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CMB and lensing reconstruction power spectra are powerful probes of cosmology. However, they are
correlated, since theCMBpower spectra are lensed, and the lensing reconstruction is constructed usingCMB
multipoles. We perform a full analysis of the auto- and cross-covariances, including polarization power
spectra and minimum-variance lensing estimators, and compare with simulations of idealized future CMB-
S4 observations. Covariances sourced by fluctuations in the unlensed CMB and instrumental noise can
largely be removed by using a realization-dependent subtraction of lensing reconstruction noise, leaving a
relatively simple covariancemodel that is dominated by lensing-induced terms andwell described by a small
number of principal components. The correlations between the CMB and lensing power spectra will be
detectable at the level of ∼5σ for a CMB-S4 mission, and neglecting them could underestimate some
parameter error bars by several tens of percent. However,we found that the inclusion of external priors or data
sets to estimate parameter error bars can make the impact of the correlations almost negligible.
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I. INTRODUCTION

Gravitational lensing is the leading nonlinear effect on the
observed CMB anisotropies on intermediate and large
scales. The lensing smooths out acoustic peaks in the
temperature and E-polarization power spectra, generates
B-mode polarization by the lensing of E modes, and trans-
fers power into the damping tail at very high l. The non-
Gaussianity of the signal can also be used to reconstruct the
lensing potential, which then has its own power spectrum
which can be a powerful cosmological probe.
Several works [1–6] have studied the auto-covariance of

the lensed CMB power spectra. The lensing-induced peak
smoothing correlates different multipoles, since when the
lensing power fluctuates high, the smoothing increases
everywhere: all the CMB power spectrum peaks go down,
andall the troughsgoup.However, lensingisonlyasmallpart
of the signal in the T and E polarization, and quite a large
number of lensingmodes contribute (at l≲ 100), so the off-
diagonal lensing covariance is small compared to the total.
For the B-mode power spectrum, the effect is much more
important, since (except possibly on a very large scale) all of
the signal is expected to be generated by lensing.
Since lensing reconstruction also probes the lensing

modes more directly, it is not independent of the lensing
effect on the CMB power spectra. Furthermore, the four-
point estimator for the lensing reconstruction power spec-
trum uses the lensed CMB modes, so the reconstruction is
also not independent of fluctuations in the unlensed CMB.
Both effects lead to covariance between the lensing
reconstruction power and the observed CMB power spec-
tra. The correlations have been studied in detail by Ref. [6]
for the CMB temperature, where the effect is shown to be

small at Planck sensitivity. However, future observations
will have much higher signal-to-noise reconstructions, and
will also observe the CMB polarization at much higher
sensitivity and resolution, so a full polarization analysis is
timely to avoid potential double counting of information.
With high signal-to-noise lensing reconstructions, ulti-
mately it may be possible to delens most of the lensing
contributions to the CMB power spectra, rendering the
spectra more independent [7]. However, even with dele-
nsing, there will be some residual correlation that needs to
be modeled, and for the foreseeable future it will remain an
important consistency check that compatible results can be
obtained using the lensed spectra.
Considering just the lensing reconstruction alone, the

complicated four-point nature of the estimator means that
there may be nontrivial correlations between multipoles that
need to be modeled consistently to construct a reliable
likelihood. References [6,8,9] have shown that by using
knowledge of the observed CMBpower spectra, it is possible
to use a realization-dependent reconstruction noise subtrac-
tion that removes the dominant off-diagonal correlationdue to
fluctuations in the CMB power (and hence also much of the
correlationwith theCMBpower).Ageneralization to realistic
cut sky filters, cross spectra and polarization was used by the
Planck analysis [10] and can be motivated by the form of the
optimal four-point estimator [6,11,12] in temperature.
As data accuracy improves, polarization will become

relatively more important, as EB lensing reconstruction
becomes better than TT reconstruction once the noise levels
are low enough due to the absence of intrinsic small-
scale fluctuations in B. Ongoing CMB experiments have
already started to use minimum-variance reconstructions of
the lensing potential power spectrum in intensity and in
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polarization, although the intensity measurement domi-
nates the total reconstruction so far [10,13,14]. Already,
ground-based high-sensitivity CMB experiments such as
the Simons Array,1 the South Pole Telescope (SPT-3G),2

the Advanced Atacama Cosmology Telescope (AdvACT),3

and the Simons Observatory4 are under deployment; and
future ground-based facilities such as CMB-S4,5 as well a
possible space satellite, are being proposed to further
increase the sensitivity at high resolution. See Fig. 1 for
the different levels of reconstruction noise in the case of a
CMB-S4-like experiment, which has sufficiently low
noise that the EB reconstruction contains most, but not
all, of the information. In this paper, we focus on the
minimum-variance reconstruction of the lensing potential
power spectrum, including semi-optimally weighted com-
binations of all estimators between T, E, and B.
Our paper is organized as follows: We start with a review

of CMB lensing and its reconstruction in Sec. II to lay out
our notation. We then describe our analytical model for the

auto- and cross-covariances of CMB and lensing power
spectra in Sec. III and compare it with simulations described
in Sec. IV. We discuss the impact of the correlations on
parameter estimation in Sec. V and conclude in Sec. VI.
Details of analytical calculations and numerical evaluations
are presented in a series of appendixes.

II. CMB LENSING AND RECONSTRUCTION

A. Weak lensing of the CMB

At the epoch of recombination, the Universe becomes
mostly transparent to photons and is well approximated as a
single source plane for CMB photons. Weak gravitational
lensing by large-scale structure along the line of sight gives
small but important distortions to the primordial anisotro-
pies of the CMB. We can relate the lensed CMB field ~Xðn̂Þ
along direction n̂ to the unlensed field Xðn̂Þ by the
deflection angle αðn̂Þ:

~Xðn̂Þ ¼ Xðn̂þ αðn̂ÞÞ; ð1Þ
where X ∈ fT; E; Bg. In the Born approximation,6 we
define the (projected) lensing potential ϕ as

ϕðn̂Þ ¼ −2
Z

χ�

0

dχ
fKðχ� − χÞ
fKðχ�ÞfKðχÞ

Ψðχn̂; η0 − χÞ; ð2Þ

where Ψ is the (Weyl) gravitational potential. The deflec-
tion angle is given by the angular derivative of the lensing
potential, αðn̂Þ ¼ ∇ϕðn̂Þ. The lensing potential is an
integrated measure of the mass distribution back to the
moment of recombination, including geometrical effects of
the background through fK, which is the angular diameter
distance and encodes the relationship between the comov-
ing distance and angle.
The lensing potential can be decomposed into multipole

moments:

ϕðn̂Þ ¼
X
lm

ϕlmYm
l ðn̂Þ; ð3Þ

and the effect of lensing on the unlensed CMB field can be
expressed perturbatively by Taylor-expanding Eq. (1) in the
harmonic domain [18]:

~Xlm ¼ Xlm þ δXlm þ δ2Xlm þ � � � ; ð4Þ
where ~Xlm are the multipoles of the lensed CMB.
High-order terms (δnXlm) are due to the effect of the
lensing, and are of the order OðϕnÞ and linear in the
unlensedCMB field. For example,we have at first order [19]

FIG. 1. Minimum-variance lensing power spectrum measured
from our set of simulations (red points with error bars) and
theoretical expectation (solid thin black line), assuming a possible
CMB-S4 configuration with 1.5 μK:arcmin white noise for
temperature, 3 arcmin beam, multipole range 20 ≤ l ≤ 3000,
and sky coverage fsky ¼ 0.4. The measurement is obtained by
subtracting the realization-dependent noise bias N̂ ð0Þ;MV and
analytical Nð1Þ;MV bias from the uncorrected measured lensing
power spectrum (black points with error bars). Colored lines
show the analytically calculated Nð0Þ biases for various combi-
nations [see Eq. (17)]: TTTT (blue), EEEE (green), TETE
(purple), TBTB (cyan), EBEB (red), and the minimum-variance
noise biases (solid thick black line for Nð0Þ;MV and dashed thick
black line for Nð1Þ;MV).

