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In the standard model extended with a seesaw mass matrix, we study the production of sterile neutrinos
from the decay of vector bosons at temperatures near the masses of the electroweak bosons. We derive a
general quantum kinetic equation for the production of sterile neutrinos and their effective mixing angles,
which is applicable over a wide range of temperature, to all orders in interactions of the standard model and
to leading order in a small mixing angle for the neutrinos. We emphasize the relation between the
production rate and Landau damping at one-loop order and show that production rates and effective mixing
angles depend sensitively upon the neutrino’s helicity. Sterile neutrinos with positive helicity interact more
weakly with the medium than those with negative helicity, and their effective mixing angle is not modified
significantly. Negative helicity states couple more strongly to the vector bosons, but their mixing angle is
strongly suppressed by the medium. Consequently, if the mass of the sterile neutrino is ≲8.35 MeV, there
are fewer states with negative helicity produced than those with positive helicity. There is an Mikheyev-
Smirnov-Wolfenstein-type resonance in the absence of lepton asymmetry, but due to screening by the
damping rate, the production rate is not enhanced. Sterile neutrinos with negative helicity freeze out at
T−
f ≃ 5 GeV, whereas positive helicity neutrinos freeze out at Tþ

f ≃ 8 GeV, with both distributions far

from thermal. As the temperature decreases, due to competition between a decreasing production rate and
an increasing mixing angle, the distribution function for states with negative helicity is broader in
momentum and hotter than that for those with positive helicity. Sterile neutrinos produced via vector boson
decay do not satisfy the abundance, lifetime, and cosmological constraints to be the sole dark matter
component in the Universe. Massive sterile neutrinos produced via vector boson decay might solve the 7Li
problem, albeit at the very edge of the possible parameter space. A heavy sterile neutrino with a mass of a
few MeV could decay into light sterile neutrinos, of a few keV in mass, that contribute to warm dark matter.
We argue that heavy sterile neutrinos with lifetime ≤ 1=H0 reach local thermodynamic equilibrium.
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I. INTRODUCTION

The paradigm of standard cosmology is inflation plus
cold dark matter, ΛCDM. While it succeeds in describing
the formation of structure at large scales, there are dis-
crepancies at smaller scales, especially galactic and sub-
galactic. There is the core-cusp problem: N-body
simulations of cold dark matter produce dark matter
profiles that generically feature cusps, yet observations
suggest that the profile has a smooth core [1,2]. There is
also the missing satellites problem, where simulations also
predict that typical galaxies are surrounded by satellites
dominated by dark matter, which is inconsistent with
current observations [3]. Both of these problems can be
solved by allowing some fraction of the dark matter to be
warm dark matter (WDM) [4–9]. A possible candidate for
warm dark matter is a massive “sterile” neutrino [10–17].

Whether dark matter is hot or cold depends upon its free
streaming length, λfs, which is the cutoff scale in the linear
power spectrum of density perturbations. Cold dark matter
with λfs ≲ pc produces cuspy profiles, while warm dark
matter with λfs ∼ few kpc gives cored profiles.
One important question is whether these discrepancies

can be explained with the standard ΛCDM model by
including the effects of baryons in the simulations.
Recent simulations of warm dark matter which include
velocity dispersion suggest that cores do form, but do not
yet reliably constrain, the mass of the WDM candidate in a
model independent manner [18].
In order to evade cosmological bounds, the distribution

functions of warm dark matter cannot be thermal [19]. How
sterile neutrinos are produced in the early Universe was
studied originally in Refs. [20,21]. In Refs. [11,22–27], it
was argued that sterile neutrinos are a viable candidate for
warm dark matter, which is produced out of local equilib-
rium either nonresonantly [11,20,23,25] or resonantly in
the presence of a lepton asymmetry [22]. Models in which a
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scalar decays into a pair of sterile neutrinos at the
electroweak scale (or higher) also yields a nonthermal
distribution [28–32]. Observations of the x-ray emission
spectrum of the Andromeda galaxy with Chandra led to
tight constraints on the nonresonant production of sterile
neutrinos [33]. More recently, the report of observation of a
3.5 keV signal from the XMM Newton x-ray telescope has
been argued to be due to a 7 keV sterile neutrino [34,35],
although this interpretation has been challenged [36–39].
The prospect of a keV sterile dark matter candidate
continues to motivate studies in both theory and observa-
tion [27,29,31,40–47].
Neutrino masses, mixing and oscillations are uncontro-

versial evidence of physics beyond the standard model. A
robust experimental program has brought measurements of
most of the parameters associated with light neutrino
masses [48,49] with several relevant questions poised to
be answered in the near future [50]. Short baseline neutrino
oscillation experiments such as LSND and MiniBooNE
[51,52] present a picture of the neutrino sector which may
require an additional sterile neutrino species of mass∼1 eV
[15,53,54], but there remains tension with other experi-
ments [55], and a definitive resolution of these anomalies
requires further experiments [56–61]. An interpretation of
short baseline experimental anomalies as a signal for sterile
neutrinos leads to a relatively light mass ∼eV which rules
out this putative new sterile neutrino as a candidate for dark
matter. However, many well-motivated extensions beyond
the standard model posit the existence of heavy neutrinos. It
has been argued that sterile neutrinos with a mass on the
order of MeV or larger [62] could decay and explain the
short baseline anomalies. Alternatively, heavy sterile neu-
trinos produced through rare decay channels could also
explain the anomaly [63]. Recent proposals make the case
for a program to search for heavy neutrinos [64,65] in a
wide range of experiments including hadron colliders
[66–71]. Furthermore, it has been argued that heavy sterile
neutrinos in the mass range 100–500 MeV can decay
nonthermally and so evade bounds from cosmology and
accelerator experiments [72]. Sterile neutrinos with mass
≃MeV can be of cosmological relevance in models where
the reheating temperature is low [73].
A heavy sterile neutrino with mass ≃14 MeV, a mixing

angle θ≃ 10−3, and a lifetime τs ≃ 1.8 × 105 s has been
proposed [74] as a novel solution to the “lithium problem.”
This is the nearly threefold discrepancy between the
standard big bang nucleosynthesis (BBN) prediction and
observed abundance of 7Li [74–78]. This solution relies on
the energy injected by the decay of the sterile neutrino to
destroy part of 7Be prior to its conversion into 7Li in the late
stages of BBN [74,78]. This mechanism has been recently
reanalyzed and confirmed in Ref. [79] with a sterile
neutrino mass ≃4.35 MeV, mixing angle θ ≤ 10−5–10−4

and lifetime ≃1.8 × 105 s. An important bonus of this
mechanism is that the decay of the heavy sterile neutrino,

≃MeV in mass, yields an increase in the effective number
of relativistic species ΔNeff ≃ 0.34 at the 95% C.L. [79].
The energy injection from the decay of heavy sterile
neutrinos with longer lifetime may also contribute to early
ionization [80]. Although there is no experimental evidence
for such heavy sterile neutrinos, there are stringent accel-
erator and cosmological bounds on their possible masses
and mixing angles with active neutrinos [73,81–83].
There is a hierarchy of masses for the light active

neutrinos, with nearly 2 orders of magnitude between
the mass squared differences for the explanation of solar
and atmospheric neutrino mixing.
Possible extensions beyond the standard model may also

accommodate a hierarchy of heavy neutrinos [17,84,85].
Current and future underground neutrino detectors may

be able to probe dark matter candidates with ≃fewMeV
[86]. The possibility of a hierarchy of heavy sterile
neutrinos offers novel production mechanisms for warm
(and hot) dark matter, from the cascade decays of heavy
neutrinos to lighter ones. This possibility is similar to
models of many dark matter components proposed recently
[87], where the decay of a heavy field seeds the production
of a light one. This leads to a scenario of mixed dark matter
described by several species of massive neutrinos with
nonequilibrium distribution functions and thereby evades
Lyman-α constraints [88]. A recent article argued on
various possible production mechanisms of sterile neutrino
directly from standard model processes available through-
out the thermal history of the Universe and analyzed in
detail the scenario of production of mixed dark matter
(colder, warmer and hotter) from pion decay shortly after
the QCD crossover [89].
This analysis, along with previous work [45], also

suggests that the decay of a heavy sterile neutrino into a
light active neutrino increases the effective number of
neutrinos, Neff . This has been studied recently in Ref. [79]
in the context of energy injection post (BBN) from the decay
of a heavy sterile neutrino with lifetime ≃105 secs.

A. Motivation and goals

Sterile neutrinos with masses in the range KeV–few
MeV may play an important role in cosmology.
Most of the studies of their production and freeze-out

have focused on the well-motivated mass range of few KeV
as possible warm dark matter candidates. However, if the
hierarchy of masses and mixing of light active neutrinos is
of any guide in extensions beyond the standard model, a
possible hierarchy of heavier sterile neutrinos that mix with
the light active neutrinos, with very small mixing angles,
may emerge.
In this scenario, the possibility that heavier neutrinos

yield a mixture of dark matter components, from cold,
heavy species to warm, light ones, with important cosmo-
logical impact, and the possibility that ≃MeV sterile
neutrinos may yield a solution to the 7Li problem
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[74,78,79] motivates our study of the production and
freeze-out of sterile neutrinos in a wider range of masses
and temperatures. In this article, we study the production of
sterile neutrinos solely from standard model interactions.
Reference [89] identified several possible processes avail-
able throughout the thermal history of the Universe that
may lead to the production of a sterile species from its
mixing with active neutrinos.
Recently, Ref. [26] studied the damping rate of GeV

sterile neutrinos at high temperature within the context of
the washout rate of leptonic densities.
In contrast, we focus on sterile neutrinos with masses

≲ fewMeV, which is appropriate both to dark matter and
the possible solution of the 7Li problem. We highlight the
important role which different helicity channels play for the
production rate and mixing angles, including cosmological
expansion. We also compute the nonequilibrium distribu-
tion functions for different helicities, along with various
cosmological constraints.
In this article, our goals are twofold:
(i) Using quantum kinetics, we seek to provide a con-

sistent description of both production and freeze-out,
valid in a wide range of temperature, under a minimal
set of assumptions. These are as follows: (a) Except
for the coupling between sterile and active neutrinos
via a seesaw-type mass matrix, we only consider the
interactions of the standard model. (b) Consistent
with bounds from accelerator experiments and cos-
mology [33–35,43,73,81–83], we assume that the
vacuum mixing angle θ ≪ 1. Taken together, these
bounds suggest that θ2 ≲ 10−5 for a wide range of
masses Ms ≲ 300 MeV. (c) Interactions in the stan-
dard model can be treated perturbatively, and the
relevant degrees of freedom, including active neutri-
nos, are in local thermal equilibrium (LTE) during
both production and freeze-out of sterile species. The
latter is consistent with a small mixing angle.

(ii) We work to leading order in the electroweak
coupling αW , without any assumption on the mass
scales of the sterile neutrinos. To leading order in
αW , the production of sterile neutrinos occurs from
the decay of W and Z bosons in the thermal bath.
We focus on the temperatures at the electroweak

scale, T ≃MW;MZ. This is sufficiently below the
temperature for the electroweak phase transition,
which is a crossover at Tew ≃ 160 GeV [25], so that
theW and Z bosons are in local thermal equilibrium,
with masses close to those at zero temperature.

B. Brief summary of results

For simplicity, we consider a model with one active and
one sterile neutrino. Our main results are as follows:

(i) We obtain the mass eigenstates, effective
mixing angles and damping rates directly from
the equations of motion in the medium in terms

of the full self-energy to all orders in weak inter-
actions. We give an expression for the effective
mixing angles which is broadly valid for θ ≪ 1 and
to all orders in perturbation theory in standard model
couplings, at any temperature. Themixing angle in the
medium depends strongly on helicity; negative hel-
icity neutrinos (and positive helicity antineutrinos)
feature mixing angles which are strongly suppressed
at high temperature. In contrast, for positive helicity
neutrinos (and negative helicity anti-neutrinos), the
corrections to the mixing angle are subleading, so the
effective mixing angle is nearly the same as that in
vacuum. This happens because the interaction of
neutrinos with positive helicity is helicity suppressed.
Damping rates are also helicity dependent and sup-
pressed for those with positive helicity; however,
because the effective mixing angle is larger than that
of the negative helicity states, the resulting production
rate is comparable in a wide range of masses. We
obtain the general form of the quantum kinetic
equation that describes the production and freeze-
out of sterilelike neutrinos The production rate is
determined by the damping rate of sterilelike mass
eigenstates and the mixing angle in the medium.
Although the production rate of positive helicity states
is suppressed by helicity, it is comparable to the rate
for those with negative helicity, because over a wide
regime of masses, it is compensated by the suppres-
sion of the mixing angle for neutrinos with negative
helicity.

(ii) For sterilelike masses Ms ≪ MW , we find a
Mikheyev-Smirnov-Wolfenstein (MSW) [90] reso-
nance in the absence of a leptonic asymmetry.
However, it is screened by the damping rate and
so does not lead to enhanced production. For this
mass range of Ms, negative helicity states freeze
out at T−

f ≃ 5 GeV, whereas positive helicity states
freeze out at Tþ

f ≃ 8 GeV. Both feature highly
nonthermal distribution functions, where for the
negative helicity states the distribution function is
broader and hotter than that for positive helicity.

Paradoxically, this is a consequence of a longer
freeze-out time for the negative helicity states, despite
the fact that their coupling to the environment is
stronger. This is a surprising result, stemming from a
competition between a diminishing damping rate and
an increasing effective mixing angle as the temper-
ature decreases. We argue that this leading order
production mechanism establishes a lower bound for
the abundance. We find, however, that sterilelike
neutrinos produced via vector boson decay do not
satisfy the various bounds on lifetimes and mixing
angles to be viable keV dark matter candidates.
However, they can be suitable as the MeV sterile
neutrinos that are conjectured to provide a solution to
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the 7Li problem. This is with the caveat that there
seems to be tension among the various bounds
available in the literature [79,83]. Just as these
heavier neutrinos may decay by injecting energy
into the plasma as the solution to this problem, we
also conjecture that they may also decay into lighter
≃KeV sterile neutrinos, with a much smaller branch-
ing ratio, that could be suitable candidates for warm
dark matter.

To the best of our knowledge, there has not yet been a
systematic study of the full dynamics of production and
freeze-out obtaining the nonequilibrium distribution func-
tions of heavy sterile neutrinos with Ms ≲ fewMeV at the
scale T ≃ 100 GeV with cosmological expansion. Our
analysis is motivated by the possible cosmological rel-
evance of sterile neutrinos in a wide range of masses and
complements previous studies that focus on lower temper-
ature regimes.

