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In this work, we propose a cosmological scenario inherently based on the effective Nambu–Jona-Lasinio
(NJL) model that cosmic inflation and dark matter can be successfully described by a single framework. On
the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI) and we show
that it is viable to achieve successful inflation via a nonminimal coupling to gravity. For model of inflation,
we compute the inflationary parameters and confront them with recent Planck 2015 data. We discover that
the predictions of the model are in excellent agreement with the Planck analysis. We also present in our
model a simple connection of physics from the high scales to low scales via renormalization group
equations (RGEs) of the physical parameters and use them to estimate the range of relevant parameters. On
the other hand, the pseudoscalar channel can be assigned as a candidate for composite dark matter (CD).
For a model of dark matter, we couple the pseudoscalar to the Higgs sector of the standard model with the
coupling strength κ and estimate its thermally averaged relic abundance. We discover that the CD mass is
strongly sensitive to the coupling κ. We find in case of light CD, Ms < Mh=2, that the required relic
abundance is archived for value of its mass Ms ∼ 61 GeV for κ ¼ 0.1. However, in this case the CD mass
can be lighter when the coupling is getting larger. Moreover, in case of heavy CD,Ms > MW;Z (or > Mh),
the required relic abundance can be satisfied for value of the CD mass Ms ∼ 410 GeV for κ ¼ 0.5. In
contradiction to the light mass case, however, the CD mass in this case can even be heavier when the
coupling is getting larger.
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I. INTRODUCTION

The observations convince us that the universe is nowa-
days dominated by unidentified forms of matter, called dark
matter (DM), and energy, called dark energy (DE). The
nature of dark matter conveys one of the unsolved problems
in physics and also dark energy is still the greatest cosmic
mystery. Weakly interacting massive particles (WIMPs) are
so far the leading particle candidate for DM, see [1] for
example. However, many other paradigms, including
superWIMPs, e.g. [2], light gravitinos and sterile neutrinos,
e.g. [3], are still possible to account for DM candidates.
Another prominent physics problem is cosmic inflation in
which the universe went through a period of extremely
rapid expansion. The inflationary paradigms [4–8] were
initially proposed to solve important issues, e.g. the
magnetic monopoles, the flatness, and the horizon prob-
lems, and simultaneously provide the mechanism for
generation of density perturbations as seed for the for-
mation of large scale structure in the universe. Nowadays,
an inflationary scenario is well established as an indispen-
sable ingredient of modern cosmology. Its predictions fit
very well with various experimental data, e.g. Planck

collaboration [9]. Traditionally, inflationary models were
so far modeled via the introduction of new (elementary)
scalar fields, e.g. Higgs inflation [10,11]. More interest-
ingly, the authors of, for example, [12,13] proposed models
in which inflation and dark matter can be described on the
same footing.
However, the elementary scalar field in field theories is

plagued by the so-called hierarchy problem. This problem
is commonly meant that quantum corrections generate
unprotected quadratic divergences which must be fine-
tuned away if the models must be true till the Planck scale.
One of the compelling scenarios to solve/avoid the hier-
archy problem involves a composite field of some strongly
coupled theories, e.g. technicolor, featuring only fermionic
matter, and therefore stable with respect to quantum
corrections. Therefore, in order to alternatively describe
nature, one can imagine that the scalar fields, e.g. the
inflaton and dark matter, need not be an elementary degree
of freedom. They can be considered as composite fields of
some fundamental fermions, which interact with each other
through some unknown forces. In the effective Lagrangian
description for light mesons, the Nambu-Jona-Lasinio
(NJL) model [14,15] is a time-honored example. Similar
scenarios can happen at high energy scales. Recently, the
authors of [16,17] engaged the gauged NJL model with
inflationary machinery in slow-roll approximation. The
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predictions of such model are also consistent with the
Planck 2015 data. Recent investigations also show that it is
possible to construct models in which the inflaton emerges
as a composite state of a four-dimensional strongly coupled
theory [18–20].
The aim of this work is to present a unified description of

inflation and dark matter in the context of the effective NJL
model. In order to achieve our unified scenario, we also
incorporate gravity in the NJL model in which the
interaction between gravitons and the fundamental fer-
mions induce a nonminimal coupling of the composite
scalar bosons Φ to gravity. In analogy with the NJL models
for light mesons, the bound states of the fundamental
fermions can be classified into scalar channel, pseudoscalar
channel and etc., and we will use scalar channel to describe
the inflaton and the pseudoscalar channel to describe the
dark matter, respectively. The composite scalar field is
heavy and decoupled from the low energy degrees of
freedom, e.g. the standard model particles, while the
pseudoscalar field, being a Goldstone mode of the chiral
symmetry of the fundamental fermions, is light (massless at
the chiral limit) and connected to the low energy physics. In
this sense both the pseudoscalar and the Higgs field are
messengers between the inflation scale and the electro-
weak scale.
This paper is organized as follows: In Sec. II, we take a

short recap of the NJL model with one flavor of some
fundamental fermions and then incorporate the effective
model to gravity. This inherently induces a nonminimal
coupling of the composite scalar sectors to gravity. In
Sec. III, we demonstrate how a NJL effective potential
emerges and propose a cosmological scenario that unifies
cosmic inflation and dark matter to a single framework. In
the same section, we show how a conformal transformation
shapes it to an inflaton-type potential. We then compute the
inflationary parameters and confront them with recent
Planck 2015 data. We present in our model a simple
connection of physics from the high scales to low scales
via renormalization group equations of the physical param-
eters and also estimate for model of dark matter the
thermally averaged relic abundance for both the light
and heavy CD masses. Discussions and conclusions are
given in the last section.

II. THE NAMBU–JONA-LASINIO
MODEL WITH GRAVITY

Various candidates of the fundamental fermions may
emerge in different circumstances. Let us stress once again
that the underlying description of models we are going to
discuss are formulated via the fundamental fermions.
Among them are listed as follows: In technicolor models,
a new strongly interacting gauge theory (technicolor) and
additional fundamental fermions (technifermions) are suc-
cessfully incorporated. A bilinear condensate of technifer-
mions in vacuum dynamically breaks the electroweak

symmetry and provides the gauge boson masses (see
Ref. [21] for a review). Moreover, the fundamental fer-
mions appear in the supersymetric model of particle
interactions (see Ref. [22] for a review). In addition,
Majorana fermions are also compelling candidates for
the fundamental ones and received much attention not
only in particle physics [23]. Recently, it is proposed in
Refs. [24,25] that new fundamental fermions (dark fer-
mions) can emerge in the standard model via a spin-charge
separation procedure. In the present paper we consider an
Nambu-Jona-Lasinio (NJL) model with one flavor of some
fundamental fermions ψ that may possibly be one (all) of
the candidates mentioned above:

L ¼ ψ̄iγ · ∂ψ þG½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�;

