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We study the impact of assumptions about neutrino properties on the estimation of inflationary
parameters from cosmological data, with a specific focus on the allowed contours in the ns=r plane, where
ns is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties:
(i) the total neutrino mass Mν ¼

P
imi (where the index i ¼ 1, 2, 3 runs over the three neutrino mass

eigenstates); (ii) the number of relativistic degrees of freedomNeff at the time of recombination; and (iii) the
neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless
neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of
normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1σ shift of
the probability contours in the ns=r plane with both current or upcoming data. We find that the choice of
neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff
on the total neutrino massMν;min ¼ 0 that accompanies previous works using the degenerate hierarchy does
introduce biases in the ns=r plane and should be replaced byMν;min ¼ 0.059 eV as required by oscillation
data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing
over the total neutrino massMν and over r can lead to a shift in the mean value of ns of ∼0.3σ toward lower
values. However, once baryon acoustic oscillation measurements are included, the standard contours in the
ns=r plane are basically reproduced. Larger shifts of the contours in the ns=r plane (up to 0.8σ) arise for
nonstandard values of Neff . We also provide forecasts for the future CMB experiments Cosmic Origins
Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino
properties, taken into account by a marginalization over Mν, could induce a shift of ∼0.4σ toward lower
values in the determination of ns (or a ∼0.8σ shift if one marginalizes over Neff ). Comparison to specific
inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account
properly, given the desired precision in determining whether or not inflationary models match the future data.
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I. INTRODUCTION

Inflation, which consists of a period of accelerated
expansion prior to the conventional radiation and matter
dominated epochs, provides the most compelling frame-
work to address the homogeneity, flatness, and monopole

problems of the standard big bang cosmology (see e.g.
[1–5] for pioneering work and [6,7] for important earlier
work). Over the past decade cosmic microwave back-
ground (CMB) observations have confirmed basic predic-
tions of inflation and in addition have provided stringent
tests of individual inflationary models. First, generic
predictions of inflation match the observations: the universe
has a critical density (Ω ¼ 1), the density perturbation
spectrum is nearly scale invariant, and superhorizon fluc-
tuations are evident. Second, current data differentiate
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between inflationary models and rule some of them out
[8–20].
Inflation models predict two types of perturbations, scalar

and tensor, which result in density and gravitational wave
fluctuations, respectively. Each of them is typically charac-
terized by a fluctuation amplitude (P1=2

R for scalar andP1=2
T for

tensor, with the latter usually given in terms of the ratio
r≡ PT=PR) and a spectral index (ns for scalar and nT for
tensor) describing themild scale dependence of the fluctuation
amplitudes. The amplitude P1=2

R is normalized by the magni-
tude of the inflationary energy. For single-field slow-roll
models, the inflationary consistency condition r ¼ −8nT
further reduces the number of free parameters to two, leaving
experimental limits on ns and r as the primary means of
distinguishing among inflationarymodels. Hence, predictions
of models are presented as plots in the ns=r plane.
Previous works have investigated the shifts induced in

the ns and/or r inflationary parameters caused by our poor
understanding of the early-universe physics (i.e. the reheat-
ing process [21,22]) or the late-time universe evolution (as,
for instance, the precise reionization details [23–27]).
In this context, neutrino properties, which play a role in

both early and late stages of our universe, show important
correlations with the inflationary parameters [18,19,
28–31]. Indeed, assumptions about the neutrino properties
may bias the extraction of inflationary parameters and
hence lead to incorrect conclusions about which infla-
tionary potentials match the data [32]. In this paper we
study the effects of three neutrino properties that are
particularly important in this regard: the neutrino hierarchy,
the total neutrino mass, and the contribution of neutrinos to
the total radiation content through the effective number of
relativistic degrees of freedom at recombination Neff .

A. Neutrino hierarchy

While from neutrino oscillation experiments we know
that at least two out of the three standard model active
neutrino species are massive, we do not know their precise
hierarchical structure nor the total absolute value of the
neutrino masses, as oscillation measurements only provide
information on the splittings between the three neutrino
mass eigenstates, see e.g. Refs. [33,34] and references
therein for the most recent global fit analyses. The sign of
the largest mass splitting, the atmospheric mass gap Δm2

atm,
remains unknown. The two possibilities, Δm2

atm > 0 and
Δm2

atm < 0, have been dubbed as normal (NH) and inverted
(IH) hierarchies, respectively. We will consider both pos-
sibilities. We shall compare this novel approach to previous
approximations, described in what follows.
Previous work in the literature made the simplifying

assumptions of (a) two massless neutrinos (a proxy for the
normal hierarchy case when the total neutrino mass is fixed
to the minimal value allowed by oscillation experiments)
or (b) three degenerate neutrinos (which is a good

approximation as long as the total neutrino mass is much
higher than the minimal mass, see e.g. [35]). Clearly these
assumptions do not match the real world, since we know
from oscillation experiments that at least two of the active
species are massive. Hence, it is the goal of this paper to
reexamine constraints on inflation, with the measured mass
splittings, studying precisely the NH and IH scenarios.

B. Total neutrino mass

A combination of cosmological measurements including
cosmic microwave background and baryon acoustic oscil-
lations (BAO) provides currently the most reliable con-
straint (among the bounds that can be obtained combining
publicly available Planck results with external data sets) on
the sum of the masses of the three active massive neutrinos,
setting

P
mν < 0.214 eV at 95% confidence level (CL).

This upper bound results from Planck 2015 full temper-
ature and large scale polarization in combination with BAO
measurements, assuming a one-parameter extension of the
standard ΛCDMmodel, the addition of the sum of neutrino
masses.1 However, these bounds have made a few assump-
tions, which we relax in this paper. In particular, they have
been obtained by assuming three degenerate neutrinos of
equal mass. This assumption clearly does not match
completely the reality as at least two of the neutrinos are
known to have mass, yet it may be adequate given current
data; we will test the acceptability of this assumption.
Second, these bounds assume r ¼ 0. In addition, these
bounds are obtained for the case of standard ΛCDM
supplemented by one single parameter in that the total
neutrino mass is marginalized over. In this paper, we will
vary a number of additional parameters as well as relaxing
the assumptions inherent in the above bounds.
Previous works (see e.g. [18,19]) have studied shifts in

the ns=r plane due to marginalizing over the sum of
neutrino masses and r; our contribution is to redo this
study with the correct neutrino hierarchies taken into
account, as well as using the latest available data.

C. Number of relativistic species at recombination

Third, neutrino abundances, settled around the big bang
nucleosynthesis (BBN) period, may differ from their
canonical expectation. If any of the neutrino species
contributes a different amount to the radiation content of
the Universe, then the epoch of matter/radiation equality
may shift, leading to shifts in the predictions for ns that
would cause misinterpretation of CMB data in terms of
underlying inflationary models. The number of relativistic

1See http://www.cosmos.esa.int/web/planck/pla for further de-
tails. See e.g. [36] or [37] for the updated constraints based on
recent estimates of the reionization optical depth τ from Planck
HFI. The quoted bound can be further tightened down to ≈0.12 −
0.15 eV by adding power spectrum (matter or Ly-α) data and/or
by considering a prior on the Hubble parameter, see e.g. [38–44].
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degrees of freedom Neff at the time of recombination (i.e.
the quantity which the CMB is sensitive to) may serve as a
proxy for this effect. The standard neutrino contribution
predicts Neff ¼ 3.046 [45] (see also [46] for an improved
and updated calculation). Current cosmological data analy-
ses result in a value of Neff ¼ 3.15� 0.23 [36].2 However,
the predictions may vary in either direction. Somewhat
extreme low-reheating scenarios have been proposed
[47–50], where the reheating temperature TRH can be as
low as 5 MeV [51]. In low-reheating scenarios the neutrino
populations will not reach the expected thermal abundan-
ces, leading to values of Neff < 3.046. Sterile neutrino
species, axions, hidden photons, or any other extra dark
radiation species could instead lead to a value Neff > 3.046
[52]. Modified predictions to Neff shift the predicted ns,
implying non-negligible consequences for some inflation-
ary models. Previous works [18,19,32] studied the shift due
to the addition of dark radiation with the assumptions of
two massless and one massive neutrino. We also treat the
case of Neff ≤ 3.046 in low-reheating scenarios.
The assumed fiducial values of the three crucial neutrino

properties listed above (namely, the number of relativistic
species, the neutrino spectrum, and the total neutrino massP

mν) could bias the determination of the inflationary
parameters and therefore the extraction of the underlying
inflationary potential. It is the main goal of this study to
assess the current and future biases from CMB measure-
ments in the scalar spectral index ns induced by our
ignorance of the aforementioned neutrino parameters. We
devote special attention to theoretically well-motivated
inflationary scenarios whose predictions for ns may be in
perfect agreement with current observations, once uncer-
tainties in the neutrino sector of the theory are properly
included in the data analyses.
The structure of the paper is as follows: we present the

analysis method and data sets employed in this work in
Sec. II; results from current data are reported in Sec. III,
while Sec. IV is devoted to forecasts for future CMB
experiments; implications of the results for inflationary
models are summarized in Sec. V. We draw our conclusions
in Sec. VI. Our most important results may be found in
Tables II–IV and Figures 7–12.

II. METHOD, DESCRIPTION OF CASES
CONSIDERED, AND DATA SETS

In this section, we provide a detailed description of the
statistical tools and data sets employed for drawing our

results. We also define the various cases we are treating
with regards to a variety of possibilities for the spectrum of
neutrino masses, the total neutrino mass, and Neff .