1http://cosmology.ucsd.edu/simonsarray.html.
2https://pole.uchicago.edu/spt/.
3https://act.princeton.edu.
4https://simonsobservatory.org.
5http://CMB‑S4.org.

6Throughout this paper, we neglect the corrections introduced
by post-Born lensing and large-scale-structure non-Gaussianity;
these have a negligible impact on the CMB power spectra [15,16],
though small biases in the quadratic estimators may ultimately
need to be separately corrected to avoid biased estimates [17].
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δXlm ¼
X
l1m1

X
l2m2

ð−1Þmϕl1m1

�
l l2 l1

m −m2 −m1

�
sXFll1l2

× ½ϵll1l2Xl2m2
þ βll1l2X̄l2m2

�; ð5Þ
where we use parity complements T̄ ¼ 0, Ē ¼ −B, and
B̄ ¼ E. The expression for the second-order term can be
found, for example, in Ref. [8]. The ϵ and β parity terms are
defined as

ϵll1l2 ¼
1þ ð−1Þlþl1þl2

2
; βll1l2

¼ 1 − ð−1Þlþl1þl2

2i
;

ð6Þ
and the function F is defined as

sXFll1l2
¼ ½−lðlþ 1Þ þ l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

16π

r

×

�
l l1 l2

sX 0 −sX

�
; ð7Þ

where sX is the spin number of the CMB field X (0 for
temperature, 2 for polarization).

B. Lensing reconstruction

The lensing potential is approximately Gaussian, and its
power spectrum on the full sky is given by

hϕlmϕ
�
l0m0 i ¼ δll0δmm0Cϕϕ

l : ð8Þ

We can define an estimator Ĉϕϕ
l for this power spectrum as

Ĉϕϕ
l ¼ 1

2lþ 1

Xl
m¼−l

jϕ̂lmj2: ð9Þ

We can reconstruct7 ϕ̂lm from lensed CMB modes by
noting that fixed lenses introduce correlations between
CMB modes X; Y ∈ fT; E; Bg. In the context of quadratic
estimators [19–22], we have

ϕ̂XY
lm ¼ AXY

l

X
l1m1

X
l2m2

ð−1Þm
�
l1 l2 l

m1 m2 −m

�

× ~gXYl1l2ðlÞ ~Xl1m1
~Yl2m2

; ð10Þ

whereAXY
l is a normalization factor which ensures that ϕ̂XY

lm
is unbiased:

AXY
l ¼ ð2lþ 1Þ

�X
l1l2

~fXYl1ll2 ~g
XY
l1l2

ðlÞ
�

−1
; ð11Þ

with the response functions f given by

~fXYl1ll2 ≈ sXFl1ll2
ðϵll1l2C ~X ~Y

l2
þ βll1l2C

~̄X ~Y
l2

Þ
þ sYFl2ll1

ðϵll1l2C ~X ~Y
l1

− βll1l2
C ~X ~̄Y
l1

Þ: ð12Þ

For estimators involving polarization, we use an approxima-
tionfor thenonperturbativeresponsefunctionthat followsthe
form of the lowest-order perturbative result but uses lensed
spectra in the expression for ~f (as written here, denoted by a
tilde, following Refs. [8,23]). For unbiased results from very
small-scale temperature,we found itwasnecessary to replace
the lensed power spectra withC ~T∇ ~T

l , the lensed temperature-
gradient power spectrum that appears in the nonperturbative
response function [23].8

The optimal weights ~g can be found by minimizing the
variance of the estimator for a fiducial model9

~gXYl1l2
ðlÞ ¼ C

~X ~XðfidÞ
l2;expt

C
~Y ~YðfidÞ
l1;expt

~fXYðfidÞ�l1ll2
− ð−1Þlþl1þl2C

~X ~YðfidÞ
l1;expt

C
~X ~YðfidÞ
l2;expt

~fXYðfidÞ�l2ll1

C
~X ~XðfidÞ
l1;expt

C
~X ~XðfidÞ
l2;expt

C
~Y ~YðfidÞ
l1;expt

C
~Y ~YðfidÞ
l2;expt

− ðC ~X ~YðfidÞ
l1;expt

C
~X ~YðfidÞ
l2;expt

Þ2
: ð13Þ

Here C
~X ~YðfidÞ
l;expt is the fiducial expectation of the total lensed CMB power spectrum, including signal and the noise:

C
~X ~YðfidÞ
l;expt ¼ C

~X ~YðfidÞ
l þ σ2XY exp½lðlþ 1Þσ2FWHM=ð8 ln 2Þ�; ð14Þ

where σ2XY is the level of instrumental noise (assumed homogeneous and isotropic), and σFWHM is the full-width half
maximum of the optical beam (assumed to be perfectly Gaussian). The response functions are also evaluated with the

fiducial theoretical lensed power spectra C
~X ~YðfidÞ
l . Throughout this manuscript, we focus on a possible CMB-S4

7Neglecting X − ϕ correlations.
8To compute C ~T∇ ~T

l , we follow the full-sky derivation using correlation functions in Appendix C of Ref. [23]. We discuss the
magnitude of this effect in Sec. IV.

9Sometimes it is useful to maintain separability of the individual polarization estimators, in which case the cross-correlation term in
the denominator can be dropped (as in the Planck analysis), with a small loss of optimality [22]. Here we use the full joint-analysis result.
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configuration, and we set the level of noise in temperature
to σTT ¼ 1.5 μK:arcmin (

ffiffiffi
2

p
bigger in polarization),

and we assume a beam width σFWHM ¼ 3 arcmin. We
restrict our analysis to 40% of the sky to take into
account the fact that CMB-S4 will not be able to cover the
full sky from the ground. Furthermore, we restrict
the multipole range to the interval 20 ≤ l ≤ 3000, to
mimic the difficulty for a ground-based experiment to
deal with foreground contamination, atmosphere contami-
nation, or masking effects. We later discuss the effect of
extending the multipole range. Using Eqs. (9) and (10),
we obtain

ĈϕXYϕZW

l ¼ 1

2lþ 1

Xl
m¼−l

ð−1Þmϕ̂XY
lmϕ̂

ZW
l;−m; ð15Þ

for which the expectation value is given by

hĈϕXYϕZW

l i ¼ Nð0Þ;XYZW
l þ Cϕϕ

l þ Nð1Þ;XYZW
l þOð½Cϕϕ

l �3Þ;
ð16Þ

where NðnÞ is the reconstruction “noise” of order
Oð½Cϕϕ

l �nÞ. The first term is called the Gaussian recon-
struction noise (or the disconnected part of the lensed
CMB four-point function), and its general expression is

Nð0Þ;XYZW
l ¼ AXY

l AZW
l

2lþ 1

X
l1l2

~gXYl1l2ðlÞ½ð−1Þlþl1þl2 ~gZWl1l2ðlÞC
~X ~Z
l1;expt

C ~Y ~W
l2;expt

þ ~gZWl2l1ðlÞC
~X ~W
l1;expt

C ~Y ~Z
l2;expt

�: ð17Þ

The Nð1Þ bias (linear in the lensing potential spectrum) is taken into account following Refs. [10,24]. Notice that due to the
complex form of this term, we compute it in the flat-sky approximation, which is valid on large angular scales l < 20.
Given that in this work we are interested in small scales (l > 100) and the influence of theNð1Þ bias is mostly at small scales
(see Fig. 1), we do not expect any difference with respect to the curved-sky result.
As for the temperature case [6,8] (also see Ref. [25]), we can define realization-dependent noise-subtracted power spectra

by forming

ĈϕXYϕZW

l;RDN0 ¼ ĈϕXYϕZW

l − Nð0Þ;XYZW
l −

X
ab;l0

∂Nð0Þ;XYZW
l

∂C ~a ~b
l0;expt

ðĈ ~a ~b
l0;expt − C ~a ~b

l0;exptÞ ¼ ĈϕXYϕZW

l − 2N̂ð0Þ;XYZW
l þ Nð0Þ;XYZW

l ; ð18Þ

where the realization-dependent N̂ð0Þ;XYZW (RDN0 hereafter) is defined by replacing some of the lensed CMB spectra in
Eq. (17) with their observed realization:

2N̂ð0Þ;XYZW
l ¼

X
ab;l0

∂Nð0Þ;XYZW
l

∂C ~a ~b
l0;expt

Ĉ ~a ~b
l0;expt

¼ AXY
l AZW

l

2lþ 1

X
l1l2

~gXYl1l2
ðlÞ½ð−1Þlþl1þl2 ~gZWl1l2ðlÞðĈ

~X ~Z
l1;exptC

~Y ~W
l2;expt

þ C ~X ~Z
l1;expt

Ĉ ~Y ~W
l2;exptÞ

þ ~gZWl2l1ðlÞðĈ
~X ~W
l1;exptC

~Y ~Z
l2;expt

þ C ~X ~W
l1;expt

Ĉ ~Y ~Z
l2;exptÞ�: ð19Þ

Notice that in the fiducial model hN̂ð0Þ;XYZW
l i ¼ Nð0Þ;XYZW

l ,
but with the advantage that the realization-dependent

subtraction takes out fluctuations in ĈϕXYϕZW

l due to
reconstruction noise fluctuations from the realization of
the CMB and noise power (and also any leading error from

inaccuracy in the fiducial C
~X ~ZðfidÞ
l1;expt

assumed), as can be seen
from the first line of Eq. (18). In order to simplify notation,
we define

ĈϕXYϕZW

l;RDN0 ¼ ĈϕXYϕZW

l − N̂ ð0Þ;XYZW
l ; ð20Þ

where N̂ ð0Þ;XYZW
l ≡ 2N̂ð0Þ;XYZW

l − Nð0Þ;XYZW
l . As we shall

see later, the data-dependent noise mitigation of Eq. (18) also
simplifies covariances, removing almost all of the noise
correlations (see Sec. IV). At low noise levels, iterative
estimators may be able to do significantly better than the

simple quadratic estimators, but for simplicity we restrict our
focus to quadratic estimator reconstruction here.

C. Minimum-variance reconstruction

The reconstructed minimum-variance (MV) lensing
potential ϕ̂MV can be expressed in terms of the individual
reconstructed lensing potentials ϕ̂XY as

ϕ̂MV
lm ¼

X
XY

wXY
l ϕ̂XY

lm: ð21Þ

The summation over XY is done over the six pairs TT, EE,
BB, TE, TB, and EB. The weights wXY depend on the
reconstruction noise [19] and are given by

wXY
l ¼ Nð0Þ;MV

l

X
ZW

ðNð0Þ
l

−1ÞXYZW; ð22Þ
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where Nð0Þ is a matrix containing all the individual recon-
struction noises and the minimum-variance reconstruction
noise given by

Nð0Þ;MV
l ¼ 1P

XYZWðNð0Þ
l

−1ÞXYZW
: ð23Þ

Using Eq. (21), we obtain the minimum-variance lensing
potential power spectrum

ĈϕMVϕMV

l ¼
X
XYZW

wXY
l wZW

l ĈϕXYϕZW

l : ð24Þ

Building on this, the auto-covariance matrix for the
reconstructed minimum-variance lensing potential power
spectrum is given in terms of all individual covariances by

covðĈϕMVϕMV

l1
;ĈϕMVϕMV

l2
Þ

¼
X

XY;ZW

X
X0Y 0;Z0W0

wXY
l1
wZW
l1

covðĈϕXYϕZW

l1
;ĈϕX0Y0ϕZ0W0

l2
ÞwX0Y 0

l2
wZ0W0
l2

ð25Þ
for XY, ZW, X0Y 0, Z0W0 running over fTT; EE; TE;
BB; TB; EBg. We will include all covariance terms, includ-
ing off-diagonal contributions (see Sec. III C). Similarly,
the cross-covariance between the reconstructed minimum-
variance lensing potential power spectrum and the esti-
mated lensed CMB spectra can be written as

covðĈϕMVϕMV

l1
; Ĉ ~U ~V

l2;exptÞ
¼

X
XY;ZW

wXY
l1
wZW
l1

covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ: ð26Þ

III. COVARIANCES

In this section, we describe our approximate analytic
model for the covariances of the measured CMB and
lensing power spectra and compare it against simulations.
We will start with covariances between CMB power
spectra, proceed with cross-covariances between CMB
and lensing power spectra, and finally discuss covariances
between lensing power spectra. These three categories of
power covariances involve the lensed CMB four-point, six-
point and eight-point functions, respectively, because CMB
power spectra involve products of two CMB fields, while
lensing power spectra involve products of four CMB fields
(assuming quadratic lensing reconstruction).
To model these CMB N-point functions, we make a

number of assumptions. We first assume that the underlying
unlensed CMB, lensing potential, and noise fields are
Gaussian. Inprinciple, their covariancecan thenbeevaluated
exactly in terms of correlation functions following a similar
method as for the calculation of the lensed power spectrum
[26,27]. In practice, full evaluation becomes numerically
prohibitive, so in the following we will instead adopt a
perturbative approach and identify the leading contributions.

We still aim to keep the disconnected Gaussian covariance
and other relevant connected subterms fully nonperturbative
wherever possible, but we only keep numerically important
contributions that are connected by up to four underlying
Gaussian fields (e.g., up to second order in the lensing
potential power spectrum), dropping various additional
complex terms (typically involving more nested sums) that
are not required to match simulations to good accuracy.
We neglect correlation between the lensing potential and

the CMB, which should be true to very high accuracy for
high-l CMB modes where the ISW temperature and
reionization-sourced polarization is negligible. Since we
also assume the unlensed CMB, lensing potential and noise
to be Gaussian, we can neglect all odd connected corre-
lations. Finally we assume no primordial B-mode contri-
bution. In some calculations we use the fact that the lensed
CMB has zero mean—that is, h ~Xlmi ¼ 0—and when
averaged over realizations of large-scale structure, the
lensing potential also has zero mean, hϕlmi ¼ 0.

A. Lensed CMB power spectrum correlations

Several works [3–6,28] have already probed the corre-
lation of lensed CMB power spectra for various combina-
tions of terms, either using a series expansion or
generalizing to nonperturbative forms in an ad hoc way.
In the following, we mainly follow their work, summariz-
ing the important steps. In Appendix A 1, we give some
notes on how the various terms can be derived.

1. Covariance model

Assuming no primordial B modes, the correlation of the
lensed CMB power spectrum for temperature or E modes
contains three main contributions up to second order in the
lensing potential power spectrum:

covðĈ ~U ~V
l1;expt; Ĉ

eU0 eV 0
l2;exptÞ

≃ covGðĈ ~U ~V
l1;expt; Ĉ

~U0 ~V 0
l2;exptÞ þ

1

ð2l1 þ 1Þð2l2 þ 1Þ
×
X
l3

Cϕϕ
l3
ð ~fUU0

l1l3l2
~fVV

0
l1l3l2 þ ~fUV 0

l1l3l2
~fVU

0
l1l3l2Þ

þ
X
l3

∂C ~U ~V
l1

∂Cϕϕ
l3

2

2l3 þ 1
ðCϕϕ

l3
Þ2 ∂C

~U0 ~V 0
l2

∂Cϕϕ
l3

; ð27Þ

whereU;V;U0; V 0 can be T or E. The first term of the right-
hand side is the disconnected piece of the covariance, or
Gaussian variance, given by

covGðĈ ~U ~V
l1;expt; Ĉ

~U0 ~V 0
l2;exptÞ

¼ δl1l2
1

2l1 þ 1
ðC ~U ~U0

l1;expt
C ~V ~V 0
l1;expt

þ C ~U ~V 0
l1;expt

C ~V ~U0
l1;expt

Þ:

ð28Þ
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The second term in Eq. (27) is first order in Cϕϕ
l and is

numerically small; it is related to the trispectrum contri-
bution to the covariance (see, e.g., Ref. [29]). The third
term is of order ðCϕϕ

l Þ2 and arises from the fact that two
lensed band powers are connected by the covariance of the
ϕ field they share. More specifically, the derivatives of
lensed CMB spectra with respect to the lensing potential
power spectrum tell us how the fluctuations in the lensing
power propagate to the lensed CMB power spectra.
The auto-covariance of the B-mode power spectrum is

slightly different from the temperature and E mode. We
assume no primordial B-mode contribution in this paper, so
they are entirely generated by lensing of E modes. The
dominant terms in the covariance are

covðĈ ~B ~B
l1;expt; Ĉ

~B ~B
l2;exptÞ

≃ covGðĈ ~B ~B
l1;expt; Ĉ

~B ~B
l2;exptÞ

þ
X
l3

∂C ~B ~B
l1

∂CEE
l3

2

2l3 þ 1
ðCEE

l3
Þ2 ∂C

~B ~B
l2

∂CEE
l3

þ
X
l3

∂C ~B ~B
l1

∂Cϕϕ
l3

2

2l3 þ 1
ðCϕϕ

l3
Þ2 ∂C

~B ~B
l2

∂Cϕϕ
l3

: ð29Þ

All terms in the auto-covariance for the B modes are at
least second order in the lensing potential power spec-
trum. The second and third terms on the rhs reflect the
fact that two lensed B-mode band powers are connected

by the covariance of the unlensed E-mode field and the
covariance of the ϕ field they share. We neglect one term
second order in Cϕϕ

l that involves a Wigner-6j symbol,
which has a complex form but has been found to be
small compared to the other terms [4] (and we find that it
is not needed at the level of precision required in this
paper; see e.g. Fig. 2).
We can also write down the cross-covariance between

lensed temperature or E-mode and lensed B-mode power
spectra following Ref. [5]:

covðĈ ~U ~V
l1;expt; Ĉ

~B ~B
l2;exptÞ

≈
X
l3

∂C ~U ~V
l1

∂CUV
l3

covðĈUV
l3 ; Ĉ

EE
l3 Þ

∂C ~B ~B
l2

∂CEE
l3

þ
X
l3

∂C ~U ~V
l1

∂Cϕϕ
l3

2

2l3 þ 1
ðCϕϕ

l3
Þ2 ∂C

~B ~B
l2

∂Cϕϕ
l3

; ð30Þ

where UV ∈ fTT; EE; TEg. Notice that this does not have
a disconnected component.

2. Correlation matrix

For visualization purposes, we show in Fig. 2 the
correlation matrices between all lensed CMB spectra used
in this paper. The elements of the correlation matrix
corrðĈUV

l1 ; Ĉ
U0V 0
l2 Þ corresponding to the covariance matrix

covðĈUV
l1 ; Ĉ

U0V 0
l2

Þ are defined by

FIG. 2. Correlation matrices [as defined in Eq. (31)] of lensed CMB power spectra used in this paper (TT, EE, TE, BB) up to second
order in Cϕϕ, in the case of a possible CMB-S4 experiment. The left panel shows the results obtained using the analytical expressions
derived in this section, while the right panel shows the difference between the analytical estimates and the results obtained in
simulations. There is a good agreement between both. For visual purposes, the diagonal elements have been set to zero. See text for more
discussions.
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corrðĈUV
l1 ; Ĉ

U0V 0
l2 Þ ¼ covðĈUV

l1 ; Ĉ
U0V 0
l2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðĈUV

l1 ; Ĉ
UV
l1 ÞcovðĈU0V 0

l2 ; ĈU0V 0
l2 Þ

q
ð31Þ

for UV;U0V 0 ∈ fTT; EE; TE; BB;ϕϕg. The temperature
and E-mode auto-correlations are dominated by checker-
board structures, as already seen in Refs. [5,6], which
correspond to the positions of the acoustic peaks and
troughs of the CMB spectra that are most affected by
lensing.
For very high multipoles (l > 2500), the correlation is

fainter due to the rise of the noise. We find that the
temperature power spectrum exhibits large correlations
between large and very small scales if we go beyond
l ¼ 3000. These correlations reflect the fact that the
lensing transfers power from large scales to small scales,
and if we include scales beyond l ¼ 3000, the constraints
from temperature become more important than all other
spectra (at these noise and beam levels). However, such
small scales would in practice be dominated by other
secondary anisotropies, and therefore we do not include
them in the analysis (note that this cut also significantly
reduces the information from the temperature lensing
reconstruction).
The B power auto-correlation is much broader and much

stronger than the others, reflecting the fact that the B modes
are entirely generated by lensing, and are produced by a
very nonlocal coupling in l between E and ϕ; see e.g.
Ref. [30] and references therein. The BB spectrum only
shows significant correlation with the other spectra for
lBB ≤ lUV , where there is a smoothing effect on the
acoustic peaks generated by relatively large-scale lensing
modes. In order to understand this pattern, let us take the
example of the correlation between lensed EE and lensed
BB power spectra. First, we notice that the fact that the
correlation is systematically weak for lEE ≤ lBB is mainly
driven by the fact that the l2CEE

l power is quite blue. Then,
there are two regimes: lEE ≤ 1000 and lEE ≥ 1000.
For lEE ≤ 1000, we start from the fact that the B-mode
power spectrum is generated by the lensing of the
unlensed E modes [the first term on the rhs of Eq. (30)],
with C ~B ~B

l ∼
R
dðloglÞl4Cϕϕ

l l2CEE
l , which peaks at

500 ≤ lEE ≤ 1000. For lEE ≥ 1000, we are now interested
in the term associated with the cosmic variance of the lens

power spectrum [the sec ond term on the rhs of Eq. (30)].
This term causes a band structure from the EE spectrum
derivatives (fluctuations in smoothing), and the correlation
is fainter for lBB ≥ 1000, when the BB spectrum drops and
becomes noise dominated.
The right panel of Fig. 2 shows the difference between

the model and the simulations. The agreement is good
overall, with some differences for covariances involving
one B-mode spectrum. These differences appear to be
unimportant for this paper. We note that the diagonal
elements between the model and the simulations are in
subpercent agreement.

3. Evaluating the derivatives

To compute the covariances listed above, we need to
evaluate the derivatives of lensed CMB power spectra with
respect to the lensing potential power spectrum and with
respect to the unlensed CMB power spectra. Some previous
works such as Ref. [6] made use of the series expansion of
the lensed CMB spectra in terms of Cϕϕ

l . This method has
the advantage of being fast and giving reasonable results,
but it may not be sufficiently accurate for the level of
precision that future experiments will reach. Therefore,
throughout this paper, we evaluate the derivatives of spectra
using the more accurate correlation function methods
[26,27]. We typically find that the correlation between
the lensing amplitude estimates ÂϕMVϕMV and Â ~U ~V
discussed in Sec. VA is artificially enhanced by up to
30%–40% if we use the series expansion to compute the
derivatives rather than the correlation function method. We
detail the computation of this in Appendix B. A similar
technique using the flat-sky approximation has been used
recently in the work of Ref. [7], and an alternative scheme
to estimate these derivatives is described in the Appendix
of Ref. [5].

B. Cross-correlation between observed lensed CMB and
reconstructed lensing potential power spectra

Using the quadratic estimator for the lensing potential
defined in Eq. (10), cross-covariances between observed
lensed CMB power spectra and reconstructed lensing
potential power spectra involve covariances between
CMB two-point and four-point functions. In their most
general form, they can be expressed as

covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ ¼
AXY

l1
AZW

l1

ð2l1 þ 1Þð2l2 þ 1Þ
X

l3;…;l6;m1;m2

ð−1Þm1þm2

�
l3 l4 l1

m3 m4 −m1

��
l5 l6 l1

m5 m6 m1

�

× ~gXYl3l4ðl1Þ~gZWl5l6ðl1Þ½h ~Xl3
~Yl4

~Zl5
~Wl6

~Ul2m2
~Vl2;−m2

i − h ~Xl3
~Yl4

~Zl5
~Wl6

ih ~Ul2m2
~Vl2;−m2

i�; ð32Þ

where li ¼ ðli; miÞ. We identify four main contributions to the cross-covariance which are detailed in the following
subsections:
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covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ ≈ covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞnoise þ covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ
TypeA
trispectrum

þ covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞsignal þ covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ
TypeB-primary
trispectrum : ð33Þ

The different terms follow different ways of expressing the
six-point function: 2þ 2þ 2-point (disconnected Gaussian
piece), 2þ 4-point (trispectrum A and B) and connected
six-point function (signal). Of those four contributions, the
first two are canceled by the RDN0 subtraction (and are
therefore not used for the results of this paper unless stated),
leaving the last two terms as potentially important.

