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We examine the cosmological sector of a gauge theory of gravity based on the SO(4,2) conformal group
of Minkowski space. We allow for conventional matter coupled to the spacetime metric as well as matter
coupled to the field that gauges special conformal transformations. An effective vacuum energy appears as
an integration constant, and this allows us to recover the late time acceleration of the Universe.
Furthermore, gravitational fields sourced by ordinary cosmological matter (i.e. dust and radiation) are
significantly weakened in the very early Universe, which has the effect of replacing the big bang with a big
bounce. Finally, we find that this bounce is followed by a period of nearly exponential slow roll inflation
that can last long enough to explain the large scale homogeneity of the cosmic microwave background.
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I. INTRODUCTION

In order to reconcile Einstein’s general relativity with
observational facts, modern cosmology incorporates a
number of elements that are difficult to justify from
fundamental physics. For example, dark matter is required
to describe the clustering of stars and galaxies, dark energy
is required to explain the late time acceleration of the
Universe, and an inflationary mechanism in the early
Universe is needed to explain both the large scale homo-
geneity of the cosmic microwave background as well as the
origin of primordial fluctuations.
The simplest framework that incorporates all of these

elements has become known as the concordance model of
cosmology, namely, ΛCDM with single field inflation. In
this paradigm, one assumes the existence of cold dark
matter (CDM) that is not part of the standard model of
particle physics, a cosmological constant Λ that is added by
hand to the Einstein-Hilbert action of general relativity, and
a scalar inflaton field with an appropriate potential to drive
nearly de Sitter (dS) inflation for a finite period in the early
Universe. (We note that none of these axioms of standard
cosmology are inconsistent with general relativity.) Even
after observational evidence is accounted for via these
mechanisms, theoretical challenges remain for concordance
cosmology. For example, if inflation is finite the classical
equations of motion for general relativity imply that the
Universe started with a big bang. (It should be mentioned
that while this singular initial state is conceptually
unappealing, it is not actually in direct conflict with
observations.)
In an attempt to avoid some of the more ad hoc elements

of concordance cosmology, many authors have considered

the possibility that general relativity is not the correct
theory of gravitation. Some of the oldest modified gravity
theories have attempted to provide a nonparticle explan-
ation of dark matter, but such models can have difficulty
accounting for the clustering of galaxies and weak gravi-
tational lensing [1]. Alternative gravity theories have also
been proposed to explain the late time acceleration of the
Universe [2,3], as well as early time inflationary accel-
eration [4]. Quantum corrections to general relativity have
been used to tame the big bang singularity; for example, in
loop quantum cosmology semiclassical equations of
motion yield a big bounce instead of a big bang [5].
In this paper, we study the cosmological implications of

a modified gravity model that simultaneously addresses the
issues of the initial singularity, the mechanism driving
inflation, and the late time acceleration of the Universe. Our
model belongs to the class of gauge theories of gravity
[6–13] in which the central object is a gauge potential
analogous to the gauge potentials of particle physics. The
action functional is taken to be quadratic in the field
strength of the gauge potential, just as in conventional
Yang-Mills theory. Geometric quantities, such as the metric
and connection, are defined as functions of the gauge
potential. This ultimately leads to a metric theory of gravity.
We take the gauge group to be the conformal group of
Minkowski spacetime SO(4,2), and the resulting theory is
invariant under local conformal (Weyl) transformations.
Noncosmological aspects of the SO(4,2) gauge gravity
model have been studied in [10–13].
A ubiquitous feature of gauge-gravity theories is mani-

folds with nonvanishing torsion. When models based on the
Poincaré [14] or de Sitter groups [15,16] were applied in
cosmology, it was found that nonzero torsion can drive late
time acceleration. Actually, in the de Sitter case nonzero
torsion is a necessary condition for the existence of non-
radiation cosmological matter. It should also be noted that
there are other nongauge gravity models where torsion is
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responsible for singularity avoidance and inflation in the
early Universe [17–20]. However, while the SO(4,2) theory
considered here allows for nonzero torsion, in this work we
find that it is not required to reconcile the model with
observations, explain dark energy, or to alter early Universe
dynamics. However, we do require a population of matter
that couples directly to the fields gauging the generators of
special conformal transformations.
In Sec. II we present the action of our model and write

down the equations of motion assuming vanishing torsion
and matter which couples to the metric as well as fields
gauging special conformal transformations. In Sec. III A,
we specialize to homogeneous and isotropic spacetimes
and write down the Friedmann equation for the model. In
Sec. III B, we discuss solutions of the Friedmann equation
and demonstrate the existence of a bounce, slow-roll
inflation, and late time acceleration. In Sec. IV, we
summarize and discuss our results.

