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We discuss the mechanism by which the field vacuum energy varies as a result of strong self-interaction.
We propose a nonperturbative approach to treat strong interactions and discuss the problem in terms of
quasiparticles describing the motion of field modes. The resulting vacuum energy is variable and depends
on the state of the system. If the interacting scalar field is related to the cosmological field, an acceleration
equation with a stable equilibrium point follows in a simple model, predicting the oscillatory behavior of

the scale factor and other cosmological effects.
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I. INTRODUCTION

The zero-point, or vacuum, energy is an interesting
property emerging in quantum mechanics and playing an
important role in other areas. The operation of the vacuum
energy is not well understood. A major challenge is seen in
uncovering an underlying physical structure that governs
the vacuum energy and its evolution [1-10]. More specifi-
cally, the question is what mechanism can alter the vacuum
energy of the field, with the scalar field being a commonly
considered case [1-5]?

A useful insight comes from recent results in condensed
matter physics. In solids, the vacuum energy is the sum of
zero-point energies of collective modes, phonons, and is
viewed to form a constant energy background. Strongly
interacting and dynamically disordered liquids have been
much harder to understand because interparticle inter-
actions are strong and the perturbation theory does not
apply [11]. A nonperturbative approach to liquid thermo-
dynamics [12] gives the important result that solidlike
phonons in liquids evolve: the number of high-frequency
solidlike transverse modes reduces with temperature. As a
result, the liquid vacuum energy becomes a variable
property that depends on the state of the system [13]. At
some high temperature, transverse modes are lost at all
available frequencies and the vacuum energy of liquid
transverse modes becomes zero.

The collective modes in condensed matter are equivalent
to field modes in the field theory [14] where the vacuum
energy is the sum of energies of field modes. This opens an
interesting possibility that the mechanism that varies the
zero-point energy in liquids can apply to the vacuum energy
of fields. We have recently started to explore this question
and suggested that this would be the case if the field
Hamiltonian includes self-interaction similar to the double-
well potential in liquids [12,15].

In this paper, we discuss the variability of the vacuum
energy as a result of strong self-interaction of the field. In
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the next section, we review the mechanism by which the
vacuum energy varies in liquids as a result of strong
anharmonic interactions. We then consider strongly inter-
acting fields and propose a nonperturbative approach based
on the concept of quasiparticles. This gives variable
vacuum energy that depends on the state of the system.
We consider the field to be a cosmological scalar field
related to inflation and discuss a simple model which yields
an acceleration equation with a stable equilibrium point.
The model predicts the oscillatory behavior of the scale
factor, and we discuss other cosmological implications
including the cosmological constant problem.

II. VARIABLE VACUUM ENERGY

A. Evolution of collective modes in liquids

In solids, interactions are commonly treated in the
harmonic approximation with a Hamiltonian

1 . 1
H(x) :zzmixiz +Ezkij(xi_xj)2 (1)
i ij

where x; and m; are particle coordinates and masses and k;;
are stiffness coefficients.

Equation (1) can be transformed to the diagonal form in
terms of normal coordinates u;

How) = 5 32002 + whud) ©

where @; are normal frequencies.

Equation (2) is equivalent to the Hamiltonian of the free
field discussed in the next section.

In liquids, one needs to modify (1) in order to endow the
particles with the ability to jump between quasiequilibrium
positions. This requires adding nonlinear terms to the
interaction term. The nonlinear terms are not small and
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so the perturbation theory does not apply: the perturbation
approach applies to weakly interacting gases only but not to
strongly interacting liquids. The ensuing treatment
becomes intractable because it involves a large number
of coupled nonlinear oscillators, an exponentially complex
problem [12]. Impossible to solve mathematically, the
problem becomes amenable to treatment using a physical
approach and recognizing that the dynamics of particles in
liquids consists of two types: solidlike oscillatory motion
around quasiequilibrium positions and jumps between
different positions that enable liquid flow [16]. This
corresponds to motion in the double-well (or multi-well)
potential shown in Fig. 1: particles oscillate in one potential
minimum and jump between different minima. The precise
form of the potential is nonessential; only the existence of
two minima separated by a finite energy barrier is.