1. Terms not canceled by the use of RDN0

We identify two main contributions to the cross-covari-
ance that remain after RDN0 subtraction, coming from the
connected four- and six-point functions.

Connected six-point function: signal term.—The connected
signal part of the six-point function comes from the
covariance of the realization of the lensing potential power

Ĉϕϕ
l1

and the lensed CMB power Ĉ ~U ~V
l2 . Specifically, we

define the signal term as being the contraction that appears
in the connection by two ϕ modes

covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞsignal ≡
X
l3

∂CϕXYϕZW

l1

∂Cϕϕ
l3

covðĈϕϕ
l3
; Ĉ ~U ~V

l2 Þ;

ð34Þ

where CϕXYϕZW

l1
denotes the signal expectation in the fiducial

model, including contributions from both the lensing
potential power itself and the Nð1Þ bias.10,11 The covariance
of the realization powers can be evaluated exactly analyti-
cally using the assumed Gaussianity of ϕ:

covðĈϕϕ
l1
; Ĉ ~U ~V

l2 Þ

¼
Z

DϕĈϕϕ
l1
hĈ ~U ~V

l2 iUV

Y
l

e−ð2lþ1ÞĈϕϕ
l =ð2Cϕϕ

l Þ

ð2πCϕϕ
l Þð2lþ1Þ=2 − Cϕϕ

l1
C ~U ~V
l2

¼ 2ðCϕϕ
l1
Þ2

2l1 þ 1

∂
∂Cϕϕ

l1

Z
DϕPðϕÞhĈ ~U ~V

l2 iUV

¼ 2ðCϕϕ
l1
Þ2

2l1 þ 1

∂C ~U ~V
l2

∂Cϕϕ
l1

: ð35Þ

Using the lensing potential input to our simulations, we
check that the simulation and numerical derivative calcu-
lations are consistent with this exact result to high accuracy
in the range of multipoles of interest.12 We then have

covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞsignal

¼
X
l3

∂CϕXYϕZW

l1

∂Cϕϕ
l3

2

2l3 þ 1
ðCϕϕ

l3
Þ2 ∂C

~U ~V
l2

∂Cϕϕ
l3

: ð36Þ

In the case of temperature and E polarization, the
covariance arises because the same lenses are responsible
for the smoothing of the acoustic peaks of the CMB
spectrum and for the signal part of the lensing
reconstruction power. Both respond to fluctuations in the
lensing power, which comes from the cosmic variance of
the lenses: the greater the lensing power in any realization,
the greater the smoothing of the CMB power spectrum, and
the larger the lensing potential estimator becomes. This
correlation is mostly between large-scale lens modes
(lϕϕ < 500) and intermediate- and small-scale CMB
modes that are most affected by the lensing smoothing
(lUV > 500). For BB, the signal covariance produces a
broadband correlation, since the B-mode power has con-
tributions from couplings between a wide range of scales.
For a CMB-S4-like experiment, the signal correlation term
seems to drive most of the correlations between the
reconstructed lensing potential power spectra and the
observed lensed CMB power spectra (and entirely domi-
nates after realization-dependent noise subtraction; see
Fig. 4). We show later in Sec. VA that the signal covariance
is almost entirely due to a single mode of the lensing, which
can be projected out from the covariance to reduce the
correlations.
Note that we have neglected a contribution to the signal

term arising from the fact that the normalization response is
OðCϕÞ (from the fluctuation in the response ~f in the actual
realization). This term is believed to be subdominant with
respect to terms already considered in Eq. (36).

Connected four-point function: Type-B trispectrum.—The
lensed CMB trispectrum also contributes to the cross-
covariance of Eq. (32). To second order in the lensing
potential power spectrum, there are two main contributions:

10If we assume no contribution from Nð1Þ, then Eq. (36)
reduces to Eq. (E8) in Ref. [6] in the case of temperature.

11Note that CϕXYϕZW

l1
is not directly the estimator mean, which

would also have indirect dependence of the lensing power via the
response functions.

12And therefore, we could conclude that the small mismatch
between simulations and model at low multipoles (where the
signal term dominates over the others) seen in Figs. 3 and 4 is not
due to approximations in the signal term.
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type A, considered in Eq. (A12); and type B, considered
here. They are detailed for some specific cases in
Appendix A 3. Following Ref. [6], the type-B term can
be split further into two parts, primary and nonprimary
contributions.13 None of these two type-B contributions are
canceled by the use of the realization-dependent N̂ð0Þ

correction, but it has been argued [6,8] that the nonprimary
contribution is subdominant compared to the primary one.
Therefore, we only focus on the primary contribution for
the rest of this paper, given by

covðĈϕXYϕZW

l1
;Ĉ ~U ~V

l2;exptÞ
TypeB-primary
trispectrum

¼ Cϕϕ
l1

2l2þ1

��
AXY

l1
C ~X ~U
l2;expt

2l1þ1

X
l3

~gXYl2l3ðl1Þ ~fVYl2l1l3 þðX↔YÞ
�

þðX↔Z;Y↔WÞ
�
þðU↔VÞ ð37Þ

for CMB pairs ab ∈ fTT; TE; EE; BBg. This term is
almost an order of magnitude weaker than the signal
contribution described above for the scales of interest.
For some combinations, we can express the type-B trispec-
trum as the noise term in Eq. (A11) multiplied by the
signal-to-noise ratio (Cϕϕ=A), as shown in Appendix A 3 in
a handful of cases. For EE, BB and TE, the signal is mostly
at low and intermediate lensing and CMB multipoles
(lϕϕ < 1000 and lUV < 2000). For temperature, the signal
is also seen at smaller lensing scales, because the signal-to-
noise ratio of the reconstruction is rather constant across the
multipole range (see Fig. 1).

2. Terms canceled by the use of RDN0

From Eq. (18), the cross-covariance of lensed CMB
power spectra with RDN0-corrected lensing power spectra
can be expressed in terms of the covariance without any
RDN0 correction as follows:

covðĈϕXYϕZW

l1;RDN0
; Ĉ ~U ~V

l2;exptÞ ¼ covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ −
X

ðabÞ;l3

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

~U ~V
l2;exptÞ: ð38Þ

The RDN0 correction of the measured lensing power spectrum cancels two terms in Eq. (33) that would otherwise appear in
the cross-covariance. These two terms are detailed and discussed in Appendix A 2.

C. Reconstructed lensing potential power spectrum auto-correlations

Using the quadratic estimator for the lensing potential defined in Eq. (10) and the estimator for its power spectrum in
Eq. (15), the auto-covariance of the reconstructed lensing potential power spectrum is given by the covariance between two
CMB four-point functions. It can be expressed in a general form as

covðĈϕXYϕZW

l1
; ĈϕX0Y0ϕZ0W0

l2
Þ ¼ AXY

l1
AZW

l1
AX0Y 0

l2
AZ0W0

l2

ð2l1 þ 1Þð2l2 þ 1Þ
X

l3;…;l10;m1;m2

ð−1Þm1þm2 ~gXYl3l4
ðl1Þ~gZWl5l6ðl1Þ~gX0Y 0

l7l8
ðl2Þ~gZ0W0

l9l10
ðl2Þ

×

�
l3 l4 l1

m3 m4 −m1

��
l5 l6 l1

m5 m6 m1

��
l7 l8 l2

m7 m8 −m2

��
l9 l10 l2

m9 m10 m2

�
× ½h ~Xl3

~Yl4
~Zl5

~Wl6
~X0
l7
~Y 0
l8
~Z0
l9

~W0
l10
i − h ~Xl3

~Yl4
~Zl5

~Wl6
ih ~X0

l7
~Y 0
l8
~Z0
l9

~W0
l10
i�; ð39Þ

where li ¼ ðli; miÞ. In the following, we identify the
relevant contributions for this analysis. As in the previous
section, we explicitly separate the contributions by whether
they are canceled by the RDN0 subtraction.