ðψ̄ψÞ2 ≡
�XNc

a¼1

ψ̄aψa

�2

; ð1Þ

where Nc is the number of hyper-colors and G is the NJL
coupling which corresponds to some new pairing force
at the scale Λ, the cutoff of the NJL theory. (Note that
there is the three-momentum cutoff scheme and the four-
momentum cutoff scheme, which will be discussed in the
next section.) Therefore the NJL model has a parameter set
consisting of ðG;Λ; NcÞ.
Following the usual bosonization procedure [26–28], we

introduce two real scalar fields φ and S through

Φ ¼ ReΦþ iImΦ≡ 1ffiffiffi
2

p ðφþ iSÞ; ð2Þ

and they will be connected to the scalar channel and the
pseudoscalar channel of the NJL model, respectively. The
scalar field φ will play the role of the inflaton and the scalar
field S will be considered as a candidate for dark matter.
This is not unusual in the sense that one of the dark matter
candidates, axion, is also a pseudoscalar. Note that this does
not mean that all dark matter comes from the pseudoscalar
channel. In Ref. [29], two Majorana spinors are also
introduced. However, in the present paper we will focus
on these two scalar fields and leave the Majorana spinors
for further investigation. With the help of the field Φ the
NJL Lagrangian can be expressed as

LNJL ¼ ZΦ∂μΦ∂μΦ� − VeffðΦ;Φ�Þ
þ ψ̄ ½iγμ∂μ − ðReΦþ iγ5ImΦÞ þ � � ��ψ : ð3Þ

where we only give explicitly the scalar channel and
pseudoscalar channel for an one-“flavor” case. As it will
be shown later, ReΦ and ImΦ are related to the bilinear
expressions of the constituent fermions ψ̄ψ and iψ̄γ5ψ ,
respectively, and the effective potential VeffðΦ;Φ�Þ can be
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calculated via the bosonization procedure which will be
given in the next section. The kinetic term ∂μΦ∂μΦ�

emerges due to renormalization effect and ZΦ is the
wave-function renormalization constant. At high scales
μ → Λ, we require that

ZΦ → 0; when μ → Λ; ð4Þ

hence Φ is not a dynamical field any more at high scales
close to the NJL cutoff Λ and one can integrate it out
through its equation of motion to reproduce the NJL four-
fermion interaction, since

Φ ¼ 1

M2
G
ψ̄RψL ¼ Gψ̄RψL; ð5Þ

where we have defined a mass scale M2
G ¼ 1=G and chiral

fermions ψR;L ¼ 1=2ð1� γ5Þψ . Near the scale M2
G the

Lagrangian in (3) is equivalent to the NJL one. When the
scale decreases such that μ ≪ MG, the field Φ becomes
dynamical (See for example Ref. [30] for details using the
renormalization group analysis). There will also be dynami-
cal masses for the composite particles and constituent
fermions. Roughly speaking, the mass of the “sigma” field
φ and the “pion” field S are related via

m2
φ ¼ 4mþm2

s ; ð6Þ

where m is the dynamical mass of the constituent fermion,
satisfying the gap equation [26,27]

m ¼ −2Ghψ̄ψi þm0 ¼ i2GNcTrSψ þm0 ð7Þ

withm0 being the “current”mass of the constituent fermion
and Sψ its propagator. At the chiral limit (m0 → 0) the
“pion”modes are Goldstone one with vanishing mass so we
have

mφ ¼ 2m: ð8Þ

In our case, if mφ is huge, say ∼1013 GeV, then the
dynamical mass generated for the constituent fermions,
whatever they are, would also be the same order of
magnitude, while the Goldstone modes could gain small
masses ms, say ms ∼ 100 GeV to ∼TeV, hence might be
dark matter candidate as shown in [29]. Note that the cutoff
Λ of our NJL inflation model could be the grand unified
theory (GUT) scale ∼1016 GeV.
Now we consider to incorporate gravity in the NJL

model by placing it in some curved spacetime background
with small gravitational fluctuations. The quanta of these
fluctuations, gravitons, interact with the fundamental fer-
mions and the absorption and emission of gravitons induce
a nonminimal coupling of the composite scalar bosons Φ to
gravity, as shown by Hill and Salopek [30] (see Fig. 1)

−ξRΦ†Φ; ð9Þ

where R is the Ricci scalar and ξ is a coupling constant.
They also found that ξ ¼ −1=6 is an attractive renormal-
ization group fixed point using the usual fermion bubble
approximation (or random phase approximation). This is an
interesting result since it has been well-known that ξ ¼
−1=6 coupling to gravity is conformal. A large nonminimal
coupling is required in the Higgs-inflation scenario,
ξ ∼ 104. Nevertheless, as suggested in Ref. [30], if ξ is a
running constant, its value at the NJL cutoff scale Λ, ξðΛÞ
might be large and then evolves toward ξ ¼ −1=6 at low
energies. One could also add other dimension 4 terms like
R2; RμνRμν, etc., but they lead to terms with higher
derivatives in the equations of motion and therefore, as
also mentioned in Ref. [11], there exist additional degrees
of freedom which should be dealt with in some special way.
However, we do not consider such extensions in the present
analysis. In our model we consider large-ξ cases for the
composite scalar and hence there is no conformal coupling
region for the Φ field. We will also include the nonminimal
coupling of the Higgs field to gravity (with coupling
constant ξh). As it will be shown in the renormalization
group analysis, even it is set to be zero at the electroweak
scale, ξh will become nonvanishing at high scales. The

FIG. 1. From left to right: the first two diagrams shows how the ZΦ and λ are induced by the fermion loops, respectively, hence how the
Eq. (3) is obtained. The third diagram shows how the nonminimal coupling ξΦ†ΦR is induced by inserting the graviton. The solid lines
indicate the fundamental fermion, the dashed lines are for the composite Φ field and the wavy line for the graviton. (The diagrams are
reproduced from [30]).
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nonminimal coupling (9) leads to couplings of the scalars φ
and S to the Ricci scalar

−
ξ

2
Rφ2; −

ξ

2
RS2: ð10Þ

Note that this is different from the Higgs-inflation models.
Let us take the model in Ref. [12] as an example.
Although both terms are considered in Ref. [12], they
come from different sources—the inflaton comes from the
Higgs doublet and the dark matter scalar is included by
hand, hence their couplings to the Ricci scalar do not have
to be the same. In our model we use one parameter ξ for
describing the nonminimal coupling of both inflaton φ
and dark matter scalar S to gravity, another parameter ξh
for the nonminimal coupling of the Higgs field to gravity
and ξ ≫ ξh. Nevertheless, similar to the Higgs-inflation
models, the nonminimal coupling −ξRφ2=2 makes it
possible for the NJL effective potential to successfully
drive cosmic inflation. In the next section we will
demonstrate how an NJL effective potential emerges
and how a conformal transformation shapes it to an
inflaton-type potential.
Note that in the Lagrangian (3) one can add a gauge