The key parameter in this consideration is liquid relax-
ation time 7 introduced by J. Frenkel, the average time
between particle jumps from one potential minimum to the
next [16]. 7 depends on the height of the energy barrier in
Fig. 1. We denote the inverse of 7 as wg, the Frenkel
hopping frequency. It now follows that at times shorter than
7 or frequencies above wg, the system is a solid and
therefore supports two solidlike transverse modes with
frequency above wg. At times longer than 7 or frequencies
below wpg, the system is a flowing liquid capable of
supporting density fluctuations only (as any elastic
medium) but not solidlike transverse modes. This is the
main effect of how particle jumps due to nonlinear terms in
(1) modify collective modes in liquids [12].

Therefore, the Hamiltonian describing the energy of
transverse phonons in liquids reads as:

FIG. 1. Schematic representation of the double-well potential
Upwe(x;)-
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The energy corresponding to (3), E,, is
wp
£ = [ B Dg/(w)do @)
Wg

where wp is Debye frequency of transverse modes close to

the maximal frequency in the system, g,(®w) = S)—é\'wz is
D

Debye density of states for transverse modes and E(w, T) is
the phonon energy.

In the classical case, E = T (here and below, kg = 1),
and integrating (4) gives

E, = 2NT<1 - (Z—Z)B) (5)

and agrees with experimental specific heats of many
liquids [12].

More relevant for this discussion, the zero-point energy
of transverse modes in the liquid, E;, can be calculated
using E(w,T) =" in (4) and gives [13]:

ol () o

The hopping frequency wr increases with temperature
and decreases with pressure. Therefore, £, in (6) becomes
variable. When g reaches its limiting value of wp,
transverse modes disappear completely, and E, = 0.

In terms of particle dynamics, wgp — @p corresponds to
the Frenkel line (FL) on the phase diagram we introduced
recently [17,18]. The FL corresponds to the transition of
particle motion from the combined oscillatory and diffusive
below the line to purely gaslike diffusive above the line. In
terms of the potential in Fig. 1, particles oscillate and jump
below the FL and move diffusively above the activation
barrier above the FL. Crossing the FL has important
implications for the phonon states: two solidlike transverse
modes disappear completely at the line and the remaining
longitudinal mode starts disappearing starting from the
maximal frequency above the line [12].

Notably, the above calculation of the liquid energy in (5)
and (6) is done in a nonperturbative approach based on the
introduction of 7z (wg). Indeed, a perturbation theory
assumes only small deviations from the harmonic minimum
in Fig. 1 and hence is unable to describe the hopping regime
between different wells in the liquid.

As far as the liquid Hamiltonian is concerned, introduc-
ing particle jumps between quasiequilibrium positions with
a certain frequency is equivalent to introducing an anhar-
monic term V(x) resulting in a double-well (or multi-well)
potential in Fig. 1 which enables particles to jump. This
gives the liquid Hamiltonian as
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1. 1
H()C) = Zimixiz JrEZk,J(x, —.Xj)z +ZV()C1) (7)
i ij i

where the anharmonic term V(x) gives the second well

separated by the potential energy barrier. The height of the

barrier is set by the energy of particle interaction.
Equation (7) can be rewritten as

H(x) = Z <%mi3€i2 + UDWP(xi)>

1

Upwp(x;) = %Zkij(xi —x;)* +V(x;) (8)

where Upwp(x;) is the double-well potential in Fig. 1.

We have explained how Upyp(x;) originates in liquids,
however the potential in Fig. 1 is a general construction
used to discuss three different regimes of particle dynamics
and three states of matter: solids, liquids and gases.
Particles oscillate in one single minimum in solids, oscillate
and diffusively move between different minima in liquids
and diffusively move above the potential barrier in gases. If
K and P are kinetic and potential energy of the system,
K < P, K~ P and K > P give solid, liquid and gas state,
respectively.

B. Interacting fields and quasiparticles

We consider a self-interacting scalar field ¢ at a finite
temperature and discuss the evolution of the field energy as
a result of self-interaction. The field Hamiltonian is

1

H(¢p) = 52(9/’12 + Wi + V()

1

Upwe(¢i) = 0jd7 + V(). )

In (9), the first two terms represent independent
harmonic modes with frequencies w; as is the case for,
for example, Klein-Gordon field. The noninteracting
Hamiltonian has positive @?. V(¢) in (9) is the interaction
term, and we assume that Upwp(¢;) = @?¢p? + V(¢;) has a
double-well form in Fig. 1 (the same that gives rise to three
states of matter), endowing the field with the ability to
oscillate around different quasiequilibrium values. This
general form is the only assumption in the theory; precise
form of V(¢) is unimportant. Our main qualitative results
related to the vacuum energy follow without further
assumptions.

