cosmological abundance ΩtotðtÞ, its
effective equation-of-state parameter weffðtÞ, and its tower
fraction ηðtÞ, each of which is generally time-dependent.
We therefore begin by examining how each of these

FIG. 5. Contours of the minimum value of τmin
0 consistent with the look-back and weff constraints discussed in the text, plotted in the

ðr; sÞ plane (left panel) and in the ðB;CÞ plane (right panel).
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quantities evolves with time for ensembles in and near our
sweet spot.
This information is shown in Fig. 6. In this figure, we

consider a “benchmark” ensemble with B ¼ 5=4, C ¼ 2π=ffiffiffi
3

p
, r ¼ 3.5, s ¼ 3.5=30, and τ0 ¼ 109tnow, as well as

nearby ensembles in which τ0 is varied (top row), r is varied
(second row), s is varied (third row), C is varied (fourth
row), and B is varied (fifth row). In each case, we plot the
corresponding total cosmological abundance Ωtot (left
column), equation-of-state parameter weff (middle column),
and tower fraction η (right column) as functions of time.
Note that in each case the overall abundance is normalized
through an appropriate choice of Ms such that ΩðtnowÞ ¼
ΩCDM ≈ 0.26, as required.
In each panel of Fig. 6 (except for those along the bottom

row), the blue curve corresponds to our “benchmark” point.
We therefore begin by focussing on these benchmark
curves. The curve for ΩtotðtÞ appears nearly constant at
ΩCDM ≈ 0.26 for all of the cosmological history plotted
(which we assume to have been matter-dominated), includ-
ing the present time tnow. Indeed, this behavior continues all
the way into the future until t ≈ 109tnow, at which point
ΩtotðtÞ begins to decline gently toΩtot ¼ 0. This behavior is
matched by weffðtÞ, which remains near zero for most its
cosmological evolution before gently rising to weff > 0 at
t ≈ 109tnow. This makes sense, since Eq. (4.7) tells us that
weffðtÞ is proportional to the time derivative of ΩtotðtÞ.
Finally, we see that ηðtÞ remains more or less fixed at
approximately η ≈ 0.72 during most of its cosmological
history before smoothly dropping to η ¼ 0.
This behavior is easy to understand. If this has been a

traditional ensemble with a single dark-matter component
whose decay we could model as essentially instantaneous
(just as we are assuming for the individual components of
our dark-matter ensembles), our curve for ΩtotðtÞ would
have been fixed precisely at its present value ΩCDM ≈ 0.26
over the entire range shown until suddenly dropping
(essentially discontinuously) to Ωtot ¼ 0 when the single
dark-matter particle decays at t ≈ 109tnow. Likewise, weffðtÞ
would have been strictly fixed at weff ¼ 0 during the
cosmological evolution, while ηðtÞ would have been fixed
at zero all along. However, this is not a traditional dark-
matter setup: this is a DDM ensemble in which the present-
day cosmological abundance ΩtotðtnowÞ ≈ 0.26 is spread
across a relatively large number of individual components
with different masses and different lifetimes. It is thus the
continued, ordered, sequential decays of these different
components which produce the softer, gentler drop in
ΩtotðtÞ as t approaches t ≈ 109tnow. In fact, ΩtotðtÞ is
actually falling slightly throughout the cosmological evo-
lution shown; this behavior is not visible in Fig. 6 only
because at early times prior to t ≈ 109tnow the states which
are decaying are extremely heavy and thus carry extremely
small abundances. By contrast, at late times approaching
t ≈ 109tnow, the states which are decaying are relatively

low-lying and carry more significant abundances. This is
also evident in our curve for ηðtÞ: for most of the
cosmological history, the value η ≈ 0.72 tells us that only
approximately 28% of the total dark-sector cosmological
abundance is carried by the dominant (lightest) state in the
ensemble, even at early times, while the remaining 72% of
the abundance is carried by the more massive states—
particularly those which, though more massive, are never-
theless relatively low-lying. As a result of the sequential
decays of such states, ηðtÞ—like ΩtotðtÞ—is also actually
falling slightly throughout the cosmological evolution
shown. It is only due to the decays of the relatively low-
lying states near t ≈ 109tnow that ηðtÞ ultimately falls gently
but noticeably to zero.
At first glance, it may seem surprising that all three of