II. GRAVITATIONAL YANG-MILLS THEORY

We consider the gravity theory described in [13]. The
reader can find a more complete description of the model in
that paper; here, we focus on a subsector of the theory
obtained by making a number of simplifying assumptions.
Our model is based on the SO(4,2) conformal group of

Minkowski spacetime, which is the largest group of
transformations that leaves null geodesics invariant. We
begin with the so(4,2)-Lie algebra-valued vector potential

Aα ¼ AA
αJA ¼ eaαPa þ laαKa þ ωab

α Jab þ qαD; ð1Þ

where the JA ¼ fPa;Ka; Jab;Dg are the generators of the
Lie algebra and α ¼ 0…3 is a spacetime index. The
components of the associated field strength Fαβ ¼ FA

αβJA
are given by

FA
αβ ¼ ∂αAA

β − ∂βAA
α þ fABCAB

αAC
β ; ð2Þ

with the structure constants defined by ½JA; JB� ¼ fCABJC.
We identify various components of Aα in the JA basis

with geometric quantities in a four-dimensional manifold
M with Lorentzian metric gαβ and affine connection Γα

βδ.
In particular, we take eaα as the components of an ortho-
normal frame fields on M, with ωab

α as the associated
connection one-forms. Hence, the metric and connection
are given by

gαβ ¼ ηabeaαebβ; Γγ
αβ ¼ eγað∂αeaβ þ ωac

α ecβÞ: ð3Þ

In these expressions, lowercase Greek and Latin indices are
raised and lowered with gαβ and ηab, respectively. The
curvature one-forms are antisymmetric in their frame

indices ωðabÞ
α ¼ 0, from which it follows that the affine

connection is metric compatible [21]:

0 ¼ ∇αgβγ; ð4Þ

where ∇α is the derivative operator defined by Γα
βδ. The

Riemann curvature and torsion tensors of M are given by:

Rμν
αβ ¼ eμaeνbðdωab þ ωac∧ωc

bÞαβ;
Tα

βγ ¼ eαaðdea þ ωac∧ecÞβγ: ð5Þ

Note that in this model, it is not necessary to assume
Tα

βγ ¼ 2Γα½βγ� ¼ 0; however, we concentrate on the van-
ishing torsion case in this paper.
The action functional of the model is

S ¼ −
1

2g2YM

Z
d4x

ffiffiffiffiffiffi
−g

p
gαμgβνhABFA

αβF
B
μν þ Sm; ð6Þ

where hAB ¼ fMANfNBM is the Cartan-Killing metric on so
(4,2). The nontrivial components of hAB are

hab ¼ hab ¼ −2ηab; h14;14 ¼ 2;

h½ab�½cd� ¼ h½cd�½ab� ¼ −4ηa½cηd�b: ð7Þ

The notation here is that a; a ¼ 0, 1, 2, 3 denote compo-
nents in the direction of translations Pa and special
conformal transformations Ka, respectively. The six indi-
ces ½ab� consist of [12], [23], [31], [01], [02], [03] and
denote directions along the distinct nonzero generators Jab
of Lorentz transformations. Finally, the index 14 denotes
the component in the direction of the generator D of
dilatations. We view (6) and (7) as the defining relation-
ships for our model.
The action (6) is manifestly diffeomorphism invariant,

and as demonstrated in [13], it is invariant under local
gauge transformations described by an 11 parameter sub-
group of SO(4,2) with generators fKa; Jab;Dg. The
behavior of the gauge potential under these infinitesimal
gauge transformations is

AA
α↦AA

α þ ∂αϵ
A þ fABCAB

α ϵ
C;

ϵAJA ¼ λaKa þ ΛabJab þ ΩD: ð8Þ

In particular, the component of the gauge potential in the
direction of D transforms as

δqα ¼ ∂αΩþ 1

2
λα: ð9Þ

It is obvious that we can impose the gauge condition
qα ¼ 0 via a simple series of gauge transformations of the
form ϵAJA ¼ λaKa. This gauge condition is preserved
under the gauge transformation generated by