field to make the derivative covariant with respective to
some internal gauge symmetry. This has already been
considered in Refs. [16,17] for composite inflation
models. The gauged NJL models are more general in
the sense that it can always reduce to the ungauged
cases by switching off the gauge coupling constant.
Nevertheless, it is not clear whether the gauge field
should be included as a necessary ingredient. For instance
the binding force for the fermions might be something
else, not a gauge field; Also in the present work, for
incorporating composite dark matter purpose, we do not
intend to introduce extra gauge couplings. The gauged
NJL model certainly has more degrees of freedom, but the
question is whether it gives more model flexibility or
dangerous physical processes, like unwanted coupling/
decaying channels for dark matter (due to the possible
coupling between the gauge field and dark matter). Even
in the QCD case, phenomenologically a gauged NJL
model does not seem to add much to the ungauged
one [26,27]—the electromagnetic fields generated in
heavy-ion collisions are too weak to affect the chiral
symmetry breaking [27]; For color electric and magnetic
fields, they might be relevant in addressing confinement
and topological charge problems [31,32]. However,
whether the composite inflation (and dark matter) model
should have confinement or not is unknown. Therefore
in the present paper we will be satisfied if the NJL model
with the simplest configuration is consistent with exper-
imental observations, and refer to Refs. [16,17] (on
inflation) for the gauged NJL studies and leave them
to future investigations (on inflation and dark matter).

III. A COMPOSITE MODEL FOR INFLATION
AND DARK MATTER

The effective Lagrangian of NJL models can be calcu-
lated via the path integral approach (for a review, see e.g.
[28]). The generating functionalZ of the NJL model can be
used to identify an effective Lagrangian through

Z¼
Z

½DψDψ̄ �ei
R
d4xLNJL →

Z
½DφDS � � ��ei

R
d4xLeff ð11Þ

where the ellipsis stands for the other collective “meson”
fields. (see a review on the NJL in curved spacetime [33].)
This bosonization procedure starts with replacing the NJL
four-fermion interaction by a Yukawa-type coupling at the
tree level, with the help of an auxiliary complex scalar Φ

Φ ¼ 1

M2
G
ψ̄RψL ¼ Gψ̄RψL: ð12Þ

The action now becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLR −M2
GΦ

†Φ

þ ψ̄ ½iγμð∇μ − ðReΦþ iγ5ImΦÞ�ψ þ � � �
�

ð13Þ

The kinetic term of the Φ field will be introduced later. At
this stage (or scales close to the NJL cutoff Λ), the field Φ is
an auxiliary field instead of a dynamical one. One can
integrate it out through its equation of motion and repro-
duce the NJL four-fermion interaction in the curved space.
Near the scale M2

G the Lagrangian in (13) is equivalent to
the NJL one. When gravity is involved, the fermion loop
will induce a coupling between the curvature term R and
the field Φ (see the third diagram in Fig. 1),

−ξRΦ†Φ; ð14Þ

where the coefficient ξ was found to be the conformal one
(ξ ¼ −1=6) in Ref. [30] but we will consider more general
cases and treat ξ as an arbitrary parameter. Now we have the
relevant ingredients of the composite field Φ for our
investigation:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLR − ξR

�
Φ†Φ −

v2

2

�

þ gμν∂μΦ∂νΦ† − VeffðΦ†;ΦÞ
�

ð15Þ

where we have included an effective potential for the scalar
field Φ, which is simply a Higgs-type one

VeffðΦ†;ΦÞ ¼ −μ20Φ†Φþ 1

2
λðΦ†ΦÞ2; ð16Þ
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and the mass term M2
GΦ

†Φ has been absorbed into the
effective potential. The fact that the effective Lagrangian
(15) can be derived from an NJL model demonstrates a
strong resemblance to the relation between the Ginzburg-
Landau phenomenological model and the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [27]—the
Ginzburg-Landau theory can be derived as an effective
model from the more fundamental BCS theory. Here we
follow a more explicit derivation of the Higgs-type poten-
tial from Ref. [28], based on the bosonization procedure to
obtain the composite fields φ and S. The effective
Lagrangian of Φ was obtained in terms of real scalar fields
φðxÞ and SðxÞ (writing ΦðxÞ ¼ φðxÞ þ iSðxÞ)

Leff ¼
1

2
∂μφ∂μφþ 1

2
∂μS∂μS −

1

2
m2

φφ
2 −

1

2
m2

sS2

− gφssφðφ2 þ S2Þ − g4sðφ2 þ S2Þ2 ð17Þ

where the masses and coupling constants are found to be
[28]

m2
s ¼ m0

g2sψψ
mG

; m2
φ ¼ m2

s þ 4m2;

g2sψψ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
NcI2

p ; gφss ¼
mffiffiffiffiffiffiffiffiffiffi
NcI2

p ; g4s ¼
1

8NcI2
;

ð18Þ

where g4s will be identified with λ, i.e. g4s ¼ λ=2 and the
integral I2ðΛ; mÞ is given by

I2 ¼ −i
Z

Λ

0

d4k
ð2πÞ4

1

ðk2 −m2Þ2 : ð19Þ

The trilinear terms gφssφðφ2 þ S2Þ complicate the story.
For simplicity we introduce a discrete symmetry Z2 for the
inflaton field φ:

φ → −φ ð20Þ

under which the Lagrangian is asked to be invariant. This
allows us to remove the tri-linear couplings. Similarly when
the couplings to the Higgs particle are concerned, one can
also impose a Z2 symmetry on the S field to forbid the
decay channel S → HH.
The action (15) can basically be recast in terms of the

component fields φ and S:

SNJL ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLRþ 1

2
gμν∂μφ∂νφ

þ 1

2
gμν∂μS∂νS −

ξR
2

�
φ2 þ S2 −

v2

2

�

−
1

2
m2

φφ
2 −

1

2
m2

SS
2 −

1

2
λðφ2 þ S2Þ2

�
: ð21Þ

To connect with the standard model at the electroweak
scale, we need to take into account the couplings between
the Φ field and the standard model particles such as the
Higgs fields. There could be some unknown couplings
between the fundamental fermion fields ψ and the Higgs
fields. For instance in Ref. [24,25] it has been suggested
that the leptons can be considered as bound states of some
fundamental fermions and Higgs fields (Bose-Fermi mix-
ture), while the pairing of the fundamental fermions leads
to the dark matter. Therefore it is reasonable to include a
coupling

−κΦ†ΦH†H ¼ −
1

4
κðφ2 þ S2Þh2 ð22Þ

to describe how the composite scalar Φ interacts with the
standard model HiggsH ¼ 1ffiffi

2
p ð0; hþ v0ÞT (unitary gauge).

Furthermore one can write down the Higgs potential and its
possible couplings with the Ricci scalar,

λh

�
H†H −

v20
2

�
2

¼ 1

2
m2

hh
2 þ

ffiffiffiffiffi
λh
2

r
mhh3 þ

1

4
λhh4;

− ξhH†HR ¼ −
1

2
ξhh2R; ð23Þ

where inflation models based on the nonminimal couplings
of the Higgs field and a real or complex scalar field to the
Ricci scalar, respectively, have been studied inRefs. [12,13].
In thesemodels the role of darkmatter is played by the real or
complex scalar field (gauge singlet). Similar to Ref. [13], we
will focus on inflation along the “φ-direction” in which the
nonminimal coupling between the composite fields and
gravity dominates over the nonminimal coupling for the
Higgs field (ξ ≫ ξh).