II. MASS EIGENSTATES, DAMPING RATES
AND MIXING ANGLES IN THE MEDIUM

We consider the standard model with only one leptonic
generation, one active neutrino and its charged lepton
partner and one SUð2Þ singlet Dirac sterile neutrino within
a type-I seesaw scenario [91], to discuss the main aspects in
the simplest setting. This choice differs from other versions
of the type-I seesaw that include only a right-handed
Majorana neutrino. The important difference is that in
the Majorana case there is no antineutrino contribution, and
quantitatively this results in an overall factor 1=2 in the
final abundances.
With one lepton doublet LL ¼ ðνaL; lLÞT and one SUð2Þ

singlet νs, the Lagrangian density is

L ¼ LSM þ ν̄si∂νs − YL̄L
~ΦνsR þ H:c: −Msνsνs; ð2:1Þ

where ~Φ ¼ iτ2Φ� and Φ is the usual Higgs doublet. We
consider temperatures sufficiently below the electroweak
crossover at Tew ≃ 160 GeV that the Higgs expectation
value is very nearly the zero temperature value. After
spontaneous symmetry breaking and in unitary gauge, the
Yukawa coupling yields an off-diagonal Dirac mass term
m ¼ YhΦ0i that mixes νs and νa, neglecting the Higgs
active-sterile coupling, since we will focus solely on
production via vector boson interactions, the Lagrangian
density becomes

L ¼ LSM þ ν̄si∂νs − ν̄αMαβνβ þ H:c:;

α; β ¼ a; s; ð2:2Þ

where a and s refer to active and sterile respectively and

M ¼
�

0 m

m Ms

�
: ð2:3Þ

Introducing the “flavor” doublet (νa, νs), the diagonaliza-
tion of the mass term M is achieved by a unitary trans-
formation to the mass basis (ν1, ν2), namely,

�
νa

νs

�
¼ UðθÞ

�
ν1

ν2

�
;

UðθÞ ¼
�

cosðθÞ sinðθÞ
− sinðθÞ cosðθÞ

�
; ð2:4Þ

where

cosð2θÞ ¼ Ms

½M2
s þ 4m2�12 ; sinð2θÞ ¼ 2m

½M2
s þ 4m2�12 :

ð2:5Þ

In the mass basis,

Mdiag ¼ U−1ðθÞMUðθÞ ¼
�
M1 0

0 M2

�
;

M1 ¼
1

2
½Ms − ½M2

s þ 4m2�12�;

M2 ¼
1

2
½Ms þ ½M2

s þ 4m2�12�: ð2:6Þ

We focus on the case m ≪ Ms; therefore,

M1≃−
m2

Ms
; M2≃Ms; sinð2θÞ≃2θ≃2m

Ms
≪ 1: ð2:7Þ

We refer to the heavier mass eigenstate withM2 ≃Ms as
sterilelike and the lighter mass eigenstate with M1 ∝
m2=Ms as activelike, since these are primarily composed
of the sterile and active flavors in the flavor basis.
We work in unitary gauge which exhibits the physical

degrees of freedom of massive vector bosons in thermo-
dynamic equilibrium. The equations of motion were
derived previously in Refs. [92–94]. In particular,
Ref. [92] also includes contributions from Yukawa cou-
plings between the sterile neutrino and scalar fields, but we
will not consider such an extension here as this implies a
particular model for the origin of the mass matrix. Our
focus here is to study the sterile neutrino production solely
from standard model interactions (charged and neutral
currents) under the minimal set of assumptions discussed
above.
Introducing the flavor doublet ΨT ¼ ðνa; νsÞ, the equa-

tion of motion in the flavor basis is [92–94] (for details, see
the Appendix in Ref. [93])

ði∂1 −Mþ ΣtLÞΨð~x; tÞ

þ
Z

d3x0dt0Σrð~x − ~x0; t − t0ÞLΨð~x0; t0Þ ¼ 0; ð2:8Þ
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where 1 is the identity matrix in flavor space and L ¼
ð1 − γ5Þ=2 is the left-handed chiral projection operator. The
full one-particle irreducible self-energy includes local tad-
pole (Σt) and nonlocal dispersive (Σrð~x − ~x0; t − t0Þ) con-
tributions. It is solely arising from standard model
interactions to all orders and is diagonal in the flavor
basis, namely,

Σ≡ Σ
�
1 0

0 0

�
: ð2:9Þ

Furthermore, in factoring out the projector L, the remaining
self-energy is calculated in the vectorlike theory. For
example, the one-loop contributions to the self-energy
are shown in Fig. 1; this is the leading order contribution
to the self-energy.
Introducing the space-time Fourier transform in a spatial

volume V,

Ψð~x; tÞ ¼ 1ffiffiffiffi
V

p
X
~q

Z
dωei~q·~xe−iωt ~Ψðω; ~qÞ; ð2:10Þ

and similarly for the self-energy kernels, the effective
Dirac equation in the flavor basis becomes [92–94] (see
the Appendix in Ref. [93])

½ðγ0ω − ~γ · ~qÞ1 −Mþ ðΣt þ Σðω; ~qÞÞL� ~Ψðω; ~qÞ ¼ 0;

ð2:11Þ

this equation of motion is exact, since the self-energy
includes all order contributions in standard model cou-
plings. The bracket in (2.11) is the inverse or the retarded
propagator of which the poles in the complex plane
determine the dispersion relations and damping rates of
the mass eigenstates in the medium.
The tadpole contribution Σt, see Fig. 1(a) is local

therefore it is independent of ω; ~q, in (2.11) Σðω; ~qÞ, is
the space-time Fourier transform of Σrð~x − ~x0; t − t0Þ and
features a dispersive representation [92–94],

Σðω; ~qÞ ¼ 1

π

Z
∞

−∞
dq0

ImΣðq0; ~qÞ
q0 − ω − i0þ

: ð2:12Þ

From this dispersive form, it follows that

Σðω; ~qÞ ¼ ReΣðω; ~qÞ þ iImΣðω; ~qÞ ð2:13Þ

with

ReΣðω; ~qÞ ¼ 1

π

Z
∞

−∞
dq0P

�
ImΣðq0; ~qÞ
q0 − ω

�
: ð2:14Þ

The real part yields the “index of refraction” in the medium,
and the imaginary part determines the damping rate of the
single (quasi)particle excitations. The tadpole term must be
calculated separately and does not feature a dispersive
representation.
Although in this article we will focus on the one-loop

contributions to the self-energy from standard model
charged and neutral current interactions, the form of the
equations of motion and the dispersive form of the self-
energy (not the tadpole) are generally valid in principle to
all orders in standard model interactions which are of the
V–A form.
A subtle but important conceptual issue arises in the

neutral current contribution to the self-energy with internal
loop propagators for neutrinos. The propagators correspond
to mass eigenstates; therefore, in principle, the perturbative
loop expansion should be carried out in the mass basis
rather than in the flavor basis. Furthermore, if the neutrino
propagators describe neutrinos thermalized in the medium
in terms of the equilibrium Fermi-Dirac distribution func-
tion, not only do these propagators correspond to mass
(energy) eigenstates but are also assumed to be in thermal
equilibrium. We will assume i) a very small mixing angle
θ ≪ 1 so that to leading order in this mixing angle the
activelike mass eigenstate can be taken to be the active
flavor eigenstate and ii) in the temperature regime of
interest in this article T ≃MW;Z, active (flavor) neutrinos
are in (local) thermal equilibrium. Under these assumptions
(the validity of which will be confirmed later), we consider
the internal loop propagators in the neutral current con-
tribution to be those of active neutrinos in thermal equi-
librium to leading order in the mixing angle.
As a consequence of the V–A nature of the standard

model couplings of neutrinos, Σðω; ~qÞ has the general form
of a vectorlike theory,

Σt þ Σðω; ~qÞ≡ γ0Aðω; ~qÞ − ~γ · q̂Bðω; ~qÞ; ð2:15Þ

and

Σt þ Σðω; ~qÞ ¼ γ0Aðω; ~qÞ − ~γ · q̂Bðω; ~qÞ; ð2:16Þ

where in the flavor basis

(a) (b) (c)

FIG. 1. One-loop contributions to the self-energy. The neutral
current tadpole is proportional to the lepton (and quark)
asymmetry.
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Aðω; ~qÞ¼
�
Aðω; ~qÞ 0

0 0

�
; Bðω; ~qÞ¼

�
Bðω; ~qÞ 0

0 0

�
:

ð2:17Þ

The equations of motion simplify by projecting with
L ¼ ð1 − γ5Þ=2;R ¼ ð1þ γ5Þ=2 and expanding in helicity
eigenstates. Following the steps of Ref. [92], we write for
the left (L) and right (R) fields

ΨL ¼
X
h¼�1

vh ⊗ Ψh
L; Ψh

L ¼
�
νha

νhs

�
L

ð2:18Þ

and

ΨR ¼
X
h¼�1

vh ⊗ Ψh
R; Ψh

R ¼
�
νha

νhs

�
R
; ð2:19Þ

where the left- and right-handed doublets are written in the
flavor basis and vh are eigenstates of the helicity operator

ĥðq̂Þ ¼ γ0~γ · q̂γ5 ¼ ~σ · q̂

�
1 0

0 1

�
; ð2:20Þ

namely,

~σ · q̂vh ¼ hvh; h ¼ �1: ð2:21Þ

We find in the flavor basis the equation of motion for the
left- and right-handed component doublets

½ðω2 − q2Þ1þ ðω − hqÞðAþ hBÞ −M2�Ψh
L ¼ 0 ð2:22Þ

and

½ω − hq�Ψh
R ¼ Mγ0Ψh

L; ð2:23Þ

where M is given by (2.3) and

M2 ¼ M̄21þ δM2

2

�− cosð2θÞ sinð2θÞ
sinð2θÞ cosð2θÞ

�
ð2:24Þ

with

M̄2 ≡ 1

2
ðM2

1 þM2
2Þ; δM2 ≡M2

2 −M2
1; ð2:25Þ

and M1;2 are given by Eq. (2.6). The results (2.22), (2.23)
are general for standard model couplings of the active
(flavor) neutrinos and sterile neutrinos that only interact
with active ones via a seesaw-type mass matrix. Before
discussing in detail the one-loop contribution from charged
and neutral currents, we want to establish general results for
the effective mixing angle in the medium and damping
rates. The operator on the left-hand side of (2.22),

½Sh
Lðω; qÞ�−1 ¼ ½ðω2 − q2Þ1þ ðω − hqÞðAþ hBÞ −M2�;

ð2:26Þ

defines the inverse propagator in the flavor basis for the
left-handed component projected on helicity eigenstates.
The correct “mass eigenstates” correspond to the (complex)
poles of S, the real part describes the correct propagating
frequencies, and the imaginary parts describe the damping
rate of single (quasi)particle excitations. We will extract
these mass eigenstates from the (complex) zeroes of ½Sh

L�−1
by invoking the following approximations of which the
validity will be assessed below:

(i) Ultrarelativistic approximation: q ≫ Ms; this entails
that the produced sterilelike neutrinos freeze out
while relativistic.

(ii) θ ≪ 1; in particular we will assume that the self-
energy correction is larger in magnitude than the
vacuum mixing angle. The precise condition will be
discussed below.

(iii) Validity of the perturbative expansion, in particular
that the self-energy corrections, are smaller than the
unperturbed dispersion relations. This assumption
will be clarified and discussed in detail in the
analysis that follows.

Introducing

Ωh ≡ ðω − hqÞðAðω; qÞ þ hBðω; qÞÞ ð2:27Þ

and using (2.24), we obtain

½Sh
Lðω; qÞ�−1 ¼

�
ω2 − q2 − M̄2 þΩh

2

�
1 −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδM2 cosð2θÞ þΩhÞ2 þ ðδM2 sinð2θÞÞ2

q �
−Ch

mðω; qÞ Sh
mðω; qÞ

Sh
mðω; qÞ Ch

mðω; qÞ

�
;

ð2:28Þ

where

Ch
mðω; qÞ ¼

δM2 cosð2θÞ þΩhðω; qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩhðω; qÞ þ δM2 cosð2θÞÞ2 þ ðδM2 sinð2θÞÞ2

p ð2:29Þ
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Sh
mðω; qÞ

¼ δM2 sinð2θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩhðω; qÞ þ δM2 cosð2θÞÞ2 þ ðδM2 sinð2θÞÞ2

p ;

ð2:30Þ

with

ðCh
mðω; qÞÞ2 þ ðSh

mðω; qÞÞ2 ¼ 1: ð2:31Þ

If the imaginary part of the self-energy vanishes (or can be
neglected), then

Ch
mðω; qÞ ¼ cosð2θmÞ;

Sh
mðω; qÞ ¼ sinð2θmÞ; ð2:32Þ

and θm would be the mixing angle in the medium.
However, the absorptive (imaginary) part of the self-energy
(related to the damping rate of quasiparticle excitations)
prevent such identification.
The matrix

�
−Ch

mðω; qÞ Sh
mðω; qÞ

Sh
mðω; qÞ Ch

mðω; qÞ

�

has null trace and determinant ð−1Þ as a consequence of
(2.31); therefore, real eigenvalues λ ¼ �1 with the follow-
ing eigenvectors,

�
chðω; qÞ
−shðω; qÞ

�
; λ ¼ −1 ð2:33Þ

�
shðω; qÞ
chðω; qÞ

�
; λ ¼ 1; ð2:34Þ

where

chðω; qÞ ¼
�
1þ Ch

mðω; qÞ
2

�
1=2

ð2:35Þ

shðω; qÞ ¼
�
1 − Ch

mðω; qÞ
2

�
1=2

: ð2:36Þ

For vanishing absorptive part sh ≡ sinðθmÞ; ch ≡ cosðθmÞ
with θm the (real) mixing angle in the medium.
To leading order for θ ≪ 1 and M1 ≪ M2 ≃Ms we

obtain the following eigenvalues of ½S�−1:

S−1 ≃ ω2 − q2 −M2
2 −

θ2ðM2
2Þ2

ðM2
2 þ Ωhðω; qÞÞ þ θ2M2

2;

for λ ¼ þ1; eigenvector

�
shðω; qÞ
chðω; qÞ

�
ð2:37Þ

S−1 ≃ ω2 − q2 −M2
1 þ Ωhðω; qÞ þ θ2ðM2

2Þ2
ðM2

2 þ Ωhðω; qÞÞ
− θ2M2

2;

for λ ¼ −1; eigenvector

�
chðω; qÞ
−shðω; qÞ

�
: ð2:38Þ

It is clear that the eigenvector corresponding to eigenvalue
þ1 corresponds to a sterilelike neutrino in the medium; the
radiative correction (self-energy) enters solely with the
mixing angle and vanishes for vanishing mixing angle,
whereas the eigenvector corresponding to eigenvalue −1 is
activelike, with radiative correction (Ωh) even for θ ¼ 0.
The inverse of ½Sh

Lðω; qÞ�−1 is the inverse of the propagator,
and therefore its complex zeroes describe the complex
poles. Under the assumption of the validity of perturbation
theory (discussed below in detail), we write

ω ¼ ωjðqÞ þ δωh
j ; ωjðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

j

q
≃ qþM2

j

2q
;

j ¼ 1; 2 ð2:39Þ

in the relativistic approximation and introducing (in the
relativistic limit)

Δh
j ðqÞþ iγhj ðqÞ¼

Ωhðωj;qÞ
2q

≃ ðωj−hqÞ
2q

½Aðω¼ q;qÞþhBðω¼ q;qÞ�;

ð2:40Þ

with j ¼ 2 for sterilelike (eigenvalue λ ¼ 1) and j ¼ 1 for
activelike (eigenvalue λ ¼ −1) where both Δ and γ are real,
and introducing

ξ ¼ M2
s

2q
ð2:41Þ

we find the position of the poles in the propagator (mass
eigenstates) at

δωh
2 ¼

θ2ðξþ Δh
2ðqÞ − iγh2ðqÞÞ

½ð1þ Δh
2
ðqÞ
ξ Þ2 þ ðγh2ðqÞξ Þ2�

− θ2ξ;

for λ ¼ þ1; eigenvector

�
shðω ¼ q; qÞ
chðω ¼ q; qÞ

�
ð2:42Þ

for the “sterilelike” neutrino and
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δωh
1 ¼ −ðΔh

1ðqÞ þ iγh1ðqÞÞ

−
θ2ðξþ Δh

1ðqÞ − iγh1ðqÞÞ
½ð1þ Δh

1
ðqÞ
ξ Þ2 þ ðγh1ðqÞξ Þ2�

þ θ2ξ;

for λ ¼ −1; eigenvector

�
chðω ¼ q; qÞ
−shðω ¼ q; qÞ

�
ð2:43Þ

for the “activelike” neutrino.
We now introduce the effective mixing angle in the

medium,

θheffðqÞ ¼
θ

½ð1þ Δh
j ðqÞ
ξ Þ2 þ ðγ

h
j ðqÞ
ξ Þ2�1=2

; ð2:44Þ

for each mass eigenstate j ¼ 1, 2, in terms of which the
position of the (quasi)particle poles (2.42), (2.43) are
written as

δωh
2 ¼ Δh

2ðqÞðθheffðqÞÞ2 þ ξ½ðθheffðqÞÞ2 − θ2�
− iγh2ðqÞðθheffðqÞÞ2;

j ¼ 2 ðsterilelikeÞ; ð2:45Þ

δωh
1 ¼ −Δh

1ðqÞ½1þ ðθheffðqÞÞ2� − ξ½ðθheffðqÞÞ2 − θ2�
− iγh1ðqÞ½1 − ðθheffðqÞÞ2�;

j ¼ 1 ðactivelikeÞ: ð2:46Þ

Writing

δωh
j ¼ ΔEh

j − i
Γh
j

2
; ð2:47Þ

for the corresponding helicity component, the imaginary
part Γ yields the damping rate for the single (quasi)particle
excitations in the medium; namely, the mass eigenstates in
the medium evolve in time as

νhj ðqÞ≃ e−iωjte−iΔE
h
j te−Γ

h
j t=2 ⇒ jνhj ðqÞj2 ≃ e−Γ

h
j t;

j ¼ 1; 2; ð2:48Þ

where the damping rates Γh
j are given by

Γh
2 ¼ 2γhðqÞðθheffðqÞÞ2 ≃ 2γhðqÞsin2ðθheffÞ sterilelike

ð2:49Þ

Γh
1 ¼ 2γhðqÞ½1 − ðθheffðqÞÞ2�
≃ 2γhðqÞcos2ðθheffÞ activelike: ð2:50Þ

Even when a particle cannot decay in the vacuum, the
spectral density may feature a width in the medium as a

consequence of dissipative processes arising from the
coupling to excitations in the medium. In this case, the
width describes the relaxation of the quasiparticle in
the linear response [95–98].
The coefficient ω–hq in (2.27) is noteworthy: for

positive ω, the positive helicity component h ¼ 1 is helicity
suppressed, on the mass shell of the (vacuum) mass
eigenstates in the relativistic limit ω–q≃M2