our primary quantities Ωtot, weff , and η are nearly constant
at t ≈ tnow. However, this is ultimately the direct conse-
quence of our benchmark choice τ0 ¼ 109tnow: with this
choice, those states within the ensemble which are
decaying today are all extremely massive and thus carry
very little abundance. The DDM nature of such an
ensemble is nevertheless clear from its η-value, which is
as high as 0.72 even at the present time. In this connection,
we again emphasize that taking τ0 ¼ 109tnow was merely a
conservative choice which is not by itself intrinsic to the
DDM framework; indeed we learned from Fig. 5 that we
could easily have chosen τ0 as small as τ0 ≈ 102tnow
without running afoul of our look-back andweff constraints.
Indeed, without further details concerning the precise
nature of these ensembles (including, most critically, the
ultimate decay products of their constituents), such small
values for τ0 would have been equally viable.
This observation is illustrated along the top row of Fig. 6,

where we show the evolution of our blue “benchmark”
curves as we vary τ0 between our conservative value
τ0 ≈ 109tnow and the more extreme value τ0 ≈ 102tnow.
In general, changing τ0 does not affect the internal structure
of the ensemble—it merely affects the lifetimes of the
individual ensemble constituents, rescaling them all up or
down together. Since it is these lifetimes which produce the
nontrivial time dependence for Ωtot, weff , and η, we expect
that changing τ0 should preserve the general shapes of these
curves and merely translate these curves along the time
axis. This behavior is verified in the panels along the top
row of Fig. 6. Indeed, we can even see from these panels
why τ0 ≈ 102tnow is the minimum value of τ0 that may be
chosen for our benchmark point: choosing τ0 any smaller
would shift our curves even further towards earlier times,
whereupon ΩtotðtÞ would begin to experience significant
variations within the interval 10−6tnow ≲ t≲ tnow and
weffðtnowÞ would begin to deviate significantly from zero.
Such behavior would then violate our look-back and weff
constraints, respectively.
Let us now turn to the behavior of our Ωtot, weff , and η

curves as we vary r, as shown in the panels along the
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FIG. 6. Total cosmological abundances Ωtot (left column), equation-of-state parameters weff (middle column), and tower fractions
η (right column) for our DDM ensembles, plotted as functions of time when all input variables are held fixed at their “benchmark”
values except for τ0 (top row), r (second row), s (third row), C (fourth row), and B (bottom row). In all panels the blue curve corresponds
to our “benchmark” point with B ¼ 5=4, C ¼ 2π=

ffiffiffi
3

p
, r ¼ 3.5, s ¼ 3.5=30, and τ0 ¼ 109tnow, while the curves of other colors indicate

departures away from this point. For reasons discussed in the text, the bottom row illustrates variations in B along a line that does
not include the benchmark point. Note that, as expected, some variations away from the benchmark point violate our look-back, weff ,
or M0 constraints. However, our internal self-consistency constraints are always satisfied, with ΩtotðtnowÞ ¼ ΩCDM ≈ 0.26 in all
cases.
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second row of Fig. 6. Two observations underlie the
behavior shown. First, we note that changing r changes
the lifetimes of the states at each mass level according to
Eq. (3.14), with τn=τ0 → 0 as r → 0. This result is simple
to understand: as r → 0, the n ¼ 0 states become hierarchi-
cally lighter than the n ≥ 0 states and thus the n > 0 states
have hierarchically shorter lifetimes. Second, we note that
changing r also changes the relative abundances which are
generated at tc according to