A. Parameters

We perform a Bayesian Monte Carlo Markov chain
analysis by making use of the latest version of the publicly
available COSMOMC package [53,54], monitoring conver-
gence through the Gelman and Rubin R − 1 statistics [55].
Our baseline parameter vector is composed by the six
ΛCDM parameters: the physical baryon density Ωbh2, the
physical cold dark matter density Ωch2, the angular size of
the acoustic horizon at recombination θ, the reionization
optical depth τ, the scalar spectral index ns, and the
logarithmic amplitude ln ð1010AsÞ of the power spectrum
of scalar perturbations at the pivot scale kp ¼ 0.05 Mpc−1.
In addition to this standard set of parameters, we also

consider (not necessarily at the same time) the tensor-to-
scalar ratio r (measured at the same pivot scale as the scalar
perturbations), the total neutrino mass

Mν ¼
X
i

mi ð1Þ

(where the index i ¼ 1, 2, 3 runs over the three neutrino
mass eigenstates), the neutrino hierarchy, and the number
of relativistic degrees of freedom Neff . In the baseline
model, these additional parameters are taken to be r ¼ 0,
Mν ¼ 0.059 eV3,3 and Neff ¼ 3.046. The inclusion of
massive neutrinos is performed by considering different
hierarchical scenarios and also different priors on the total
neutrino mass in order to test their possible impact on the
inflationary observables.

B. Cases considered

We will compare the regions in the ns=r plane obtained
by using the standard approximate assumptions used
throughout the literature in contrast with the regions
obtained by using correct information about neutrino
masses from oscillations data. We first consider the two
standard approximate assumptions of

(i) “1þ 2” case: a single massive eigenstate with mass
Mν ¼ 0.059 eV, plus two massless eigenstates,
when the total mass is fixed;

(ii) “3deg” case: fully degenerate scenario of three mas-
sive eigenstates with massMν=3 each, when the total
mass is allowed to vary freely, provided Mν ≥ 0.

These two approximations mimic what is done in the
Planck papers (and usually in the literature) when models

2This constraint arises from the combination of Planck 2015
full temperature data, large-scale polarization, and BAO mea-
surements in the context of a ΛCDM model supplemented by the
one-parameter extension given by marginalizing over Neff. A full
list of constraints from additional combinations of data sets can
be found in the Planck Legacy Archive at http://www.cosmos.esa
.int/web/planck/pla.

3This is the lowest value allowed by neutrino oscillation data
(see e.g. [33,34]), which assumes a vanishing mass for the lightest
mass eigenstate and normal neutrino mass hierarchy, and it is
usually approximated by Mν ¼ 0.06 eV in different cosmologi-
cal analyses (for example, those carried out by the Planck
collaboration).
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with fixed or varying neutrino mass are analyzed (apart
from the slightly different value of Mν in the fixed mass
case, see footnote 3). These two cases are “unphysical” in
that they do not match the correct values of neutrino mass
as determined by oscillation data, yet up to now they have
served as reasonable approximations. The question is at
which point the data will become so good that these
approximations are no longer adequate.
Then, we compare the results arising from these approxi-

mate parameterizations with those obtained by implement-
ing the exact neutrinomass hierarchy, either in the normal or
inverted hierarchy scenarios. From neutrino oscillation data,
m1 andm2 are the eigenstateswhich are closer inmass,while
the sign of m2

3 −m2
1 determines the neutrino mass ordering

(NH vs IH case). Thus, when using this “exact” para-
metrization, we sample over the lightest eigenstate (m1 for
NHorm3 for IH), instead of sampling overMν, and compute
the mass carried by the remaining eigenstates by means of
the mass squared differencesΔm2

ij ≡m2
i −m2

j measured by
oscillation experiments. In particular, we use the results of
the global fit reported in Ref. [33]. Notice that, with this
exact parametrization for the neutrino mass eigenstates, at
least two out of the three of them are massive. As a result,
when marginalizing over the total mass, the prior naturally
imposed by oscillation measurements is Mν ≥ Mν;min,
where Mν;min ¼ 0.059 eV (Mν;min ¼ 0.098 eV) in the NH
(IH) case. This is different from the prior imposed in the
approximate case, and this difference should be kept inmind
when comparing results from the two parametrizations in the
following sections because of possible volume effects, on
which we shall comment on later.
For what concerns the effective number of relativistic

species, when sampling over Neff, we firstly impose a broad
flat prior in the range 0 ≤ Neff ≤ 10. In addition, we also
report results when considering the case of a hard prior
0 ≤ Neff ≤ 3.046, as expected, for example, in low-reheating
scenarios [47–50], where the reheating temperature TRH can
be as lowasOðMeVÞ. In both cases of the broad andhard prior
onNeff ,we treat thedifferenceΔNeff ¼ Neff − 3.046 between
the value ofNeff into consideration and the standard expected
value of 3.046 in the following way:ΔNeff > 0 is considered
as a massless neutrino contribution, i.e. as an “extraradiation”
component; when ΔNeff < 0, we instead rescale the
(three) active neutrino temperature accordingly to Neff , i.e.
the neutrino number density is rescaled by a factor
ðNeff=3.046Þ3=4. The neutrino density Ωνh2 for a given total
mass is then rescaled by the same factor.

C. Data sets

As our baseline data set, we employ the full Planck 2015
measurements of the CMB anisotropies in temperature
complemented with large-scale polarization [56] (we refer
to this combination as “Planck TTþ lowP”). We conserva-
tively avoid use of small-scale polarization since it could be

still affected by a small amount of residual systematics [36].
We also combine Planck data with the most recent degree-
scale measurements of the B-mode power spectrum (BB)
from the BICEP/Keck collaboration [57] (BK14) and with
geometrical BAO information from the galaxy surveys
Baryon Oscillation Spectroscopic Survey - Data Release 11
(BOSS-DR11) [58], the 6-degree Field (6dF) [59], and the
Main Galaxy Sample (MGS) [60].
In addition to deriving parameter estimates from current

cosmological data, we also perform forecasts for future
CMB experiments. We consider a future CMB satellite
mission such as Cosmic Origins Explorer (COrE) [61] and
a future Stage IV (S4 hereafter) ground-based experiment
(see e.g. Refs. [62–64] for a summary of the expected
performance in terms of parameter constraints). The mock
data used consist of lensed temperature and polarization
power spectra, generated according to Refs. [65,66]. We
assume multifrequency coverage which allows perfect
foreground removal and exquisite control of systematics.
Specifications of the observed sky fraction, multipole
coverage, beam width, and sensitivity for the computation
of noise spectra are set in agreement with [67,68] and
references therein. Further details about experimental setup
and the adopted fiducial model are provided in Sec. IV. We
use a prior on the reionization optical depth τ ¼ 0.06�
0.01 in combination with S4. We follow an exact likelihood
formalism for the subsequent Monte Carlo analysis [69,70].

III. PRESENT-DAY COSMOLOGICAL ANALYSES

In this section, we discuss the impact of massive neutrino
properties, namely the total neutrino mass, its hierarchical
distribution among massive neutrino eigenstates, and the
effective number of relativistic degrees of freedom at
recombination on the recovered value of the scalar spectral
index ns in light of current cosmological data.
We firstly focus on the comparison between the results

arising from the baseline model and its one-parameter
extension ΛCDMþMν, provided r ¼ 0. We then perform
an analogous comparison allowing also for a nonvanishing
tensor component, parametrized via the tensor-to-scalar
ratio r, to vary freely. Notice that in these cases we fix Neff
to the standard value of 3.046.
We shall discuss separately the effect of relaxing our

assumptions about Neff . In analogy to the cases depicted
above,we shall thus compare the results fromΛCDMþ Neff
and ΛCDMþ Neff þMν fixing r ¼ 0. We then move to
investigate the impact of varying the tensor-to-scalar ratio.

A. Massive neutrinos with a vanishing
tensor component

As anticipated above, in this section we will fix the
tensor-to-scalar ratio to zero and compare results coming
from the baseline model and its one-parameter extension
ΛCDMþMν. We report our results on the scalar spectral
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index ns in Tables I and II in terms of the 68% CL intervals
around the mean of the posterior distribution. Figure 2
visually summarizes these results in addition to a few more
cases discussed in the following. We notice an overall
agreement of the constraints on ns when different models
and/or data sets are taken into account. However, small
departures,4 at the level of a few fractions of σ, from the
mean value obtained for the ΛCDM model are observed,
which can be explained in terms of physical effects of the
neutrino background on cosmological observables, on
which we shall comment thoroughly in this section.

The aim of this section is threefold: namely, we want
(i) to study the effect of the neutrino mass splittings as well
as (ii) to assess the impact of the marginalization over the
total neutrino mass (as opposed to fixing the mass to a
given value), focusing mostly on the estimates of the scalar
spectral index ns, and (iii) provide a thorough physical
explanation underlying the observed shifts in the scalar
spectral index. In this section we will then focus on the
standard ΛCDM scenario (with a total neutrino mass fixed
to Mν ¼ 0.059 eV) and on its one-parameter extension, in
which Mν is allowed to vary freely and marginalized over,
dubbed as ΛCDMþMν. In the context of Bayesian
analysis, it is possible to take into account any possible
effect that the imprecise knowledge of one parameter could
have on the determination of the remaining parameters of
the model by marginalizing over that parameter. These
effects, such as bias in the recovered mean values and/or
broadening of the confidence levels, may be otherwise
hidden by fixing the unknown parameter to a specific value.

1. Neutrino mass splitting

We shall consider different parametrizations for the
splittings of the total neutrino mass among the mass
eigenstates. In particular, we compare results considering
the exact mass distribution according to the NH scenario on
one side, with those arising from the usual approximations.

TABLE I. 68% probability intervals around the mean for the
scalar spectral index ns for the indicated data sets and cosmo-
logical models. The lines labeled as “approx” refer to the “1þ 2”
(first column, ΛCDM) and “3deg” (second column,
ΛCDM þMν) parametrizations used when either Mν is fixed
or marginalized over, respectively. The two columns refer to the
following two cases: (i) the first column, dubbed as standard
ΛCDM scenario has a total neutrino mass fixed to Mν ¼
0.059 eV and (ii) the second column, dubbed as ΛCDMþMν

is for a one-parameter extension in which Mν is free to vary
(Mν ≥ 0 for “approx” i.e. “3deg” case andMν ≥ 0.059 eV for the
NH case).