ϵAJA ¼ −2eaα∂αΩKa þ ΛabJab þ ΩD: ð10Þ
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Under this class of restricted gauge transformations, the
metric transforms as

δgαβ ¼ Ωgαβ: ð11Þ

That is, the model is invariant under local conformal (Weyl)
transformations. For the rest of this paper, we work in the
qα ¼ 0 gauge.
While qα ¼ 0 is a gauge choice and may be imposed

without loss of generality, we also enforce a number of
additional conditions that are actually physically restrictive.
In general, the affine connection Γ on the spacetime
manifold M has nonvanishing torsion. It might be the case
that torsion plays an important role in cosmology, but in
this work we concentrate on the case where torsion is not
present; i.e., we impose Ta

μν ¼ 0. It was demonstrated in
[13] that the torsion-free condition is preserved under the
gauge transformations (10). Another assumption concerns
the dependence of the matter action on the gauge potential.
Specifically, we assume that the matter action is a func-
tional of the metric gαβ, the field laα gauging special
conformal transformations, and matter fields (generically
denoted by ψ) only:

Sm ¼ Sm½gαβ; laα;ψ �: ð12Þ

More general types of matter-gauge potential coupling are
discussed in [13]. Finally, in the full theory derived from (6)
there is an antisymmetric tensor,

F αβ ¼
1

2
ηabea½αl

b
β�; ð13Þ

appearing in the field equations that satisfies Maxwell-like
equations for the electromagnetic field strength. Since our
primary interest is cosmology below, we expect such a
tensor would be ruled out by isotropy and homogeneity,
and hence, we set F αβ ¼ 0. We note that it is easily
confirmed that the vanishing of F αβ is a gauge invariant
condition. Under the transformations (10), we have

δF αβ ¼ −2∇½α∇β�Ω ¼ 0: ð14Þ

Variation of the action (6) with respect to the gauge
potential under these assumptions yields the equations of
motion:

0 ¼ Bαν þ 1

16
g2YMT

αν −∇μ∇½νaμ�α −Qαν; ð15aÞ

0 ¼ ∇αaαβ; ð15bÞ

0 ¼ ∇βa: ð15cÞ

Here and below, the vanishing of the torsion implies that∇α

is the ordinary covariant derivative operator as defined from

the Levi-Civita connection. Also, aαβ describes matter
coupling to laα, while T αβ is the ordinary stress-energy
tensor:

aμν ¼ g2YM
4

ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δlbν
ebμ;

T μν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð16Þ

The other quantities appearing in (15) are given by

Qαν ¼ 1

2
aλμCαλμν −

1

8
ταν −

1

2
ð2Sλμ − aλμÞ

× ðgλ½μaν�α − gα½μaν�λÞ; ð17aÞ

Bμν ¼ −∇α∇αSμν þ∇α∇μSαν þ CμανβSαβ; ð17bÞ

Sαβ ¼
1

2

�
Rαβ −

1

6
Rgαβ

�
; ð17cÞ

τρσ ¼ −4CαβγρCαβγ
σ þ gρσCαβγδCαβγδ; ð17dÞ

aαβ ¼ aαβ −
1

6
gαβa; ð17eÞ

a ¼ aαα: ð17fÞ

Here, Cαβγδ is the Weyl tensor, while Sαβ and Bμν are the
Schouten and Bach tensors, respectively. Finally, by taking
the divergence of (15a), we find that the stress-energy
tensor is conserved as usual: ∇αT αβ ¼ 0.

III. FRIEDMANN-ROBERTSON-WALKER
COSMOLOGY

A. The Friedmann equation

The goal of this section is to study the evolution of a
spatially homogenous and isotropic spacetime in our
model. We therefore assume the Friedmann-Robertson-
Walker (FRW) line element:

ds2¼−dt2þA2

�
dr2

1−kr20=r
2
þr2dθ2þr2sin2θdϕ2

�
; ð18Þ

where A ¼ AðtÞ is the scale factor, r0 is a constant with the
dimension of length, and k ¼ 0, þ1, −1 for flat, 3-sphere
and 3-hyperboloid spatial geometries, respectively.
Due to the isotropy and homogeneity of the spacetime,