ΩnðtcÞ
Ω0ðtcÞ

¼ ðnþ r2Þ5=4
r5=2

exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ r2

p
− r

s

�
: ð5:5Þ

This quantity is nonmonotonic as a function of r, first
dropping as r is reduced from large values and ultimately
hitting a minimum before increasing again and diverging as
r → 0. Indeed, for n ¼ 1 and s set to its benchmark value
s ¼ 3.5=30 ≈ 0.117, this minimum occurs at r ≈ 0.4.
These two effects are responsible for the behaviors

shown in the second row of Fig. 6. As r decreases from
its benchmark value with τ0 held fixed, the excited states
with n > 0 start decaying earlier and earlier. Rescaling our
overall abundances in order to keep ΩtotðtnowÞ ¼ ΩCDM
produces the effects shown in the left panel. Indeed, we see
from this panel that the case with r ¼ 0.001 actually
violates our look-back and weff constraints, as already
evident from Fig. 3. Even the ΩtotðtÞ curve with r ¼ 0.01 is
tightly constrained: shifting τ0 towards any smaller values
below 109tnow (i.e., shifting this curve further towards the
left) also leads to violations of our look-back and weff
constraints, as already anticipated in the left panel of Fig. 5.
Likewise, as a result of the observations below Eq. (5.5),
the relative sizes of the abundances Ωn associated with the
excited n > 0 states relative to the abundanceΩ0 associated
with the n ¼ 0 ground state vary nonmonotonically with r,
shrinking as r drops from 3.5 to approximately 0.4, and
then growing again as r drops still further. This then
explains the nonmonotonic behavior for ηðtÞ as a function
of r, as shown in the right panel.
By contrast, the effects of varying s and C are shown

along the third and fourth rows of Fig. 6, respectively.
While the quantity s governs the exponential rate at which
the Boltzmann suppression of the abundances of the
ensemble constituents decreases with n, the quantity C
governs the exponential rate at which the degeneracy of
states for the ensemble growswith n. As a result, the effects
of decreasing s or increasing C are largely similar to each
other as far asΩtotðtÞ is concerned, as evident in Fig. 6: both
tend to increase the primordial aggregate abundances Ω̂n of
the heavier states in the ensemble. This effect causesΩtotðtÞ
to begin to decline earlier and earlier as these heavier states
are the first to decay. By contrast, it is important to note that
increasing C and decreasing s nevertheless have opposite
effects on the value of ηðtnowÞ: the former increases ηðtnowÞ,
as anticipated in Fig. 4, while the latter decreases ηðtnowÞ, as

anticipated in Fig. 3. This difference occurs because
increasing C merely increases the state degeneracies ĝn
of the heavy states, thereby injecting more abundance into
the heavy states relative to the light states, while decreasing
s has the effect of increasing the abundances of all of our
states, including the abundance of the dominant abundance
carrier at n ¼ 0. This causes the total abundance of the
ensemble to grow more rapidly than the abundances of the
excited n > 0 states alone, thereby decreasing ηðtnowÞ.
One important feature to note from these plots is the

appearance of a Hagedorn instability as s → 1=C (or
equivalently as C → 1=s). In these limiting cases, the total
energy density Ωtot injected into the system through our
confining phase transition at t ¼ tc diverges, violating the
constraint in Eq. (3.4). Such cases therefore violate our
look-back and weff constraints, as evident in Fig. 6. Indeed,
the Hagedorn instability is a critical feature of theories with
exponentially growing degeneracies of states [12].
Finally, we turn to the fifth and final row of Fig. 6. Note

that in order to remain within the self-consistency bound in
Eq. (2.13), it is not possible to increase B above our
benchmark value 5=4 when C ¼ 2π=

ffiffiffi
3

p
. For this reason,

we have chosen to hold C fixed at a greater value,
specifically C ¼ 7, when exploring the effects of varying
B. Unfortunately, we see that variations in B are barely
distinguishable in these plots, even when B is varied all the
way from B ¼ 1 (corresponding to D⊥ ¼ 1) to B ¼ 9=4
(corresponding to D⊥ ¼ 6). This tells us that the sorts of
abundance-based or equation-of-state-based analyses we
are doing here are relatively insensitive to the number of
uncompactified transverse spacetime directions into which
our dark-sector flux tube can vibrate, as long as C (related
to the total central charge of the degrees of freedom on the
flux-tube worldsheet) is held fixed. Of course, in a realistic
setting, there are likely to be many other more specific
probes of D⊥, including probes that are based on specific
properties of the dark-sector dynamics. Our result here
merely indicates that studies based on cosmological abun-
dances alone are not likely to be the most useful in this
regard.
We have seen in Fig. 6 how the total abundances Ωtot of