A. Composite inflaton (CI) from the NJL

Notice that both φ and S has the same (nonminimal)
coupling, ξ, to gravity. At very high energy scale, the mean
field of S is very small compared with that of the field φ.
Another word of saying, the field S is supposed to be a
massless mode at very high energy scale. Therefore in order
to examine the model of inflation, we can now suppress the
contribution from S and consider the φ dynamics only.
Therefore the action describing the model of inflation in the
Jordan (J) frame reads

SJ
CI ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLRþ 1

2
gμν∂μφ∂νφ

−
ξR
2

�
φ2 −

v2

2

�
− VeffðφÞ

�
;

VeffðφÞ ¼ −
1

2
m2

φφ
2 þ 1

2
λφ4: ð24Þ
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It was noticed so far in the framework of Higgs-inflation
investigated in Ref. [10] that the nonminimal coupling (ξ)
of the Higgs doublet field (H) to gravity, i.g. ∼ξH†HR, has
the salient feature. The reason resides in the fact that a
nonzero value of ξ is needed since for ξ ¼ 0 an unaccept-
ably large amplitude of primordial inhomogeneities is
generated for a realistic quartic Higgs self-interaction term
[11]. Specifically, it was found in [10] that with ξ of the
order 104 the model leads to successful inflation and
produces the spectrum of primordial fluctuations in good
agreement with the observational data.
Due to the presence of the nonminimal coupling term

phenomenologically introduced, it is more convenient to
diagonalize into another form by applying a conformal
transformation. This allows us to rewrite the action as
minimally coupled but with a new canonically normalized
field. Hence the conformal transformation can be basically
implemented by making use of the following replacement:

~gμν ¼ Ω2gμν ¼
�
1þ ξðφ2 − v2=2Þ

M2
PL

�
gμν: ð25Þ

Thus the action in (24) becomes the Einstein-frame
(E) form:

SE
CI ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLRþ 1

2
Ω−4

�
Ω2 þ 6ξφ2

M2
PL

�

× gμν∂μφ∂νφ −UeffðφÞ
�
; ð26Þ

where

Ω2 ¼
�
1þ ξðφ2 − v2=2Þ

M2
PL

�
and UeffðφÞ≡Ω−4VeffðφÞ:

ð27Þ

However, the transformation leads to a noncanonical
kinetic term for the scalar field. It is convenient to put
in a canonical form by introducing a new canonically
normalized scalar field χ satisfying the relation

1

2
gμν∂μχðφÞ∂νχðφÞ ¼

1

2

�
dχ
dφ

�
2

gμν∂μφ∂νφ; ð28Þ

where

χ0 ¼
�
dχ
dφ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω−4

�
Ω2 þ 6ξφ2

M2
PL

�s
: ð29Þ

It is noticed that, for small field value, i.e. ξφ2 ≪ M2
PL, the

potential for the field χ is the same as that of the original

field, φ. However, it is not the case for large value of the
field, i.e. ξφ2 ≫ M2

PL. In the latter case, we find the solution
of φ written in terms of the field χ as

φ≃MPLffiffiffi
ξ

p exp
�

χffiffiffi
6

p
MPL

�
: ð30Þ

The effective potential UeffðχÞ has the form

UeffðχÞ≃ λM4
PL

2ξ2

�
1þ exp

�
−

2χffiffiffi
6

p
MPL

��
−2
; ð31Þ

where we have also imposed the limit in which the field is
far away from the minimum of its potential such that
ξv2 ≪ M2

PL. In the limit of φ2 ≫ M2
PL=ξ ≫ v2, the slow-

roll parameters [34] in the Einstein frame can be expressed
as functions of the field φðχÞ:

ϵ ≔
M2

PL

2

�
dUeff=dχ

Ueff

�
2

¼ M2
PL

2

�
U0

eff

Ueff

1

χ0

�
2 ≃ 4M4

PL

3ξ2φ4
;

η ≔ M2
PL

d2Ueff=dχ2

Ueff
¼ M2

PL
U00

effχ
0 − Ueffχ

00

Ueffχ
03 ≃ −

4M2
PL

3ξφ2
;

ζ ≔ M4
PL

ðd3Ueff=dχ3ÞdUeff=dχ
U2

eff

≃ 16M4
PL

9ξ2φ4
; ð32Þ

where “ 0” denotes the derivative with respect to φ. Notice
that the results we obtained here are approximately the
same for those of inflationary model driven by the SM
Higgs boson [10]. Slow-roll inflation terminates when
ϵ ¼ 1, so the field value at the end of inflation reads
φend ≃ ð4=3Þ1=4MPL=

ffiffiffi
ξ

p
. The number of e-foldings for the

change of the field φ from φN to φend is given by

N ¼ 1

M2
PL

Z
χN

χend

Ueff

dUeff=dχ
dχ

¼ 1

M2
PL

Z
φN

φend

Ueff

dUeff=dφ

�
dχ
dφ

�
2

dφ

≃ 6ξ

8M2
PL

ðφ2
N − φ2

endÞ; ð33Þ

where φN represents the field value corresponding to the
horizon crossing of the observed CMB modes. After
substituting φend into the above relation, we obtain φN ≃
9MPL=

ffiffiffi
ξ

p
for N ¼ 60. To generate the proper amplitude of

the density perturbations, the potential must satisfy the
COBE renormalization Ueff=ϵ≃ ð0.0276MPLÞ4 [11].
Inserting (27) and (33) into the COBE normalization, we
find the required value for ξ
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ξ≃
ffiffiffiffiffi
2λ

3

r
N

ð0.0276Þ2 : ð34Þ

To the lowest order in 1=ξ, the amplitude of the power
spectrum for the curvature perturbations As reads

As ≔
Ueff

24π2M4
PLϵ

≃ λN2

36π2ξ2
≃ 2.2 × 10−9; ð35Þ

and the spectral index of curvature perturbation ns and its
running n0s, and the tensor-to-scalar ratio r are given in
terms of the e-foldings N:

ns ≔ 1 − 6ϵþ 2η≃ 1 −
2

N
−

9

2N2
;

n0s ≔ dns=d ln k≃ −
2

N2
−
12

N3
−

27

2N4
;

r ≔ 16ϵ≃ 12

N2
: ð36Þ

Here we compared our results with the recent Planck
measurement by placing the predictions in the (r − ns)
plane with different values of e-folds, N, illustrated in
Fig. 2. We find that in order to lie within 1σ C.L. of Planck
2015 contours the number of e-folds should satisfy
48≲ N ≲ 75. For example, we obtain from Eqs. (34)
and (36) that ξ ∼ 64; 000

ffiffiffi
λ

p
; ns ≃ 0.966 and r≃ 0.0033

for N ¼ 60 e-folds. From Fig. 2, we find for this model that
the running of the scalar spectral index does not signifi-
cantly change as a function of ns. Considering Eq. (34)
allows us to demonstrate the nonminimal coupling ξ
dependence on the self-coupling λ for different values of
the e-foldings N illustrated in Fig. 3.
It would be a great deal of interest in relating the self-

coupling λ with the parameters from the NJL model, e.g.