ΛCDM ΛCDM þMν

Planck TTþ lowP
NH 0.9655� 0.0063 0.9629� 0.0069

approx 0.9656� 0.0063 0.9636� 0.0071

þBAO
NH 0.9671� 0.0045 0.9686� 0.0047

approx 0.9673� 0.0045 0.9678� 0.0048

TABLE II. 68% probability intervals around the mean for the
scalar spectral index ns for the indicated data sets and cosmo-
logical models. The lines labeled as “approx” refer to the “1þ 2”
(first column, ΛCDM þ r) and “3deg” (second column,
ΛCDM þ rþMν) parametrizations used when eitherMν is fixed
or marginalized over, respectively. The two columns refer to the
following two cases: (i) the first column, dubbed as ΛCDMþ r
scenario, has a total neutrino mass fixed to Mν ¼ 0.059 eV and
(ii) the second column, dubbed as ΛCDMþ rþMν, is for a one-
parameter extension with respect to the first column in which Mν

is free to vary, as described in Table I.

ΛCDMþ r ΛCDM þ rþMν

Planck TTþ lowP
NH 0.9666� 0.0062 0.9640þ0.0075

−0.0066
approx 0.9664� 0.0063 0.9642þ0.0073

−0.0066

þBK14
NH 0.9656� 0.0062 0.9641� 0.0064

approx 0.9654� 0.0062 0.9640� 0.0066

þBAO
NH 0.9676� 0.0045 0.9677� 0.0046

approx 0.9675� 0.0045 0.9679� 0.0046

FIG. 1. Colored scatter plot showing the mutual degeneracies
between ns, H0 (in km s−1 Mpc−1), and Mν (in eV) for the
ΛCDM þMν model in the “3deg” case, i.e. a cosmological
scenario with three massive and fully degenerate neutrinos. Each
point represents a model in the ns=H0 plane. The rainbowlike
color code represents different neutrino masses, according to the
vertical bar on the right of the figure (from dark blue for vanishing
masses to dark red for higher masses). The points in the upper
right corner of the external contour level correspond to the lowest
values of the total neutrino mass and Mν increases as one moves
toward the points in the lower left corner of the contour levels.
The two-dimensional contours are for Planck TTþ lowP (black)
and Planck TTþ lowPþ BAO (red). The inclusion of BAO
clearly excludes the high-mass region (red and yellow points) of
the parameter space.

4When we assess the magnitude of the shift between two given
values of the spectral index with mean value ns;i and 1σ error σi
(with i ¼ 1, 2) in units of σ, we quote the following quantity:
jns;1 − ns;2j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
. In the case when the 68% CL is not

symmetric around the mean, we take the half width of the same
range as an estimate for σi.
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These approximations consist in: either a single massive
eigenstate carrying the total mass, fixed to the minimum
value allowed by neutrino oscillation measurements, and
two massless eigenstates (“1þ 2” scenario, for ΛCDM and
generically all those models where the total neutrino mass
is fixed to the minimum value allowed by oscillations), or
three fully degenerate massive neutrinos (“3deg,” for
ΛCDMþMν and generically all those models where the
total neutrino mass is allowed to vary freely and not fixed to
any specific value), on the other side.
For the sake of comparison, we also report results

derived from assuming an exact distribution according to
the IH scenario for some specific models analyzed in this
work. However, we choose to mainly focus on the NH case,
which seems to be slightly preferred by current cosmo-
logical limits on Mν (a combination of cosmological
measurements is close to disfavor Mν > Mν;min, where
Mν;min ¼ 0.098 eV is the minimal mass allowed by oscil-
lation measurements in the inverted hierarchy scenario, at
∼2σ [38,39,41,42,44,71]) and very mildly preferred by the
latest neutrino oscillation data [72].
In comparing the results arising from the different

assumptions listed above, we would like to highlight
possible deviations in the recovered mean value of ns
due to a different neutrino scenario, possibly hinting at

some sensitivity from current cosmological data to the
neutrino mass splittings.
In Table I, we compare constraints on ns obtained in the

context of the ΛCDM model, with the total neutrino mass
fixed to the minimum value allowed by oscillations, i.e.
Mν ¼ 0.059 eV, with those obtained for the ΛCDMþMν

model, after marginalization over Mν. We test any model
against the Planck TTþ lowP data alone and in combina-
tion with BAO.
Table I also contains information about the comparison

between different mass splittings, labeled as NH for normal
hierarchy and “approx” for either “1þ 2”or “3deg.”Weshall
focus on this comparison firstly. Notice that, for each model
and data set combination, the two mass parametrizations do
not provide precisely the same constraints. Focusing on the
ΛCDM scenario, the shift in the mean value of ns is
negligible, and we cannot exclude a statistical fluctuation
of the MCMC analysis as a valid explanation. However, we
notice that for the two combinations of data sets considered,
the shift is going in the same direction, i.e. lowering the value
of ns when the NH parametrization is used.
In the ΛCDMþMν scenario, the shift in ns between the

two parametrizations is more pronounced, albeit it is still
small, at the level of 0.1σ. Interestingly, the direction of the
shift is opposite for this model if one tests it against a
different combination of data sets. In particular, considering
Planck TTþ lowP alone, ns increases going from NH to
“3deg” (compare first and second rows in the ΛCDMþMν

column of Table I). In contrast, ns decreases going from NH
to “3deg,” when the combination of Planck TTþ lowPþ
BAO is employed (compare third and fourth rows in the
ΛCDMþMν column of Table I).
In both cases, the nature of the shift is found in the

correlation5 arising between ns andMν, shown in Fig. 3 for
the “3deg” parameterization (NH provides similar con-
tours) and discussed below.
Concerning CMBmeasurements alone, the increase in ns

whenmoving fromNH to “3deg” arises from the fact that the
power in the damping tail can be kept approximately
constant by increasing Mν (enhancing power in the tail
by suppressing structures and hence the lensing potential)
and decreasing ns (thus tilting the spectrum to give less
power to the small scales). Since the posterior distribution
forMν starts from zero in the “3deg” case, while for the NH
scenario values below 0.059 eVare not allowed forMν, the
center of mass of the posterior distribution forMν is shifted
to larger values in the latter case with respect to the former.
Given the correlation between Mν and ns discussed just
above, this yields a smaller value for ns in the NH case. In
fact, we have checked thatwe are able to reduce significantly
the shift if we impose a hard prior ofMν > 0.059 eV also in

FIG. 2. Marginalized confidence intervals for the scalar spectral
index ns for the indicated cosmological models and data sets.
Solid bold lines are for the exact NH parametrization (total
neutrino mass distributed according normal hierarchical sce-
nario), solid light lines for the IH parametrization (total neutrino
mass distributed according inverted hierarchical scenario),
dashed lines for the degenerate parametrization (one massive
neutrino plus two massless species when Mν is fixed, three
degenerate massive neutrinos when Mν is allowed to vary). The
two dashed-dotted blue lines are drawn for the NH parametriza-
tion when fixing the lightest eigenstate to m1 ¼ 0.009 eV (first
dashed-dotted line from the top) and m1 ¼ 0.164 eV (second
dashed-dotted blue line from the top), respectively. The vertical
bands are 68% and 95% CL limits from Planck TTþ lowP in the
context of a ΛCDM model with one massive neutrino with mass
Mν ¼ 0.06 eV.

5We shall talk equivalently about correlation or degeneracy
when referring to the fact that any change to one parameter
induces a modification to another parameter.
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the “3deg” case, making it clear that this is mainly a volume
effect.
Notice that ns and Mν are anticorrelated (i.e. higher

values of Mν correspond to lower values of ns) when
Planck TTþ lowP data are used. In contrast, the two
parameters are positively correlated when BAO information
is added to CMB data, as clearly visible in Fig. 3. As an
example, the correlation coefficient defined as
R ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, where C is the covariance matrix of

cosmological parameters and i; j ¼ ns;Mν, changes from
R ¼ −0.45 (implying negative correlation) for Planck
TTþ lowP to R ¼ 0.34 (implying positive correlation)
when BAO measurements are added.6

An explanation for the aforementioned degeneracies
when BAO data are added can be found by studying the
physical effect of neutrino masses on the quantities con-
strained by BAOs. Recall that BAO data constrain the ratio
Dv=rsðzdragÞ, where rsðzdragÞ denotes the sound horizon at
the drag epoch (i.e. the epoch at which baryons decouple
from photons, slightly after recombination, when photon
pressure is no longer available to prevent gravitational
instability), and Dv is a distance combination. In particular,
Dv is a combination of the line-of-sight comoving distance
related to the Hubble parameter H and the transverse
comoving distance DM,

7

DvðzÞ ¼
�
DMðzÞ2

cz
HðzÞ

�1
3

; ð2Þ

which BAO measurements are mostly sensitive to in angle-
averaged statistics. As Mν is increased, keeping Ωbh2 and
Ωch2 fixed, the early-time expansion rate increases and
hence in order to keep θ fixed (which controls the scale of
the first peak), ΩΛ must decrease. As ΩΛ decreases, DvðzÞ
increases, and correspondingly both rs=Dv and H0

decrease. This behavior explains why BAO data, by
excluding lower (higher) values of H0 (Ωmh2), exclude
the region associated to higher Mν and correspondingly,
prefer higher values of ns. In this way, the anticorrelation
between Mν and ns present when CMB data alone are
employed is reverted. Further discussions on these effects
can be found in [73].