our DDM ensembles vary as a function of time. However, it
is also interesting to understand how the individual aggre-
gate abundances Ω̂nðtÞ at each mass level n contribute to
this behavior. The result is shown in Fig. 7 for our
benchmark DDM model. As we see from Fig. 7, there
are many mass levels n whose states contribute to
ΩtotðtnowÞ: states with smaller values of n carry larger
abundances and have longer lifetimes, persisting into later
times before decaying, while those with larger values of n
carry smaller abundances and have shorter lifetimes,
decaying earlier. Indeed, this balancing between lifetimes
and abundances is a fundamental hallmark of the DDM
framework. Although the sum of these abundances at t ¼
tnow is fixed at ΩtotðtnowÞ ¼ ΩCDM ≈ 0.26, we see that even
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states with relatively large values of n have lifetimes τn
exceeding tnow and thus contribute nontrivially toΩtotðtnowÞ.
Indeed, for our benchmark model, we find that there are no
fewer than seven distinct mass levels contributing more than
0.01 to ΩtotðtnowÞ and no fewer than ten distinct mass levels
contributing more than 1% of ΩtotðtnowÞ.
It is also interesting to examine how these results vary as

a function of the ratio r=s which, as we have seen, governs
the overall mass scales associated with these DDM

ensembles. The results are shown in Fig. 8, where we plot
the aggregate fractions Ω̂nðtnowÞ=ΩtotðtnowÞ for a variety of
different mass levels n as a function of r=s. As evident in
Fig. 8, the lightest state carries a larger and larger fraction of
the total abundance as r=s increases, resulting in scenarios
which have smaller values of η and which are therefore less
DDM-like. By contrast, the lightest state carries a smaller
proportional fraction of the total abundance as r=s
decreases, and in fact may not even be the dominant state
for sufficiently small r=s. Indeed, for r=s ¼ 15, we find
that all states carry relatively small abundances, and it is
actually the states at the n ¼ 23 mass level which collec-
tively carry the largest individual abundance at the present
time. Such scenarios are therefore extremely DDM-like.
Putting all the pieces together, we can summarize our

results as in Figs. 9 and 10. Figure 9 consists of a sequence
of dark-matter pie charts showing the relative contributions
to ΩtotðtnowÞ ¼ ΩCDM ≈ 0.26 from the lowest-lying states
for r ¼ 3.5 (top row) and r ¼ 4 (bottom row), with
r=s ¼ f25; 30; 50; 65g across each row. Within each pie,
we illustrate the corresponding collective abundances
Ω̂nðtnowÞ as separate slices, one for each value of n, while
the numbers listed within each slice indicate the number of
individual states ĝn contributing at that mass level. For each
pie chart we have also shown the corresponding values
of M0, Tc, and Ms. For these calculations we have used
the input valuesTMRE ¼ 0.7756 eV, gMRE ¼ 3.36, and gc ¼
f10.75; 61.75; 106.75; 106.75g, respectively, for r=s ¼
f25; 30; 50; 65g. We have also assumed our standard bench-
mark values B ¼ 5=4, C ¼ 2π=

ffiffiffi
3

p
, and τ0 ¼ 109tnow.

Let us begin by focusing on the “benchmark” pie chart
within Fig. 9 corresponding to r ¼ 3.5 and r=s ¼ 30.

FIG. 7. The level-by-level aggregate cosmological abundances
Ω̂n ≡ gnΩn of our benchmark DDM model, plotted as functions
of time for a series of low-lying mass levels n. We see that the
lightest states decay later and carry the largest cosmological
abundances, while the heavier states decay earlier and carry
smaller cosmological abundances—a key feature of the DDM
framework. As required, the sum of all abundance contributions
at t ¼ tnow is ΩtotðtnowÞ ¼ ΩCDM ≈ 0.26.