1;2=2q. This
is the usual helicity suppression from the V–A form of the
interaction and has important consequences: the damping
rate for positive helicity sterilelike neutrinos is much
smaller than that for the negative helicity, and the medium
corrections to the mixing angle are also suppressed for the
positive helicity component. This suppression will have
important and unexpected consequences on the rate of
production of the sterilelike species as will be discussed
below in detail.
The functions γ�ðqÞ require the combinations A ∓ B

that define the self-energy (2.15); these combinations are
handily extracted as follows: introducing the 4-vectors

Q−
μ ¼ 1

q
ðq;−~qÞ; Qþ

μ ¼ 1

q
ðq; ~qÞ ð2:51Þ

and defining

Σ−ðqÞ≡ Aðω ¼ q; qÞ − Bðω ¼ q; qÞ;
ΣþðqÞ≡ Aðω ¼ q; qÞ þ Bðω ¼ q; qÞ; ð2:52Þ

we obtain

ðAðω; qÞ − Bðω; qÞÞω¼q ¼
1

4
TrQ−Σðq; qÞ≡ Σ−ðqÞ;

ð2:53Þ

ðAðω; qÞ þ Bðω; qÞÞω¼q ¼
1

4
TrQþΣðq; qÞ≡ ΣþðqÞ;

ð2:54Þ

γ−ðqÞ ¼ ImΣ−ðqÞ ðnegative helicityÞ ð2:55Þ

γþðqÞ ¼
�
Ms

2q

�
2

ImΣþðqÞ ðpositive helicityÞ ð2:56Þ

Δ−ðqÞ ¼ ReΣ−ðqÞ ðnegative helicityÞ ð2:57Þ

ΔþðqÞ ¼
�
Ms

2q

�
2

ReΣþðqÞ ðpositive helicityÞ: ð2:58Þ

The damping rates for negative (−) and positive (þ)
sterilelike neutrinos respectively are given by

Γ∓
2 ðqÞ ¼ 2ðθ∓effðqÞÞ2γ∓ðqÞ; ð2:59Þ
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as discussed in the next section, these rates determine the
production rates of sterile neutrinos of each helicity. For the
activelike neutrinos, we find

Γ−
1 ðqÞ ¼ 2½1 − ðθ−effðqÞÞ2�ImΣ−ðqÞ ð2:60Þ

Γþ
1 ðqÞ ¼ 2½1 − ðθ−effðqÞÞ2�

�
M1

2q

�
2

ImΣþðqÞ ð2:61Þ

for negative (−) and positive ðþÞ helicity respectively, and
the latter rate can be safely neglected for the light activelike
neutrinos. The effective mixing angles are given by

θ�effðqÞ ¼
θ

½ð1þ Δ�ðqÞ
ξ Þ2 þ ðγ�ðqÞξ Þ2�1=2

; ð2:62Þ

where in the relativistic limit

Δ−ðqÞ
ξ

¼ 2q
M2

s
ReΣ−ðqÞ;

ΔþðqÞ
ξ

¼ ReΣþðqÞ
2q

ð2:63Þ

γ−ðqÞ
ξ

¼ 2q
M2

s
ImΣ−ðqÞ;

γþðqÞ
ξ

¼ ImΣþðqÞ
2q

; ð2:64Þ

where Σ� are given by (2.53), (2.54).
The important observation is that the self-energy Σðω; qÞ

is calculated in the standard model for massless flavor
neutrinos.
The result for the effective mixing angle (2.62) is

valid for θ ≪ 1, and (2.63), (2.64) are valid in the
relativistic limit q ≫ Ms but are otherwise general and
valid to all orders in perturbation theory in standard model
couplings.
A MSW [90] resonance is available whenever

Δ�ðqÞ
ξ

¼ −1; ð2:65Þ

for cosðθÞ≃ 1. However, this resonance is screened by the
imaginary part (damping rate) (this phenomenon was also
noticed in Ref. [26]), and under the condition that θ ≪ 1
and the validity of the approximations leading to the above
results, the possible presence of this resonance will not
yield a large enhancement in the effective mixing angle.
This aspect will be discussed in detail in Sec. IV.
These expressions are one of the main results of this

study and summarize the effective mixing angles and
damping rates generically for standard model interactions
under the assumptions of the validity of the relativistic
approximation, perturbative expansion and θ ≪ 1.

From the expressions (2.29), (2.30) and (2.35), (2.36),
one finds that for θ ≪ 1

shðω ¼ q; qÞ≃ θheffðqÞe−iϕ
hðqÞ;

ϕhðqÞ ¼ tan−1
�

γhðqÞ
ξþ ΔhðqÞ

�
; ð2:66Þ

where the phase is irrelevant for transition probabilities and
the quantum kinetic description of sterile neutrino produc-
tion because the relevant quantity is the transition proba-
bility per unit time.

III. QUANTUM KINETICS: PRODUCTION RATES

In order to understand how to extract the rate of
sterilelike neutrino production from the damping rate
obtained from the self-energy and the effective mixing
angle in the medium, let us consider first the quantum
kinetics of production of the sterilelike mass eigenstate
fromW-decay in the case of the vacuummixing angle. This
analysis clearly shows how the mixing angle in the medium
enters in the quantum kinetic equation with a straightfor-
ward generalization to more general production processes.
If the mass M2 of the heavy, sterilelike neutrino is such

thatMW > M2 þml withml the mass of the charged lepton
l, then the mass eigenstate corresponding to the sterilelike
neutrino can be produced from W-decay, and a similar
argument applies to Z-decay if MZ > M2 þM1. The
charged current interaction vertex for the case of one
generation is

Lcc ¼
gwffiffiffi
2

p ½l̄γμLνlWμ þ H:c:�: ð3:1Þ

Writing the flavor eigenstate νl in the mass basis as

νl ¼ cosðθÞν1 þ sinðθÞν2 ð3:2Þ

with ν1 being the activelike and ν2 being the sterilelike
mass eigenstates with M1 and M2 respectively, yielding an
interaction vertex for the sterilelike mass eigenstate ν2,

Ls;cc ¼
gwffiffiffi
2

p sinðθÞ½l̄γμLν2Wμ þ H:c:�: ð3:3Þ

The dynamics of the production of ν2 from the process
W → l̄ν2 is obtained via the quantum kinetic equation for
the process W ⇌ l̄ν2[89], namely,

dn2ðq; tÞ
dt

¼ dn2ðq; tÞ
dt

����
gain

−
dn2ðq; tÞ

dt

����
loss

; ð3:4Þ

where n2ðq; tÞ is the distribution function of the sterilelike
mass eigenstate ν2 and the gain and loss terms are extracted
from the usual transition probabilities per unit time,
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dn2ðq; tÞ
dt

����
gain

¼ 2πsin2ðθÞ
2E2ðqÞ

Z
d3kjMfij2

ð2πÞ32EWðpÞ2ElðkÞ
NBðpÞð1 − nlðkÞÞð1 − n2ðq; tÞÞδðEWðpÞ − ElðkÞ − E2ðqÞÞ

dn2ðq; tÞ
dt

����
loss

¼ 2πsin2ðθÞ
2E2ðqÞ

Z
d3kjMfij2

ð2πÞ32EWðpÞ2ElðkÞ
ð1þ NBðpÞÞnlðkÞn2ðq; tÞδðEWðpÞ − ElðkÞ − E2ðqÞÞ; ð3:5Þ

where p ¼ j~kþ ~qj and

NBðpÞ ¼
1

eEWðpÞ=T − 1
; nlðkÞ ¼

1

eElðkÞ=T þ 1
; ð3:6Þ

and jMfij2 is the usual transition matrix element for
W → l̄ν and we have assumed that the W vector boson
and charged lepton l are in thermal equilibrium and have
displayed explicitly the factor sin2ðθÞ factored out of
the Mfi. Therefore, the quantum kinetic equation (3.4)
becomes of the form

dn2ðq; tÞ
dt

¼ Γ<ðqÞð1 − n2ðq; tÞÞ − Γ>ðqÞn2ðq; tÞ; ð3:7Þ

where the gain and loss rates are

Γ<ðqÞ ¼ 2πsin2ðθÞ
2E2ðqÞ

Z
d3kjMfij2

ð2πÞ32EWðpÞ2ElðkÞ
NBðpÞ

× ð1 − nlðkÞÞδðEWðpÞ − ElðkÞ − E2ðqÞÞ ð3:8Þ

Γ>ðqÞ ¼ 2π sin2ðθÞ
2E2ðqÞ

Z
d3kjMfij2

ð2πÞ32EWðpÞ2ElðkÞ
× ð1þ NBðpÞÞnlðkÞδðEWðpÞ − ElðkÞ − E2ðqÞÞ:

ð3:9Þ

Because the W; lα are in thermal equilibrium, the gain and
loss rates obey the detailed balance condition

Γ<ðqÞeE2ðqÞ=T ¼ Γ>ðqÞ; ð3:10Þ

which can be confirmed straightforwardly from the explicit
expressions (3.8), (3.9) using the energy conserving delta
functions and the relations

1þ NBðEÞ ¼ eE=TNBðEÞ;
1 − nlðEÞ ¼ eE=TnlðEÞ: ð3:11Þ

Using (3.10), the quantum kinetic equation (3.7) reads

dn2ðq; tÞ
dt

¼ Γ2ðqÞ½neqðqÞ − n2ðq; tÞ�; ð3:12Þ

where

neqðqÞ ¼
1

e
E2ðqÞ
T þ 1

ð3:13Þ

is the equilibrium (Fermi-Dirac) distribution function and

Γ2ðqÞ ¼ Γ>ðqÞ þ Γ<ðqÞ

¼ 2πsin2ðθÞ
2E2ðqÞ

Z
d3kjMfij2

ð2πÞ32EWðpÞ2ElðkÞ
× ½NBðpÞ þ nlðkÞ�δðEWðpÞ − ElðkÞ − E2ðqÞÞ:

ð3:14Þ

The approach to equilibrium is studied by writing
n2ðq; tÞ ¼ neqðqÞ þ δn2ðq; tÞ; it follows from (3.7) that

δn2ðq; tÞ ¼ δn2ðq; 0Þe−Γ2ðqÞt: ð3:15Þ

The relaxation rate Γ2ðqÞ is precisely the damping rate of
single (quasi)particle excitations (2.48) as discussed in
Refs. [95–98]. Neutral current interactions are treated
similarly by passing to the mass basis and keeping only
the linear term in sinðθÞ≃ θ for θ ≪ 1. It is clear from
(3.14) that

Γ2ðqÞ ¼ sin2ðθÞΓsmðqÞ; ð3:16Þ

where ΓsmðqÞ is the rate calculated in the standard model
for the production of a massive neutrino; furthermore, it is
given by the imaginary part of the standard model flavor
neutrino self-energy evaluated on the massive neutrino
mass shell. In the limit of a relativistic sterilelike mass
eigenstate, ΓsmðqÞ is identical to the imaginary part of the
self-energy for an active massless neutrino in the standard
model. In fact, in this limit, the quantum kinetic equation
for the activelike mass eigenstate in the relativistic limit is
the same as (3.12) but with sin2ðθÞ in (3.16) replaced by
cos2ðθÞ.
Fundamentally, the heart of the argument is simply

detailed balance, a consequence of the main assumption
that the plasma degrees of freedom are in thermodynamic
equilibrium; the damping rate of single quasiparticle
excitations Γ2ðqÞ determines the approach to equilibrium
in linear response [95–98], and for θ ≪ 1, the quantum
kinetic equation is linear in the population n2 to leading
order in θ. Therefore, the gain term in the quantum kinetic
equation is simply related to the relaxation rate by detailed
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balance. This argument is general for θ ≪ 1. Therefore,
comparing with the damping rate for the sterilelike mass
eigenstate (2.49), this analysis makes it clear that for θ ≪ 1
the medium effects on the mixing angle in the quantum
kinetic equation are incorporated by the simple replacement
sinðθÞ → θeffðqÞ in (3.14), (3.16); in other words, the full
quantum kinetic equation for sterilelike production is

dnh2ðq; tÞ
dt

¼ Γh
2ðqÞ½neqðqÞ − nh2ðq; tÞ�; ð3:17Þ

where Γ∓
2 ðqÞ are given by (2.59) with (2.55) and (2.55).

Hence, the production rate of sterilelike neutrinos is

Γh
prodðqÞ ¼ Γh

2ðqÞneqðqÞ: ð3:18Þ

In summary, the production rates for sterilelike neutrinos
of negative (−) and positive (þ) helicities are given by

Γ−
prodðqÞ ¼ 2ðθ−effðqÞÞ2ImΣ−ðqÞneqðqÞ ð3:19Þ

Γþ
prodðqÞ ¼ 2ðθþeffðqÞÞ2

�
Ms

2q

�
2

ImΣþðqÞneqðqÞ; ð3:20Þ

where the mixing angles θ∓effðqÞ are given by (2.44) with the
definitions (2.55)–(2.58). In the production rates (3.19),
(3.20), ΣðqÞ is the standard model self-energy for flavor
neutrinos evaluated on the relativistic mass shell, and nh2
refer to the population of the sterilelike mass eigenstate of
helicity h. Because θeff depends on helicity, the matrix
elements Mfi should not be averaged over helicity (spin)
states.
Expression (3.14), also shows how the helicity suppres-

sion is manifest in the case of massive neutrinos. To
understand this aspect, it is convenient to look at the
positive frequency solutions of the massive Dirac equation
in the chiral representation (γ5 ¼ diagð1;−1Þ) and in the
helicity basis,

Uþð~qÞ ¼ N

�
vþð~qÞ

−εðqÞvþð~qÞ

�
;

U−ð~qÞ ¼ N

�
−εðqÞv−ð~qÞ

v−ð~qÞ

�
; ð3:21Þ

where v�ð~qÞ are helicity eigenvectors (Weyl spinors) for
h ¼ �1 and

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EsðqÞ þ q

p
; εðqÞ ¼ Ms

EðqÞ þ q
; ð3:22Þ

then

LUþð~qÞ ¼ εðqÞN
�

0

vþð~qÞ

�
ð3:23Þ

in the relativistic limit q ≫ Ms, ε≃Ms=2q, this projected
wave function enters in the matrix element Mfi for a
massive positive helicity neutrino in the final state,
therefore

jMfij2 ∝
�
Ms

2q

�
2

ð3:24Þ

in agreement with the helicity suppression for the damping
rate discussed in the previous section.

A. Generality

Although in the above discussion we focused on the
production processW → l̄ν2, the result (3.17) is general for
θ ≪ 1. Consider the standard model charged and neutral
current vertices. Writing these in the basis of mass
eigenstates, the charged current vertex is linear in the mass
eigenstate ν2, and therefore the vertex is ∝ θ. The neutral
current vertex would feature a term linear in θ (∝ ν̄1ν2) and
another ∝ θ2 (∝ ν̄2ν2); for θ ≪ 1, this last term can be
neglected, and both charged and neutral current vertices are
linear in θ and ν2. Furthermore, θ ≪ 1 justifies taking the
activelike mass eigenstate to be in LTE in the medium for
T ≥ 0.1 MeV as its relaxation rate is much larger than that
of the sterilelike eigenstate which is suppressed by
∝ θ2 ≪ 1. Because the interaction vertices are linear in
the neutrino field to leading order in θ, the quantum kinetic
equation (gain-loss) is obviously of the form (3.7), and
because the degrees of freedom that lead to the gain and
loss terms are all in LTE, the gain (Γ<) and loss (Γ>) rates
must obey the detailed balance condition (3.10). This
analysis yields the directly to the quantum kinetic equa-
tion (3.12) after replacing θ → θeffðqÞ where q is the
momentum of the sterile-like neutrino on its mass shell,
the jMfij2 matrix element for the gain and loss transition
rates are insensitive to the phase in (2.66). Analyzing the
approach to equilibrium leads to the identification of Γ2

with the damping rate of the sterilelike mass eigenstate.
This argument is general, and the analysis presented above
for W → l̄ν2 provides a direct example, which will be the
focus of a detailed analysis in the next section.