the symmetric matter source aμν must take the form

aμν ¼ ðξ1 þ ξ2Þuμuν þ ξ2gμν; ð19Þ

where uα∂α ¼ ∂t. This is algebraically identical to the
stress-energy tensor of a perfect fluid, but we caution that
aμν should not be interpreted in this way: As seen in (16),
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this tensor arises from the variation of the matter action
with respect to laα, not from the variation with respect the
metric. Also, the parameters ξ1 and ξ2 appearing in (19) do
not have the dimensions of density and pressure; rather,
they have dimensions of ðmassÞ2. Substituting the trace of
(19) into (15b) and (15c) and solving yields

ξ1 ¼ −
Π
A4

− Λ; ξ2 ¼ −
Π
3A4

þ Λ; ð20Þ

where Λ and Π are constants of integration.
For any homogeneous and isotropic spacetime, the Bach

and Weyl tensors vanish identically, and therefore, (15a)
reduces to

1

16
g2YMT

αν ¼ ∇μ∇½νaμ�α −
1

2
ð2Sλμ − aλμÞ

× ðgλ½μaν�α − gα½μaν�λÞ: ð21Þ

We fix the “ordinary” matter content of the niverse to be
noninteracting pressureless dust and radiation as in ΛCDM:

T μν ¼ T ðmÞ
μν þ T ðrÞ

μν ; ð22Þ

with

T ðmÞ
μν ¼ ρmuμuν; T ðrÞ

μν ¼ ðρr þ prÞuμuν þ prgμν;

pr ¼ ρr=3: ð23Þ

Demanding that each matter source is separately conserved

(∇μT ðmÞ
μν ¼ ∇μT ðrÞ

μν ¼ 0) yields

_ρm þ 3Hρm ¼ 0 ⇒ ρm ¼ ρm;0A−3; ð24aÞ

_ρr þ 4Hρr ¼ 0 ⇒ ρr ¼ ρr;0A−4: ð24bÞ

where ρm;0 and ρr;0 are constants. We use an overdot to
denote d=dt, and we have defined the Hubble parameter
H ¼ _A=A. The (00) component of (21) then yields the
Friedmann equation

H2 ¼ g2YM
8

�
ρm þ ρr
Λþ Π

A4

�
−

k
r20A

2
þ Λ

3
−

Π
3A4

; ð25Þ

where we have used (19) and (20).1 In the late-time limit
A4 ≫ jΠ=Λj, we obtain

H2 ≈
ρm þ ρr
3M2

Pl

−
k

r20A
2
þ Λ

3
; ð26Þ

where we have identified the Planck mass as

M2
Pl ¼

8

3

Λ
g2YM

: ð27Þ

Equation (26) is the same as the Friedmann equation in
ΛCDM provided that we interpret the constant of integra-
tion Λ as the cosmological constant. Probes of the expan-
sion history of the late time Universe gives us the order of
magnitude of Λ:

Λ ∼
ð10−3 eVÞ4

M2
Pl

∼ ð10−33 eVÞ2: ð28Þ

This in turn fixes the size of Yang-Mills coupling constant
to be g2YM ∼ 10−120.
Before moving on, we make a few remarks about the

interpretation of the Friedmann equation (25). This equa-
tion can be rewritten in a form more familiar from general
relativity if one introduces a time-varying Newton’s con-
stant and a “dark radiation” field with density ∝ −Π:

H2 ¼ 8πGeffðAÞ
3

ðρm þ ρrÞ −
k

r20A
2
þ Λ

3
−

Π
3A4

; ð29Þ

where

GeffðAÞ¼
3g2YM
64π

�
A4

ΛA4þΠ

�
¼ 1

8πM2
Pl

�
A4

A4þΠ=Λ

�
: ð30Þ

We see that the effective Newton constant decreases with
decreasing A; i.e., the force of gravity is weaker in the past.
As seen in Sec. III B, this screening of the gravitational
field sourced by ordinary matter will have important
consequences for early Universe dynamics.
We also note that if Π ¼ 0, we recover the Friedmann

equation of general relativity exactly. Indeed, if Π ¼ 0 we
have

aαβ ¼ Λgαβ; ð31Þ

which when substituted into equation (21) yields

Gαβ þ Λgαβ ¼
3g2YM
8Λ

T αβ: ð32Þ

Here, Gαβ is the Einstein tensor, so this is equivalent to the
field equations of general relativity with a cosmological
constant provided we identify the Planck mass as in (27).