2. Total neutrino mass

We will now focus on the comparison between the
recovered values of ns for a given hierarchy, i.e. we discuss
possible deviations due to a different choice of the
cosmological model (either ΛCDM or the one-parameter
extension ΛCDMþMν) and/or data set combination.
Marginalizing over the total neutrino mass introduces

shifts in ns with respect to the ΛCDM model, meaning that
the unknown value of the total neutrino mass may play a
non-negligible role in recovering the exact constraints on the
scalar spectral index. The shift in ns due to the marginali-
zation over Mν goes in the direction of lowering ns if the
models are tested against CMB only (∼0.3σ in the NH case
and ∼0.2σ in the “3deg” case, with respect to the ΛCDM
model), while it goes in the opposite direction when BAO
data are also considered (∼0.2σ in the NH case and∼0.1σ in
the “3deg” case, with respect to the ΛCDM model).
We have already seen that the addition of BAO data is, in

general, responsible for an increase in ns, quantified in
∼0.2σ in theΛCDMscenario and∼0.5σ in theΛCDMþMν

scenario, with respect to the equivalent values obtained with
the Planck TTþ lowP data sets only, almost independently
on the choice of the mass splitting. The reason for these
shifts, extensively discussed above, is related to degener-
acies arising between ns, the Hubble constant H0, and the
matter density Ωmh2, shown in Fig. 4 for the ΛCDMþMν

model (a similar figure is obtained for the ΛCDM model).
BAO data are able to exclude lower (higher) values of H0

(Ωmh2), thus reducing the volume of the parameter space
corresponding to the lowns region (see also Fig. 1,where the
two-dimensional probability contours in the ns −H0 plane
are colored with respect to the allowed value of Mν). BAO
measurements are able to measure Ωm and, in combination
with CMB, are able to measureH0, so they essentially split
Ωm and H0 (see e.g. [74,75]).
The effect of adding BAO is also clearly visible in Fig. 3,

where the direction of the correlation in the ns −Mν plane
found by combining CMB and BAO (blue contours) is
almost orthogonal to the direction identified with CMB
alone. The impact of a free neutrino mass on ns, i.e. the
increase of the mean value of the scalar spectral index with

FIG. 3. Two-dimensional probability contours at 68% and
95% CL in the ns −Mν plane for the Planck TTþ lowP data
set and the ΛCDMþMν model, when assuming three fully
degenerate massive neutrinos (labeled as “3deg” scenario in the
main text).

6These numbers refer to the “3deg” case. Similar figures apply
to the NH case.

7The transverse comoving distanceDM is related to the angular
diameter distance DA via the relation DM ¼ ð1þ zÞDA.
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respect to the ΛCDM model, is less pronounced in the
“3deg” case than in theNHscenario. In fact, having access to
theMν < 0.059 eV region of the parameter space mitigates
the effect of marginalizing over the neutrino mass.
For completeness, we shall report here the 68% bounds

on ns in the case of an IH neutrino mass spectrum when the
neutrino mass is marginalized over. In this case, we get
ns ¼ 0.9627þ0.0074

−0.0066 for Planck TTþ lowP and ns ¼
0.9693� 0.0046 when BAO measurements are also
included. These constraints are perfectly in agreement with
the picture depicted above. In fact, we obtain a further
reduction of ns with respect to the “3deg” case when only
CMB data is exploited, while we observe a further increase

in the value of ns when BAOmeasurements are added. This
behavior is again due to the reduced probability volume
available in the IH regime when Mν is allowed to vary
freely. In fact, the IH scenario implies Mν > 0.098 eV, i.e.
the lowest mass value allowed by oscillation measurements
once the IH scheme is assumed, to be compared with the
equivalent priors on Mν in the NH case (Mν > 0.059 eV)
and “3deg” case (Mν > 0 eV), thus enhancing the volume
effects already discussed in this section.
In conclusion, in the context of the ΛCDMmodel, with a

vanishing tensor component, the effect on ns of an exact
modeling of the neutrino mass splitting, either NH or IH, as
opposed to an approximate parametrization “1þ 2” is tiny,

FIG. 4. Two-dimensional probability contours at 68% and 95% CL, and one-dimensional posterior probability distributions showing
the main correlations among cosmological parameters responsible for the shift in ns, for the indicated data set and the ΛCDMþMν

model, when assuming three fully degenerate massive neutrinos (labeled as “3deg” scenario in the main text).
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safely allowing to make use of the approximate para-
metrization instead of the exact spectrum when the neutrino
mass is fixed. The main impact on the scalar spectral index
is induced by relaxing the assumption about the total mass.
Indeed, if one marginalizes over the total neutrino mass, the
constraints on ns are shifted and broadened with respect to
the values obtained in the baseline model. In this context,
the choice of the hierarchy, either exact or approximate,
could play a role, mainly due to the different prior on Mν

adopted in the two cases (Mν > Mν;min, with Mν;min ≠ 0 in
the exact parametrization).8

B. Massive neutrinos with a nonvanishing
tensor component

The impact of massive neutrino properties on the
constraints on the scalar spectral index might be relevant
when assessing the agreement of the predictions from
different inflationary models with observations, i.e. when
exploring the ns=r plane, where r is the tensor-to-scalar
ratio. For this reason, we also include here a very simple
extension of the minimal ΛCDM scheme, namely the
ΛCDMþ r model. In analogy to what we have presented
before, we report our results in Table II, which are
equivalent to those presented in Tab. I, but with the addition
of BAO measurements, along with BK14 data.
By comparing the results reported in Table I with those

reported in Table II, it is evident that the marginalization
over r has the overall effect of increasing the mean value of
ns for each of the aforementioned parametrizations and data
combinations. As a reference, for the ΛCDMþ r model
when the total neutrino mass is fixed to Mν ¼ 0.059 eV in
the NH case and the Planck TTþ lowP data set is used, the
mean value of ns is shifted by a factor of ∼0.1σ with respect
to the ΛCDM scenario (i.e. when r ¼ 0). This feature, i.e.
the increase in ns when r is nonvanishing, is expected since
the tensor contribution adds power to the TT spectrum at
large scales. This effect can be compensated by a higher
value of ns.
This mild correlation between the two parameters can be

broken by the inclusion of direct measurements of the BB
spectrum, provided by BK14. Indeed, the inclusion of
BK14 data, being able to further reduce the upper bound on
r, has the effect of lowering the mean value of ns with
respect to the results obtained from Planck TTþ lowP. For
comparison, the ΛCDMþ r model, when Mν ¼ 0.059 eV
in the NH case, tested against Planck TTþ lowP provides
ns ¼ 0.9666� 0.0062 at 68% CL, which decreases down
to ns ¼ 0.9656� 0.0062 when BK14 is added (a value in

perfect agreement with the results arising from the ΛCDM
model and Planck TTþ lowP analyses).
We will now focus on Table II. Firstly, let us compare the

results from the different neutrino mass splittings at fixed
total neutrino mass. The shifts in the recovered value of ns
when considering either the NH or the “1þ 2” cases are not
very significant. Still, it is interesting to understand why the
mean value of ns is lowered when moving from the NH to
the “1þ 2” parametrization in the ΛCDMþ r model,
whereas it increases when the same move is made in the
ΛCDM scenario (see Table I). We note that the move from
NH to “1þ 2” essentially amounts to adding an additional
massive neutrino (from one to two). To understand the
observed trend, we have performed an additional MCMC
run with the following choice for the mass splitting: we have
assumed the NH parametrization and fixed the total mass to
Mν ¼ 0.07 eV, slightly higher than Mν;min in the NH
scenario. With this choice, the mass of the lightest eigenstate
has been fixed to a nonvanishing but still small value, so all
the three eigenstates are massive (recall that, for
Mν ¼ 0.059 eV, we have two massive neutrinos in the
NH case and only one massive neutrino in the “2þ 1” case).
The allowed interval for the spectral index when Mν ¼

0.07 eV is ns ¼ 0.9668� 0.0064 at 68% CL. This result is
slightly higher than the corresponding value ns ¼
0.9666� 0.0062 for the ΛCDMþ r model with Mν ¼
0.059 eV (see Fig. 2), i.e. with the lightest eigenstate
behaving as a fully relativistic species, and ∼0.1σ higher
than the value ns ¼ 0.9664� 0.0063 for the ΛCDMþ r
model and the “1þ 2” parametrization, i.e. when two out
of three neutrinos act as fully relativistic species. Notice
that Mν ¼ 0.07 eV is almost equivalent to Mν ¼ 0.059 eV
from the point of view of background evolution, i.e. the
difference in energy density associated with the total
neutrino mass is negligible. What is changing in the three
cases listed above, namely NH with Mν ¼ 0.07 eV, NH
withMν ¼ 0.059 eV, and “2þ 1” withMν ¼ 0.059 eV, is
the number of fully relativistic species. This might suggest
that assuming the presence of species which remain
relativistic up to the present time can play a role in
constraining ns. However, the significance of the shifts
in ns previously reported is very mild. Furthermore, in the
ΛCDMþ rþMν scenario one cannot identify a trend in
the mean value of ns as neat as the one arising in the
ΛCDMþ r model, so we cannot exclude different explan-
ations for the shifts in ns from the one reported above, such
as the effect of degeneracies with other cosmological
parameters and/or statistical fluctuations.
We will now focus on the comparison between the

results obtained in the two different cosmological models,
ΛCDMþ r and ΛCDMþ rþMν, for the combination of
data set reported in Table II. In analogy to what was
discussed in the previous section, the marginalization over
the total neutrino mass has the overall effect of lowering the
mean value of ns when CMB data only (Planck TTþ lowP