1. Terms not canceled by the use of RDN0

Starting from Eq. (39), we identify two terms potentially
relevant for our analysis.

Gaussian reconstruction power variance.—The first term
is the Gaussian reconstruction power variance, which on
the full sky is predominantly

covGðĈϕXYϕZW

l1
; ĈϕX0Y0ϕZ0W0

l2
Þ

¼ δl1l2
1

2l1 þ 1
ðhĈϕXYϕX0Y0

l1
ihĈϕZWϕZ0W0

l1
i

þ hĈϕXYϕZ0W0

l1
ihĈϕZWϕX0Y0

l1
iÞ ð40Þ

for general lensing reconstruction power. We include Nð1Þ
bias in the expectation values here [from Eq. (16)], but we
neglect the full off-diagonal signal fluctuation dependence
arising from Nð1Þ.

13The primary contribution refers to the contribution for which
sums over m’s in Eq. (32) simplify due to orthogonality relations
of Wigner symbols, while the nonprimary contribution includes
the remaining terms.
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Connected eight-point function.—We also have a correla-
tion induced by the connected eight-point function. The
leading-order contribution is of orderOð½Cϕϕ

l �2Þ [31], which
makes a full calculation rather involved. A full analysis is
beyond the scope of our paper, but we have checked that
some of the simple contractions have a negligible effect on
estimates of the lensing amplitude from the lensing power
spectrum, and comparison with simulations also shows no
evidence for significant missing terms.We therefore drop all
connected eight-point function contributions.

2. Terms canceled by the use of RDN0

Using RDN0 cancels correlations arising because fluc-
tuations in the observed CMB power spectrum induce
changes in the Gaussian lensing reconstruction noise.
Explicitly, from Eq. (18), the auto-covariance of the
measured, RDN0-corrected lensing power spectrum can
be expressed in terms of the covariance without RDN0
correction as

covðĈϕXYϕZW

l1;RDN0
; ĈϕX0Y0ϕZ0W0

l2;RDN0
Þ ¼ covðĈϕXYϕZW

l1
; ĈϕX0Y0ϕZ0W0

l2
Þ −

X
ðabÞ;l3

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

ϕX0Y0ϕZ0W0

l2
Þ

−
X

ðabÞ;l3
covðĈϕXYϕZW

l1
; Ĉ ~a ~b

l3;exptÞ
∂Nð0Þ;X0Y 0Z0W0

l2

∂C ~a ~b
l3;expt

þ
X

ðabÞ;ðcdÞ;l3;l4

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

~c ~d
l4;exptÞ

∂Nð0Þ;X0Y 0Z0W0
l2

∂C~c ~d
l4;expt

: ð41Þ

The details of the computation and a discussion about these
terms can be found in Appendix A 4.

D. Detectability of the correlations

In this section, we quantify the detectability of the off-
diagonal parts of the covariance. Let us define our joint data
vector Ĉ as

Ĉl ¼ ðĈ ~T ~T
l;expt; Ĉ

~E ~E
l;expt; Ĉ

~T ~E
l;expt; Ĉ

~B ~B
l;expt; Ĉ

ϕMVϕMV

l;RDN0 − Nð1Þ;MV
l Þ:

ð42Þ
The full covariance of this joint data vector (denoted cov)
contains all contributions listed above after applying the
realization-dependent noise bias subtraction—namely, all
covariances listed inSec. III A for theCMBauto-covariances,
Sec. III B 1 for the cross-covariances, and Sec. III C 1 for the
lensing auto-covariances. We split the total covariance into a
Gaussian part covG and a non-Gaussian part covNG with
unknown amplitude α as

cov ¼ covG þ αcovNG: ð43Þ
The likelihood for the data Ĉ (in which the Ĉ are approxi-
mated as Gaussian in the fiducial model) reads

−2 lnLðĈÞ ¼ ĈTðcovG þ αcovNGÞ−1Ĉ
þ lnðjcovG þ αcovNGjÞ; ð44Þ

where j:j denotes the determinant of a matrix. Assuming
no prior, the Fisher matrix for the amplitude α of the
non-Gaussian part of the covariance is defined as the expect-
ation value

Fαα ¼
	∂2½− lnLðĈÞ�

∂α∂α

����

α¼1

¼ 1

2
Tr½covNGcov−1covNGcov−1�; ð45Þ

where Tr denotes the trace of a matrix. The significance (or
detectability) of the off-diagonal parts of the covariance is
then given by

ffiffiffiffiffiffiffiffi
Fαα

p
.

For CMB-S4, the off-diagonal parts of the covariance
should be detectable with a significance around 6σ. This
shows that in general, the non-Gaussian contributions are
not negligible, and they must be included to get reliable χ2

goodness of fit numbers. The impact on cosmological
parameters is expected to be much less significant, and we
assess this in more detail below after checking agreement
with simulations. Among the lensed CMB spectra, the B
modes generate most of the impact. Neglecting B modes in
the analysis (auto- and cross-covariance) leads to a lower-
significance detection of the off-diagonal parts of the
covariance (∼3.5σ).

IV. SIMULATIONS

A. Simulation pipeline

To test and validate our analytical results, we have
developed a simulation and lensing reconstruction
pipeline. We generate 5,000 periodic square patches of
jointly Gaussian unlensed T,Q,U skies of 2500 deg2

from spectra computed using CAMB for a ΛCDM
cosmology based on the latest Planck constraints [32]
with h ¼ 0.6688, Ωbh2 ¼ 0.02214, Ωch2 ¼ 0.1207,
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ns ¼ 0.9624, σ8 ¼ 0.817, τ ¼ 0.0581, and one massive
and two massless neutrino eigenstates (sum of the
masses Mν ≡P

mν ¼ 60 meV).
For convenience, the pipeline uses the flat-sky approxi-

mation. The 2D wave vectors l ¼ ðlx;lyÞ of the patch are
assigned curved-sky power Cjlj−1=2. These maps are then
lensed according to the realization of the lensing potential.
Theϕ − T andϕ − E correlations are neglected. The lensing
operations are performed numerically using a standard
bicubic spline interpolation of the unlensed maps given
on a regular grid with resolution 0.7 arcmin, which is
sufficient given our noise levels and high-l cuts. The lensed
spectra agreewith the (curved sky) predictions from CAMB
(subpercent accuracy) across the scales we are using for the
reconstruction. A Gaussian beam with FWHM 3 arcmin,
identical in temperature and polarization, is applied to each
lensed sky, together with homogeneous isotropic noise of
1.5 μK:arcmin (T) and 1.5

ffiffiffi
2

p
μK:arcmin (Q,U).We do not

include directly real-life complications such as foregrounds,
sky cuts, anisotropic beams and uneven hit counts, etc., that
would complicate the lensing reconstruction without being
relevant for our purposes.However,wekeep onlymultipoles
20 ≤ l ≤ 3000 of the simulated maps, which roughly

accounts for the loss of modes on large scales due to sky
coverage and on very small scales due to foregrounds.
The lensing reconstruction uses the separability of the

weight functions of the quadratic estimator in T, Q, U
space. We use a FFT-based real-space implementation for
the un-normalized Cartesian components αx;y of the dis-
placement field, which can be written in convenient matrix
notation as follows:

α̂x;yðzÞ ¼
X

β∈fT;Q;Ug

�X
l
BlCov−1l Dleil·z

�
β

×

�X
l
ilx;yClen

l BlCov−1l Dleil·z
�
β

: ð46Þ

In this equation,Dl ¼ ðTl; Ql; UlÞ is the data vector input
to the MVestimator, Bl is the 3 × 3 (diagonal) beam matrix
with constant diagonal entries exp ½lðlþ 1Þσ2FWHM=
ð16 ln 2Þ�, Covl ¼ BlClen

l Bl þ Nl is the 3 × 3 covariance
matrix of the harmonic mode l of the data (including beam
and noise), and Clen

l is the 3 × 3 spectral matrix of the
fields, implemented using the noiseless lensed spectra