B. Cosmological dynamics

It is useful to write the Friedmann equation in terms of
the same density parameters used to describe the ΛCDM
model:

1The spatial components of (21) yield an equation for _H that
can be derived from the formula already presented.

GEGENBERG, RAHMATI, and SEAHRA PHYSICAL REVIEW D 95, 043509 (2017)

043509-4



Ωm ¼ ρm;0

3M2
PlH

2
0

; Ωr ¼
ρr;0

3M2
PlH

2
0

;

ΩΛ ¼ Λ
3H2

0

; Ωk ¼ −
k

r20H
2
0

; ð33Þ

where we have assumed that A ¼ 1 and H ¼ H0 at the
present epoch. We also define a dimensionless density
parameter for the “dark radiation” (i.e. the integration
constant Π):

ΩΠ ¼ Π
3H2

0

: ð34Þ

Note that since observations imply that Λ ∼H2
0, we have

that ΩΠ ∼ Π=Λ; i.e., it is roughly the ratio of the two
constants appearing in our solution for aαβ. In terms of
these, the Friedmann equation (25) becomes

H2

H2
0

¼ ΩΛΩm

A3ðΩΛþΩΠ
A4 Þ

þ ΩΛΩr

A4ðΩΛþΩΠ
A4 Þ

þΩk

A2
þΩΛ−

ΩΠ

A4
; ð35Þ

where we have made use of (27). Evaluating this at the
present epoch (when A ¼ 1 and H ¼ H0) yields a con-
straint amongst the density parameters:

1 ¼ ΩΛðΩm þ ΩrÞ
ΩΛ þ ΩΠ

þ Ωk þΩΛ −ΩΠ: ð36Þ

Note that if jΩΠj ≪ 1 we recover the standard ΛCDM
relation

1 ¼ Ωm þ Ωr þ Ωk þ ΩΛ: ð37Þ

In order to qualitatively analyze the cosmological
dynamics, it is useful to rewrite the Friedmann equation
as the equation of motion of a zero-energy particle moving
in a one-dimensional effective potential:

1

2

�
dA
dτ

�
2

þ VeffðAÞ ¼ 0; ð38Þ

where we have defined τ ¼ H0t and

VeffðAÞ ¼ −
ΩΛΩm

2AðΩΛ þ ΩΠ
A4 Þ

−
ΩΛΩr

2A2ðΩΛ þ ΩΠ
A4 Þ

−
Ωk

2
−
ΩΛA2

2
þ ΩΠ

2A2
: ð39Þ

We note that (36) can be used to eliminate Ωk in either (35)
or (39). The utility of the Friedmann equation written as
(38) is that we can immediately conclude that all values of
the scale factor with VeffðAÞ > 0 are classically forbidden,
and we can obtain the acceleration of the Universe in a
given epoch from Ä ¼ −V 0

effðAÞ. It is also of interest to
define the “slow-roll” parameter

ϵH ¼ −
_H
H2

¼ 1 −
Ä

H2A
¼ 1 −

A
2

V 0
effðAÞ

VeffðAÞ
: ð40Þ

This is a direct measure of the rate of change of the Hubble
parameter. Using these quantities, we obtain three equiv-
alent conditions for the Universe to be accelerating:

Ä > 0⇔ϵH < 1⇔V 0
effðAÞ < 0: ð41Þ

Now, in order to be consistent with late times probes of
cosmological expansion (such as supernovae of Type IA),
we demand that the Friedman equation (35) reduce down to
the ΛCDM form when A≳ 1. This implies that jΩΠj ≪ 1.
Furthermore, to avoid a singularity in the Friedmann
equation for finite A > 0, we assume that ΩΠ > 0.2

Given that we recover ΛCDM for A≳ 1, we expect that
the other density parameters will take on their concordance
values [22]:

Ωm ¼ 0.27� 0.04; ΩΛ ¼ 0.73� 0.04;