8Cosmological models predicting a vanishing neutrino density
today have been proposed [76]. These models can motivate, from
a theoretical point of view, the choice of a vanishing lower cutoff
Mν;min ¼ 0, seen as a phenomenological proxy of the effect of a
smaller density of neutrinos with respect to the expectation in
standard ΛCDM.
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alone and/or in combination with BK14) are exploited.
The amount of the shift is greater than 0.2σ with respect to
the ΛCDMþ r model. As a reference, focusing on the NH
parametrization, we get a ∼0.3σ shift for Planck TTþ lowP
and ∼0.2σ shift for Planck TTþ lowPþ BK14. An addi-
tional test which confirms the inverse correlation between
ns and Mν has been performed by extracting the 68% CL
for ns in the ΛCDMþ r model with NH parametrization
and the total neutrino mass fixed to Mν ¼ 0.5 eV, a value
chosen to enlarge the impact of higher neutrino masses
on the scalar spectral index. We recover ns ¼ 0.9612�
0.0062, ∼0.6σ lower than the corresponding value for the
same model with Mν ¼ 0.059 eV.
The addition of BAO measurements inverts the correla-

tion between ns andMν, as detailed in the previous section,
thus resulting in a higher mean value of the spectral index.
We notice an increase in ns i) if we fix the cosmological
model and compare CMB alone (Planck TTþ lowPþ
BK14) with CMBþ BAO (i.e. if we compare either the
first or second row with the last row of Table II; compare
e.g. ns ¼ 0.9666� 0.0062 for Planck TTþ lowP in the
ΛCDMþ r model and NH case with ns ¼ 0.9676�
0.0045 for Planck TTþ lowPþ BK14þ BAO in the
ΛCDMþ r model and NH case) and ii) if we fix the data
set to be CMBþ BAO and compare the two cosmological
models (i.e. if we focus on the last row of Table II and
compare the two columns; compare e.g. ns ¼ 0.9676�
0.0045 in the ΛCDMþ r model and NH case with ns ¼
0.9677� 0.0046 in the ΛCDMþMν model and NH case).
We can derive that the shift observed in case i) is larger

than that obtained in case ii). In addition, the shift induced
by the marginalization over Mν is less pronounced for
Planck TTþ lowPþ BK14þ BAO than for the other data
set combination.
An illustrative summary of this section is provided in

Fig. 2, which depicts the 68% and 95% CL allowed ranges
for ns for the several combinations of data sets and for the
different cosmological models analyzed.
Before concluding this section,wewould like to emphasize

an interesting finding. Notice that adding BK14 helps lower
themeanvalue of ns whenMν is fixed, as reported in Table II.
The same does not happen whenMν is marginalized over. A
suitable explanation is that Mν and r are slightly degenerate
for CMB only. Thus, the addition of direct measurements
of the power spectrum of the B modes of CMB polarization
(BB power spectrum) provides better constraints on r when
Mν is fixed, rather than marginalized over.
From what was reported in this section, we can thus

conclude that, in the presence of a nonvanishing tensor
component (r ≠ 0), the recovered value of ns is stable
against both the choice of the hierarchy and the value of the
total neutrino mass if a combination of CMB and BAO data
is used. This implies a value of the spectral index of ns ¼
0.9677� 0.0046 in the ΛCDMþ rþMν model, with NH
parametrization, ∼0.1σ lower than the corresponding value

(ns ¼ 0.9686� 0.0047) for Planck TTþ lowPþ BAO
and r ¼ 0. If otherwise only CMB measurements are
employed, the same conclusions derived in the previous
section about the role of the hierarchy and/or the exact
value of the total neutrino mass also apply here. The
recovered value of the spectral index in the ΛCDMþ rþ
Mν model in the NH scenario tested against Planck TTþ
lowPþ BK14 is in this case ns ¼ 0.9641� 0.0064.

C. Relativistic degrees of freedom with
a vanishing tensor component

In this section, we discuss the impact that accounting for a
number of relativistic degrees of freedomNeff different from
the standard value of 3.046 might have on the recovered
value of the scalar spectral index ns. Wewill follow the same
approach outlined for massive neutrinos.We firstly assume a
vanishing tensor component (r ¼ 0) and compare results
coming from two cosmological models: ΛCDMþ Neff ,
where the total neutrino mass is fixed to the minimal value
allowed by oscillations (Mν ¼ 0.059 eV), and ΛCDMþ
Neff þMν, where we allow the total neutrino mass to vary
freely. For the sake of simplicity, and taking into account the
results of the previous section, i.e. that the exact choice of
the neutrino hierarchy plays a marginal role inmodifying the
constraints on ns, we choose to follow here the approximate
parametrization described in the previous section: we assume
a “1þ 2” scenariowhen the total neutrinomass is fixed and a
“3deg” scenariowhen it is varied.Wewill see indeed how the
marginalization over Neff considerably broadens the con-
straints on ns, thus hiding the tiny shifts possibly induced by
the different choices of neutrino hierarchy.
For each model tested in this section, we consider two

possible scenarios when varying Neff . In one case, we make
use of a broad prior on Neff , allowing it to vary freely
between 0 and 10. When doing so, we are not applying any
prior information on the number of relativistic degrees of
freedom and simply let the data tell us what is the preferred
value within the context of the cosmological model under
scrutiny; we refer to this scenario as “broad.” In the other
case, we instead apply a hard prior of Neff ≤ 3.046 when
varying Neff . The aim of this choice is to test a scenario in
which no extraradiation is allowed, but the number of
relativistic species could be lower than the standard
expected value due to incomplete thermalization processes,
as is the case in very low-reheating scenarios; we shall refer
to this case with the “hard” label.
The results are summarized in Table III and also illus-

trated in Fig. 6. We report the 68%CL around the mean. We
firstly compare these results with those reported in Table I in
order to highlight the effect of varying Neff instead of fixing
it to the standard Neff ¼ 3.046. If we focus on the broad
cases and compare them to the results obtainedwith the same
combination of data and listed in Table I, the net effect of
allowingNeff to vary is to relax the bounds on ns. The mean
value of the probability distribution is shifted by about 0.2σ
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(0.3σ) toward higher values of ns for Planck TTþ lowP
(Planck TTþ lowPþ BAO) data sets in the ΛCDMþ Neff
with respect to the baseline ΛCDM model. This effect is
easily explained by recalling the strong degeneracy between
Neff andH0, which in turn is reflected on the bounds on ns,
as shown in Fig. 5: when Neff is free to vary, more
combinations of the parameters with respect to those
accessible in the ΛCDM context become available which
identify models in agreement with the data. Most impor-
tantly for comparison with inflation models, the uncertainty
in ns becomes much larger, allowing for a wide range of ns
(both larger and smaller than in standard ΛCDM).
Moving to the hard cases, we would like to emphasize

the fact that when Neff ≤ 3.046, as expected in very low-
reheating scenarios, the scalar spectral index can take quite
small values. As an example, ns is shifted by∼0.8σ (∼0.7σ)
with respect to the value obtained in the baseline model for
Planck TTþ lowP (Planck TTþ lowPþ BAO). This is
expected, given the degeneracy between ns and Neff
discussed previously. In particular, decreasing Neff reduces
the effect of the Silk damping (see e.g. [77]), thus
increasing the power at high multipoles, and this effect
can be compensated by a smaller ns.
Focusing now on the comparison between the two

columns of Table III, we want to discuss the effect of
varying the total neutrino mass in the context of a ΛCDMþ
Neff scenario. Looking at the results obtained in the broad
scenario, when we marginalize over the total neutrino mass,
the mean value of ns is lowered by a factor of ∼0.3σ for
Planck TTþ lowP compared to the case of a fixed value of
Mν. Interestingly, the sensitivity of the CMB data to ns (i.e.
the size of the error bars) is the same for the cases of
ΛCDMþ Neff and ΛCDMþ Neff þMν. In contrast, the
constraints on the spectral index with BAO measurements
included become weaker when Mν is marginalized over.
The reason for this behavior resides in the effect thatMν has
on the H0 and Ωmh2 parameters, which are very well
constrained by BAO data. Furthermore, a degeneracy
between Neff and Mν also appears in the BAO case,
otherwise hidden when using CMB data only.
For the hard case of Neff ≤ 3.046, the preferred values of

ns are lower than for the standard case of Neff ¼ 3.046 (the

opposite direction of the shift for the broad case of arbitrary
Neff ). In the case of ΛCDMþ Neff þMν with Planck
TTþ lowPþ BAO, ns is lowered by a factor of ∼0.6σ
with respect to standard ΛCDM.
To summarize, the freedom induced by varying the

number of relativistic degrees of freedom has a non-
negligible impact on the bounds obtained on ns. Indeed,
the changes to the mean value of ns due to Neff are more
relevant than those due toMν. Despite the fact that they lie on
the exotic side of the inflationary possibilities, models with
very low-reheating temperature can alter the thermalization of
relativistic species, resulting in values of Neff lower than the
standard 3.046 and lower values of the scalar spectral index.

D. Relativistic degrees of freedom with
a nonvanishing tensor component

Here, we extend the analysis of the previous section to
include not only the effects of freeing up the values of Mν

and Neff but also allowing for a nonvanishing tensor
component (r ≠ 0). The main results are reported in
Table IV. As done for the r ¼ 0 case, we consider both
the scenarios dubbed as “broad” (0 ≤ Neff ≤ 10) and
“hard” (Neff ≤ 3.046).
As already discussed, the inclusion of r produces a slight

enhancement of the mean value of ns with respect to the
corresponding models in Table III with r ¼ 0. As a
reference, ns increases by a factor of ∼0.3σ moving from
ΛCDMþ Neff to ΛCDMþ rþ Neff for Planck TTþ lowP
in the broad case. The further marginalization over Mν,
highlighted in the second column of Table IV, is once again
responsible for a shift of ns toward lower values with
respect to those obtained at fixed Mν in the ΛCDMþ rþ
Neff context tested against CMB data (Planck TTþ lowP
alone or in combination with BK14). The inclusion of BAO
helps constrain H0, thus reducing the degeneracy with Neff
and ns. As a result, the constraints obtained with the Planck
TTþ lowPþ BK14þ BAO combination are the tightest
among those reported in Table IV.
We confirm also in this case that the scenario represented

by the hard marginalization prefers lower values of the
scalar spectral index for the very same reasons reported in
the previous section.
To conclude, the presence of nonvanishing tensor modes

is again responsible for a shift in ns toward higher mean
values with respect to the results obtained with r ¼ 0, also
in the context of a free number of relativistic degrees of
freedom. As a result, it might be relevant to take into
account the effect of nonstandard values of Neff when
exploring the ns=r plane. Before moving to the following
section, we would like to recall here some reference values
of the scalar spectral index found in this analysis by
employing current data. On one hand, we have ns ¼
0.9656� 0.0063 in the baseline ΛCDM model, with
r ¼ 0, Neff ¼ 3.046, and Mν ¼ 0.059 eV in the “1þ 2”
parametrization (a similar value of ns ¼ 0.9655� 0.0063

TABLE III. 68% CL probability intervals around the mean for
the scalar spectral index ns for the indicated data sets and
cosmological models. The rows labeled as “broad” refer to a
full marginalization over Neff (i.e. Neff free to vary within the
range [0-10]), while the rows labeled as “hard” refer to models in
which a hard prior onNeff has been adopted (i.e. Neff ≤ 3.046), in
order to mimic low-reheating temperature inflationary scenarios.