FIG. 8. Left: present-time aggregate abundance fractions Ω̂nðtnowÞ=ΩtotðtnowÞ, plotted as functions of r=s. As r=s increases, the n ¼ 0
state carries an increasingly large fraction of the total abundance, resulting in scenarios which have smaller values of η and which are
therefore less DDM-like. By contrast, for smaller r=s, we see that the lightest state carries a smaller proportional fraction of the total
abundance and in fact may not even be the dominant state for sufficiently small r=s. Right: closeup of the left panel, illustrating how the
level n of the states carrying the largest collective abundance ΩnðtnowÞ shifts as a function of r=s. For example, for r=s ¼ 15, all states
carry relatively small abundances and it is actually the n ¼ 23 states which collectively carry the largest collective abundance at the
present time. Such scenarios are therefore extremely DDM-like.
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For this pie chart, we see that the largest pie slice
corresponds to the abundance contribution from the
n ¼ 0 mass level, while the successively smaller pie slices
progressing in a clockwise fashion within the pie chart
correspond to the abundance contributions from succes-
sively higher mass levels. For this pie chart, we find that
M0 ≈ 532 GeV, Tc ≈ 18 GeV, and Ms ≈ 152 GeV. Note
that this value forMs is in agreement with the Ms contours
shown in Fig. 3. We also see geometrically from this pie
chart that η ≈ 0.72, in agreement with the results shown in
Figs. 3, 4, and 6.
Given this, we can now investigate how this benchmark

pie chart deforms as a function of r=s and r. Results are
illustrated in the other pie charts shown in Fig. 9. We see in
general that increasing r from 3.5 to 4.0 (i.e., passing from
the top row of pie charts in Fig. 9 to the bottom row) has the
net effect of shifting cosmological abundance away from
the ground state, thereby increasing η and generally making
each pie slice smaller while simultaneously lowering the
corresponding mass scales. This is in complete accord with

the results shown in Fig. 3. Likewise, decreasing or
increasing r=s (i.e., moving left or right along either
row) has the effect of increasing or decreasing η while
decreasing or increasing our corresponding mass scales.
Indeed, we see that the variable r=s allows us to interpolate
between two extremes: traditional ensembles with high
mass scales at large r=s versus DDM-like ensembles with
smaller mass scales at small r=s. We further observe that for
sufficiently small r=s, the largest pie slice is no longer the
n ¼ 0 slice (labelled “1” in each pie chart)—as r=s
decreases, this honor gradually shifts towards the pie slices
corresponding to higher mass levels. This is in accordance
with the results in Fig. 8.
Figure 10 is similar to the top row of Fig. 9, except that

we have now increased our values of C and B to
ffiffiffi
2

p
π and

B ¼ 3=2, respectively. These new values maintain cint ¼ 0
and correspond to the D⊥ ¼ 3 scalar string. These changes
in C and B increase the degeneracies ĝn of states at each
mass level, with the new values indicated within the
corresponding pie slices. Although the cosmological

FIG. 9. Dark-matter pie charts showing the relative contributions toΩtotðtnowÞ ¼ ΩCDM ≈ 0.26 from the lowest-lying states for r ¼ 3.5
(top row) and r ¼ 4 (bottom row), with r=s ¼ f25; 30; 50; 65g across each row and with B ¼ 5=4 and C ¼ 2π=

ffiffiffi
3

p
held fixed. In the

majority of cases (but not all cases), the largest pie slice corresponds to the abundance contribution from the n ¼ 0 mass level, and the
successively smaller pie slices (progressing in a clockwise fashion within the pie chart) correspond to the aggregate abundance
contributions from successively higher mass levels. Within each pie slice we have also indicated the degeneracy ĝn of individual states
whose cosmological abundances comprise the contribution from that slice. Note that in each case, the pie shown only corresponds to the
dark-matter slice ΩCDM ≈ 0.26 of the bigger “cosmic pie” which also includes contributions from dark energy and visible matter.
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abundances per state are not affected by the changes in C
and B, these increased degeneracies result in ensembles
which are even more DDM-like and which have corre-
spondingly smaller mass scales than those along the top
row of Fig. 9. These results are consistent with those shown
in Fig. 4.
We see, then, that a tremendous variety of DDM