Ωr ≃ 8.24 × 10−5: ð42Þ
In Fig. 1, we plot the Hubble parameter, effective

potential, and slow-roll parameter as functions of the scale
factor assuming the central values of cosmological param-
eters in (42). Since values of the scale factor for which
VeffðAÞ > 0 are classically forbidden, there will be an early
Universe “big bounce” that occurs when VeffðAÞ ¼ 0, and
there is no big bang singularity in our model. The
replacement of the big bang with a big bounce in this
model is a direct consequence of the weakening of the
gravitational field sourced by ordinary matter in the early
Universe (c.f. Eq. (25). Essentially, strong gravitational
forces implied by high densities are mitigated by the
reduction of Geff in the distant past, which allows the
Universe to escape an initial singularity.
Immediately after this cosmological bounce, there is a

phase of nearly dS early-time acceleration. The Universe
undergoes two further transitions where V 0

effðAÞ ¼ 0: The
first transition marks when the acceleration in the early
Universe ends and the radiation dominated epoch starts,
and the second transition occurs in the late Universe when
matter domination ends and the second acceleration epoch
starts. The latter is consistent with the observed late-time
acceleration of the Universe. We give an example of
numerical solutions of (38) for the scale factor in Fig. 2,
which clearly demonstrates the existence of a bounce in the
early Universe.
As mentioned above, in order to recover an acceptable

late-time cosmology, we must have that jΩΠj ≪ 1. Let us
assume that 0 < ΩΠ ≪ ΩΛ and hence obtain the following
approximate form of the potential:

2This is not a necessary assumption, and it would be interest-
ing to consider the ΩΠ < 0 case in future work.
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VeffðAÞ ≈ −
1

2

�
Ωm

A
þ Ωr

A2

��
1þ ΩΠ

ΩΛA4

�
−1

þΩ − 1

2
þ ΩΠ

2A2
−
ΩΛA2

2
; ð43Þ

where we have defined

Ω ¼ Ωm þ Ωr þΩΛ; ð44Þ
as in standard ΛCDM cosmology. By making further
assumptions on the size of A and performing some
straightforward analysis, we can write Veff in various
epochs:

VeffðAÞ≈
Ω−1

2
−
1

2

8>>><
>>>:

ΩrΩΛΩ−1
Π A2 A1≪A≪A2;

ΩrA−2; A2≪A≪A3;

ΩmA−1; A3≪A≪A4;

ΩΛA2; A4≪A;

ð45Þ

where we have defined

A1 ¼
�

ΩΠ

ΩΛΩr

�
Ω − 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ − 1Þ2

4
þΩΛΩr

r ��1=2
;

A2 ¼
�
ΩΠ

ΩΛ

�
1=4

; A3 ¼
Ωr

Ωm
; A4 ¼

�
Ωm

ΩΛ

�
1=3

: ð46Þ

To obtain (45), we have further assumed that

Ω ¼ Oð1Þ; ΩΛ ¼ Oð1Þ; Ωm ¼ Oð1Þ;
Ωr ≪ Ωm; ΩΠ ≪ Ω2

r ≪ Ωr; ð47Þ
in order to ensure the hierarchy A1 ≪ A2 ≪ A3 ≪ A4.
(These assumptions are all consistent with the

observational values quoted above.) We can name the
various epochs (45) in analogy to the behavior of Veff in
standard cosmology:

early quasi-dS acceleration∶ A1 ≪ A ≪ A2

radiation domination∶ A2 ≪ A ≪ A3

matter domination∶ A3 ≪ A ≪ A4

late quasi-dS acceleration∶ A4 ≪ A:

In particular, if we assumeΩ ≈ 1, then we find that in the
“early quasi-dS acceleration” phase

A ≈ exp½Ω1=2
r Ω1=2

Λ Ω−1=2
Π H0ðt − t0Þ�;

A1 ≪ A ≪ A2; ð48Þ

i.e., we have exponential expansion (t0 is an integration
constant).
From Fig. 1, we expect the early acceleration phase to be

preceded by a cosmological bounce that occurs when
VeffðAÞ ¼ 0. By performing a 3-term Taylor series expan-
sion of (39) about A ¼ 0 and working to leading order in
ΩΠ, we find that

VeffðA1Þ ≈ 0; 0 < ΩΠ ≪ 1; ð49Þ

where A1 is given by (46). That is, the bounce occurs at
A ≈ A1 when ΩΠ is small and positive. On the other hand,
the transition from early time acceleration to radiation
domination at A ≈ A2 occurs when the potential switches
from a decreasing to increasing function of A. Therefore,
we also expect