ΛCDM þ Neff ΛCDM þ Neff þMν

TTþ lowP
broad 0.969� 0.016 0.964� 0.017
hard 0.956þ0.011

−0.0080 0.951þ0.014
−0.0092

þBAO
broad 0.9705� 0.0089 0.973� 0.010
hard 0.9621þ0.0067

−0.0053 0.9623þ0.0068
−0.0057
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has been found in the exact NH scenario). On the other
hand, we have ns ¼ 0.9628þ0.0067

−0.0053 in the most extended
scenario of ΛCDMþ Neff þMν þ r with a hard prior on
Neff tested against Planck TTþ lowPþ BK14þ BAO.
The very same scenario with a broad prior on Neff tested
against the same combination of data provides instead the
highest value of ns: ns ¼ 0.974� 0.010 at 68% CL.

IV. FORECASTS

In this section, we forecast the results expected from
future CMBmissions. We consider both the case of a future

satellite mission, such as the proposed European Space
Agency satellite COrE [61], and the case of a next-
generation ground-based observatory, such as the S4 tele-
scope [62–64]. We will again focus on the expected
constraints on the scalar spectral index ns and discuss
possible modifications to these constraints that might be
induced by our imprecise knowledge of neutrinos proper-
ties, such as the unknown neutrino masses and hierarchy
and/or a value of the relativistic degrees of freedom
different from the standard one. Given the high sensitivity
of future CMB measurements, these modifications might
play a more important role than currently.

FIG. 5. Two-dimensional probability contours at 68% and 95% CL, and one-dimensional posterior probability distributions showing
the main degeneracies among cosmological parameters responsible for the shift in ns, for the indicated data set and the ΛCDMþ
Neff þMν model. In plotting the figure, we have assumed three massive degenerate neutrinos (“3deg” parametrization in the main text)
and a broad prior on Neff (0 ≤ Neff ≤ 10, see the text for further details about additional priors adopted on Neff ).
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When performing forecasts, one has to choose a fiducial
model against which we compare various parameter studies.
In Table V, we report the values of the cosmological

parameters defining our fiducial model. We choose a
fiducial cosmology which assumes the NH scheme for
the neutrino mass ordering, and a total neutrino mass
Mν ¼ 0.06 eV, slightly higher than the minimal mass
allowed by neutrino oscillation data in the NH scenario,
such that all the three neutrino eigenstates are massive. We
also assume a nonvanishing tensor component, correspond-
ing to a value of the tensor-to-scalar ratio of r ¼ 0.05 at the
pivot scale of k ¼ 0.05 Mpc−1.
In addition to the fiducial cosmological model, one also

has to simulate the data expected to be taken by the
forecasted experiments, assuming the proposed experimen-
tal setup and expected noise properties. In this work, the

noise level is computed by adopting the experimental setup
described in Table VI, following the specifications from
Ref. [67,68].
We test our fiducial model against both COrE and S4

(complemented with a Gaussian prior of τ ¼ 0.06� 0.01
on the optical depth), assuming three different cosmologi-
cal models: i) ΛCDMþ r, with Mν fixed to the fiducial
value (Mν ¼ 0.06 eV) and Neff fixed to the standard
expected value (Neff ¼ 3.046); ii) ΛCDMþ rþMν, same
as i) but with Mν free to vary; iii) ΛCDMþ rþ Neff , same
as i), but with Neff free to vary subjected to the hard prior of
Neff ≤ 3.046. In all the cases, the hierarchy has been
chosen to be normal.
We report our results in Table VII. The main message of

Table VII is that we still recover a lower value for the scalar
spectral index once the total neutrino mass and/or the
number of relativistic degrees of freedom (for the hard prior
of Neff ≤ 3.046) are marginalized over. This is particularly
evident for the COrE-like case. Indeed, if we take as a
reference the value recovered in the ΛCDMþ r scenario
(first line of Table VII), ns ¼ 0.9601� 0.0014, we find a
∼0.4σ (∼0.8σ) shift toward lower values when moving
from the ΛCDMþ r to the ΛCDMþ rþMν (ΛCDMþ
rþ Neff ) model.
We can also ask ourselves if a wrong assumption about

the exact neutrino mass splitting might induce a bias in the
recovered value of ns and/or degrade the uncertainty on ns.

FIG. 6. Marginalized confidence intervals for the scalar spectral
index ns for the indicated cosmological models and data sets.
Solid bold lines are for the “hard” prior on Neff (Neff ≤ 3.046),
dashed lines are for “broad”marginalization (0 ≤ Neff ≤ 10). The
vertical bands are 68% and 95% CL from Planck TTþ lowP in
the context of a ΛCDM model with one massive neutrino with
mass Mν ¼ 0.06 eV and Neff ¼ 3.046.

TABLE IV. 68% CL probability intervals around the mean for
the scalar spectral index ns for the indicated data sets and
cosmological models. The rows labeled as “broad” refer to a
full marginalization over Neff (i.e. Neff free to vary within the
range [0-10]), while the rows labeled as “hard” refer to models in
which a hard prior on Neff has been adopted (i.e. Neff ≤ 3.046) in
order to mimic low-reheating temperature models.

ΛCDMþ rþ Neff ΛCDMþ rþ Neff þMν

TTþ lowP
broad 0.974� 0.016 0.968þ0.019

−0.017

hard 0.958þ0.011
−0.0078 0.953þ0.013

−0.0090

þBK14
broad 0.972þ0.015

−0.017 0.970� 0.016

hard 0.956þ0.011
−0.0079 0.954þ0.012

−0.0080

þBAO
broad 0.9724� 0.0091 0.974� 0.010
hard 0.9629þ0.0066

−0.0055 0.9628þ0.0067
−0.0053

TABLE V. Fiducial values for the cosmological parameters
adopted when generating mock data. The total neutrino mass is
distributed among the three massive eigenstates according to the
normal hierarchy ordering.

Ωbh2 0.02214
Ωch2 0.1207
100θ 1.04075
τ 0.06
Mν½eV� 0.06
Neff 3.046
r 0.05
ns 0.96
ln½1010As� 3.053

TABLE VI. Experimental setup adopted for the CMB forecasts
analyzed in this work.

COrE S4

Frequency [GHz]
(100,115,130,145 (90,150,220)
160,175,195,220)

FWHM [arcmin]
(8.4,7.3,6.46,5.79 (5.0,3.0,2.0)
5.25,4.8,4.31,3.82)

T sensitivitya [μK arcmin]
(6.0,5.0,4.2,3.6 (1.06,1.06,3.54)
3.8,3.8,3.85.8)

Sky fraction 0.7 0.5
lmin − lmax 2–3000 20–4000

aTemperature sensitivity. Polarization sensitivity is computed
by rescaling the temperature sensitivity by a factor of

ffiffiffi
2

p
.

IMPACT OF NEUTRINO PROPERTIES ON THE … PHYSICAL REVIEW D 95, 043512 (2017)

043512-13



In particular, we would like to address the question of
whether we can still make use of the approximate para-
metrization rather than follow an exact scheme, as usually
done in cosmological analysis. Therefore, we perform the
following test: we assume a ΛCDMþ r scenario, with Mν

fixed to the fiducial value but distributed among the
eigenstates according to the “1þ 2” parametrization
(remember that the fiducial choice for the neutrino mass
splitting was the NH scenario).
We find the following two values for the spectral index

(which are not reported in Table VII): ns ¼ 0.9598�
0.0014 for COrE and ns ¼ 0.9600� 0.0019 for S4, both
at 68%CLassuming “1þ 2” parametrization instead ofNH,
to be compared, alongwith the equivalent results reported in
Table VII for the NH parametrization (ns ¼ 0.9601�
0.0014 for COrE and ns ¼ 0.9599� 0.0019 for S4), with
the fiducial value assumed for the scalar spectral index,
ns ¼ 0.96. These results highlight that there is an almost
negligible impact of the underlying mass-splitting para-
metrization on the spectral index, when dealing with future
CMB data. Once again, we have found that the exact choice
of the neutrino parametrization does not have significant
effect on the stability of the constraints on ns. Nevertheless,
we would like to note that we recover the same pattern
already present in Table II, with the “1þ 2” parametrization
favoring overall a (slightly) lower value of ns.
To summarize this section, the largest bias on ns is

induced by relaxing the assumptions about the number of
relativistic degrees of freedom. Nevertheless, even assum-
ing that we were able to determine Neff with infinite
precision, thus completely erasing its impact on ns, an
imperfect knowledge of the total neutrino mass would still
induce a ∼0.4σ bias in the recovered value of ns as
highlighted by the results obtained by marginalizing over
Mν and reported in Table VII.

V. IMPLICATIONS FOR SPECIFIC
INFLATIONARY MODELS

The results reported above may have implications when
discussing the ability of cosmological data to discriminate
among different inflationary models, particularly for future
experiments. The forecasted sensitivity on the inflationary

parameters and the consequent significancewithwhich some
inflationary models are expected to be ruled out should be
carefully assessed, including all possible uncertainties.
Here, we consider the implications of our findings for a

few selected, theoretically well-motivated, inflationarymod-
els, which could be prematurely discarded if biases due to
uncertainties in the neutrino sector are not carefully taken
into account when estimating inflationary parameters from
cosmological data sets. The panels from Fig. 7 to Fig. 12
depict the two-dimensional contours at 68% and 95% CL in
the ns=r plane for a selection of models and data sets. The
data sets have been discussed in Sec. II, whereas the selection
of theoreticalmodels will be briefly outlined inwhat follows.