Clen
l ¼

0
BBB@

C ~T ~T
l C ~T ~E

l cos 2ψl C ~T ~E
l sin 2ψl

C ~T ~E
l cos 2ψl C ~E ~E

l cos22ψl þ C ~B ~B
l sin22ψl ðC ~E ~E

l − C ~B ~B
l Þ cos 2ψl sin 2ψl

C ~T ~E
l sin 2ψl ðC ~E ~E

l − C ~B ~B
l Þ cos 2ψl sin 2ψl C ~E ~E

l sin22ψl þ C ~B ~B
l cos22ψl;

1
CCCA; ð47Þ

with ψl being the phase of the harmonic mode l. The
Cartesian components are then rotated to curl and potential
modes inharmonic space, and thennormalizedby the response
to the potential mode, which is identical to the Nð0Þ bias.
This implementation based on a ðT;Q;UÞ description of

the data differs (very slightly) from more traditional imple-
mentations based on combining the set of estimators built
from pairs from ðT; E; BÞ, such as the state-of-the-art
implementation from the Planck team [10]. The exact
MV weights for the TE estimator are nonseparable, making
an exact implementation difficult to achieve with good
scaling properties, so the weights are usually approximated.
Our implementation, which never calculates the separate
estimators, has the advantage of avoiding this small approxi-
mation, and is identical to the exact minimum Gaussian
variance ϕ estimate described in Sec. I. Its numerical cost is
approximately proportional to the optimal fsky × l2

max.
Finally, binning is performed over slowly varying

quantities:

CXY
b̄i

¼ 1

Δbi
1

½b̄iðb̄i þ 1Þ�wXY

Xbiþ1−1

l¼bi

½lðlþ 1Þ�wXYCXY
l ; ð48Þ

where bi and b̄i correspond to the lower bin boundary and
bin center, respectively, of the bin number i. The weight
powers are chosen so that wUV ¼ 1 and wϕϕ ¼ 2.
As mentioned in Sec. II B, we found that using the lensed

temperature power spectrum in the weights of the quadratic
estimator was not accurate enough to reconstruct correctly
the largest scales (biases of ∼10% from the temperature
estimator for lmax ¼ 3000). To avoid this bias, we instead
use the nonperturbative gradient power spectrum C ~T∇ ~T

l in
Eq. (47) for the weights of the quadratic estimator (but we
keep the lensed spectra in the covariance matrix for the
inverse filtering operations). We did not find it necessary to
extend this to polarization.

B. Comparison between the model and simulations

Once we have the set of lensed CMB power spectra and
reconstructed lensing potential power spectra, we compute
the auto-covariances and cross-covariances. We show in
Fig. 3 the comparison between the full cross-covariance
model developed in the previous section (including terms
canceled and not canceled by RDN0 subtraction), and the
results obtained on simulations. We show the cross-
correlation matrices for a better visualization. The
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agreement between both is rather good in temperature,
where the model manages to reproduce most of the features
seen on simulations. For the EE and TE power spectra, the
model is not as good as for temperature, but nonetheless the
agreement is good enough for our purpose (∼10% differ-
ence at large scales, and less than 5% elsewhere). The main
difference between analytic and simulation results in this
case can be seen at large lens scales, where the model tends
to overestimate the correlation. The case of B modes is
different. The model fails to capture correctly the effect at
large and intermediate scales (up to 50% difference
at lϕMVϕMV ¼ 500).
Figure 4 shows the same comparison between model and

simulations, but we keep only the terms not canceled by
RDN0 subtraction (and therefore used later to derive
cosmological parameter uncertainties). The main reduction
of correlation is seen at small lensing scales, and the
correlations remain almost untouched at large lensing
scales. This change is expected because fluctuations in
the CMB power, which induce larger lensing correlations at
small noise-dominated scales than at large scales, are
suppressed by the RDN0 subtraction. The agreement

between model and simulation is improved overall,
although the difference at large scales is still visible.
These differences between the model and simulations

are, however, not detectable at the 1σ level, though the
slight overestimation of the correlation in the analytic
model reduces the total detectability of the non-Gaussian
covariance terms to about 5σ. However, we note an
improvement in the agreement between the model and
the simulations if the B modes are discarded from the
analysis (both then agree within 0.2σ). We also find that the
final results on cosmological parameters are not greatly
affected, with both analytical and simulation results giving
similar values (up to few-percent differences on the
cosmological parameter uncertainties; see Sec. V B).

V. IMPACT OF CORRELATIONS
ON PARAMETER ESTIMATION

Often likelihoods are approximated as Gaussian in the
power spectra, neglecting correlations between the lensing
and CMB power spectra. In this section, we test this simple
approximation against a likelihood using our full

FIG. 3. Cross-correlation matrices [as defined in Eq. (31)] between the lensed CMB power spectra and the reconstructed minimum-
variance lensing potential power spectrum without RDN0 subtraction in the case of a CMB-S4-like experiment. The top row shows the
results from the analytical model. Each panel corresponds to the correlation of the lensing potential power spectrum with a lensed CMB
power spectrum: C ~T ~T

l , C ~E ~E
l , C ~T ~E

l , and C ~B ~B
l . The covariance matrices contain all the terms described in Sec. III and Appendixes A 2 and

A 4. The middle row shows the results obtained from the set of 5,000 MC simulations. The bottom row is the difference between the
analytical model and the simulations. The agreement between the model and the simulation is rather good, except for the B modes,
where the model tends to misestimate the contribution with respect to the simulation (see text). This difference has little impact on the
results discussed in this paper.
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covariance, including lensing-induced off-diagonal terms
and cross-covariances between the spectra. Our full covari-
ance model includes all contributions listed in Sec. III after
applying the realization-dependent noise bias subtraction—
namely, all covariances listed in Sec. III A for the CMB
auto-covariances, Sec. III B 1 for the cross-covariances, and
Sec. III C 1 for the lensing auto-covariances.

A. Lensing amplitude estimates

We first focus on an overall amplitude parameter A of a
fiducial lensing potential power spectrum such that

Cϕϕ
l ¼ ACϕϕ

l jfid; ð49Þ

keepingall other cosmological parameters fixed.The lensing
amplitudeA can be estimated from the reconstructed lensing
potential power spectrum using (e.g. Ref. [6])

ÂϕXYϕZW ¼
P

ll0C
ϕϕ
l ðcov−1

ϕ̂XY ϕ̂ZW Þll0 ðĈϕXYϕZW

l0;RDN0 − Nð1Þ;XYZW
l0 ÞP

lS
XYZW
l

;

ð50Þ

where SXYZWl ¼ P
l0Cϕϕ

l ðcov−1
ϕ̂XY ϕ̂ZW Þll0Cϕϕ

l0 ensures

hÂi ¼ 1 if data come from the fiducial model, and
ðcov−1

ϕ̂XY ϕ̂ZW Þ indicates the matrix inverse of the full lensing

auto-covariance matrix including off-diagonal components
as defined inSec. III C 1 (with the realization-dependent bias
subtraction). Note that we have neglected the lensing poten-
tial power-spectrum dependence of the Nð1Þ bias, which is
subdominant for our purpose. Similarly, the lensing ampli-
tude can also instead be estimated from the lensed CMB
power spectrum

Â ~U ~V ¼
P

ll0 ðĈ ~U ~V
l;expt−CUV

l;exptÞðcov−1~U ~V;expt
Þll0 ðC ~U ~V

l0 −CUV
l0 ÞP

lS
~U ~V
l

;

ð51Þ

where U;V ∈ fT; E; Bg and S ~U ~V
l ¼ P

l0 ðC ~U ~V
l − CUV

l Þ×
ðcov−1~U ~V;expt

Þll0 ðC ~U ~V
l0 − CUV

l0 Þ, and ðcov−1~U ~V;expt
Þ indicates

the matrix inverse of the full CMB auto-covariance matrix
including off-diagonal components as defined in Sec. III A.
The corresponding standard deviations σAϕϕ

and σA ~U ~V
of the

estimators are the inverse square roots of the denominator of
each estimator, and they are reported in Table I. The best
constraintscomefromtheBBspectrumandthe reconstructed
lensing potential power spectrum (an order of magnitude
tighter than current measurements). The TT, EE, and TE
spectra perform equally well, with an uncertainty on the
lensing amplitude almost 3 times larger. Note that these