IV. STERILE PRODUCTION FROM
VECTOR BOSON DECAY

We now consider the description of sterile(like)
neutrino production via vector boson decayW → l̄ν2;Z0 →
ν̄1ν2 at temperature T ≃Mw;z, this is the leading order
production process at this temperature. This temperature
scale is sufficiently lower than the electroweak crossover
scale T ≃ 160 GeV so that the Higgs field is near its
vacuum expectation value and the finite temperature
corrections to the W, Z masses can be safely neglected
[25]. At high temperature, the propagator of charged
leptons receives substantial hard thermal loop corrections
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from electromagnetic interactions (and quarks from
both photons and gluons) for momenta ≤ eT [98–102].
However, the decay of a vector boson at rest in the plasma
yields particles with momenta ≃MW;Z=2; therefore, the
typical momenta of the charged lepton is OðTÞ, and in this
regime, the hard thermal loop corrections are subleading
and will be neglected in the following analysis. For the
same reason, a sterile neutrino of massM2 ≪ MW;Z will be
produced relativistically. Low momentum sterile neutrinos
(and charged leptons) can be produced for highly boosted
vector bosons in the medium, but those excitations will be
Boltzmann suppressed for T ≃MW;Z, and this will be
explicitly confirmed in the analysis below.
We will take the charged lepton and the activelike

neutrino to be massless and refer generically to the vector
boson mass as M, adapting the general result to the W, Z
a posteriori. Under this approximation (justified for
M2 ≪ T ≃MW;Z), the one-loop self-energy is the same
for both charged and neutral current interactions; in the
latter case, the loop in Fig. 1(b) includes the activelike
neutrino (self-consistently) assumed to be in LTE.
The one-loop tadpole contribution from neutral currents

Fig. 1 is given by [92,103]

Σt ¼ −γ0π
αw
M2

W

X
f

CðfÞ
v

Z
d3k
ð2πÞ3 ½nfðkÞ − n̄fðkÞ�

¼ −γ0
π

6
αw

�
T
Mw

�
2X

f

CðfÞ
v μf

�
1þ μ2f

π2T2

�
; ð4:1Þ

where f are all the ultrarelativistic fermionic species
in thermal equilibrium at temperature T and chemical
equilibria with chemical potentials μf respectively. The
tadpole Σt is independent of frequency and momentum and
contributes only to A in (2.15) and (2.17). Although we
quote this result as part of the general formulation, we will
neglect the lepton and quark asymmetries in the following
analysis, setting μf ¼ 0 for all fermionic species, thereby
neglecting the contribution Σt to the self-energy.
We obtain the imaginary part of the self-energy (for both

helicities) in (2.13), from which we will obtain the real part
from the dispersion relation (2.14).
For both charged and neutral current contributions

[Figs. 1(b) and 1(c)] for relativistic leptons, the imaginary
part of the self-energy is given by [92]

ImΣðq0; ~qÞ¼ πg2
Z

d3k
ð2πÞ3

Z
∞

−∞
dk0½1−nfðk0ÞþNbðp0Þ�γμ

×ρfðk0; ~kÞρbðp0; ~pÞγνPμνðp0; ~pÞ;
pμ ¼ qμ−kμ; ð4:2Þ

where f stands for the fermionic species, either a charged
lepton l for the charged current or the active neutrino νa

(assumed in thermal equilibrium) for the neutral current
contributions and b for either vector boson in the inter-
mediate state. The couplings and masses for the charged
and neutral current contributions are

g ¼
8<
:

gwffiffi
2

p CC
gw

2 cosðθwÞ NC
;

M ¼
(
MW CC

MZ ¼ MW
cosðθwÞ NC

;

sin2ðθwÞ≃ 0.23; αw ¼ g2w
4π

≃ 1

32
: ð4:3Þ

The spectral densities ρf, ρb are respectively (for mass-
less fermions)

ρfðk0; ~kÞ ¼
k
2k

½δðk0 − kÞ − δðk0 þ kÞ�;

k ¼ γ0k0 − ~γ · ~k; ð4:4Þ

ρbðp0; ~pÞ ¼
1

2Wp
½δðp0 −WpÞ − δðp0 þWpÞ�;

Wp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
; pμ ¼ qμ − kμ; ð4:5Þ

and the projection operator

Pμνðp0; ~pÞ ¼ −
�
gμν −

pμpν

M2

�
; pμ ¼ ðp0; ~pÞ;

M2 ≡M2
z;w ð4:6Þ

and

nfðk0Þ ¼
1

ek0=T þ 1
; Nbðp0Þ ¼

1

ep0=T − 1
: ð4:7Þ

As per the discussion in the previous sections [see
Eqs. (2.27) and (2.40)], we need the combinations
Aðq0; qÞ � Bðq0; qÞ which are obtained from the traces
(2.53), (2.54). We find

Im½Aðq0; qÞ ∓ Bðq0; qÞ�

¼ πg2
Z

∞

−∞
dk0

Z
d3k

ð2πÞ34kWp
Lμν½Q�; k�Pμν½p�ρ̄f

× ðk0; kÞρ̄bðp0; pÞ½1 − nfðk0Þ þ Nbðp0Þ�; ð4:8Þ

where

ρ̄fðk0; kÞ ¼ ½δðk0 − kÞ − δðk0 þ kÞ� ð4:9Þ
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ρ̄bðp0; pÞ ¼ ½δðp0 −WpÞ − δðp0 þWpÞ�;
pμ ¼ qμ − kμ ð4:10Þ

and

Lμν½Q; k� ¼ ½Qμkν þQνkμ − gμνQ · k�: ð4:11Þ

Using the various delta functions from ρ̄f; ρ̄b we find for
the negative helicity component

Lμν½Qþ; k�Pμν½p� ¼ −
M2

q
½F1ðq0; qÞ þ k0F2ðq0; qÞ�;

ð4:12Þ

with

F1ðq0; qÞ ¼
�
1 −

�ðq0Þ2 − q2

M2

���
1 −

ðq0 − qÞ2
2M2

�
ð4:13Þ

F2ðq0; qÞ ¼ 2
ðq0 − qÞ

M2

�
1 −

�ðq0Þ2 − q2

2M2

��
: ð4:14Þ

Similarly, for the positive helicity component,

Lμν½Q−; k�Pμν½p� ¼
M2

q
½G1ðq0; qÞ þ k0G2ðq0; qÞ�; ð4:15Þ

with

G1ðq0; qÞ ¼
�
1 −

�ðq0Þ2 − q2

M2

���
1 −

ðq0 þ qÞ2
2M2

�
ð4:16Þ

G2ðq0; qÞ ¼ 2
ðq0 þ qÞ

M2

�
1 −

�ðq0Þ2 − q2

2M2

��
: ð4:17Þ

Note the relation

G1ðq0; qÞ ¼ F1ðq0;−qÞ; G2ðq0; qÞ ¼ F2ðq0;−qÞ:
ð4:18Þ

Using the results above, it is straightforward to show that

Im½Aðq0; qÞ þ Bðq0; qÞ� ¼ Im½Að−q0; qÞ − Bð−q0; qÞ�:
ð4:19Þ

This identity relates the imaginary parts for positive energy,
negative helicity neutrinos to negative energy positive
helicity (antineutrinos) (in the absence of a chemical
potential). This identity guarantees that the production rate
for negative (positive) helicity neutrinos is the same as for
positive (negative) helicity antineutrinos and is a conse-
quence of the vanishing chemical potentials under the
assumption of vanishing lepton and baryon asymmetry

and, consequently, a vanishing neutral current tadpole
contribution.
It is convenient to change integration variables, with

W ≡Wp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ k2 þM2 − 2qk cosðφÞ

q
⇒

dW
d cosðφÞ ¼ −

qk
Wp

; ð4:20Þ

therefore,

d3k
Wp

¼ ð2πÞk2dk dðcosðφÞ
Wp

¼ −ð2πÞ kdkdW
q

; ð4:21Þ

yielding

Im½Aðq0; qÞ ∓ Bðq0; qÞ�

¼ g2

16πq

Z
∞

−∞
dk0

Z
∞

0

dk
Z

Wþ

W−

dWL½Q�; k�

· P½p�ρ̄fðk0; kÞρ̄bðp0; pÞ½1 − nfðk0Þ þ Nbðp0Þ�;
ð4:22Þ

where p0 ¼ q0 − k0. Now, in terms of the integration
variables k0, k, W,

ρ̄b ¼ ½δðq0 − k0 −WÞ − δðq0 − k0 þWÞ�; ð4:23Þ

and the integration limits in W are

W� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq� kÞ2 þM2

q
: ð4:24Þ

The technical details of the calculation of the spectral
densities are relegated to the Appendix, and we neglect the
zero temperature contribution, assuming that it has been
systematically absorbed by renormalization and focusing
solely on the finite temperature terms.

A. Imaginary parts (damping rates)

We can now obtain the imaginary parts evaluated on the
relativistic mass shells q0 ≃ q (for positive energy neu-
trinos). The analysis of the support for the delta functions in
the Appendix shows that on the relativistic mass shell q0 ¼
q the only contribution to the imaginary parts arises from
the product (A13) with kþ ¼ ∞, k− ¼ M2=4q,

−δðk0 þ kÞδðq − k0 −WpÞ; ~p ¼ ~qþ ~k;

corresponding to the process W → l̄ν2 [the anti lepton l̄ is
recognized in the delta function δðk0 þ kÞ which deter-
mines that the energy is −k]. This is the contribution
labelled 4 (A13) in the Appendix. The analysis of the
regions of support in q0 given by (A14)–(A16) shows a
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remarkable phenomenon: the contributions (A14), (A16)
describe the process of Landau damping [104], namely, the
process of emission and reabsorption of thermal excitations
in the medium that yields a branch cut below the light cone
in the spectral density that vanishes at T ¼ 0. These
processes are the equivalent of those described in
Ref. [104] for quarks interacting with gluons or electrons
with photons. In these cases, namely, the exchange of
massless vector bosons, the Landau damping cut ends at
q0 ¼ q; however, for massive vector boson exchange, the
Landau damping cut below the light cone merges with the
branch cut above the light cone given by (A15). The mass
shell for an ultrarelativistic sterilelike neutrino falls right at
the end of the Landau damping cut and the beginning of the
continuation above the light cone. It is precisely this point
in the spectral density that contributes to the damping rate
of the ultrarelativistic sterilelike neutrino and vanishes for
T ¼ 0. Therefore, the end point of the Landau damping cut
yields the damping rate of the ultrarelativistic sterilelike
neutrino, which, in turn, yields their production rate as a
consequence of the detailed balance as discussed above.
This contribution to (4.8) yields

Im½Aðq; qÞ ∓ Bðq; qÞ�

¼ −πg2
Z

d3k
ð2πÞ34kWp

Lμν½Q�; k�Pμν½p�

× ½nfðkÞ þ NbðWpÞ�δðWp − q − kÞ; ð4:25Þ

which is precisely the expression for the rate Γ2 in the
quantum kinetic equation (3.14) with ultrarelativistic neu-
trinos and charged leptons1 [up to the prefactor sin2ðθÞ].
The helicity suppression factor arises similarly to the
discussion after (3.16).
For negative helicity, the terms F1ðq0 ¼ q; qÞ ¼ 1 and

F2ðq0 ¼ q; qÞ ¼ 0, and with the definitions (2.52), we find
for negative (−) and positive ðþÞ helicities respectively

ImΣ−ðqÞ ¼ g2T
16π

M2

q2
ln

�
1þ e−M

2=4qT

1 − e−M
2=4qTe−q=T

�
ð4:26Þ

ImΣþðqÞ ¼ g2T
16π

�
ln

�
1þ e−M

2=4qT

1 − e−M
2=4qTe−q=T

�

þ 2T
q

X∞
n¼1

e−nM
2=4qT

n2
ðe−nq=T − ð−1ÞnÞ

	
:

ð4:27Þ

These expressions clearly show the suppression for q ≪ M
for M ≃ T as a consequence of the fact that the decay
products feature energy ≃M=2. These results pertain

generically to a vector boson of mass M, and we must
add the contributions from the charged and neutral vector
bosons with their respective masses and couplings.
Anticipating the study with cosmological expansion in
the next sections, we take as a reference mass that of theW
vector bosonMw and introduce the dimensionless variables

τ≡MW

T
; y ¼ q

T
ð4:28Þ

with the standard model relations (4.3).
Defining

L½τ; y� ¼ ln

�
1þ e−τ

2=4y

1 − e−τ
2=4ye−y

�
;

σ½τ; y� ¼ 2

y

X∞
n¼1

e−nτ
2=4y

n2
ðe−ny − ð−1ÞnÞ;

c≡ cosðθwÞ≃ 0.88 ð4:29Þ

the sum of the contributions yield for γ∓ðqÞ (2.55), (2.56)

γ−ðτ; yÞ ¼ MW
αwτ

y2

�
1

8
L½τ; y� þ 1

16c4
L½τ
c
; y�

�
ð4:30Þ

γþðτ; yÞ ¼ αwMW

�
Ms

MW

�
2 τ

4y2

�
1

8
ðL½τ; y�

þ σðτ; yÞÞ þ 1

16c2

�
L

�
τ

c
; y

�
þ σ

�
τ

c
; y

��	
:

ð4:31Þ

The helicity suppression of the positive helicity rate γþðqÞ
is manifest in the ratio M2

s=M2
W ; this is expected on the

grounds that the typical momentum of the emitted neutrino
is ≃MW=2. As a function of y ¼ q=T, the rates feature a
maximum at≃τ2=8, and they are displayed in Figs. 2 and 3.
The suppression of the imaginary parts on shell (damp-

ing rates) as y → 0 has a simple explanation: for a vector
boson of mass M decaying at rest in the plasma into two
relativistic leptons, energy conservation implies that each
lepton carries a momentumM=2, and for τ≃ 1, this implies
y≃ 1=2. For the neutrino to feature y ≪ 1, it must be that
the massive vector boson is highly boosted in the plasma,
but the probability of such a state is exponentially sup-
pressed, thus resulting in an exponential suppression of low
momentum neutrinos.
For the mixing angles in the medium (2.44), we need

γ�ðqÞ=ξ with ξ given by (2.41), namely,

γ−ðτ; yÞ
ξ

¼
�
MW

Ms

�
2

I−ðτ; yÞ;

I−ðτ; yÞ ¼ 2αw
y

�
1

8
L½τ; y� þ 1

16c4
L

�
τ

c
; y

��
ð4:32Þ1The lepton tensor Lμν is in terms of Q� that is divided by the

energy of the relativistic neutrino [see the definitions (2.51)].
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FIG. 2. γ−ðqÞ=MW given by Eq. (4.30) vs y ¼ q=T for τ ¼ MW=T ¼ 1, 2, 3 respectively.

FIG. 3. γþðqÞMW=M2
s given by Eq. (4.31) vs y ¼ q=T for τ ¼ MW=T ¼ 1, 2, 3 respectively.
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FIG. 4. I−ðτ; yÞ given by Eq. (4.32) vs y ¼ q=T for τ ¼ MW=T ¼ 1, 2, 3 respectively.

FIG. 5. Iþðτ; yÞ given by Eq. (4.33) vs y ¼ q=T for τ ¼ MW=T ¼ 1, 2, 3 respectively.
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γþðτ; yÞ
ξ

≡ Iþðτ; yÞ ¼ αw
2y

�
1

8
ðL½τ; y� þ σðτ; yÞÞ

þ 1

16c2

�
L

�
τ

c
; y

�
þ σ

�
τ

c
; y

��	
: ð4:33Þ

Figures 4 and 5 display I∓ðτ; yÞ for τ ¼ 1, 2, 3. The main
observation is that I∓ ≪ 1 in the whole range of y for τ ≳ 1.
This is important. Note that γ−=ξ is enhanced by the factor
M2

w=M2
s ; therefore, for MW=Ms ≳ 102, it follows that

γ−=ξ ≫ 1 for τ ≳ 1 for y≃ 1, and this will result in a
large suppression of the effective mixing angle in the
medium. On the other hand, the helicity suppression
implies that γþ=ξ ¼ Iþðτ; yÞ ≪ 1 in the whole range of
y for τ ≥ 1, and this will result in a vanishingly small
correction to the effective mixing angle in the medium,
which in this case will be nearly the same as that for the
vacuum. These points will be revisited again below when
we discuss the corrections to the mixing angle vis-à-vis the
production rate in the expanding cosmology.

V. REAL PART: INDEX OF REFRACTION

The index of refraction or real part of the self-energy is
obtained from the dispersive representation (2.14). In the
Appendix, we provide the details of the calculation of
ReΣ∓; both are of the form

ReΣ∓ðqÞ ¼ g2T
16π2

M2

q2
K∓

�
M
T
;
q
T

�
; ð5:1Þ

where K∓½τ; y� are dimensionless functions of the ratios
M=T; y ¼ q=T, and are calculated numerically, implement-
ing the steps detailed in the Appendix. Combining the
contributions from charged and neutral currents, we find

ReΣ∓ðτ; yÞ ¼ MW
τ

y2
αw
4π

�
1

2
K∓½τ; y� þ 1

4c4
K∓

�
τ

c
; y

��
:

ð5:2Þ

Of relevance for the in-medium mixing angle are the
ratios Δ�=ξ with Δ� given by (2.57) and (2.58) and ξ given
by (2.41).