A. Natural inflation (NI)

In order to satisfy constraints on sufficient inflation and
anisotropy in the CMB, the potential for the inflatonmust be
very flat, in the sense that the ratio of the height to the
ðwidthÞ4 of the potential has to be of orderOð≪ 1Þ, which in
turn implies that the inflaton effective quartic self-coupling λ
must be comparably small. From a particle physics stand-
point, a theoretically desirable situation is that where the
smallness of λ, and hence the flatness of the potential, is
protected by a symmetry, and hence natural in the sense of ’t
Hooft [78]. In natural inflation [79,80], the role of the
inflaton is played by a pseudo-Nambu-Goldstone-Boson
(PNGB) ϕ, such as the axion (although not the QCD axion).
The key ingredient in keeping the potential flat is a shift
symmetry. As long as the shift symmetry is exact, the
inflaton cannot roll and drive inflation, and hence there must
be additional explicit symmetry breaking. Then, these
particles become PNGBs with nearly flat potentials, exactly
as required by inflation.

1. Cosine natural inflation

In the original cosine natural inflation model, modeled
after the QCD axion, the PNGB potential resulting from
explicit breaking of a shift symmetry is of the form

VðϕÞ ¼ Λ4½1� cosðNϕ=fÞ�: ð3Þ

We will take the positive sign in Eq. (3) (this choice has no
effect on our results) and take N ¼ 1, so the potential, of
height 2Λ4, has a uniqueminimumatϕ ¼ πf (the periodicity
of ϕ is 2πf). For appropriately chosen values of the mass
scales, e.g. f ≥ mPl and Λ ∼mGUT ∼ 1016 GeV, the PNGB
field ϕ can drive inflation. Then, the inflaton mass
mϕ ¼ Λ2=f ∼ 1011 − 1013 GeV. For f ≫ mPl, the inflaton
becomes independent of the scale f and is mϕ ∼ 1013 GeV.
Forf ≫ mPl, the predictions of natural inflation tend to those
of the minimally coupled quadratic chaotic inflation model,
i.e. with a potential V ∝ ϕ2.
In this paper we take mPl ¼ 1.22 × 1019 GeV. Our

studies of natural inflation in light of data extend upon

TABLE VII. 68% CL probability intervals around the mean for
the scalar spectral index ns for the indicated CMB data sets (the
satellite mission COrE and the ground-based telescope S4) and
cosmological models. S4 is complemented by a Gaussian prior on
the reionization optical depth τ ¼ 0.06� 0.01. The superscript
“h” in Neff indicates that we are reporting results for the “hard”
marginalization over Neff (Neff ≤ 3.046).

COrE S4

ΛCDM þ r 0.9601� 0.0014 0.9599� 0.0019
ΛCDM þ rþMν 0.9593� 0.0016 0.9595� 0.0020
ΛCDM þ rþ Nh

eff 0.9580þ0.0024
−0.0017 0.9580þ0.0027

−0.0023
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previous analyses of NI of Refs. [81] and [82], which were
based upon WMAP’s first-year data [83] and third-year data
respectively, and [84] based on Planck data. Even earlier
analyses [80,85] placed observational constraints on this
model using Cosmic Background Explorer (COBE) data
[86]. Other papers have studied inflation models (including
NI) in light of the WMAP1 and WMAP3 data [9,87] and in
light of Planck data [18,19,88]. Huang et al. [20] found that,
in the context of the ΛCDMþ r model and two extended
models (ΛCDMþ rþ nrun and ΛCDMþ rþnrunþnrun;run,
where nrun ¼ dns=d ln k is the running of ns and nrun;run ¼
d2ns=d ln k2 is the running of the running), cosine natural
inflation is in tension at the 2σ level with a combination of
Planck, BICEP2/Keck Array [57], and BAO data.
We reinvestigate this here by allowing for more extended

cosmological models which take into account possible
deviations from the standard value of relativistic degrees of
freedom Neff and the uncertainties related to the value of the
total neutrinomass as well as the distribution of the total mass
among theneutrino eigenstates.We findbasic agreementwith
the conclusion of Ref. [20] for the case of standard Neff .
The predictions for cosine natural inflation in the ns=r

plane are plotted as a purple band in both panels of Fig. 7,
together with the two-dimensional 68% and 95% CL con-
tours for the indicated data sets and models. The left panel
shows extensions of theΛCDMþ rmodel while takingNeff

fixed to Neff ¼ 3.046 and assuming that the total neutrino

mass is distributed according to the NH scenario. For Planck
measurements only, for the case of ΛCDMþ r, the grey
region shows that the cosineNImodel is in tension at 2σ. The
marginalization overMν with Neff ¼ 3.046 shifts the mean
value ofns to lower values so that the agreement is enhanced.
The inclusion of BK14 and BAO measurements, however,
shifts the mean value back to higher values, reinstating the
2σ tension. A similar plot may be found in the Planck 2013
paper [18], though there the assumption was made of three
degenerate neutrino species (for ΛCDMþ rþMν) and
“1þ 2” species (for ΛCDMþ r), while here we report
contours by assuming the exact NH parametrization.
The right panel shows results obtained by allowing a free

value of Neff . In low-reheating scenarios with Neff below
the standard value (indicated by the “h” superscript), cosine
NI is within the 68% contours; however, this is a somewhat
exotic case. Notice also that the model just reaches 2σ
agreement again for the case where the ΛCDMþ rþ
Neff þMν model is tested against the full combination
of CMB and BAO data (red contours).
Finally, with regard to forecasts for future surveys (see

Fig. 8), we again emphasize the effect of neutrino proper-
ties on the remaining regions in the ns=r plane.

2. Generalizations of original natural inflation

Subsequent to theoriginal cosinevariantofnatural inflation,
many types of candidates have subsequently been explored for

FIG. 7. Two-dimensional probability contours at 68% and 95% CL in the ns=r plane for the indicated data sets and models. The purple
region shows predictions for cosine natural inflation models for 46 ≤ N� ≤ 60, where N� is the number of e-folds up to the end of
inflation at which present modes of k ¼ 0.002 Mpc−1 have been generated. Left panel: Focus on the impact of neutrino hierarchy and
total mass in the ns=r plane. Contours are drawn assuming the NH parametrization. Right panel: Focus on the impact of varying the
number of relativistic degrees of freedom in the ns − r plane. The superscripts “h” and “b” stand for the hard (Neff ≤ 3.046) and broad
(0 ≤ Neff ≤ 10) prior imposed to Neff . Contours are drawn assuming either the “1þ 2” parametrization whenMν is fixed or the “3deg”
parametrization when Mν is marginalized over.
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natural inflation. For example, as discussed in the next section,
Kinney andMahanthappa considered NI potentials generated
by radiative corrections in models with explicitly broken
Abelian [89] and non-Abelian [90] symmetries. Cosine NI
requires thewidthof thepotential to be trans-Planckian.Sucha
scenario is difficult to accommodate in string theory. Thus,
many authors have proposed other variants of NI, taking
advantage of the shift symmetry offered by “axions,” and
looking for extensions of the original cosine potential that
accommodate smaller values of f.9 Axion monodromy [111]
is a shift-symmetric string-motivated extension of natural
inflation which evades the super-Planck scale width of the
cosine potential by analytic continuation on a compact
manifold, resulting in an effective field range larger than
mPl. A resulting potential is V ∝ ϕ2=3 or in linear axion
monodromy [112], V ∝ ϕ, see also [113,114]. Versions of
axionmonodromywith additional couplings to heavy degrees
of freedom can produce larger tensor amplitudes [115].

3. Kinney-Mahanthappa natural
inflation—quartic hilltop

In 1995, Kinney and Mahanthappa proposed a realiza-
tion of low-scale inflationary scenarios wherein the inflaton
potential is generated by radiative corrections in an explic-
itly broken SO(3) gauge symmetry. Within the model,
which we refer to as Kinney-Mahanthappa (KM) natural
inflation, the inflaton is a pseudo-Goldstone mode whose
dynamics are governed by the following potential:

V ¼ V0

�
sin4

�
ϕ

μ

�
log

�
g2sin2

�
ϕ

μ

��
− log½g2�

�
: ð4Þ

In the low-scale limit μ ≪ mPl, potentials of this type
reduce to the quartic hilltop model at leading order in a
Taylor expansion,

V ≃ V0 − λ

�
ϕ

μ

�
4

þ… ð5Þ

Extension of the model to arbitrary values of μ (sub- or
super-Planckian) are possible and compatible with data.
In Fig. 9, we show the predictions from KM natural

inflation as a purple band and their agreement with a
selection of models and data sets discussed in this work. As
for Fig. 7, the left panel shows extensions to ΛCDMþ r
with fixed Neff , while the right panel also reports results for
a free Neff . Also in this case, there is agreement at 2σ level
between KM predictions and the allowed contours in the
ns=r plane in the context of ΛCDMþ r and ΛCDMþ rþ
Mν when the full combination of CMB and BAO data is
employed (see red and blue regions in the left panel of
Fig. 9). Better agreement is recovered when Neff is also
marginalized over (red contours in the right panel) and in
the (more exotic) context of low-reheating scenarios (green
and blue regions in the right panel).
Similar conclusions can be drawn with regard to the

forecasts reported in Fig. 10: the marginalization over Mν

and Neff extends the allowed region of the parameter space
toward lower values of ns, recovering a better agreement
with KM predictions.

B. Higgs-like models

Here, we study the potential of a Higgs-like particle at
the grand unified theory scale [99],10

VðϕÞ ¼ V0

�
1 −

�
ϕ

μ

�
2
�
2

ð6Þ

The comparison between predictions of the model and
regions in the ns=r plane allowed by current data is reported
in Fig. 11, where theoretical predictions are shown as a
purple band. Better agreement is obtained in this case. The
full combination of CMB and BAO data still limits the
agreement to a reduced region of the parameter space (see
the red and blue contours in the two panels of Fig. 11).
Concerning forecasts, Fig. 12 shows once again that the

marginalization over the neutrino properties analyzed in
this work (namely, the total neutrino mass and the number
of relativistic degrees of freedom) enlarges the allowed
probability region of the parameter space in the ns=r plane,
which is also in agreement with the predictions from the
Higgs-like model of inflation.