It is interesting to ask about the origin of the double-well
(or multi-well) potential in Fig. 1 for the field and how
generic it is. One motivation comes from the form of the
Higgs field. We also note that commonly considered
interaction terms in the field theory (e.g., ¢, ¢* and so
on) are often chosen for their computational tractability and
renormalizability rather than on specific physical grounds.
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Our interest in the double-well form V(¢;) is that it gives
different regimes of field dynamics as it does for particle
dynamics.

We now interpret the field mode coordinate ¢; in (9) as
the coordinate of a particle moving in a double-well
potential in Fig. 1 at a given temperature. In other words,
we consider variables ¢; as quasiparticles. Then, (9)
describes quasiparticles moving in a double-well potential.
As in the case of liquid particles, this motion consists of
solidlike oscillatory motion in a single well in Fig. 1
(corresponding to the free field) and diffusive hopping
between the wells with a certain frequency wg or time 7
(wp =1) that depends on the barrier height. This implies
that the oscillatory motion of quasiparticles in each well can
take place only above frequency wp but not below (the
period of quasiparticle oscillation in one well cannot
exceed the hopping time 7). In other words, the interaction
results in the emergence of the frequency gap wg, or energy
gap hwg.

Hence, similarly to liquids, the anharmonic double-well
interaction modifies the spectrum of the free field by
introducing the lower frequency cutoff, wg, and the
Hamiltonian becomes [compare to (3)]:

Hg) =5 3 (67 + i), (10

;>wp

We note that the interacting field Hamiltonian (9) is not
identical to its particle counterpart (8). The field
Hamiltonian (9) is simpler because all its terms are
diagonal. The quadratic terms in (8) can be diagonalized
as in (2) but the this gives cross terms in V(x). However,
this circumstance does not change the character of motion
of quasiparticles ¢: the double-well potential in (9) implies
that the motion of quasiparticles ¢; consists of oscillations
in a single well as in the case of the free field and the
hopping motion between different wells.

The zero-point (vacuum) energy corresponding to (10)
can be evaluated as:

wmaxh
Eoz/ ng(w)dw (11)

where @,,,, is the maximal frequency. We do not specify
Wmax fOr now and view it as a model parameter.
We consider a general case of n-component scalar field.

This gives the density of states per mode as
g(w) = w’,’f @"~'. As written, g(w) ensures that the total

'max

number of modes divided by the number of modes in each
component is n. Integrating (11) gives
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n? OF n+1
Ey=—-n 1- . 12
0 2(n + 1) wmax( (wmax> ) ( )

Equation (12) describes the mechanism of variation of
the vacuum energy and is an important independent result
in this paper. In (12), the vacuum energy changes with wg
which, in turn, changes with external parameters. When
Wp = Onay Eo tends to zero. In liquids, this corresponds to
the Frenkel line separating the states with and without
propagating transverse modes as discussed earlier.

We note that Eq. (12) cannot be derived in a perturbation
theory because the anharmonic interaction term is not
small. Indeed, the interaction term results in hopping of
field quasiparticles between different minima, the effect
which cannot operate if the displacement from the mini-
mum in the harmonic noninteracting potential is small as
assumed in the perturbation theory. Therefore, our quasi-
particle approach to calculating the vacuum energy of
strongly interacting field is nonperturbative.

Before proceeding further, we make two remarks. First,
the variation of the vacuum energy does not need to involve
a phase transition. In liquids, phonon states change quali-
tatively at the first-order liquid-gas phase transition line.
However, the important change of phonon states can also
take place above the critical point where no phase transition
operates. This takes place at the Frenkel line [12,17,18]
discussed earlier: crossing the FL corresponds to the
complete loss of solidlike transverse modes in the spec-
trum. Similarly, the variation of the field vacuum energy in
(12) does not need to involve a phase transition and can
operate above the critical point. In this case, issues related
to the nucleation of phases, boundaries and other effects
[3,4] do not emerge.

Considering field dynamics in the supercritical state can
be thought to be more natural as compared to the first-order
phase transition. Indeed, the Frenkel line extends to
arbitrarily high temperature and pressure above the critical
point on the phase diagram [12], in contrast to the liquid-
gas transition line which is bound between the triple and
critical points. Hence, the range of parameters on the phase
diagram that give the crossover in the supercritical state is
infinitely larger than that corresponding to the phase
transition.