FIG. 1. Hubble parameterH (left), effective potential Veff (center), and slow-roll parameter ϵH (right) as functions of scale factor. Here,
we have taken ðΩm;Ωr;ΩΛÞ ¼ ð0.27; 8.24 × 10−5; 0.73Þ. There is a cosmological bounce at early times when H ¼ 0, Veff ¼ 0, and
ϵH → −∞. This bounce is followed by a period of quasi de-Sitter acceleration whenH ≈ constant, V ∝ −A2, and ϵH ≈ 0. The early time
acceleration ends when Veff switches from decreasing to increasing and is followed by epochs of radiation, matter, and late time
acceleration similar to ΛCDM.
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V 0
effðA2Þ ≈ 0; 0 < ΩΠ ≪ 1; ð50Þ

where A2 is given by (46). To test these approximations, we
can plot the curves VeffðAÞ ¼ 0, V0

effðAÞ ¼ 0, A ¼ A1, and
A ¼ A2 in the ðΩΠ; aÞ plane with ðΩm;Ωr;ΩΛÞ held
constant. An example of such a plot is given in Fig. 3.
Given formulas for A1 and A2, we can estimate how

many e-folds N of exponential expansion occur after the
bounce:

N ¼ ln
A2

A1

¼ −
1

4
lnΩΠ þ 1

4
lnΩΛ þ 1

2
lnΩr

−
1

2
ln

�
Ω − 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ − 1Þ2

4
þ ΩΛΩr

r �
: ð51Þ

We see from this that we can make N arbitrarily large by
selecting ΩΠ to be very small. If we take cosmological
parameters as their central values in (42), then we have

N ∼ 60 −
1

4
ln

ΩΠ

10−109
∼ 66 −

1

4
ln

ΩΠ

g2YM
: ð52Þ

We also note that the Hubble scale during this early
“inflationary” period is also fixed by ΩΠ:

Hinf ≈ Ω1=2
r Ω1=2

Λ Ω−1=2
Π H0: ð53Þ

This is commonly characterized by the energy scale during
inflation:

Einf ¼ ð3M2
PlH

2
infÞ1=4 ≈ 31=4Ω1=4

r Ω1=4
Λ Ω−1=4

Π M1=2
Pl H

1=2
0 : ð54Þ

Again taking central values for the usual density parameters
and H0 ∼ 10−33 eV, we find

Einf ∼ 1015 GeV

�
ΩΠ

10−109

�
−1=4

∼ 5 × 1017 GeV

�
ΩΠ

g2YM

�
−1=4

: ð55Þ

We note the relationship between N and Einf in this model

N ∼ 60þ ln

�
Einf

1015 GeV

�
; ð56Þ

again assuming central values for ðΩm;Ωr;ΩΛÞ.
Finally, for this model to accurately reproduce observed

light element abundances, we require that the cosmological
expansion history from big bang nucleosynthesis onwards
be not significantly different than that of standard ΛCDM.
This can be guaranteed if we have A2 ≪ ABBN, where ABBN
is the scale factor at big bang nucleosynthesis. Using
standard formulas, this condition can be rewritten as

ΩΠ ≪ 2 × 10−35
�

TBBN

100 keV

�
−4
; ð57Þ

where TBBN is the radiation temperature at big bang
nucleosynthesis.

FIG. 2. Numeric solutions for the scale factor A assuming
ðΩm;Ωr;ΩΛÞ ¼ ð0.27; 8.24 × 10−5; 0.73Þ. All simulations show
a bounce at time t ¼ t0. The scale factor at the bounce increases
with increasing ΩΠ.

FIG. 3. Curves VeffðAÞ ¼ 0, V 0
effðAÞ ¼ 0, A ¼ A1, and

A ¼ A2 in the ðΩΠ; AÞ plane with ðΩm;Ωr;ΩΛÞ ¼
ð0.27; 8.24 × 10−5; 0.73Þ. We see that for 0 < ΩΠ ≪ 1, the
VeffðAÞ ¼ 0 and A ¼ A1 curves coincide, while the
V 0
effðAÞ ¼ 0 and A ¼ A2 curves coincide. This is an explicit

confirmation that the bounce occurs at A ≈ A1 and the
quasi-dS inflation ends when A ≈ A2 for these parameters and
0 < ΩΠ ≪ 1.
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IV. DISCUSSION