A. Negative helicity

For negative helicity, with the definitions (2.41), (2.57),
we find

Δ−ðqÞ
ξ

¼
�
MW

Ms

�
2

J−ðτ; yÞ; ð5:3Þ

where

J−ðτ; yÞ ¼ αw
2πy

�
1

2
K−½τ; y� þ 1

4c4
K−

�
τ

c
; y

��
: ð5:4Þ

B. Low temperature limit

The limit τ ≫ 1; τ ≫ y (q ≪ Mw) affords an analytic
treatment, the details of which are summarized in the
Appendix. In this limit, we find that the general form of the
real part of the self-energy is given by

ReΣ−ðqÞ ¼ 14π2

90
g2
�
T
M

�
4

q; ð5:5Þ

adding the charged and neutral current contributions, we
find in this limit

ReΣ−
totðτ; yÞ ¼ MW

28π3αw
90

�
1þ 1

2
cos2ðθwÞ

�
y
τ5
; ð5:6Þ

which agrees with those of Refs. [92,103], and

Δ−

ξ
¼ 28π3αw

45

�
MW

Ms

�
2
�
1þ 1

2
cos2ðθwÞ

�
y2

τ6
: ð5:7Þ

C. Positive helicity

For positive helicity, with the definitions (2.41), (2.58),
we find

ΔþðqÞ
ξ

¼ Jþðτ; yÞ; ð5:8Þ

where

Jþðτ; yÞ ¼ αwτ
2

8πy3

�
1

2
Kþ½τ; y� þ 1

4c4
Kþ

�
τ

c
; y

��
: ð5:9Þ

Figure 7 displays Jþðτ; yÞ vs y for τ ¼ 1, 2; we see that
Jþ ≪ 1 for all values of y diminishing rapidly as a function
of τ. This results in a small (and negligible) correction to
the mixing angle in the medium.

D. Low temperature limit

As in the previous case, the limit τ ≫ 1; τ ≫ y
(q ≪ Mw) can be obtained analytically; see the
Appendix for details. The general form of the real part
of the self-energy in this case is

ReΣþðqÞ ¼ 14π2

180
g2
�
T
M

�
4

q; ð5:10Þ

adding the charged and neutral current contributions, we
find in this limit

PRODUCTION OF HEAVY STERILE NEUTRINOS FROM … PHYSICAL REVIEW D 95, 043524 (2017)

043524-17



ReΣþ
totðτ; yÞ ¼ MW

28π3αw
180

�
1þ 1

2
cos2ðθwÞ

�
y
τ5
; ð5:11Þ

and adding the charged and neutral current contributions
and including the helicity suppression factor, we find

Δþ

ξ
¼ 7π3αw

90

�
1þ 1

2
cos2ðθwÞ

�
1

τ4
: ð5:12Þ

VI. EFFECTIVE MIXING ANGLES AND
PRODUCTION RATES

The effective mixing angles are given by (2.62), and in
the previous sections, we obtained Δ�=ξ and γ�=ξ.

A. Negative helicity

For negative helicity, Δ−=ξ is given by (5.3), and γ−=ξ is
given by (4.32); therefore,

θ2effðτ; yÞ ¼
θ2ðMs

MW
Þ4

½ðM2
s

M2
W
þ J−ðτ; yÞÞ2 þ ðI−ðτ; yÞÞ2�

: ð6:1Þ

Figures 4 and 6 display I−ðτ; yÞ; J−ðτ; yÞ as a function of
y for various values of τ. These show important features: J−

vanishes and becomes negative at a value of y�ðτÞ that
increases monotonically with τ. This behavior implies that
for MW ≫ Ms the vanishing of J−ðτ; yÞ implies a MSW
resonance in the absence of lepton asymmetry for the
effective mixing angle for negative helicity. However, this
resonance is “screened” by the contribution to the mixing
angle from the imaginary part, inspection of both J− and I−

(see Figs. 4 and 6) and an exhaustive numerical study reveal
that in the broader region 0 < y�ðτÞ≲ y the imaginary part
I− yields the dominant contribution to the denominator
of (6.1) and there is no substantial enhancement of the
mixing angle as y sweeps through the resonance for any τ.
In other words, the presence of the MSW resonance does

not influence the effective mixing angle in a substantial
manner. The numerical analysis shows that for Ms=MW ≲
10−2 the term ðMs=MWÞ2 in the denominator in (6.3)
can be safely neglected and the effective mixing angle is
∝ ðMs=MWÞ4, reflecting a strong in-medium suppression,
even when the denominator becomes large because J−, I−

are very small as shown in the figures. The smallness of the
denominator is thus compensated by the large power of
Ms=MW ≪ 1 in the numerator.
In the low temperature limit T ≪ MW , the effective

mixing angle in the medium is given by

θeffðτ; yÞ ¼
θ

½1þ 28π3αw
45

ðMW
Ms

Þ2½1þ 1
2
cos2ðθwÞ� y

2

τ6
�
; ð6:2Þ

and the contribution from the imaginary part is subleading
as it is suppressed by an extra power of αw from two loop
contributions to the self-energy.
The production rate [see Eqs. (2.59) and (3.19)] is

Γ−
prodðτ; yÞ ¼

MWθ
2ðMs

MW
Þ4

y½ey þ 1�
τI−ðτ; yÞ

½ðM2
s

M2
W
þ J−ðτ; yÞÞ2 þ ðI−ðτ; yÞÞ2�

:

ð6:3Þ

Although both J− and I− vanish as y → 0, and the effective
mixing angle reaches its maximum (θeff → θ), the imagi-
nary part I− vanishes exponentially as y → 0, and the
production rate vanishes in this limit. The effect of the
MSW resonance is screened by the imaginary part, and
the resulting production rate features a peak as a function of
y for fixed τ that is a result of the competition between the
peak in I−ðy; τÞ (see Fig. 4) and the increase in ðJ−Þ2.
We will analyze further the production rate in the

following section within the context of cosmological
expansion.

FIG. 6. J−ðτ; yÞ Eq. (5.4) vs y ¼ q=T for τ ¼ MW=T ¼ 1, 2 respectively.
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B. Positive helicity

For positive helicity, the effective mixing angle is
given by

θ2effðτ; yÞ ¼
θ2

½ð1þ Jþðτ; yÞÞ2 þ ðIþðτ; yÞÞ2� ; ð6:4Þ

and the production rate

Γþ
prodðτ; yÞ ¼

MWθ
2ðMs

MW
Þ2

y½ey þ 1�
τIþðτ; yÞ

½ð1þ Jþðτ; yÞÞ2 þ ðIþðτ; yÞÞ2� :

ð6:5Þ

From Figs. 5 and 7, we see that Iþ, Jþ ≪ 1 in the region
in which Iþ peaks, and therefore we can set Jþ ≃ 0; Iþ ≃ 0
in the denominator in (6.5). In other words, the in-medium
contribution to the mixing angle is negligible; namely,
θeff ≃ θ, and we can approximate the production rate of
positive helicity neutrinos as

Γþ
prodðτ; yÞ≃MWθ

2

�
Ms

MW

�
2 τIþðτ; yÞ
y½ey þ 1� : ð6:6Þ

This is an important result. The helicity suppression
entails a much weaker coupling to the medium, which in
turn results in a negligible in-medium correction to the
mixing angles and the effective mixing angle is the same as
the vacuum mixing angle.
The positive helicity production rate is∝ ðMs=MWÞ2 as a

consequence of helicity suppression, whereas the negative
helicity production rate (6.3) is ∝ ðMs=MWÞ4 as a conse-
quence of the in-medium suppression of the mixing angle
but is enhanced by the small denominator. As will be
discussed below, there is a range of masses and temper-
atures for which the negative and positive helicity rates are
comparable: positive helicity states feature helicity sup-
pressed couplings but nearly vacuum mixing angles,

whereas negative helicity states feature stronger coupling
to the medium, which in turn leads to strongly suppressed
in-medium mixing angles. This aspect is studied below.

VII. COSMOLOGICAL PRODUCTION

Weconsider a spatially flat Friedmann-Robertson-Walker
cosmology during a radiation dominated stage. The effect of
cosmological expansion is included by replacing the
momentum in Minkowski space-time with the physical
momentum in the expanding cosmology, namely,

q →
q

aðtÞ ; ð7:1Þ

where aðtÞ is the scale factor and now q refers to the
(constant) comoving momentum. As we focus on the
production during the radiation dominated era, the physical
temperature is

TðtÞ ¼ T0

aðtÞ ; ð7:2Þ

where T0 is the temperature that the plasma would have
today as we normalize the scale factor to 1 today. We note
that the variable

y ¼ qðtÞ
TðtÞ ¼

q
T0

ð7:3Þ

is a constant under cosmological expansion in terms of the
comoving momentum and the temperature that the plasma
would feature today.
In terms of the comoving wave vector q and the invariant

ratio y ¼ q=T, the quantum kinetic equation in the expand-
ing cosmology reads

dnh2ðq; tÞ
dt

¼ Γh
2ðq; tÞ½neqðqÞ − nh2ðq; tÞ�; ð7:4Þ

FIG. 7. Jþðτ; yÞ Eq. (5.9) vs y ¼ q=T for τ ¼ MW=T ¼ 1, 2 respectively.
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where now Γh
2ðq; tÞ≡ Γh

2ðτðtÞ; yÞ depends on time through
τðtÞ ¼ MW=TðtÞ ¼ MWaðtÞ=T0,
Under the assumption of θ ≪ 1 and a vanishing initial

population, we neglect the buildup of the population and
approximate the quantum kinetic equation as

dnh2ðtÞ
dt

¼ Γh
prodðτðtÞ; yÞ; ð7:5Þ

where Γ∓
prodðτðtÞ; yÞ are given by (6.3) and (6.5). Since

the production rate depends on time through τðtÞ, it is
convenient to use this variable in the kinetic equation, with

dnh2ðtÞ
dt

¼ dnh2ðτ; yÞ
dτ

HðtÞτðtÞ; ð7:6Þ

where during radiation domination

HðtÞ ¼ _aðtÞ
aðtÞ ¼ 1.66g1=2eff ðTÞ

T2ðtÞ
Mpl

;

Mpl ¼ 1.22 × 1019 GeV: ð7:7Þ

geffðTÞ is the effective number of relativistic degrees of
freedom, geff ≃ 100, and varies slowly in the temperature
regime 1 GeV < T < 100 GeV. We will approximate
geff ≃ 100 and constant in this temperature range, antici-
pating that freeze-out will occur at Tf ≃ few GeV.

A. Negative helicity

For negative helicity, we find

dn−2 ðτ; yÞ
dτ

≃ 0.92 × 1016θ2ðMs
MW

Þ4
y½ey þ 1�

×
τ2I−ðτ; yÞ

½ðM2
s

M2
W
þ J−ðτ; yÞÞ2 þ ðI−ðτ; yÞÞ2�

: ð7:8Þ

As both J− and I− decrease as the temperature decreases
(and τ increases), there are two competing effects: the
damping rate ∝ I− decreases, but the effective mixing angle
increases as a result; for a fixed value of y ¼ q=T, the
production rate peaks as a function of τ and falls off
sharply. We write (7.8) as

dn−2 ðτ; yÞ
dτ

≡ 0.92 × 1016θ2
�
Ms

MW

�
4

R−ðy; τÞ: ð7:9Þ

As discussed above, for Ms=MW < 10−2, we find numeri-
cally that R−ðy; τÞ is nearly independent of Ms. The form
(7.9) separates the suppression factor from the effective
mixing angle in terms of the prefactor θ2M4

s=M4
w, whereas

for Ms=MW < 10−2, the function R−ðy; τÞ is insensitive
to the value of Ms and only depends on standard model
couplings and vector boson masses. As τ increases

(temperature decreases), the effective mixing angle
increases, whereas the damping rate γ− decreases; therefore,
we expect R−ðy; τÞ for fixed values of y to feature a peak as a
function of τ. The analysis in the previous sections clarifies
that for τ ≫ ffiffiffi

y
p

the damping rate is exponentially sup-
pressed [see Eqs. (4.30) and (4.29)], whereas the real part
(index of refraction) falls off as 1=τ5 [see Eq. (5.7)]; there-
fore, the production rate is exponentially suppressed at large
τ as the mixing angle grows much slower. This entails the
freeze-out of the distribution function.
This expectation is confirmed by the numerical study.

Figures 8 and 9 show R−ðy; τÞ for various values of y as a
function of τ and as a function of y for τ ¼ 2, 5, 10.
Numerically, the case with Ms=MW ¼ 10−4 is indistin-
guishable from that setting Ms ¼ 0 in the denominator of
R− [see Eq. (7.8)]. These figures clearly show the “freeze-
out” of the distribution as a function of τ; as the rate
vanishes for large τ, larger values of y freeze out at larger τ
but with much smaller amplitudes. This feature is expected;
the vector bosons are suppressed at smaller temperatures
(larger τ), and large values of y are further suppressed by
the detailed balance factor 1=ðey þ 1Þ. Figure (9) shows the
“filling” of the different wave vectors; as time evolves,
larger y are populated, but eventually larger values of y are
suppressed by the Fermi-Dirac factor neqðyÞ. Assuming that
the initial population vanishes at τ ≃ 1), the asymptotic
distribution function is given by

n−2 ðyÞ ¼
Z

∞

1

dn−2 ðτ; yÞ
dτ

dτ

¼ 0.92 × 1016θ2
�
Ms

MW

�
4

F−ðyÞ; ð7:10Þ

where we have defined the frozen distribution

F−ðyÞ ¼
Z

∞

1

R−ðy; τÞdτ; ð7:11Þ

FIG. 8. Rates R−ðy; τÞ [see Eqs. (7.8) and (7.9)] vs τ for
y ¼ 0.5, 1, 3 for Ms=MW ¼ 10−4.
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which is shown in Fig. 10. Although we have set the lower
limit τ ¼ 1 for consistency in (7.11), we find that R−ðy; τÞ
vanishes as τ → 0 and the lower limit can be effectively
taken to τ ¼ 0. A numerical study informs us that the
region 0 < y ≤ 10, which features the largest contribution
to the distribution function, freezes out at τf ≃ 15, corre-
sponding to a freeze-out temperature for negative helicity
modes T−

f ¼ MW=τf ≃ 5 GeV.
The vanishing of F−ðyÞ as y → 0 is a consequence of the

vanishing of the imaginary part and a direct consequence of
the decay kinematics in the medium; as explained above,
the y → 0 is dominated by the decay of vector bosons that
are highly boosted in the rest frame of the plasma, and the
population of these states is highly suppressed at T ≃MW .
The broadening of the distribution as compared to the
damping rate (compare Figs. 4 and 10) is a consequence of
a longer freeze-out time resulting from the competition
between a decreasing damping rate I− and an increasing
mixing angle; the modes with higher y continue to populate
as the mixing angle increases, but eventually as modes with
large values of y are populated, their contribution is

suppressed by the detailed balance factor neqðyÞ. After
freeze-out, the total number density of negative helicity
neutrinos produced (equal to the total number of positive
helicity antineutrinos in the absence of a lepton asymmetry)
is given by

N −
2 ¼ T3ðtÞ

2π2

Z
∞

0

n−2 ðyÞy2dy; ð7:12Þ

for which we need the resultZ
∞

0

y2F−ðyÞdy≡ N− ¼ 2.287 × 106: ð7:13Þ

This integral is dominated by the region 0 < y≲ 10, which
freezes out at τ≃ 15, with the result thatR

∞
10 y

2F−ðyÞdyR
∞
0 y2F−ðyÞdy ¼ 3.9 × 10−3: ð7:14Þ

Normalizing the number density to that of 1 degree of
freedom of an active massless neutrino decoupled in
equilibrium at the same temperature, namely,

N ν ¼
T3ðtÞ
2π2

Z
∞

0

neqðyÞy2dy; ð7:15Þ

where neqðyÞ ¼ 1=ðey þ 1Þ, we find

N −
2

N ν
¼ 285θ2

�
Ms

MeV

�
4

; ð7:16Þ

this ratio is constant throughout the expansion history.
This analysis shows that this mechanism of production will
not yield a thermalized species for Msfew MeV and
θ ≪ 10−4, under these conditions, we note that the approxi-
mation (7.5) of neglecting the buildup of the population in
the quantum kinetic equation (7.4) is consistent since the
ratio N −

2 =N ν ≪ 1.