Second, although the FL in liquids signifies the complete
loss of two transverse modes when @g — ., the
longitudinal mode remains and evolves above the line
[12]. The longitudinal mode, related to density fluctuations,
exists in any medium with elastic response. One could
formally extend the similarity of liquid and field
Hamiltonians to include the energy of the remaining
“longitudinal” field mode above the FL [19]. In the
quasiparticle picture proposed here, no analogue of the
longitudinal mode is considered. Indeed, quasiparticles
moving in the double-well potential are field mode coor-
dinates ¢; which progressively disappear starting from wg.
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When wp — @y, the field vacuum energy tends to
Zero.

III. DYNAMICS OF THE SCALE FACTOR
IN THE POTENTIAL WITH A STABLE
EQUILIBRIUM POINT

As commonly discussed [3-5], we consider the scalar
field ¢ discussed in the previous section to be the
cosmological field driving the inflation. If a is the
Universe scale factor, p, is vacuum energy density and
P, is pressure, the acceleration equation is

a 4zG
- = (pa +3Py). (13)

a 3c?

For now, we do not consider the contribution of matter to
(13) and will return to its effect later. We consider an
exact solution to an approximate version of the fuller
problem in a simple model. For the purpose of discussing
the evolution of field modes, we continue to consider the
field quantized in Minkowski spacetime and do not account
for the Hubble damping term. The largest contribution to
the vacuum energy comes from high-frequency modes with
wavelengths sufficiently short not to be affected by the
space curvature and to be within the horizon in the
proposed model.

The vacuum energy in Eq. (12) depends on wg which, in
turn, depends on external parameters (density and temper-
ature) and therefore on a. There are two factors contributing
to the dependence of wg on a: “bare” variation of wg due to
adiabatic expansion and the change of wg due to redshift.
The effect of the latter is readily known: wg ocﬁ [3]. In

order to study the “bare” dependence of wr on a, a)'}%are(a),
one needs to consider how the dynamics of quasiparticles ¢
in (9) changes during the adiabatic expansion of the
Universe. The precise form of @P(a) depends on the
potential’s form in Fig. 1 and is not generally known.
However, we can use the quasiparticle picture (see the
previous section) in which wg has the same dynamical
behavior for interacting fields and liquids. In liquids, wr. is
known to increase during the adiabatic expansion because 7
decreases along the adiabat. wg can be calculated as

wp =1 o, where we used the Maxwell relationship

between 7 and viscosity 7, 7 = Gt (G is infinite shear
modulus). We use the experimental data for supercritical Ar
from the National Institute of Standards and Technology
database [20] and consider the state points at constant
entropy because we are interested in the adiabatic expan-
sion. We used nearly equidistant temperature points in the
range 200-440 K and selected the corresponding density
and 7 at constant entropy. We note that a useful condition
for the system to be in the hopping regime below the
Frenkel line where Egs. (3)—(6) apply is ¢, > 2kg, where ¢,
is specific heat [12]. In agreement with this condition, c,
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FIG. 2. Inverse of viscosity versus - for liquid Ar along the

1

3

adiabat at constant entropy S = 80 J/(mol - K)). The data are
from [20]. The line shows the quadratic fit (R*> = 0.99996).

reported in the database at each state point is in the range
(2.03-2.43)kg.
In Fig. 2 we plot % as a function of the system linear size,

1 (here p is liquid density), for liquid Ar along the adiabat
p3

and observe a quadratic dependence. This implies
@™  a*. Together with wg o« 1 due to the redshift, this
gives wp « a.

Recalling that the vacuum energy density is given by
(12) and using wg « a, we rewrite (12) as

nen((E))

where m =n + 1.

In (14), po is the vacuum energy density at small a
(a < A,y or small wg, corresponding to the field mostly
oscillating in one well and rare jumps between different
wells. The increase of a to its maximal value a,,, gives
pa = 0, corresponding to Ey = 0 at g = @,y in (12). As
in (12), p, remains O for a > ap,,.

We note that varying energy components of the
cosmological field were discussed before (see, e.g.,
Refs. [8,21-24] and references therein). In these discus-
sions, the dynamical component is postulated in order to
account for the experimental data, or assumptions are made
about dynamics. Here, we find that varying vacuum energy
is a natural consequence of evolving field modes as a result
of self-interaction, as is the case for liquid modes. This
assertion follows once a generic double-well form of the
interaction potential is assumed. We also note that zero
vacuum energy emerges in other approaches due to
cancellation effects (see, e.g., Refs. [1,25]).