the cutoff Λ and the number of color Nc. To begin with, we
start by using the results given in Ref. [28] and we find for
this work

g4s ¼
λ

2
¼ 1

8NcI2
; ð37Þ

where

I2 ¼ −i
Z

Λ d4k
ð2πÞ4

1

ðk2 −m2Þ2 ; with m2
φ ¼ m2

s þ 4m2:

ð38Þ

After performing the above integration, then cosmological
parameters can be rewritten in terms of the NJL informa-
tion. Notice that, however, there are two different cutoff
schemes [26,27]: the 3-momentum cutoff scheme (3MCS)
and the 4-momentum cutoff scheme (4MCS). Hence, from
Eq. (38) we find

FIG. 2. Left panel: We compare the theoretical predictions in the ðr − nsÞ plane for different values of e-folds N with Planck015 results
for TT, TE, EE, þlowP and assuming ΛCDMþ r [9]; Right panel: Marginalized joint 68% and 95% C.L. for (ns; dns=dlnk) using
Planck TTþ lowP and Planck TT, TE, EEþ lowP. For comparison, Fig. 2 shows the predictions for this model with (from left to right)
N ¼ ½40; 100� [9].

FIG. 3. This figure shows the nonminimal coupling ξ depend-
ence on the self-coupling λ for different values of the e-foldingsN.
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I2¼

8>>><
>>>:

1
16π2

�
− Λ2

Λ2þm2þ ln

�
1þ Λ2

m2

��
; for the4MCS;

1
8π2

�
− Λ3ffiffiffiffiffiffiffiffiffiffiffi

Λ2
3
þm2

p þ ln

�
Λ3þ

ffiffiffiffiffiffiffiffiffiffiffi
Λ2
3
þm2

p
m

��
: for the3MCS:

ð39Þ

If Λ ≫ m, and Λ3 ≫ m, then in both schemes we obtain the
same result

I2 ≈
1

8π2
ln

�
Λ
m

�
; ð40Þ

and hence the relation between λ and the NJL parameters

λ ≈
2π2

Nc ln Λ
m

ð41Þ

where we have used a relation from Ref. [26]
Λ2
3 ¼ ðΛ=2Þ2 −m2. Here we interpret Λ as the scale of

inflation. Commonly, it is expected to be the GUT energy
scale, Oð1016Þ GeV. Our predictions of the dependence of
the self-coupling constant λ on Nc for the 3- and 4-
momentum cutoff schemes for different values of m and
Λ can be illustrated in Fig. 4 (for the 3MCS) and in Fig. 5
(for the 4MCS), respectively. From these figures one can
see that when the dynamical mass m is much less than the

cutoff scale, there is no much difference using either 3MCS
or 4MCS as it can be seen from Eq. (41), while the values of
λ become significantly different when the dynamical mass
m is close to the cutoff scale. Taking the cases with
m ¼ 1014 GeV as an example, we find that λ ≈ 7.5 forNc ¼
2;Λ ¼ 1015 GeV in the 3MCS while λ ≈ 5.5 for Nc ¼
2;Λ ¼ 1015 GeV in the 4MCS. Therefore one should be
aware of the momentum cutoff scheme when the dynamical
mass is not very far below the cutoff scale. Also it is worth
noting thatwhenNc ismuch greater than unity ðNc ≫ 1Þ the
self-coupling evolves to zero in both schemes.

B. Composite dark matter (CD) from the NJL

In the previous section we have shown that the
composite scalar φ can play the role of inflaton and hence
we inherently obtain a composite inflation model via an
NJL formulation. As to this point our model is similar to
other composite models (e.g. Ref. [16,17]), however, the
key points of our model are: First, we keep the composite
pseudoscalars as candidates for dark matter; Second, the
composite scalar does NOT have to be the Higgs boson and
hence, the dominating Yukawa-type coupling comes from
the NJL four-fermion interaction, not the Yukawa coupling
of the Higgs boson and the top quark in the standard model
as in Ref. [12]. Let us recall the action given in Eq. (21) and
add the Higgs sector

FIG. 4. The self-coupling λ dependence on Nc with the 3-momentum cutoff scheme ðλ ≔ λ3Þ for different values of the NJL
parameters m and Λ, based on the 3MCS case of Eq. (39).
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SCD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLRþ 1

2
gμν∂μφ∂νφþ 1

2
gμν∂μS∂νS −

ξsR
2

�
φ2 þ S2 −

v2

2

�

−
1

2
m2

φφ
2 −

1

2
m2

SS
2 −

1

2
λðφ2 þ S2Þ2 þ gμν∂μH†∂νH

− ξhRH†H − λh

�
H†H −

v20
2

�
2

−
1

2
κðφ2 þ S2ÞH†H þ L̄SM

�
; ð42Þ

where other terms in the standard model are included in L̄SM. We have added a subscript s for ξ, i.e. ξ ¼ ξs, to distinguish
from the nonminimal coupling of the Higgs field to gravity, ξh. Now we consider the physics below the inflation scale and
how it is connected to the electroweak theory. Integrating out the heavy field φ, we obtain

Seff ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
M2

PLRþ 1

2
gμν∂μS∂νS −

1

2
ξsRS2 −

1

2
m2

SS
2 −

1

2
λS4

þ gμν∂μH†∂νH − ξhRH†H − λh

�
H†H −

v20
2

�
2

−
1

2
κS2H†H þ L̄SM þO

�
1

m2
φ

��
; ð43Þ

where the term Oð1=m2
φÞ includes interactions suppressed

by a factor of m2
φ. From (43) it is easy to see that the

“dark pion” field S naturally appears as one of the
messengers between the physics at the inflation scale
and the physics at the electroweak scale. The Higgs field
can be considered as another messenger, as it couples
to both the inflaton φ and other standard model fields.