B. Positive helicity

For positive helicity, we find

dnþ2 ðτ; yÞ
dτ

≃ 0.92 × 1016θ2
�
Ms

MW

�
2 τ2Iþðτ; yÞ
y½ey þ 1� ; ð7:17Þ

where, as discussed above, we have used the approximate
rate (6.6). As for the negative helicity case, it proves
convenient to write (7.17) as

dnþ2 ðτ; yÞ
dτ

≃ 0.92 × 1016θ2
�
Ms

MW

�
2

Rþðy; τÞ;

Rþðy; τÞ ¼ τ2Iþðτ; yÞ
y½ey þ 1� ; ð7:18Þ

FIG. 9. Rates R−ðy; τÞ vs y for τ ¼ 2, 5, 10 for
Ms=MW ¼ 10−4.

FIG. 10. Asymptotic distribution function F−ðyÞ [see
Eqs. (7.10) and (7.11)] vs y.
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where Rþðτ; yÞ is read off (7.17) and does not depend on
Ms. Figure 11 shows Rþðτ; yÞ vs y for τ ¼ 1, 3, 5, and
Fig. 12 shows Rþðτ; yÞ vs τ for y ¼ 1, 3, 5. Together, these
figures show the filling of higher momentum modes as the
temperature decreases and the freeze-out of the distribution
function for different wave vectors. The larger values of y
take longer to be populated and freeze out later, but their
contribution is strongly suppressed by the detailed balance
factor 1=ðey þ 1Þ.
Similarly to the previous case, the asymptotic distribu-

tion function is

nþ2 ðyÞ ¼ 0.92 × 1016θ2
�
Ms

MW

�
2

FþðyÞ;

FþðyÞ ¼
Z

∞

1

Rþðτ; yÞdτ: ð7:19Þ

The asymptotic distribution function Fþ
2 ðyÞ is shown in

Fig. 13; it is dominated by the region 0 < y≲ 8 with

R
∞
8 y2FþðyÞdyR
∞
0 y2FþðyÞdy ¼ 3.3 × 10−3 ð7:20Þ

and freezes out at τ≃ 10, corresponding to a freeze-out
temperature Tþ

f ≃ 8 GeV.

We note that the distribution function for the positive
helicity component is sharply peaked at small momenta
y ≈ 0.5 as compared to that for the negative helicity
component, which is much broader and peaks at
y≃ 2.5; namely, the positive helicity component yields a
much colder distribution (compare Figs. 10 and 13). The
reason for this discrepancy is the fact that the production
rate for the negative helicity component features a com-
petition between a diminishing damping rate but an
increasing effective mixing angle as τ increases (temper-
ature decreases). This competition results in a longer
freeze-out time allowing buildup in the population of larger
momentum modes as τ evolves as discussed above. It is
remarkable that the distribution functions F�

2 are very
similar to those found from pion decay in Refs. [45,89].
The similarity is more striking for F−. The physical reason
for this similarity is actually simply the fact that low
momentum modes are suppressed since the presence of low
momentum sterile neutrinos in the decay of a much more
massive particle implies that this “mother” particle must be
highly boosted in the plasma.
The total population at an asymptotically long time is

given by

N þ
2 ¼ 1

2π2

Z
∞

0

nþ2 ðyÞy2dy; ð7:21Þ

FIG. 11. Rþðτ; yÞ given by Eq. (7.18) vs y ¼ q=T for τ ¼ 1, 3, 5 respectively.
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which is determined by the integral

Z
∞

0

y2FþðyÞdy≡ Nþ ¼ 0.025: ð7:22Þ

As in the negative helicity case, normalizing to the number
density of relativistic neutrino decoupled in equilibrium at
the same temperature (7.15), we find

N þ
2

N ν
≃ 2 × 104θ2

�
Ms

MeV

�
2

: ð7:23Þ

Again, we see that for Ms ≃MeV and θ ≪ 10−2 the
sterilelike species produced by vector boson decay does
not thermalize.
We have studied the contributions of positive and

negative helicity individually to highlight the different
distribution functions and dependence on Ms; however,
each is simply a different decay channel for the production
of sterilelike eigenstates from the decay of vector bosons,
and both channels contribute to the total abundance. Hence,
we combine both channels to give the total density

n2ðyÞ ¼ nþ2 ðyÞ þ n−2 ðyÞ

¼ 3.6

�
θ2

10−4

��
Ms

MeV

�
2

fðMs; yÞ;

fðMs; yÞ ¼
�
FþðyÞ
Nþ þ

�
Ms

8.35 MeV

�
2 F−ðyÞ

N−

�
; ð7:24Þ

where the normalization factors N� are given by (7.13) and
(7.22). The effective distribution function multiplied by the
phase space factor y2 is shown in Fig. 14 for Ms ¼ 1 MeV
where is dominated by the positive helicity component and
Ms ¼ 10 MeV where it is dominated by the negative
helicity component.

FIG. 12. Rþðy; τÞ vs τ for y ¼ 1, 3, 5.

FIG. 13. Asymptotic distribution function FþðyÞ in Eq. (7.19)
vs y ¼ q=T.
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This figure clearly shows the strongly nonthermal total
distribution function at freeze-out. It also provides a
specific example of the “mixed dark matter” nature [89]
when several different production channels with different
kinematics and effective mixing angles contribute to the
production of a sterilelike species. The “hump” in fðMs; yÞ
for Ms ¼ 10 MeV is a result of the competition between
the two channels; the negative helicity channel is hotter
since its distribution is peaked at larger momenta but
becomes dominant at largerMs, whereas that of the positive
helicity is colder since it is peaked at lower momenta but
dominates for smallerMs. Accordingly, we find for the total
abundance normalized to that of a single degree of freedom
of a massless thermal neutrino, with N 2 ¼ N þ

2 þN −
2 ,

N 2

N ν
≃ 2

�
θ2

10−4

��
Ms

MeV

�
2
�
1þ

�
Ms

8.35 MeV

�
2
�
: ð7:25Þ

The first term in the brackets is the contribution from the
positive helicity states, and the second is from the negative
helicity; both become comparable for Ms ≃ 8.35 MeV.
If the sterilelike neutrino is stable, its comoving number

density would remain constant, and upon becoming non-
relativistic, this species would contribute to dark matter a
fraction given by [89]

F 2 ¼
Ων2h

2

ΩDMh2
¼ Ms

7.4 eV

�
gν2
gd

�Z
∞

0

n2ðyÞy2dy; ð7:26Þ

where gν2 is the number of degrees of freedom for neutrinos
of negative helicity; we will assume Dirac neutrinos in
which case gν2 ¼ 2, accounting for neutrinos and antineu-
trinos (gν2 ¼ 1 for Majorana neutrinos); and gd ≃ 100 is
the number of ultrarelativistic degrees of freedom at
decoupling (freeze-out), which occurs at Tf ≃ 5�8 GeV,
yielding

F 2 ¼ 0.97

�
θ2

10−8

��
Ms

MeV

�
3
�
1þ

�
Ms

8.35 MeV

�
2
�
:

ð7:27Þ

The terms in the brackets are the contribution from the
positive helicity and negative helicity, respectively, and the
latter dominates for Ms ≫ 8.35 MeV.
It is clear from this expression that the sterile neutrinos

produced by vector boson decay cannot yield a substantial
≃KeV warm dark matter component, since the x-ray data
constrain such a component to the mass range ≃few KeV
and mixing angle θ2 ≲ 10−10 [33–35,43], which according
to (7.27) would yield a negligible abundance of such
species. However, accelerator and cosmological bounds
[73,81] allow for heavy sterile states with masses in the
MeV range and mixing angles ≲10−5; in fact, these are the
bounds used in the recent analysis of MeV sterile neutrinos
as possible solutions to the 7Li problem [74,79], which we
discuss further in Sec. VIII below.
The results obtained above for the distribution and

abundances constitute a lower bound. This is because we
have neglected any initial population, and, as it will be
discussed below, we expect other processes to yield sterile-
like neutrinos at various stages of the thermal history.

VIII. DISCUSSION

A. Validity of approximations

We have implemented several approximations to obtain
the above results, which merit a discussion of their validity:

(i) Ultrarelativistic neutrinos: This is an obvious
approximation for the activelike mass eigenstates;
for the sterilelike eigenstate, this impliesMs=q ≪ 1.
In the expanding cosmology, this inequality is in
terms of the physical momentum qphysðtÞ ¼ q=aðtÞ
with q being the comoving momentum. Since y ¼
qphysðtÞ=TðtÞ is a constant and TðtÞ ¼ MW=τ, hence
qphysðtÞ ¼ yMW=τ. The inequality must be evalu-
ated at freeze-out; therefore, the condition for the
validity of the ultrarelativistic limit for sterilelike
neutrinos is

yMW

Msτf
≫ 1; ð8:1Þ

in the range of the distribution function with the
largest support. With τf ≃ 15, the condition (8.1)
applies to y≳Ms=6 GeV, which is fulfilled for y≳
10−3 for Ms ≃ few MeV. The distribution function
is exponentially suppressed at small y in both cases;
therefore, Ms ≃ few MeV fulfills the criterion in
almost the whole range but for extremely small
values of y which are suppressed both by the
distribution and by the phase space.

FIG. 14. Total distribution function fðMs; yÞ in Eq. (7.24)
multiplied by y2 vs y ¼ q=T for Ms ¼ 1; 10 MeV.

LELLO, BOYANOVSKY, and PISARSKI PHYSICAL REVIEW D 95, 043524 (2017)

043524-24



(ii) θ ≪ 1: This approximation was used in expanding
the square roots in (2.28) and extracting the
dispersion relations (2.39), (2.42), (2.43) and effec-
tive mixing angles (2.44). Assuming θ ≪ 1, the
actual approximation is ð1þ ðΔ=ξÞÞ2 þ ðγ=ξÞ2 ≫
θ2 or in fact that θeff ≤ θ, which is fulfilled in both
cases. As was discussed above in the negative
helicity case, the (MSW) resonance when 1þ
Δ2=ξ≃ 0 is actually screened by the term
γ2=ξ ¼ ðM2

W=M
2
sÞI−, which is actually ≫ 1 for

MW=Ms > 102 suppressing the effective mixing
angle θeff ≪ θ. Therefore, this approximation is
consistent; namely, assuming that the vacuum mix-
ing angle is ≪ 1 implies that the effective mixing
angle is also ≪ 1 and the corrections are such
that θ=θeff ≤ 1.

(iii) Activelike neutrinos in LTE: This approximation
was invoked to obtain the neutral current contribu-
tion to the self-energy with thermalized neutrinos in
the intermediate state. For θ ≪ 1 → θeff ≪ 1 and
cosðθeffÞ≃ 1 implying that the interaction vertices
of activelike neutrinos are the usual standard model
ones. This, in turn, implies the validity of the usual
argument that leads one to conclude that active
neutrinos are in LTE down to T ≃MeV, which is
much smaller than the freeze-out temperature of
sterilelike neutrinos Tf ≃ few GeV. Therefore, this
approximation is valid all throughout the region of
production via vector boson decay and even much
lower temperatures down to the usual decoupling
temperature ≃MeV for weak interactions.

(iv) Perturbative expansion: The validity of perturbation
theory in describing sterilelike production and
freeze-out relies on two small dimensionless param-
eters: αw ≃ 1=32 and θ ≪ 1. Inspection of the ratio
δωh

2=ω2ðqÞ [see Eqs. (2.39) and (2.42)] clearly
shows that this ratio is ≪ 1 for θeff ≪ 1, αw ≪ 1
and the ultrarelativistic limit, confirming the validity
of the perturbative expansion for the description of
production and freeze-out of sterilelike neutrinos.

B. Other contributions and higher orders

Production of sterilelike neutrinos from vector boson
decay is the dominant process at T ≃MW;Z and is of order
αw as clearly exhibited by the results obtained above. This
is the leading contribution to the self-energy in this
temperature range, namely, the one-loop contributions
depicted in Fig. 1. In the same temperature regime, there
are several other processes that contribute to the imaginary
part of the self-energy and hence to the production rate:
heavy quark and lepton decays via charged current inter-
actions, q → qν̄ν, τ; μ → ν̄νl; charged lepton annihilation
lþl− → ν̄ν (via neutral currents); and several other proc-
esses (for a more detailed discussion, see Ref. [89]). These
processes contribute to the imaginary part of the self-energy

at two loops and therefore are of order α2w. Furthermore, at
T ≪ MW;Z, these are further suppressed by a vector boson
propagator, and therefore their contribution to the imagi-
nary part is generically CG2

FT
4q typically with C≃ 1. As

the temperature diminishes through the cosmological
expansion, the damping rate from vector boson decay will
become of the same order as the contribution to the
imaginary part from these higher order processes, which
must then be taken into account if the available energy is
larger than the threshold for sterilelike production.
Therefore, the results obtained in the previous section
provide a lower bound to the abundance of sterilelike
neutrinos, as processes that are of higher order but
dominate at lower temperatures increase the abundance.
The index of refraction, namely, the real part of the self-

energy, is dominated by the one-loop result, which for low
temperatures (large τ) is given by the low temperature
limits (5.6), (5.11). This observation is important. At T ≪
MW on dimensional grounds, the two loop processes yield
real and imaginary parts of the self-energy ∝ G2

FT
4q since

this limit is well described by the local Fermi theory;
therefore, compared to the low temperature limit of the one-
loop contribution (5.6), (5.11), the two-loop contribution to
the real part is suppressed by a power of αw. Therefore, for
T ≪ MW , the leading contribution to real part or index of
refraction is given by the one-loop results (5.6), (5.11),
whereas the imaginary part (damping rate) is determined by
the two-loop diagrams and are ∝ G2

FT
4q, the proportion-

ality constant determined by the nature and number of
degrees of freedom (leptons and quarks) that enter in the
processes. Therefore, in principle, a complete description
of production and freeze-out should include all possible
processes at one and two loops in the self-energy. The real
part is dominated by the one-loop term, but the imaginary
part will receive contributions from both one and two loops;
the relevance of each will depend on the temperature
regime. For the mixing angle, both the real and imaginary
part (damping rate) are needed, however the imaginary part
is of the same order than the real part only for the one-loop
contribution, namely at temperatures of the order of MW;Z

(or larger), however, at much lower temperatures, the
corrections to the mixing angle are dominated by one-loop
contribution to the real part given by (5.7), (5.12) and the
two loop contributions to both the real and imaginary parts
can be safely neglected in agreement with the results of
Refs. [13,20,103]. Reference [26] discusses further con-
tributions at T ≫ MW which merit further study but are
outside the scope of this article.
In the temperature regime considered here, T ≃MW;Z,

self-energy corrections to the propagators of massive vector
bosons (quark and lepton loops) are perturbative and
suppressed by another power of αw. Self-energy corrections
to the charged lepton propagators are the same as the hard
thermal loop corrections. In Sec. IV, we discussed the
possible influence of hard thermal loop corrections to the
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lepton propagators, arguing that these are subleading for
kinematic reasons. The numerical results obtained in the
previous sections confirm this argument; the production
rate and final distribution functions receive the largest
support in the region of momenta q=T ≲ 2�3. In this
region of phase space, kinematically the charged leptons
produced via vector boson decay feature momenta q≃ T,
and in this region of momenta, hard thermal loop correc-
tions can be safely neglected. However, the large momen-
tum tail of the sterile neutrino distribution, although
strongly suppressed as shown numerically, will be affected
by these corrections. A study of these is beyond the scope
of this article and is relegated to a future study.