In this paper, we have considered cosmological solutions
of a gauge theory of gravity. The action of our model
resembles that of a Yang-Mills theory with gauge group SO
(4,2), i.e. the conformal group of Minkowski space. The
metric and connection of the spacetime manifold are
identified from various components of the gauge potential.
The ensuing gravitational theory is in general rather rich
and complex, but we made a number of simplifying
assumptions to aid our analysis. For example, the full
theory admits manifolds with torsion and matter which
couples to the gauge potential in exotic ways. In this paper,
we considered torsion-free solutions and retained only
matter directly coupled to the metric (as in general
relativity) and matter coupled to fields laα gauging special
conformal transformations. Our model is invariant under
local conformal (Weyl) transformations.
When we specialized to isotropic and homogeneous

spacetimes, we found that the contribution to the field
equations of matter coupled to laα is highly constrained.
Indeed, the tensor aαβ encoding this contribution is com-
pletely determined by two integration constants: Λ and Π.
We derived the Friedman equation governing the dynamics
and deduced that at late times the model reduces down to
the standard ΛCDM cosmology with Λ playing the role of
the cosmological constant. It is worth noting that the
cosmological constant in our model was not put into the
action by hand, as in ΛCDM, rather it is generated
dynamically from the matter coupled to laα.
If the other constant Π in the solution for aαβ is set to

zero, we recoverΛCDM exactly for all times. However, if it
is not zero there are fascinating repercussions in the early
Universe. If Π > 0, the big bang of general relativity is
replaced by a cosmological bounce. Furthermore if
0 < Π ≪ H2

0, then the bounce is followed a period of
quasi-dS acceleration. That is, there exists a period of slow-
roll inflation in the early Universe. This inflationary period
can be made arbitrary long by selecting Π to be arbitrarily
small. The physical reason for these effects is that the
effective Newton constant mediating the gravitational force
exerted by ordinary matter (i.e., dust and radiation)
becomes small in the past, allowing for a bounce.
To summarize, we have presented a theory of gravity

whose cosmological solutions are free of singularities and
which incorporate quasi-dS epochs of acceleration in the
early and late Universe. One may be concerned about the
naturalness of such a theory. A priori, our cosmological
solutions involve one dimensionless constant appearing in

the action g2YM and two dimensionful constants of integra-
tion Λ and Π. We fixed Λ by comparing to observations of
late time acceleration. The Yang-Mills coupling was then
fixed by requiring the late time Friedmann equation have
the correct dependence on the Planck mass. Since there is a
large hierarchy between the Planck and dark energy scales,
this yielded a small Yang-Mills coupling g2YM ∼ 10−120. In
order to recover acceptable late time cosmology, we
required Π ≪ Λ, which implies the most “natural” nonzero
value for Π is

Π ∼ g2YMΛ ⇒ ΩΠ ∼ g2YM: ð58Þ

With this choice, the early time dS-phase involves ∼66
e-folds of exponential expansion (which is sufficient to
explain the homogeneity of the cosmic microwave back-
ground) at an energy scale of ∼5 × 1017 GeV (which
implies high temperature inflation). Furthermore, this value
of Π will yield an expansion history consistent with big
bang nucleosynthesis. Therefore, just as in ΛCDM, our
model does involve one unnaturally small number forced
upon us by the observed hierarchy between the Planck
mass and cosmological constant; the other constant Π can
take on a natural value and still generate an acceptable
cosmological model.
In the future, this model needs to be rigorously compared

with observations. By comparing the predictions of the
modified Friedmann equation (35) with probes of the
expansion history (such as type IA supernovae), we can
obtain direct bounds on ΩΠ ∼ Π=Λ. Perhaps more impor-
tantly, as shown in [13], matter perturbations in this model
can source long-range gravitational forces. This means that
the dynamics of cosmological perturbations may be sig-
nificantly different from general relativity, which could lead
to definitive observational tests of the model: both in the
late Universe via observations of large scale structure and in
the early Universe via the quantum generation of fluctua-
tions during inflation. (Primordial perturbations in models
with a cosmological bounce have been considered in
[23–27].) Finally, the role of torsion in this model is
interesting at both the background and perturbative level
and needs to be explored in greater detail.
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