9Kim, Nilles, and Peloso [91], as well as the idea of N-flation
[92–94], generalized the original NI model to include two or
more axions, and showed that an effective potential of f ≫ mPl
can be generated from multiple axions, each with sub-Planckian
scales. An interesting variant is modulated natural inflation [95].
Ref. [96] used shift symmetries in Kähler potentials to obtain a
flat potential and drive natural chaotic inflation in supergravity.
Additionally, [97,98] examined natural inflation in the context of
extra dimensions and [99] used PNGBs from little Higgs models
to drive hybrid inflation. Also, [100,101] use the natural inflation
idea of PNGBs in the context of braneworld scenarios to drive
inflation. Freese [102] suggested using a PNGB as the rolling
field in double field inflation [103] (in which the inflaton is a
tunnelling field whose nucleation rate is controlled by its
coupling to a rolling field). Models have been proposed with
enhanced friction occurring during axion inflation [104,105].
Ref. [106,107] found a quadratic potential in theories where an
axion field mixes with a 4-form. Ref. [105,108] used coupling of
the inflaton kinetic term to the Einstein tensor to allow NI with
f ≪ mPl by enhancing the gravitational friction acting on the
inflaton during inflation. Ref. [109,110] suggested a “multi-
natural” inflation model in which the single-field inflaton
potential consists of two or more sinusoidal potentials with a
possible nonzero relative phase (such as may arise if a complex
scalar field is coupled to two sets of quark and antiquark fields).
We will focus in this paper on single field implementations of NI.

10For the sake of clarity, we remark that this model is distinct
from the Higgs inflation model formulated in [116], where it is
the actual Higgs boson (and not a Higgs-like particle) which
drives inflation, through a nonminimal coupling to the Ricci
scalar (see also [117]).
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FIG. 8. Two-dimensional probability contours at 68% and 95% CL in the ns=r plane for the indicated data sets and models. Contours
are drawn assuming the NH parametrization and a cosmological model with ns ¼ 0.96 and r ¼ 0.05. The purple region shows
predictions for natural inflation model for 46 ≤ N� ≤ 60, where N� is the number of e-folds up to the end of inflation at which present
modes of k ¼ 0.002 Mpc−1 have been generated. Left panel: Focus on forecasted results from the combination of the next-generation
ground-based CMB experiment Stage-IV and a Gaussian prior on the optical depth τ ¼ 0.06� 0.01. Right panel: Focus on forecasted
results from the next-generation satellite CMB experiment COrE.

FIG. 9. Two-dimensional probability contours at 68% and 95% CL in the ns=r plane for the indicated data sets and models. The purple
region shows predictions for the Kinney-Mahanthappa (KM) model of natural inflation (or quartic hilltop) for 46 ≤ N� ≤ 60, where N�
is the number of e-folds up to the end of inflation at which present modes of k ¼ 0.002 Mpc−1 have been generated. Left panel: Focus
on the impact of neutrino hierarchy and total mass in the ns − r plane. Contours are drawn assuming the NH parametrization. Right
panel: Focus on the impact of varying the number of relativistic degrees of freedom in the ns=r plane. The superscripts “h” and “b” stand
for the hard (Neff ≤ 3.046) and broad (0 ≤ Neff ≤ 10) prior imposed to Neff . Contours are drawn assuming either the “1þ 2”
parametrization when Mν is fixed, or the “3deg” parametrization when Mν is marginalized over.
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FIG. 10. Two-dimensional probability contours at 68% and 95% CL in the ns=r plane for the indicated data sets and models. Contours
are drawn assuming the NH parametrization and a cosmological model with ns ¼ 0.96 and r ¼ 0.05. The purple region shows
predictions for the Kinney-Mahanthappa (KM) model of natural inflation (or quartic hilltop) for 46 ≤ N� ≤ 60, where N� is the number
of e-folds up to the end of inflation at which present modes of k ¼ 0.002 Mpc−1 have been generated. Left panel: Focus on forecasted
results from the combination of the next-generation ground-based CMB experiment Stage-IV and a Gaussian prior on the optical dept
τ ¼ 0.06� 0.01. Right panel: Focus on forecasted results from the next-generation satellite CMB experiment COrE.

FIG. 11. Two-dimensional probability contours at 68% and 95% CL in the ns=r plane for the indicated data sets and models. The
purple region shows predictions for Higgs-like models of inflation for 46 ≤ N� ≤ 60, where N� is the number of e-folds up to the end of
inflation at which present modes of k ¼ 0.002 Mpc−1 have been generated. Left panel: Focus on the impact of neutrino hierarchy and
total mass in the ns=r plane. Contours are drawn assuming the NH parametrization. Right panel: Focus on the impact of varying the
number of relativistic degrees of freedom in the ns − r plane. The superscripts “h” and “b” stand for the hard (Neff ≤ 3.046) and broad
(0 ≤ Neff ≤ 10) prior imposed to Neff . The contours are drawn assuming either the “1þ 2” parametrization when Mν is fixed or the
“3deg” parametrization when Mν is marginalized over.
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VI. CONCLUSIONS

We have investigated here the robustness of the con-
straints on the scalar spectral index ns under various
assumptions about neutrino properties by employing a
combination of CMB and BAO data in the context of a
ΛCDM model and other possible extensions. In particular,
we have considered the impact of marginalizing over the
total neutrino mass Mν under different choices for the
neutrino mass splittings. We have compared the results
arising from assuming either an approximate neutrino mass
splitting (one massive eigenstate carrying the total mass plus
two massless species when the total mass is fixed to the
minimal-mass case, Mν ¼ 0.059 eV, and three degenerate
massive neutrinos otherwise) as usually done in literature, or
the exact mass splitting (normal and inverted neutrino mass
hierarchies). We have found that the assumptions about the
mass splittings play a negligible role in the context of current
cosmological measurements. However, when values of the
neutrino mass different from the minimal mass of Mν ∼
0.059 eV are taken into account, the spectral index is slightly
shifted.11 This is due to a mild inverse degeneracy between
the two parameters, induced by the strong degeneracy

betweenMν, the Hubble constantH0, and the matter density
Ωmh2. These degeneracies can be strongly alleviated by the
addition of BAO measurements.
We have also tested the effect of considering a free

number of relativistic degrees of freedom Neff and found
that the scalar spectral index is considerably lowered when
Neff ≤ 3.046, as expected in the context of low-reheating
temperature scenarios [TRH ∼OðMeVÞ, subjected to
TRH > 5 MeV in order to satisfy BBN bounds [51]].
This shift in ns is mostly driven by the strong degeneracy
between Neff , ns, and H0. This preference is mildly
alleviated by the inclusion of BAO data, which are able
to exclude low values of H0.

12

We have also allowed for a nonvanishing tensor com-
ponent in the analyses (namely, we have investigated
ΛCDMþ r models and discussed extensions), finding that
the inclusion of nonvanishing tensor modes is responsible

FIG. 12. Two-dimensional probability contours at 68% and 95% CL in the ns=r plane for the indicated data sets and models. Contours
are drawn assuming the NH parametrization and a cosmological model with ns ¼ 0.96 and r ¼ 0.05. The purple region shows
predictions for Higgs-like models of inflation for 46 ≤ N� ≤ 60, where N� is the number of e-folds up to the end of inflation at which
present modes of k ¼ 0.002 Mpc−1 have been generated. Left panel: Focus on forecasted results from the combination of the next-
generation ground-based CMB experiment Stage-IV and a Gaussian prior on the optical dept τ ¼ 0.06� 0.01. Right panel: Focus on
forecasted results from the next-generation satellite CMB experiment COrE.

11In this context, the choice of the hierarchy, either exact or
approximate, does play a role, but mainly due to the different
prior on Mν adopted in the two cases (Mν > Mν;min, with
Mν;min ≠ 0 in the exact parametrization but Mν;min ¼ 0 for the
approximate parametrization).

12We have not included priors from direct measurements ofH0

on purpose, given the highly discussed tension with the CMB
determination of the same quantity (see [118–121] and references
therein). However, we can qualitatively comment on the possible
effect of including priors from the local measurements of the
Hubble constant: the aforementioned priors, preferring values of
the Hubble constant H0 higher than those predicted by CMB and
BAO data, would go in the direction of favoring, on average,
higher values of ns, given the direct degeneracy between the two
parameters. In addition, it would also lower the upper bound on
Mν and increase the value of Neff , favoring again higher values
of ns.
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for slightly increasing ns with respect to the corresponding
bounds with r ¼ 0.
The dependence of the constraints of ns on neutrino

properties, especially in extended ΛCDMþ r scenarios, is
crucial for assessing the significance at which inflationary
models can be excluded with cosmological data. As an
example, ∼1σ agreement between the predictions from the
cosine natural inflation paradigm with Planck TTþ
lowPþ BK14þ BAO data can be recovered in exotic
reheating scenarios with ΛCDMþ rþMν þ Neff . In addi-
tion, it will not be possible to exclude the model with future
CMB data alone if one performs forecasts of future CMB
missions such as COrE and Stage-IV by assuming a
fiducial model with ns ¼ 0.96 and r ¼ 0.05. Similar
considerations hold for the KM variant of natural inflation,
as well as for Higgs-like models of inflation.
A precise determination of both the mean value and the

error budget associated to a determination of ns by
including all the possible sources of uncertainties is,
therefore, a mandatory analysis. The very same forecasts
of future CMB missions discussed above show that con-
straints on ns can be altered by more than ∼0.4σ if
uncertainties related to our incomplete knowledge of the
neutrino properties (i.e. the precise value of the total mass
and exact number of relativistic degrees of freedom) are not
taken into account properly. This is crucial for upcoming
experiments aiming at the discovery of the inflationary
paradigm given the claimed precision at which they would
be able to constrain the inflationary sector.
After this work was finalized, Ref. [122] appeared,

where the authors also discuss degeneracies between the

total neutrino mass and cosmological parameters as well as
the effect of massive neutrinos on the BAO scale.
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