To describe the physics from high scales to low scales
we need to study the renormalization group equat-
ions (RGEs) of the physical parameters in our model.
At the one-loop level, the RGEs of the coupling
(λh; κ; λ; ξs; ξh; g1; g2; g3; yt) (g1, g2, g3 are gauge cou-
plings of the standard model and yt is the Yukawa
coupling of the top quark) [12,13]

FIG. 5. The self-coupling dependence on Nc with the 4-momentum cutoff scheme ðλ ≔ λ4Þ for different values of the NJL parameters
m and Λ, based on the 4MCS case of Eq. (39).
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ð4πÞ2 dg1
dt

¼ 1

12
g31ð81þ chÞ;

ð4πÞ2 dg2
dt

¼ −
1

12
g32ð39 − chÞ;

ð4πÞ2 dg3
dt

¼ −7g33;

ð4πÞ2 dyt
dt

¼ yt

��
23

6
þ 2

3
ch

�
y2t − 8g23 −

17

12
g21 −

9

4
g22

�
;

ð4πÞ2 dλh
dt

¼ ð6þ 18c2hÞλ2h − 6y4t þ
3

8
½2g42 þ ðg21 þ g22Þ2�

þ ð12y2t − 3g21 − 9g22Þλh þ 2c2sκ2;

ð4πÞ2 dκ
dt

¼ κ

�
4chcsκ þ 6ð1þ c2hÞλh þ 6c2sλ

−
3

2
ð3g22 þ g21Þ þ 6y2t

�
;

ð4πÞ2 dλ
dt

¼ 18c2sλ2 þ
1

2
ð3þ c2hÞκ2; ð44Þ

where t≡ lnðμ=mtÞ and μ is the renormalization scale
(mt ≈ 173 Gev is the top quark mass), and ch, cs are the
suppression factors for the Higgs and the S field, respec-
tively. They are brought in by the nonminimal coupling to
the Ricci scalar and introduce a modification to the Higgs
and the S field propagators, respectively. To see how this
happens one may use the effective action (43) to write the
Einstein equation and the equations of motion for the Higgs
and the S field, respectively, and then combine them to
identify the suppression factors (see e.g. [12]. Other
approaches, say considering commutation relation in both
Jordan and Einstein frames yields the same result [13]).
To complete the RGEs we have to include the running of

the nonminimal couplings ξh and ξs, [12,13]

ð4πÞ2 dξs
dt

¼
�
ξs þ

1

6

�
6csλþ

�
ξh þ

1

6

�
ð3þ c2hÞκ;

ð4πÞ2 dξh
dt

¼
�
ξh þ

1

6

��
6ð1þ c2hÞλh þ 6y2t −

3

2
ð3g22 þ g21Þ

�

þ
�
ξs þ

1

6

�
csκ: ð45Þ

Interestingly, the behavior of the scalar-gravitational cou-
pling constant ξðtÞ of the class of gauge-Higgs-Yukawa
models and the gauged Nambu-Jona-Lasinio (NJL) model
was so far discussed in Refs. [35,36]. In our case, inflation
is driven by the composite scalar φ, not the Higgs field H,
and correspondingly the suppression factors ch and cs are
chosen to be

ch ¼ 1;

cs ¼
1þ ξsS2=M2

PL

1þ ð1þ 6ξsÞξsS2=M2
PL

¼ 1

1þ 6ξs
1

1þM2
PL=ξsS

2

; ð46Þ

respectively, and it is easy to see that

cs ≈ 1; when ξsS2 ≪ M2
PL; cs ≈

1

1þ 6ξs
; when

ξsS2 ≫ M2
PL; ð47Þ

hence we know that cs ≈ 1 at low scales and drops to
zero at high scales, since from the inflation constraints
ξs ∼Oð104Þ for λ ∼ 0.5 (see Fig. 3).
A complete numerical study of the above RGEs will be

done in a separate publication [37]. Here we use these
RGEs to estimate the range of the parameters. Let us start
with the RGE of ξs,

ð4πÞ2dξs
dt

¼
�
ξsþ

1

6

�
6csλþ

�
ξhþ

1

6

�
4κ≈6csξsλ; ð48Þ

where we have used the assumption that ξs ≫ ξh and
ξs ≫ 1=6. It can be rewritten as

d ln ξs
dt

≈
3

8π2
csλ ð49Þ

which leads to an approximate solution (with an initial
value ξsjt¼0 ¼ ξ0s)

ξsðtÞ ≈ ξ0se
R

t 3

8π2
csλdt0 : ð50Þ

Next we look at the RGE of λ. Since λ and κ are at the same
order,

ð4πÞ2 dλ
dt

¼ 18c2sλ2 þ 2κ2 ≈ 18c2sλ2: ð51Þ

We use a step-function to describe the profile of the
suppression factor cs, i.e.

csðtÞ ¼
�
1 when t ≤ ts
0 when t > ts

ð52Þ

where ts is the scale indicating some new physics or a new
phase for the scalar field S, e.g. a strongly coupled phase
which reflects that it is getting closer to the composite scale.
By asking the new composite sector to be responsible for
this new physics or new phase, instead of the Higgs sector,
our model is less constrained than the Higgs inflation
models and naturally contains a strongly coupled phase.
This is similar to the study on extending the standard model
with the fourth generation [38,39], where the constituent
fermions are the fourth generation quarks and leptons and
their bound states yield extra scalars, but the Higgs field is
unconstrained and the strongly coupled phase only happens
to the fourth generation fermions. Of course one can
smooth out the step-function behavior of the suppression
factor cs by using csðtÞ ¼ 1=½1þ eαðt−tsÞ�; ðα > 0Þ.
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However, Eq. (52) is good enough for the estimate purpose.
With an initial value λjt¼0 ¼ λ0, the above equation gives

λðtÞ ≈ λ0
1 − 9λ0

8π2
t
; for t ≤ ts ð53Þ

Plugging into Eq. (50) we obtain

ξsðtÞ ≈ ξ0se
−1
3
ln ð1−9λ0

8π2
tÞ ¼ ξ0s

�
1 −

9λ0
8π2

t

�
−1
3

; for t ≤ ts:

ð54Þ
Taking λ0 ¼ 0.2 and ts ¼ 27 (in comparison with [12,13]),
we find the value of ξs at t ¼ ts is

ξsjt¼27 ≈ 1.4ξ0s : ð55Þ
Now we consider the RGE for ξh

ð4πÞ2 dξh
dt

¼
�
ξh þ

1

6

��
12λh þ 6y2t −

3

2
ð3g22 þ g21Þ

�

þ
�
ξs þ

1

6

�
csκ ≈ ξscsκ; ð56Þ

which leads to an approximate solution

ξh ¼
1

16π2

Z
t

0

ξsðt0Þcsκðt0Þdt0 ð57Þ

with an initial condition that ξhjt¼0 ¼ 0. The RG-running of
the coupling κ is more difficult to estimate since the
β-function of κ contains terms with different signs and
those terms are at the same order Oð1Þ (with coefficients
multiplied). Here we assume that κ is a slow-changing
parameter and use its average, κ̄ to replace κðt0Þ in the above
integral,

ξh ≈
ξ0s κ̄

18λ0

�
1 −

�
1 −

9λ0
8π2

t

�2
3

�
; for t ≤ ts: ð58Þ

Therefore we find the ratio

ξh
ξs

≈
κ̄

18λ0

��
1 −

9λ0
8π2

t

�1
3

−
�
1 −

9λ0
8π2

t

��
; for t ≤ ts:

ð59Þ
For κ̄ ≈ λ0 ¼ 0.2 and ts ¼ 27, we obtain that ξh ≈ 0.019ξs.
Therefore we find that even we impose the initial condition
that ξhjt¼0 ¼ 0, it will evolve to some nonvanishing value at
high-scales, although still being dominated by the ξs
coupling. It is important that the RG-running of ξh does
not spoil our assumption on the dominance of the
composite inflation over the Higgs inflation.