ensembles exist which have the two fundamental features
outlined in the Introduction—Regge trajectories and expo-
nentially rising degeneracies of states. These ensembles are
consistent with our look-back and weff constraints, and thus
satisfy the zeroth-order constraints that may be imposed on
such ensembles on the basis of their total energy densities
and equations of state alone. We also observe an important
feature, an inverse correlation between the tower fraction η
(which governs the extent to which our ensemble is truly
DDM-like) and the magnitude of its underlying mass
scales. Indeed, we have seen that while traditional ensem-
bles typically have high corresponding mass scales, our
ensembles become increasingly DDM-like for lower mass
scales—all while remaining consistent with our look-back
and weff constraints. These observations will likely be an
important guide and ingredient in any future attempts to
build realistic dark-matter models of this type.

VI. CONCLUSIONS

In this paper, we have investigated the properties of a
hitherto-unexplored class of DDM ensembles whose con-
stituents are the composite states which emerge in the
confining phase of a strongly-coupled dark sector. In
ensembles of this sort, the masses of the constituent
particles lie along well-defined Regge trajectories and
the density of states within the ensemble grows expo-
nentially as a function of the constituent-particle mass. This
exponential growth is ultimately compensated by a

Boltzmann suppression factor in the primordial abundances
of the individual constituents, resulting in a finite total
energy densityΩtotðtÞ. We also showed that such ensembles
can naturally exhibit a balancing between lifetimes and
cosmological abundances of the sort required by the DDM
framework.
For each such ensemble, we calculated the correspond-

ing effective equation-of-state parameter weffðtÞ as well as
the tower fraction ηðtÞ. We also imposed a number of
zeroth-order model-independent phenomenological con-
straints which follow directly from knowledge of ΩtotðtÞ,
weffðtÞ, and ηðtÞ. In general, we found that the imposition of
such constraints tends to introduce correlations between
the different underlying variables which parametrize our
DDM ensembles, so that an increase in one variable (such
as, e.g., the exponential rate of growth in the state
degeneracies) requires a corresponding shift in another
variable (in this case, an increase in the lifetime of the
lightest state in the ensemble, as indicated in the right panel
of Fig. 5). Perhaps one of our most important results is the
existence of an inverse correlation between the tower
fraction ηðtÞ associated with a given a DDM ensemble
and its corresponding fundamental mass scales, so that the
present-day cosmological abundance of the dark sector
must be distributed across an increasing number of different
states in the ensemble as these fundamental mass scales are
dialed from the Planck scale down to the GeV scale.
We are certainly not the first to consider dark-matter

scenarios in which the dark matter is composite. Indeed,
within the context of traditional dark-matter models, it
has been appreciated for some time that the dark-matter
particle could be a composite state. For example, the
lightest technibaryon in technicolor theories was long
ago identified as a promising dark-matter candidate
[43,44], and mechanisms [45] were advanced by which
this particle could be rendered sufficiently light so as to be

FIG. 10. Same as the top row of Fig. 9 except that we have now taken C ¼ ffiffiffi
2

p
π and B ¼ 3=2, corresponding to the D⊥ ¼ 3 scalar

string. These changes inC and B change the degeneracies ĝn of states at each mass level, as indicated within the corresponding pie slices,
and result in ensembles which are even more DDM-like and which have correspondingly smaller mass scales than those along the top
row of Fig. 9.