Using (14) in the equation for energy conservation,
Pa+3%(pa+Py) =0, gives 3Py = pom —pp(m+3)
(see [26]), and Eq. (13) becomes
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s (o) ) o

For a < ap,y, the right-hand side term in Eq. (15) is
nearly constant and positive, giving positive ¢ and inflating
de Sitter Universe. As a approaches a,,,y, the right-hand
side term in (15) and @ become negative. This is the result
of pressure P, becoming positive due to the reduction of
the vacuum energy when a approaches a,,, (see (14)). The

dynamics of a has a stable equilibrium point at @ = a.q =

Anax (m%rz)ﬁ where i = 0. The existence of the equilibrium
point and sign variability of ¢ holds for any number of field
components 7.

Below we consider a single-component scalar field ¢
discussed in inflationary theories [3]. For n = 1 (m = 2),

(14) and (15) read:

peno(2)) oo
() ) o

The equilibrium point a.q at which & =0 in (17) is

amax
Aeq = ok (18)
We rewrite (17) as
i=Ba-Cd (19)

with positive constants B = 8292 and € = 16z_Gn_
3 ¢ 3¢ Amax

We recognize (19) as the Duffing equation discussed in a
nonlinear theory as a common case study. The equation
with arbitrary B and C is solvable in terms of Jacobi elliptic
functions sn(z, k), cn(t,k) or dn(t,k), where k is the
modulus of the elliptic integral [27,28].

Equation (19) corresponds to the motion in an effective

. . . off
potential function U*(a), where & = — 1% (@)
a

Ba®* Ca*

Ut(a) = ———+— (20)

U (a) has a double-well form similar in shape to the
potential in Fig. 1. Since « is positive, the physical solution
at small enough energy corresponds to the periodic motion

in the right well of U®(a) where 0 < a < \/% = Gy

The solution is given by the delta amplitude elliptic
function dn:

a = Rdn(wt, k) (21)

where R, frequency w and modulus k depend on parameters
B, C and system’s energy [27].
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IV. COSMOLOGICAL IMPLICATIONS

As follows from (17), there are two parameters in the
model: py and a,,,,. More information about their range
will enable quantitative evaluations of quantities of interest
such as R, w and other properties. However, some quali-
tative insights can be discussed already.

The proposed picture predicts the oscillatory motion of
a. Hence, the current expansion with positive d is predicted
to be followed by ¢ < 0 and subsequent decrease of a. We
note that direct differentiation shows that for an elliptic
function such as dn(t,k), there is always a range of
arguments where both @ and d are positive, as is currently
observed.

An appealing feature of an oscillatory model is that,
contrary to other inflationary scenarios, it is not faced with
issues related to the beginning of space and time, predicting
the future of the Universe or invoking an antropic principle
[5]. We note that the oscillatory models of the Universe
were discussed before (see, e.g. [29,30] and references
therein), albeit with different underlying mechanisms. A
distinct feature of the proposed model is that it does not
need to involve very small length scales such as Planck or
string sizes where yet unknown physics operates. The
minimal value of a, a,;,, depends on the energy of the
system oscillating in (20) and can be large.

The expanding phase of the oscillatory motion with
d > 0 brings about the same benefits of inflation such as
commonly discussed flatness and isotropy [3-5]. The
minimal value of a, a,;,, depends on the energy of the

system oscillating in (20). For small enough energy, ;e‘_* is

large during the inflation phase.
The oscillatory behavior in this model is due to the
variation of p,(a) only and does not involve mass density
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pm(@). pu(a) < % can be added to the right side of the
acceleration equation (13) but its contribution is expected
to be small compared to p,(a) in (14) or (16) for large a.
We note that p,,(a) and p, (a) do not change independently
because both parametrically depend on a. However, we do
not expect to find the commonly discussed relationship
between p, and p,, [1] because it involves the assumption
of constant p,.

Another implication is related to the interpretation of
discrepancy between small experimental ¢ and large
vacuum energy estimated from the field theory, the dis-
crepancy discussed in the cosmological constant problem.
If, as is often assumed, p, is constant, p, = py, the
acceleration equation, %z —% po, implies that large p
gives large a [1]. This is not the case if p, is variable:
Eq. (17) shows that @ can be small even if p, is large.
Indeed, d in (17) remains small as long as « is close to its
equilibrium value a.q in (18) even though p, is large and
close to pg in (16) at and around a.q.

V. SUMMARY

We proposed a nonperturbative approach to strong field
interactions based on quasiparticles. This results in a
variable vacuum energy that depends on the state of the
system. If the field is related to inflation, the equation for a
has a stable equilibrium point, predicting the oscillatory
behavior of a and other cosmological effects.
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