C. CD Relic abundance

Nowadays the physical properties of the Higgs sector in
the standard model are very accurate. This in general allows

us to couple any additional sector to the Higgs one in a
unique way. Here in the present work we examine physical
parameters/constraints of the model of DM by coupling the
field S to the Higgs sector. What we are going to discuss
below is similar to the Higgs-portal paradigms, see
Ref. [40] for example, which contain the coupling constant
between two Higgs bosons and two new scalars. This is
what we have in Eq. (43). We find from Eq. (43) the
physical mass of the dark matter scalar S:

Ms ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s þ κv20=2
q

with v0 ¼ 246 GeV: ð60Þ

In order to determine the relic density of Ms in the vicinity
of the resonance at center of mass energy s ¼ 4M2

s, it is
essential to figure out the thermally averaged annihilation
cross section as a function of x ¼ Ms=T given by [41,42]

hσvreliðxÞ ¼
x

16M5
SK

2
2ðxÞ

Z
∞

4M2
s

s3=2σvrel

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
s

s

r
K1

×

� ffiffiffi
s

p
Ms

x

�
ds ð61Þ

in terms of the modified Bessel functions of the second
kind K1;2, and to solve the Boltzmann equation for the relic
abundance [43]. In the present work, we will consider
the tree-level processes contributing to S annihilation via
SS → fff̄;WW; ZZ; hhg with f being a standard model
fermion and estimate hσvreli by the center-of-mass cross
section for nonrelativistic S annihilation. The correspond-
ing hσvreli read [13,44]:

hσvreliff̄ ¼ M2
W

πg2
κ2ðMf=v0Þ2

ðð4M2
s −M2

hÞ2 þM2
hΓ2

hÞ
�
1 −

M2
f

M2
s

�
3=2

;

hσvreliWW ¼ 2

�
1þ 1

2

�
1 −

2M2
s

M2
W

�
2
��

1 −
M2

W

M2
s

�
1=2

×
κ2M4

W

8πM2
sðð4M2

s −M2
hÞ2 þM2

hΓ2
hÞ
;

hσvreliZZ ¼ 2

�
1þ 1

2

�
1 −

2M2
s

M2
Z

�
2
��

1 −
M2

Z

M2
s

�
1=2

×
κ2M4

Z

16πM2
sðð4M2

s −M2
hÞ2 þM2

hΓ2
hÞ
;

hσvrelihh ¼
κ2

64πM2
s

�
1þ 3M2

h

ð4M2
s −M2

hÞ
þ 2κv20
M2

h − 2M2
s

�
2

×

�
1 −

M2
h

M2
s

�
1=2

; ð62Þ

where the first three contributions proceed via s-channel
Higgs exchange, while the last one comes from the s-
channel Higgs exchange interaction and a t- and u-channel
S exchange interaction,Mf is the SM fermion mass, and Γh

is the total Higgs decay width: Γh ¼ 6.1þ7.7
−2.9 MeV [45]. The
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freezeout value x ¼ xf can be iteratively determined in this
case using the relation [46]

xf ≡Ms

Tf
¼ ln

�
3MPL

4π2

ffiffiffiffiffiffiffiffiffiffiffiffi
5M2

S

πg�xf

s
hσvreliðxÞ

�
; ð63Þ

where g� is the number of relativistic degrees of freedom at
the freeze out temperature. With all mass dimensions
expressed in GeV, the relic density as a function of the
nonrelativistic annihilation cross section is of the form [47]

ΩSh2 ≈ 1.65 × 10−10xf
ðGeV2Þ

hσvreliðxfÞ
; ð64Þ

where h is related to the Hubble parameter at the present
timeH0 via h ≔ H0=ð100 km

sMpcÞ ≈ 0.7, hσvreli stands for the
thermally averaged annihilation cross section (times rela-
tive velocity). In order to reproduce the relic density in
agreement with the observed value, the composite DM S
must annihilate at early time with a suitable cross section.
Reference [48] reported the present relic density of dark
matter to be ΩDMh2 ¼ 0.1199� 0.0027. It was mentioned
in Ref. [13] that at the tree level process the cross sections
for real and complex S are the same. In order to quantify the
DM abundance, we may define the fraction fS;DM:

fS;DM ≡ ΩSh2

0.1199
≈ 14 × 10−10xf

ðGeV2Þ
hσvreliðxfÞ

; ð65Þ

If fS;DM < 1, then the relic density of S is suppressed
relative to the observed value. From Eq. (43), we have the
SSh coupling term which mediates SS interactions with
pairs of SM-particles through the light Higgs pole, and in
general Higgs decays h → SS are also allowed. We will
start quantifying the DM relic abundance by first supposing
the DM is light such that Ms < Mh=2. In this low mass

case, the decay h → SS is kinematically allowed, and
contributes to the invisible width Γinv of the Higgs boson.
The cross section in this case is dominated by the dark
matter annihilation process to a pair of bottom quarks
SS → bb̄ (which the Higgs mediates the interaction) with a
branding ratio around 60%. When assuming that a
composite scalar field S is responsible for the dark matter
density, then we obtain the relationship between κ and Ms
illustrated in Fig. 6.
In Fig. 6, in the left panel, we plot the plane of Ms and

the coupling κ. We also display them in the low mass limit
over the range of DM mass values (45 GeV ≤ Ms ≤
65 GeV), and in the region Ms ¼ Mh=2 where annihilation
is resonantly enhanced. We expect when including the Higgs
invisiblewidth that belowMh=2 a small triangle in the κ −Ms
plane will survive (see for example Ref. [41]). In the right
panel of Fig. 6, we display the relic abundance ΩSh2 as a
function of the DM mass, Ms, for different values of the
coupling.We find that the requiredDMabundance is archived
for values of Ms ∼ 61 GeV for κ ¼ 0.1. However, the CD
mass can be lighter when the coupling is getting bigger.
However, in the case of a heavy DM, i.e. Ms > MW;Z

(or > Mh), the contributions from SS → fWW;ZZ; hhg
are allowed for quantifying the DM relic abundance. In
this case, we also obtain the relationship between κ and
Ms illustrated in Fig. 7. In Fig. 7, in the left panel, we plot
the plane ofMs and the coupling κ. We also display them in
the heavy mass limit over the broad range of DM mass
values, and in the region Ms ≈MZ where annihilation is
resonantly enhanced. Moreover, in the region aboveMh=2,
the authors of Ref. [41] show that the relic density
constrains the coupling as a function of the DM mass
which can be approximately describe by the dependence
log10κ > −3.63þ 1.04log10ðMs=GeVÞ. In the right panel
of Fig. 7, we also display the relic abundance ΩSh2 as a
function of the DM mass, Ms, for different values of the