DIENES, HUANG, SU, and THOMAS PHYSICAL REVIEW D 95, 043526 (2017)

043526-24



phenomenologically viable. Indeed, several explicit models
[46] have been developed along these lines. Other more
exotic baryon-like composites have also been advanced as
potential dark-matter candidates [47]. Lattice studies of
baryon-like states in the confining phases of both SUð3Þ
and SUð4Þ gauge theories have also been performed
[48–50].
A variety of scenarios in which a long-lived meson-like

state which appears in the confining phase of a strongly-
coupled hidden sector have been developed as well (for a
review see, e.g., Ref. [51]). These include scenarios in
which the dark-matter particle is a pseudo-Nambu-
Goldstone boson (PNGB) stabilized by a dark-sector
analogue of flavor symmetry [52–56] or G-parity [57],
or alternatively by some other symmetry of the theory with
no SM analogue [58–62]. Complementary lattice studies of
strongly-coupled dark-sector scenarios in which the dark-
matter candidate is a PNGB have been performed as well
[63,64]. Scenarios in which the dark-matter candidate is
not a PNGB, but rather a bound state of one heavy quark
and one light quark, have also received recent attention
[65–67], primarily due to the nonstandard direct-detection
phenomenology to which they give rise, as have scenarios
in which the dark-matter candidate is a bound state of
heavy quarks alone [68]. More general studies of composite
hidden-sector theories which give rise to meson-like or
baryon-like dark-matter candidates within different regions
of parameter space have also been performed [69–73].
Composite hidden-sector states consisting of non-

Abelian gauge fields alone (so-called “glueball” states)
have also long been recognized as promising dark-matter
candidates [74,75]—a possibility which has received
renewed attention [76,77] as well. Indeed, hidden sectors
involving cosmologically stable dark glueball states arise
naturally in a variety string constructions [78,79], as well as
in certain anomaly-mediated supersymmetry-breaking
scenarios [80].
In addition, the possibility that composite states in the

dark sector could themselves form bound states (so-called
“dark nuclei”) has also been studied [81–84], as has the
possibility that these nuclei themselves could combine to
form dark “atoms” or even dark “molecules” [85,86].
Indeed, lattice studies [81,87] corroborate the existence
of stable dark nuclei states even within simple, two-flavor
models with SUð2Þ as the confining gauge group. In such
models, a dark-sector equivalent of BBN serves as the
mechanism for abundance generation. Such models can
have interesting phenomenological consequences, espe-
cially in the regime in which a significant fraction of the
dark-matter abundance is contributed by nuclei with large
nucleon numbers [88,89].
Composite dark-matter models are interesting from a

phenomenological perspective as well. For example, the
states of a strongly-coupled hidden sector provide a natural
context [90] for strongly-interacting massive particle

(SIMP) dark matter [91,92] models, in which 3 → 2
processes rather than 2 → 2 processes play a dominant
role in determining the dark-matter abundance. Indeed, a
number of explicit models along these lines have been
constructed [93–96]. One of the most interesting ramifi-
cations of SIMP models is that they naturally give rise to
dark-matter self-interactions with cross sections sufficiently
large that dark-matter scattering can have an observable
impact on structure formation [97]. Such composite dark-
matter models can have other phenomenological conse-
quences as well, both at indirect-detection experiments
[98,99] and at colliders [100–103]. Finally, the presence of
additional non-Abelian gauge sectors, each with their own
analogue of the QCD Θ-angle, could have potential
implications for the physics of axions and axion-like
particles [104].
While all of these represent theoretically viable possibil-

ities for the dark sector, the dark ensemble we have
considered in this paper is unique for several important
reasons. In traditional composite dark-matter models, it is
usually a single bound state (usually the lightest bound
state) which serves as the primary dark-matter candidate
and which therefore carries the full dark-matter abundance
ΩCDM. While there may be several other dark states to
which this bound state couples—and which may play a
role in determining the abundance of the dark-matter
candidate—it is nevertheless true that only one (or a few)
composite states carry the dark-matter abundance ΩCDM
and thereby play a significant role in dark-sector phenom-
enology. By contrast, within the DDM framework, the
dark-matter abundance is potentially spread across a
relatively large set of composite states with various masses
and lifetimes. Thus the usual required stability of the
traditional dark-matter candidate is not a required feature
of the DDM ensemble, thereby allowing the associated
dark-matter abundance ΩCDMðtÞ and dark-matter equation-
of-state parameter weffðtÞ to vary with time—even during
the current, matter-dominated era.
Moreover, because the DDM framework requires an