C. Lifetime constraints

Massive sterilelike neutrinos can decay in various
leptonic channels [58,59]. Consider the simpler case of
one sterilelike ν2 and one activelike ν1 neutrino with θ ≪ 1,
the charged current channel ν2 → eþe−ν1 is available for
M2 ≃Ms > 1 MeV. The “invisible” neutral current ν2 →
3ν1 channel is available for any Ms of cosmological
relevance for WDM or cold dark matter. The radiative
channel ν2 → γν1 is suppressed by one power of αem. The
decay widths for these channels have been obtained
[58,59,105] as

Γðν2 → eþe−ν1Þ≃ 3.5 × 10−5θ2
�

Ms

MeV

�
5

K

�
m2

e

M2
s

��
1

s

�
;

ð8:2Þ

where the function K → 0 for Ms → 2me and K → 1 for
Ms ≫ me [58]. For other leptonic channels, similar expres-
sions were obtained in Ref. [105].
The decay rate into activelike neutrinos mediated by

neutral currents [not Glashow-Iliopoulos-Maiani sup-
pressed with sterilelike heavy neutrinos] is given by (see
Refs. [58,59])

Γðν2 → 3ν1Þ≃ 3.5 × 10−5θ2
�

Ms

MeV

�
5
�
1

s

�
ð8:3Þ

and the radiative decay width [59,106]

Γðν2 → γν1Þ≃ 10−7θ2
�

Ms

MeV

�
5
�
1

s

�
: ð8:4Þ

Recent results for a lower bound on the lifetime of dark
matter yields tb ≃ 160 Gyr [107]; a similar bound but in
terms of the fraction of cold dark matter is given in
Ref. [108]. Adding both leptonic channels, assuming that
Ms ≳MeV and taking both of the same order, the condition
that the sterile species would be a suitable dark matter
candidate implies that its lifetime is longer than or equal to
this lower bound, namely, Γtottb ≤ 1, implying that

θ2
�

Ms

MeV

�
5 ≲ 10−14: ð8:5Þ

Combining this bound with the fractional abundance
(7.27), we find that

F 2ð Ms
MeVÞ2

½1þ ð Ms
8.35 MeVÞ2�

≲ 10−6; ð8:6Þ

which could yield F 2 ≃ 1 for Ms ≃ few KeV, which,
however, would require a very large mixing angle θ≃
10−2 which is ruled out by cosmological x-ray bounds
[33–35,43]. Hence, we conclude that sterilelike neutrinos
produced via vector boson decay cannot be suitable dark
matter candidates.
However, if there is a hierarchy of sterilelike neutrinos,

heavy neutrinos with Ms of a few MeVand mixing angles
θ2 ≫ 10−13, these may decay into lighter ≃KeV sterilelike
states that could contribute to the dark matter abundance.
This possibility of cascade decay merits further study and is
clearly beyond the scope of this article.

D. Comparison to other results

The expressions for the quantum kinetic equation (3.17)
and the effective mixing angle in the medium (2.44) that we
obtained are exact to all orders in standard model couplings
and to leading order in θ2 ≪ 1. In Refs. [27,109], an
expression for the effective mixing angle that includes both
the real part (index of refraction) and imaginary part
(damping rate) of the self-energy (from standard model
interactions) has been proposed that seems to be valid for
an arbitrary vacuum mixing angle. Our result is only valid
for θ ≪ 1 where we can extract unambiguously the mixing
angle from the position of the complex poles in the
propagator. It is not straightforward to define or extract
a real mixing angle in the case of large θ; the subtleties
are discussed in Ref. [92]. The final form of the quantum
kinetic equation (3.17) is similar to that used in
Refs. [11,13], although in these articles, the mixing angle
only includes the index of refraction (real part), valid in the
temperature regime of interest in those articles. Crucially,
our analysis shows the importance of the positive helicity
component: at high temperature, the in-medium suppres-
sion of the mixing angle for negative helicity is much larger
than that for positive helicity since the latter interacts with
the medium with a coupling that is helicity suppressed.
However, the contributions from the in-medium suppressed
negative helicity and the helicity suppressed positive
helicity may be competitive within a range of masses
and temperatures. This is an aspect that has not been
discussed previously.
Reference [26] considers the production of ≃GeV

sterile neutrinos in the temperature range 5 GeV <
T < 160 GeV, focusing on the washout of lepton densities;
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our results are in broad agreement with those of this
reference for the processes associated with vector boson
decay for negative helicity states in the regions where a
comparison is meaningful. However, in contrast, we focus
on the mass scale ≃MeV motivated by the possible
solution to the 7Li problem and concentrate on the role
which helicity plays in the effective mixing angles in the
medium and the damping and production rates.
Furthermore, we study the full dynamics of production
and freeze-out, including cosmological expansion for both
helicity states obtaining the abundance at freeze-out and
establishing the freeze-out temperature and time scales for
each helicity.
The role that helicity plays is an immediate consequence

of the V − A coupling in the standard model. The inter-
action of positive helicity states with the medium is helicity
suppressed, relative to those with negative helicity. As
shown above, the mixing angle for positive helicity states is
hardly modified by their interaction with the medium,
whereas that for negative helicity states is strongly sup-
pressed, positive helicity states dominate the production in
a wide range of masses. Furthermore, we find a MSW
resonance for negative helicity states in the absence of a
lepton asymmetry, which is screened by the damping rate
and does not enhance the production. We study the full
dynamics of production with cosmological expansion
analyzing the freeze-out of both helicity states, establishing
the freeze-out temperature for each channel and obtaining
the frozen distributions. The final distribution exhibits the
contribution from both helicity channels, one colder than
the other and with both distinctly nonthermal. We also
analyze the various accelerator, lifetime and cosmological
constraints both for dark matter as well as the possibility
that ≃MeV sterile neutrinos might solve the 7Li problem
(see the discussion below).

E. Thermalization?

The result for the total abundance of sterile neutrinos
produced via vector boson decay, compared to that of a
thermal species given by Eq. (7.25), shows that for θ ≪
10−2; andMs of few MeV sterile neutrinos produced via
this mechanism do not thermalize. If the lifetime of the
sterilelike neutrino is (much) shorter than the age of the
Universe, it means that at some time in the past history of
the Universe the rate dnsðtÞ=dt < 0 since if such a species
is present today its population is decaying in time. We have
argued that the quantum kinetic equation (3.17) is exact to
all orders in standard model couplings to leading order in
θ2 ≪ 1. In fact, as per the discussion leading up to (3.17),
the production term is completely determined by the
damping rate, the mixing angle (in the combination Γh

2)
and detailed balance, which, if the sterilelike mass eigen-
state is not relativistic, entails that the correct form of the
quantum kinetic equation is

dnh2ðq; tÞ
dt

¼ Γh
2ðqÞ½nLTEðEÞ − nh2ðq; tÞ�; ð8:7Þ

where

nLTEðEÞ ¼
1

e
E
T þ 1

;
E
T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þM2

2

T2

r
ð8:8Þ

and Γh
2ðqÞ are the damping rates in terms of the imaginary

part of the self-energy (2.59). In Minkowski space-time,
however small, the mixing angle (hence Γ2) sterilelike mass
eigenstates will always thermalize; the longer the thermal-
ization time scale, the smaller Γ2. With cosmological
expansion, freeze-out occurs when Γ2=HðtÞ ≪ 1 (for a
more detailed discussion, see Ref. [89]). In the original
form (gain-loss) of the kinetic equation (3.4), the gain term
always involves the annihilation of one or several species
(vector bosons, leptons and quarks) that by assumption are
in LTE in the plasma; as the Universe expands and cools,
the abundance of these species diminishes, and the gain
contributions diminish accordingly. The loss terms that
involve the annihilation of one or more species in LTE also
diminish under cosmological expansion; however, if the
sterile neutrino can decay into other species, this decay
contribution only entails the creation of the decay products,
and these contributions do not vanish as the temperature
diminishes. Three processes that contribute to the loss term
and survive in the low temperature limit are precisely the
decay channels (8.2), (8.3), (8.4). Therefore, if the sterile-
like mass eigenstate decays with a lifetime smaller than the
age of the Universe, these loss terms dominate the quantum
kinetic equation at some late time, and the rate becomes
negative before today. The form (8.7) implies that at some
time in the past the sterilelike neutrino has thermalized,
since the production term (gain) dominates initially but the
decay (loss) dominates at late times, the rate must have
passed through zero in between, namely the distribution
reached LTE and started to decay after this point. This
discussion becomes relevant with the possibility thatMs of
a few MeV and lifetime ≃105ðsÞ could provide a solution
to the 7Li problem as suggested in Refs. [74,78,79], as
discussed below.
In Ref. [110], a study of low scale type-I seesaw models

suggests that processes that are dominant at much lower
temperature result in the thermalization of heavy states.
Therefore, it is possible that other mechanisms which
dominate at lower temperature and are not considered in
our study may lead to the thermalization of the heavy sterile
states produced via vector boson decay. An important
aspect to be understood is whether thermalization occurs
before or after the time scale required to solve the 7Li
problem [79] as this will impact the destruction of 7Be in
the nucleosynthesis chain.
The study of such a possibility is definitely important but

beyond the scope of this article.
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F. Solution to the 7Li problem?

In Ref. [79], the authors performed an exhaustive
analysis of the parameter space within which the decay
of sterile neutrinos of Ms ≃ few MeV could yield a
solution to the 7Li problem as previously advocated in
Refs. [74,78]. The analysis of Ref. [79] included the most
recent data on cosmic microwave background anisotropies
and concluded that a heavy sterile neutrino with Ms ≃
4.35 MeV and lifetime Γ−1 ≃ 1.8 × 105ðsÞ would provide
a suitable solution. However, the parameter space also
bounds the ratio2 N s=N ν ≃ 10−4 and the mixing angle
θ2 ≃ 10−4. These values are in significant tension both with
the results that we obtained above and the bounds of
Ref. [83]. In particular, with Ms ≃ few MeV and such a
large mixing angle, our result (7.25) indicates that
N s=N ν ≃ 1, suggesting full thermalization; furthermore,
as is discussed above, our results provide a lower bound for
the abundance of sterilelike heavy neutrinos. Both the
region of abundance and mixing angles found in Ref. [79]
seem in strong tension with the bounds in Ref. [83], and
both caveats are recognized in Ref. [79], which suggests, as
a possible alternative, a low reheating temperature [73]. Of
course, our results rely on LTE at the electroweak scale;
therefore, they are not applicable to such a scenario. Hence,
although the production mechanism of sterilelike neutrinos
studied in this article, which is the leading order in standard
model couplings and provides a lower bound to the
abundance, offers a compelling mechanism for production
of heavy sterilelike neutrinos with the possibility to solve
the 7Li problem, significant tension arises between the
parameter range of the solution established in Ref. [79], our
result as a lower bound on the abundance and the
cosmological bounds obtained in Ref. [83]. The resolution
of this tension merits a deeper study, well beyond the scope
of this article.

G. WDM from cascade decay

The analysis of the solution to the 7Li problem suggested
in Refs. [74,78,79] is a specific example of a cascade decay
mechanism: heavy (Ms ∼ few MeV) sterilelike neutrinos
produced at a (high) scale that eventually decay into several
channels with the daughter particles influencing important
physical processes during cosmological expansion. If there
is a hierarchy of sterilelike massive neutrinos that include
MeV and KeV scales, the heavier mass states may be
produced at a high temperature, such as explored in this
article, and the decay of this heavy state on a time scale
≃105s to solve the 7Li problem (if the caveats discussed
above can be overcome) can also lead to the production of
the lighter mass states that can be suitable WDM candi-
dates. While this lifetime is interesting within the context of

the 7Li problem, a heavy neutrino with Ms ≃MeV and
θ≃ 10−7 would feature a lifetime ≃1012ðsÞ therefore
decaying into a WDM candidate just after matter radiation
equality. This possibility emerges naturally by writing the
weak interaction vertices in mass eigenstates, and then the
process ν2 → 3ν1 yields a contribution ν2 → 2ν1νm with ν2
and νm the heavier (≃MeV) and lighter (≃KeV) mass
eigenstates, respectively. The branching ratio for such a
process is ∝ θ2m, where θ2m is the mixing angle of the active
(flavor) neutrinos with the sterilelike lighter neutrino νm.
This mechanism of production of WDM candidates is a
tantalizing possibility that would be a natural scenario in
extensions beyond the standard model that posit the
existence of several sterile neutrinos merits further study
clearly beyond the scope of this article.

IX. SUMMARY OF RESULTS, CONCLUSIONS
AND FURTHER QUESTIONS

Our goals in this article are twofold:
(i) First is to obtain the general form of the quantum

kinetic equations and effective mixing angles in the
medium to describe production and freeze-out of
sterilelike (mass eigenstates) neutrinos in a broad
range of temperatures and under a minimal set of
assumptions. Our study departs from previous ones
(see the recent review [111]) in several important
aspects: we focus on the different helicity contribu-
tions, and we systematically include the absorptive
part of the self-energy in the in-medium modifica-
tion of the mixing angle.

(ii) Second is to apply the kinetic equations thus found
to study the production to leading order in standard
model couplings from vector boson decay at
T ≃MW .

We obtained the effective mixing angles in the medium
directly from the equations of motion in the case of mixing
of one sterile with one active neutrino via a seesaw mass
matrix with standard model interactions for the active
(flavor) neutrino valid when the vacuum mixing angle
θ ≪ 1 but to all orders in standard model couplings.
Assuming that all standard model degrees of freedom
are in LTE in the relevant temperature range, we obtained
the quantum kinetic equation that describes the production,
evolution and freeze-out of sterilelike mass eigenstates. The
mixing angles in the medium and the production rate are
determined by the real and imaginary parts of the self-
energy on the mass shell of the sterilelike mass eigenstate
and depend on helicity. The full quantum kinetic equation
to leading order in θ ≪ 1 is

dnh2ðq; tÞ
dt

¼ Γh
2ðqÞ½nLTEðqÞ − nh2ðq; tÞ�;

where h ¼ � correspond to helicity states and Γ∓
2 ðqÞ are

given by (2.59) with (2.55) and (2.55) and nLTE is the
2This reference actually bounds N s=N cmb, which differs by a

factor 3=4.
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Fermi-Dirac distribution function in LTE. The full expres-
sion for the mixing angles in the medium, valid to all orders
in standard model couplings and to leading order in θ ≪ 1,
is given in the relativistic limit by

θheffðqÞ ¼
θ

½ð1þ ΔhðqÞ
ξ Þ2 þ ðγhðqÞξ Þ2�1=2

;

where Δ, γ, ξ are given by (2.55)–(2.58), (2.41), respec-
tively, in terms of the real (Δ) and imaginary (γ) parts of the
active neutrino self-energy on the mass shell of the sterile-
like eigenstate.
We implemented the quantum kinetic equation to obtain

the production of sterilelike neutrinos from vector boson
decay at T ≃MW including cosmological expansion. For
negative helicity neutrinos (and positive helicity antineu-
trinos), the effective mixing angle is strongly suppressed by
the medium; however, for positive helicity neutrinos (and
negative helicity antineutrinos), the medium corrections are
negligible because the interaction with the medium is
helicity suppressed. We find that there is a region of
masses for which the production of both species is
comparable.
It is noteworthy that the mixing angle for negative

helicity neutrinos features an MSW resonance in the
absence of lepton asymmetry, which, however, is screened
by the imaginary part of the self-energy. This is an
important aspect that has not been previously addressed
before; the absorptive (imaginary) part of the self-energy
also contributes to the mixing angle in the medium.
Negative helicity neutrinos freeze out at T−

f ≃ 5 GeV
with a broader distribution as a consequence of a com-
petition between a diminishing damping rate γ and an
increasing effective mixing angle as the temperature
diminishes. Positive helicity neutrinos’ freeze-out temper-
ature is Tþ

f ≃ 8 GeV with a distribution that peaks at much
smaller momenta, describing a colder species. Accounting
for both channels, we find that the distribution function of
sterilelike neutrinos of mass M2 ≃Ms is given by

n2ðyÞ ¼ 3.6

�
θ2

10−4

��
Ms

MeV

�
2

fðMs; yÞ;

where y ¼ q=T and y2fðMs; yÞ is strongly nonthermal
and is displayed in Fig. 14, revealing the competition
between the colder (positive helicity) and hotter (negative
helicity) components. The total abundance normalized to
that of one relativistic degree of freedom in thermal
equilibrium (N ν) is

N 2

N ν
≃ 2

�
θ2

10−4

��
Ms

MeV

�
2
�
1þ

�
Ms

8.35 MeV

�
2
�
: ð9:1Þ

The first term in the brackets is the contribution from the
positive helicity states, and the second is from the negative

helicity; both become comparable for Ms ≃ 8.35 MeV.
We argue that this expression is a lower bound on the
abundance of sterilelike neutrinos.
The fractional abundance of dark matter contributed by

both helicity components is given by (7.27). Constraints
from x-ray data on masses and mixing angles suggest that
sterilelike neutrinos produced by vector boson decay
cannot yield a substantial Ms ≃ KeV warm dark matter
component. However, this production mechanism yields a
substantial abundance of Ms ≃MeV heavy sterilelike
neutrinos with θ2 < 10−4 consistent with accelerator con-
straints. Therefore, this production mechanism may yield
the heavy neutrinos recently invoked to solve the 7Li
problem [74,78,79]. However, the parameter range deter-
mined in Ref. [79] also bounds N =N ν ≃ 10−4, which is
incompatible with the result (9.1) for the range of mass and
mixing angles reported in this reference and is also in
conflict with recent bounds reported in Ref. [83]. The
possibility that heavy≃MeV sterilelike neutrinos decaying
after BBN injecting energy in the medium providing a
solution of the 7Li problem as suggested also in
Refs. [74,78,79] merits a deeper study both of the pro-
duction mechanism as well as the cosmological impact of
this heavy neutrino species.