FIG. 6. In case of light DM, we plot in left-panel the two-parameters plane of ðκ;MsÞ implemented by Eq. (65) using only the
thermally averaged annihilation cross section hσvreliSS→bb̄ and xf ¼ 20 for three different fractions fS;DM. A shaded-lower region is
ruled out since they produce more than the observed relic density of dark matter. Right panel: The scalar singlet DM abundance ΩSh2 as
a function of the DM mass Ms in unit of GeV by imposing three different values of κ with xf ¼ 20. The horizontal dot-dashed-line
represents the observed relic abundance of the DM, ΩDMh2 ¼ 0.1199.
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coupling. We find that the required CD relic abundance is
archived for values of Ms ∼ 410 GeV for κ ¼ 0.5. In
contradiction to the light mass case, however, the CD
mass in this case can be heavier when the coupling is
getting larger. For more accurate investigation, we
acknowledge, for instance, Refs. [40,41,47,49] and refer-
ences therein. Moreover, Eq. (60) allows us to visualize
some more constraints on the parameter spaces. Sincem2

s is
positive, Eq. (60) suggests a constraint Ms > ðκv20=2Þ1=2.
As a result, in Fig. 8, we have another curve of Ms ¼
ðκv20=2Þ1=2 below which the parameters are allowed. We
can be even more concrete. In order to satisfy the
constraints, from Fig. 8 in case of the light CD, we could
have κ ≲ 0.1 (together with the regions above fS;DM ¼ 1.0
line) and the CD mass in the vicinity of the resonance will
survive, while in case of the heavy one the allowed
couplings κ stay in between the fS;DM ¼ 1.0 line and the
dot-dashed one.

We finalize this section by relating the CD parameters to
the NJL ones and supporting for example that Λ ≫ m and
Λ3 ≫ m. In this case, the two different momentum-
cutoff schemes approach the same result: I2 ≈ 1

8π2
lnðΛmÞ.

Interestingly, since λ is related to the NJL parameters as

NcI2 ≈
1

4λ
; ð66Þ

we can now use the above result to incorporate the CD
parameter set with the NJL ones. From Eq. (18), we obtain
the relation

�
m2

s

M2
G

�
≈

ffiffiffi
λ

p �
m0

m

�
: ð67Þ

Let us take for example m ∼ 1012 GeV and λ ≈ 0.5. We
obtain for the light CD and the heavy one, respectively

FIG. 7. In the case of heavy DM, the plot in the left panel shows the two-parameters plane of ðκ;MsÞ implemented by Eq. (65) using
the thermally averaged annihilation cross sections hσvrelibb̄;WW;ZZ;hh and xf ¼ 20 for three different values of fS;DM. A shaded-lower
region is ruled out since they produce more than the observed relic density of dark matter. The right panel: The scalar singlet DM
abundance ΩSh2 as a function of the DM mass Ms in unit of GeV by imposing three different values of κ with xf ¼ 20. The horizontal
dot-dashed-line represents the observed relic abundance of the DM, ΩDMh2 ¼ 0.1199.

FIG. 8. The plot shows the two-parameters plane of ðκ;MsÞ implemented by Eq. (65) using the thermally averaged annihilation cross
sections: left panel for the light CD and right panel for the heavy one. A shaded region just below a dot-dashed line satisfies a condition
Ms > ðκv20=2Þ1=2 in which the parameters are allowed.
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m0M2
G

≈

(
1.2× 1015 GeV3; for ms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s −
κv2

0

2

q
≈ 29 GeV;

2.2× 1017 GeV3; for ms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

s −
κv2

0

2

q
≈ 391 GeV;

ð68Þ

where we have used in case of light CD Ms ∼ 61 GeV; κ ¼
0.1 and in case of heavy oneMs ∼ 410 GeV; κ ¼ 0.5. These
values can be obtained from Fig. 6 and Fig. 7. Hopefully, the
measurement of values ofm0M2

G may in principle turn out to
be critical in testifying our model. Note that a large value for
MG can drive the value of m0 to be very small, i.e. the
“current”mass of the composite fermions is extremely small
compared with their dynamical mass.

IV. CONCLUSION

In this work, we presented a unified description of
inflation and dark matter in the context of the effective
NJL model. We also demonstrated how an NJL effective
potential emerges and proposed a cosmological scenario
that unifies comic inflation and dark matter to a single
framework. On the one hand, we showed that the scalar
channel of the NJL model with a nonminimal coupling to
gravity plays a role of the composite inflaton (CI). For the
model of inflation, we computed the inflationary param-
eters and confront them with recent Planck 2015 data. We
discovered that the predictions of the model are in excellent
agreement with the Planck analysis.
We presented in our model a simple connection of

physics from the high scales to low scales via renormal-
ization group equations (RGEs) of the physical parameters
and use them to estimate the range of relevant parameters.
On the other hand, the pseudoscalar channel can be
assigned as a candidate for composite dark matter (CD).
For the model of dark matter, we coupled the pseudoscalar
to the Higgs sector of the standard model with the coupling
strength κ and estimate its thermally averaged relic abun-
dance. We discovered that the CDmass is strongly sensitive
to the coupling κ. We found in case of light CD,
Ms < Mh=2, that the required relic abundance is archived
for value of its massMs ∼ 61 GeV for κ ¼ 0.1. However, in
this case the CD mass can be lighter when the coupling is
getting larger. Moreover, in case of heavy CD,Ms > MW;Z

(or > Mh), the required relic abundance is archived for
values of the CD mass Ms ∼ 410 GeV for κ ¼ 0.5. In
contradiction to the light mass case, however, the CD mass
in this case can even be heavier when the coupling is
getting larger.

There are some limitations in the present work—for
example, the effective potential we used for computing
the inflationary parameters does not include the RG-
improved part as in Refs. [16,17]; We have not considered
any other channels than the scalar and pseudoscalar
channels; The NJL description itself can be more general,
say including more flavors, or including some gauge
fields so it becomes a gauged NJL model. Regarding our
present work, it is possible to extend this study to account
of two-loop effects of inflationary model, see Ref. [50].
Moreover, a determinant term can be added to the NJL
action so one can take anomaly into account [26,27]; Also
one should complete the RGEs for all scales and solve
them numerically. We hope to address these issues with
future investigations. Moreover, regarding this single
framework, another crucial issue for successful models
of inflation is the (pre)reheating mechanism. We plan to
investigate this mechanism, within our framework, by
following one of the very recent examinations on the (pre)
reheating mechanism underlying a composite inflationary
scenario [51].
More recently, direct searches for DM by the LUX and

PandaX-II Collaborations [52,53] implementing xenon-
based detectors have recently come up with the most
stringent limits to date on the elastic scattering of DM
off nucleons, see Ref. [54] for the very recent analysis. In
the simplest model, SMþ DM, which is the standard
model plus a real scalar singlet (darkon) acting as the
DM candidate, the LUX and PandaX-II limits rule out DM
masses from 5 GeV to about 330 GeV, except a small
triangle around the resonant point at half of the Higgs mass.
Therefore, it is reasonable for us in the future to look at the
constraints on our model not only from the most recent DM
direct searches, but also from LHC measurements on the
gauge and Yukawa couplings of the 125 GeV Higgs boson
and on its invisible decay mode, as well as from some
upcoming requirements.
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