enlarged viewpoint in which the entire spectrum of
composite states are potentially relevant for determining
the properties of the dark sector, features that describe the
entire composite spectrum suddenly become relevant for
determining dark-sector phenomenology—features which
would not have been relevant for previous studies within
more traditional frameworks. These features include the
fact that the masses of such bound states actually lie along
Regge trajectories, and that the densities of such bound
states experience a Hagedorn-like exponential growth as a
function of mass. Indeed, these features do not play a role
within traditional studies of composite dark states, but they
have been the cornerstones of the analysis we have
presented here. In this context, we note that a similar
approach was also adopted in Ref. [88] with regard to
ensembles of dark nuclei whose abundances are generated
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via a dark-sector analogue of BBN. This is indeed another
context in which the full ensemble of dark-sector states
plays an important role in dark-matter phenomenology.
Given the initial steps presented here, there are many

avenues for future research. For example, in this paper we
have primarily focused on the phenomenology associated
with the “sweet-spot” region in Eq. (5.3), as this region
gives rise to a rich spectrum of associated mass scales and
DDM-like behaviors. However, other regions may also be
relevant for different situations, including the case of dark
ensembles emerging from the bulk sectors of actual critical
Type I string theories. Indeed, such theories typically have
significantly larger central charges and values of D⊥ than
those corresponding to the D⊥ ¼ 2 flux tube, and thus
correspond to values of ðB;CÞ which are very far from the
“benchmark” values in Eq. (5.2). Such strings also likely
correspond to values of ðr; sÞ which are far from those in
Eq. (5.3). Likewise, in our analysis we have taken κ ¼ 1
and ξ ¼ 3. Although these simple choices were well-
motivated and conservative, it would certainly be interest-
ing to explore the consequences of alternative choices. It
would also be of interest to explore the ramifications of
relaxing some of the approximations we have made in our
analysis. These include the “instantaneous freeze-out”
approximation that underpins the Boltzmann suppression
factor in Eq. (3.1), as well as our implicit assumption that
the Hubble expansion within which our calculations have
taken place is unaffected by potential gravitational back-
reaction from our continually evolving dark sector. While
these approximations may certainly be justified to first
order, a more refined calculation is still capable of altering
our results numerically if not qualitatively.
It would also be interesting to subject the DDM

ensembles we have studied here to more detailed
phenomenological constraints. The constraints we have
studied here, such as our look-back and weff constraints, are
those that follow directly (and in a completely model-
independent manner) from knowledge ofΩtotðtÞ and weffðtÞ
alone, and as such we have seen that they are sufficient to
rule out vast regions of parameter space. It is nevertheless
true that a plethora of additional constraints could be

formulated once a particular scenario with a particular
particle content is specified, and that imposing such addi-
tional constraints could potentially narrow our viable
parameter space still further.
Finally, and perhaps most importantly, in this paper we

have assumed that the effects of intra-ensemble decays on
the decay widths of the ensemble constituents are negli-
gible. Such an assumption is certainly consistent with our
other assumptions about the structure of the theory. In
general, following our string-based approach to under-
standing the dyamics of these bound-state flux tubes, we
may regard the strength of the interactions among the
different dark hadrons in our DDM model as being
governed by an additional parameter, a so-called “string
coupling” gs, which we have not yet specified but which
does not impact any of the results we have presented thus
far. In general, gs can be different from the coupling which
governs the decays of our ensemble states to SM states and
which is thus embedded within τ0. In an actual string
construction, the value of gs is determined by the vacuum
expectation value (VEV) of the dilaton field, but the
dynamics that determines this VEV is not well understood.
In general, however, intra-ensemble decays will provide an
additional contribution to the total decay widths Γn,
especially for the heavier ensemble constituents, and the
decays of these heavier constituents can serve as an
additional source for the abundances of the lighter con-
stituents. The effects of such intra-ensemble decays will be
discussed in more detail in Ref. [105].
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