A. Further questions

The study of production at T ≫ MW;Z requires a deeper
understanding of the finite temperature corrections to the
dispersion relations of the vector bosons near the electro-
weak crossover regime, a worthy study which is beyond the
scope of this article. We have suggested several other
processes that contribute to the production throughout the
thermal history of the Universe; while these are higher
order (two loops) processes, they may be comparable to the
leading order processes or even dominate at temperature
T ≪ MW . However, the medium corrections to the mixing
angles are completely determined by the one-loop contri-
bution, and the effective mixing angle is given by Eq. (6.2).
Further study of these processes is clearly warranted; they
can be competitive near the freeze-out temperature of the
leading one-loop contribution for heavy sterile neutrinos
and, crucially, contribute to the production of lighter mass
eigenstates. We have also argued that sterile neutrinos with
lifetimes shorter than the age of the Universe that are
decaying today must necessarily have thermalized at some
time in the past. Studying this thermalization process is of
fundamental interest since most of the calculations of
production neglect this possibility by neglecting the loss
term in the kinetic equation, yet thermalization of heavy
sterile neutrinos may have important cosmological conse-
quences for the expansion history. In Ref. [110], a study of
low scale type-I seesaw models suggests that heavy sterile
neutrinos do thermalize through collision processes dom-
inant at much lower temperatures, motivating further
studies of thermalization. We have also suggested that
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several compelling extensions beyond the standard model
posit a hierarchy of sterile neutrino masses, and this opens
the possibility that heavier sterile states may be produced at
high temperature, as analyzed here, and decay well after
BBN or near the time of matter-radiation equality into
lighter sterile states that may be suitable WDM candidates.
This mechanism of cascade decay, which is fundamentally
similar to that advocated for the solution to the 7Li problem
as an energy injection mechanism, is worthy of study.
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APPENDIX: SPECTRAL DENSITY

The spectral densities are obtained for a generic vector
boson massM, with a straightforward application for either
charged or neutral current cases.
We need to identify the regions in which the product of

delta functions in (4.22) with (4.23) have support in the
interval W− ≤ W ≤ Wþ.
Using the identities

nfð−kÞ ¼ 1 − nfðkÞ; Nbð−p0Þ ¼ −ð1þ Nbðp0ÞÞ;
ðA1Þ

the product

½δðk0 − kÞ − δðk0 þ kÞ�½δðq0 − k0 −WpÞ
− δðq0 − k0 þWpÞ�½1 − nfðk0Þ þ Nbðp0Þ�;

p0 ¼ q0 − k0 ðA2Þ

is gathered into four different terms; keeping the finite
temperature contributions only, these are

1Þ∶ δðk0 − kÞδðq0 − k −WÞ½−nfðkÞ þ Nbðq0 − kÞ�: ðA3Þ

This contribution describes the decay of the sterile neutrino
and its inverse process νs ↔ lW. The delta function

δðq0 − k −WÞ has support for W− ≤ q0 − k ≤ Wþ as a
function of k, and this constraint implies

k− ≤ k ≤ kþ; k� ¼ ðq0Þ2 − q2 −M2

2ðq0 ∓ qÞ
for q0 ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
ðA4Þ

2Þ∶ δðk0 þ kÞδðq0 þ kþWÞ½1 − nfð−kÞ þ Nbðq0 þ kÞ�:
ðA5Þ

For this term, it must be that q0 þ k < 0 since
W− ≤ W ≤ Wþ, and because k > 0, it follows that
q0 < 0. Therefore, using the identity (A1) and keeping
solely the finite temperature contributions, this term yields

2Þ∶ − δðk0 þ kÞδðjq0j − k −WÞ½−nfðkÞ
þ Nbðjq0j − kÞ�; jq0j − k > 0; ðA6Þ

which is similar to the previous case. The region of support
is q0 < 0 and for k is

k− ≤ k ≤ kþ; k� ¼ ðq0Þ2 − q2 −M2

2ðjq0j ∓ qÞ
for jq0j ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
ðA7Þ

3Þ∶ − δðk0 − kÞδðq0 − kþWÞ½1 − nfðkÞ þ Nbðq0 − kÞ�;
ðA8Þ

this term has support for k − q0 > 0, using (A1),

3Þ∶ δðk0 − kÞδðk − q0 −WÞ½nfðkÞ þ Nbðk − q0Þ�: ðA9Þ

For q0 > 0, this contribution describes the decay of the
charged lepton and its inverse l ↔ νsW, whereas for
q0 < 0, it describes the decay of the W into a charged
lepton and a sterile antineutrino and its inverse, namely,
W ↔ ν̄sl. The regions of support are

i∶Þ 0 ≤ q0 ≤ q; k− ≤ k < ∞;

k− ¼ q2 þM2 − ðq0Þ2
2ðq − q0Þ ðA10Þ

ii∶Þ 0 > q0 > −q; kþ ¼ ∞;

k− ¼ q2 þM2 − ðq0Þ2
2ðq − q0Þ ðA11Þ

iii∶Þ q0 < 0; q ≤ jq0j ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
;

k− ≤ k ≤ kþ; k� ¼ q2 þM2 − ðq0Þ2
2ðjq0j ∓ qÞ ðA12Þ
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4Þ∶ − δðk0 þ kÞδðq0 þ k −WÞ½nfðkÞ þ Nbðq0 þ kÞ�:
ðA13Þ

For q0 > 0, the delta function δðq0 þ k −WÞ describes the
decay of theW into a sterile neutrino and a charged lepton.
The regions of support are

i∶ 0 ≤ q0 ≤ q∶; k− ≤ k < ∞;

k− ¼ q2 þM2 − ðq0Þ2
2ðqþ q0Þ ðA14Þ

ii∶ q ≤ q0 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
∶; k− ≤ k ≤ kþ;

k� ¼ q2 þM2 − ðq0Þ2
2ðq ∓ q0Þ ðA15Þ

iii∶ − q ≤ q0 ≤ 0∶; k− ≤ k < ∞;

k− ¼ q2 þM2 − ðq0Þ2
2ðqþ q0Þ ðA16Þ

The regions i and iii describe the process of Landau
damping [104], with support below the light cone, corre-
sponding to emission and reabsorption of thermal excita-
tions similarly to the case of the self-energy of quarks
interacting with gluons or electrons with photons. For the
case of the massive vector boson, the Landau damping cut
is continued above the light cone, corresponding to the
region ii. This term is the only one that contributes to the
imaginary part on the mass shell of the sterilelike neutrino.
The integrals over k0 can be done straightforwardly; the

contributions from L½Q; k� · P½p� [see Eqs. (4.12) and
(4.15)] yield the following terms for negative and positive
helicity respectively:
k0 integrals, negative helicity:
(i) for 1∶ − M2

q ½F1ðq0; qÞ þ kF2ðq0; qÞ�
(ii) for 2∶ − M2

q ½F1ðq0; qÞ − kF2ðq0; qÞ�
(iii) for 3∶ − M2

q ½F1ðq0; qÞ þ kF2ðq0; qÞ�
(iv) for 4∶ − M2

q ½F1ðq0; qÞ − kF2ðq0; qÞ�
k0 integrals, positive helicity:
(i) for 1∶ M2

q ½G1ðq0; qÞ þ kG2ðq0; qÞ�
(ii) for 2∶ M2

q ½G1ðq0; qÞ − kG2ðq0; qÞ�
(iii) for 3∶ M2

q ½G1ðq0; qÞ þ kG2ðq0; qÞ�
(iv) for 4∶ M2

q ½G1ðq0; qÞ − kG2ðq0; qÞ�

1. k integrals

The next step is to calculate the k integrals. This is
facilitated by the following identities,

nfðkÞ ¼ −T
d
dk

ln½1þ e−k=T � ðA17Þ

Nbðq0 − kÞ ¼ −T
d
dk

ln½1 − ek=Te−q
0=T �; ðA18Þ

and a similar identity for Nbðk − q0Þ;Nbðq0 þ kÞ. With
these identities, we find

Z
kþ

k−
nfðkÞdk ¼ −T ln

�
1þ e−k

þ=T

1þ e−k
−=T

�
ðA19Þ

Z
kþ

k−
Nbðq0 − kÞdk ¼ −T ln

�
1 − ek

þ=Te−q
0=T

1 − ek
−=Te−q

0=T

�
ðA20Þ

Z
kþ

k−
Nbðk − q0Þdk ¼ T ln

�
1 − e−k

þ=Teq
0=T

1 − e−k
−=Teq

0=T

�
ðA21Þ

Z
kþ

k−
knfðkÞdk ¼ −T2

�
kþ ln½1þ e−k

þ=T �

− k− ln½1þ e−k
−=T �

−
X∞
n¼1

ð−1Þn
n2

½e−nkþ=T − e−nk
−=T �

	
ðA22Þ

Z
kþ

k−
kNbðq0 − kÞdk ¼ −T2

�
kþ ln½1 − ek

þ=Te−q
0=T �

− k− ln½1 − ek
−=Te−q

0=T �

þ
X∞
n¼1

e−nq
0=T

n2
½enkþ=T − enk

−=T �
	

ðA23Þ
Z

kþ

k−
kNbðk − q0Þdk ¼ −T2f−kþ ln½1 − e−k

þ=Teq
0=T �

þ k− ln½1 − e−k
−=Teq

0=T �

þ
X∞
n¼1

enq
0=T

n2
½e−nkþ=T − e−nk

−=T �g:

ðA24Þ

In the integrals (A22)–(A24), we have used the identities
(A17), (A18), integrated by parts, expanded the loga-
rithms in power series and integrated term by term. The
infinite sums can be expressed in terms of dilogarithmic
(Spence’s) functions, but such form is not particularly
useful.

2. Numerical implementation for the real part

The numerical implementation for the real parts from the
dispersive form (2.14) is best achieved in a “modular form,”
which is facilitated by introducing

Z
kþ

k−
½Nbðq0 − kÞ − nfðkÞ�dk≡ −TD1ðq0; qÞ ðA25Þ
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Z
kþ

k−
½Nbðq0 − kÞ − nfðkÞ�kdk≡ −T2Dk1ðq0; qÞ ðA26Þ
Z

kþ

k−
½Nbðk − q0Þ þ nfðkÞ�dk≡ −TD2ðq0; qÞ ðA27Þ

Z
kþ

k−
½Nbðk − q0Þ þ nfðkÞ�kdk≡ −T2Dk2ðq0; qÞ; ðA28Þ

where the respective integrals are given above. In terms of
these quantities and F1;2ðq0; qÞ defined by Eqs. (4.13) and
(4.14) [and G1;2 defined by Eqs. (4.16) and (4.17) for
positive helicity], we find for negative helicity the follow-
ing contributions to the imaginary parts in the different
regions 1–4 of q0 defined by the support of the corre-
sponding delta functions described above,

ImΣð1Þ ¼ g2M2T
16πq2

½F1ðq0; qÞD1ðq0; qÞ þ TF2ðq0; qÞDk1ðq0; qÞ�; q0 ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
ðA29Þ

ImΣð2Þ ¼ −
g2M2T
16πq2

½F1ðq0; qÞD1ðjq0j; qÞ − TF2ðq0; qÞDk1ðjq0j; qÞ�; q0 < 0; jq0j ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
ðA30Þ

ImΣð3Þ ¼ g2M2T
16πq2

f½F1ðq0; qÞD2ðq0; qÞ þ TF2ðq0; qÞDk2ðq0; qÞ�ð0 < q0 < qÞ

þ ½F1ðq0; qÞD2ðq0; qÞ þ TF2ðq0; qÞDk2ðq0; qÞ�ð0 > q0 > −qÞ
þ ½F1ðq0; qÞD2ðq0; qÞ þ TF2ðq0; qÞDk2ðq0; qÞ�ð−q > q0 > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
Þg ðA31Þ

in the first two terms kþ ¼ ∞ → D2ðkþ ¼ ∞Þ ¼ Dk2ðkþ ¼ ∞Þ ¼ 0 and only the lower limit with k− corresponding to the
case 3 above contributes, the two limits k� contribute to the last term,

ImΣð4Þ ¼ −
g2M2T
16πq2

f½F1ðq0; qÞD2ð−q0; qÞ − TF2ðq0; qÞDk2ð−q0; qÞ�ð0 < q0 < qÞ

þ ½F1ðq0; qÞD2ð−q0; qÞ − TF2ðq0; qÞDk2ð−q0; qÞ�ðq < q0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
Þ

þ ½F1ðq0; qÞD2ð−q0; qÞ − TF2ðq0; qÞDk2ð−q0; qÞ�ð0 > q0 > −qÞg: ðA32Þ
Now, the real part of the self-energy is calculated with the dispersive form (2.14) with

ImΣðq0; qÞ ¼ ImΣð1Þðq0; qÞ þ ImΣð2Þðq0; qÞ þ ImΣð3Þðq0; qÞ þ ImΣð4Þðq0; qÞ: ðA33Þ

In each region in q0, the values of k� are given by the
different cases analyzed above. The principal part is
obtained by excising an interval of width 2ϵ around q0 ¼
q with ϵ ≪ 1.
For positive helicity, the same analysis above holds with

the following modifications:
(i) M2 → −M2 only in the prefactor
(ii) F1;2ðq0; qÞ → G1;2ðq0; qÞ where F1;2 and G1;2 are

given by Eqs. (4.13) and (4.14) and (4.16) and
(4.17), respectively. Note that F1;2 and G1;2 obey the
relation (4.18).

Finally, we introduce the dimensionless variables,

z ¼ q0=T; y ¼ q=T; τ ¼ MW=T; ðA34Þ

where, as discussed in the text, we use MW as the
baseline scale. The integrals over q0 are then rendered
dimensionless in terms of these variables. The dispersive

integrals over the dimensionless variable z are carried out
numerically, and the final results for the real part of the self-
energy are generically of the form

ReΣ�ðqÞ ¼ g2M2T
16π2q2

K�½τ; y�; ðA35Þ

where K�½τ; y� are dimensionless functions of τ, y that are
obtained numerically with the procedure detailed above.
For charged currents, g2 ¼ g2w=2, M ¼ MW ; for neutral
currents, g2 ¼ g2w=ð2cÞ2;M ¼ MW=c; c ¼ cosðθwÞ≃ 0.88;
and for neutral currents, τ → τ=c in the argument ofK½τ; y�.

3. Low temperature limit

In the low temperature limit, MW ≫ T, and keeping
only the finite temperature contributions and using the
identities (A1), we can neglect Nb. In (4.8), the product of
delta functions and distribution functions becomes
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nfðkÞfδðk0 − kÞ½δðq0 − kþWpÞ − δðq0 − k −WpÞ� þ δðk0 þ kÞ½δðq0 þ kþWpÞ − δðq0 þ k −WpÞ�g: ðA36Þ

Now, it is more convenient to integrate over q0 and k0 in the dispersive integral (2.14), leaving only the integrals in k, with

d3k ¼ ð2πÞk2dkdðcosðφÞÞ ðA37Þ

with φ the angle between ~q and ~k.
For negative helicity, we find

Lμν½Qþ; k�Pμν½p� ¼ kð1 − cosðφÞÞ þ 2k
M2

ðq0 − q cosðφÞÞðq0 − k − qþ k cosðφÞÞ; for k0 ¼ k ðA38Þ

Lμν½Qþ; k�Pμν½p� ¼ −kð1þ cosðφÞÞ − 2k
M2

ðq0 þ q cosðφÞÞðq0 þ k − qþ k cosðφÞÞ; for k0 ¼ −k: ðA39Þ

Integrating over q0, and implementing the delta functions and expanding the numerator and denominator in powers of k=M,
q=M, integrating over cosðφÞ, keeping only the leading order terms (proportional to 1=M4) and using

Z
∞

0

k3nfðkÞdk ¼ 7π4T4

120
; ðA40Þ

we find for negative helicity

ReΣ−ðqÞ ¼ 14π2

90
g2
�
T
M

�
4

q: ðA41Þ

For positive helicity, we follow the same steps, with

Lμν½Q−; k�Pμν½p� ¼ kð1þ cosðφÞÞ þ 2k
M2

ðq0 − q cosðφÞÞðq0 − kþ q − k cosðφÞÞ; for k0 ¼ k ðA42Þ

Lμν½Q−; k�Pμν½p� ¼ −kð1 − cosðφÞÞ − 2k
M2

ðq0 þ q cosðφÞÞðq0 þ kþ q − k cosðφÞÞ; for k0 ¼ −k: ðA43Þ

Following the same steps as for negative helicity, we find

ReΣþðqÞ ¼ 14π2

180
g2
�
T
M

�
4

q: ðA44Þ
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