FIG. 4. Same as Fig. 3, but we use the realization-dependent noise bias subtraction in the computation of the matrices. The overall
correlations at small lensing scales are reduced, but the correlations at large lensing scales remain almost identical.
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values for the uncertainties agree very well with the values
obtained in simulations.
Figure 5 shows the contributions SMVMV

l and S ~U ~V
l to the

total signal-to-noise ratio squared (S=N ¼ P
lSl) for the

lensing amplitude estimates. The lensing S=N coming from
the four-point lensing reconstruction comes from a broad
range of multipoles, with a maximum value at l ≈ 500.
Lensing S=N from EE and TE power spectra is mainly
coming from the acoustic peaks, where the smoothing
effect is largest, and the smoothing itself probes mainly
lensing modes with l≲ 150. However, unlike the case for
Planck studied in Ref. [6], for example, the lensing S=N
from the temperature power spectrum for future experi-
ments comes from both the acoustic peaks and the very
small scales (where the spectrum starts to become lensing
dominated). Finally, the S=N from B modes comes from
the entire range of the lensing B-mode spectrum. If we
extend the multipole range to lmax ¼ 4000, this description
is still true for polarization spectra which are noise
dominated at high multipoles, but the signal-to-noise ratio

for temperature becomes completely dominated by the very
small scales (l > 3000). However, in practice it may be
difficult to clean such high-l temperature modes from
contaminating foregrounds.
The covariance between the two lensing amplitude

estimators is given by

covðÂϕϕ; Â ~U ~VÞ

¼ σ2Aϕϕ
σ2A ~U ~V

Xlϕϕmax

l1;l2¼lϕϕmin

Xl ~U ~V
max

l3;l4¼l ~U ~V
min

× Cϕϕ
l1
ðcov−1

ϕ̂ ϕ̂
Þl1l2covðĈ

ϕϕ
l2
; Ĉ ~U ~V

l3;exptÞ
× ðcov−1~U ~V;expt

Þl3l4ðC
~U ~V
l4

− CUV
l4

Þ; ð52Þ

where we explicitly drop the indices for the lensing for
clarity. The corresponding correlation is computed via

corrðÂϕϕ; Â ~U ~VÞ ¼
covðÂϕϕ; Â ~U ~VÞ

σAϕϕ
σA ~U ~V

: ð53Þ

We show in Fig. 6 the evolution of this correlation
between the lensing amplitude estimates as a function of
the maximum multipole lϕϕ

max for the lensing reconstruction
(upper-left panel). Here we apply the realization-dependent
bias subtraction, and keep l ~U ~V

max ¼ 3000.
We first notice that unlike the Planck case studied in

Ref. [6], for CMB-S4 the correlations are no longer
negligible. In the temperature case, Ref. [6] found an
amplitude correlation of around 3%, while for CMB-S4
(red solid line), the correlation between the lensing ampli-
tude estimated from the TT power spectrum and that
estimated from the minimum-variance lensing power is
as big as 20% when using the full range of multipoles for
lensing reconstruction. Estimating the lensing amplitude

TABLE I. Impact of correlations on lensing amplitude esti-
mates between the minimum-variance estimate and the estimate
from lensed CMB spectra, using the whole range of multipoles
(i.e., lϕϕ

max ¼ lUV
max ¼ 3000). Note that for S4, the reconstruction is

signal dominated on large scales; hence RDN0 subtraction does
not greatly decrease the correlation. For comparison, the un-
certainty in the estimate of the lensing amplitude from minimum-
variance lensing only is σAϕϕ

¼ 0.0037 (σAϕϕ
¼ 0.0057 if RDN0

is not used).

corrðÂϕMVϕMV ; Â ~U ~VÞ corrðÂϕMVϕMV ; Â ~U ~VÞ
UV σA ~U ~V

RDN0 not used RDN0 used

TT 0.011 15% 17%
EE 0.012 25% 21%
TE 0.013 22% 18%
BB 0.0043 70% 64%

FIG. 5. Per-l contribution SMVMV
l (left) and S ~U ~V

l (middle and right) to the total lensing signal-to-noise ratio squared as defined in
Eqs. (50) and (51) (solid lines). For comparison, we overplot the results obtained on simulation (plus signs). The realization-dependent
noise bias subtraction has been used to compute SMVMV

l . We show the contribution from minimum-variance lensing reconstruction (left
panel), lensed temperature (red), lensed E modes (blue), lensed TE power spectrum (green), and lensed B modes (yellow). Since we are
interested in the distribution of the signal-to-noise ratio over different scales (and not in the total SNR), each estimator has been
normalized so that their integral over l is unity.
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from the polarization power spectra EE (blue solid line) or
TE (green solid line) instead of TT gives similar correla-
tions for lϕϕ

max ¼ 3000. Restricting the amplitude estimates
to larger scales leads to higher correlations, reaching up to
50% correlations for lϕϕ

max ∼ 150.
The lensing amplitude estimator using the BB power

spectrum ismost affected by correlations (yellow): it is more
than 60% correlated with the lensing amplitude estimated
from the minimum-variance four-point lensing measure-
ment iflϕϕ

max ≳ 500. This is not surprising, since theBmodes
are generated entirely by lensing. The case of BB is also the
case where the analytic model and simulations tend to show
some noticeable differences (results obtained on simulations
are shown using the cross mark, with the same color code as

the analytic results; shaded grey regions are the uncertainty
coming from the simulations). This difference is also seen in
Figs. 3 and 4, where we can see residual correlations in the
difference between the model and simulations. We inves-
tigated the reason of the failure at low multipoles for the
lensing reconstruction, but we were not able to find a better
agreement within the subset of terms that we calculate. We
note that the model and simulations do reach reasonable
agreement if we consider the whole range of multipoles for
the lensing reconstruction (i.e., at lϕϕ

max ¼ 3000 the model
and simulations give similar results).
In Table I, we show the impact of correlations on lensing

amplitude estimates between the minimum-variance
reconstruction estimate and the estimate from lensed

FIG. 6. Upper-left panel: Correlation between the four-point lensing amplitude Âϕϕ (estimated from the measured lensing power
spectrum) and the two-point lensing amplitude Â ~U ~V (estimated from measured, lensed CMB power spectra), as a function of the
maximum multipole lϕϕ

max used for the reconstruction of the lensing potential (keeping lUV
max ¼ 3000 fixed). Upper-right panel: Same as

upper-left panel, but we project out the first singular vector from the cross-covariance matrix. Lower panel: First singular vectors from
the cross-covariance matrix (top: CMB side; bottom: lensing side). In all plots, the analytical model (solid lines) is compared against
simulations (crosses), with TT, EE, TE, and BB shown in red, blue, green, and yellow, respectively. All results in this figure have been
obtained by using realization-dependent noise bias subtraction. The shaded grey regions in the upper-left and upper-right panels are the
uncertainty coming from the simulations. See text for more discussion.
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CMB spectra using the full range of multipoles
(20 ≤ l ≤ 3000). The use of the realization-dependent
noise bias subtraction has little impact on the correlation
(20% decrease at most). This small impact tells us that for
CMB-S4, the noise contribution is not the dominant one.
After realization-dependent noise bias subtraction, there are
only two contributions left in our approximation to the
cross-covariance matrix: the signal and the type-B trispec-
trum contributions [Eqs. (36) and (37)]. We found that the
type-B trispectrum contribution is negligible with respect to
the signal contribution (almost an order of magnitude lower
for relevant scales); i.e., the signal contribution dominates
the lensing amplitude correlation.
The signal contribution to the cross-correlation matrix

has a low-rank structure (as shown by Refs. [3,6]). We
performed a singular value decomposition (SVD) of the
cross-correlation matrix (after RDN0), and found that most
of the information was contained in the first couple of
modes.14 In Fig. 6 (upper-right panel), we show the
correlation between lensing estimates after projecting out
the first mode obtained from the SVD of the cross-
covariance matrix. For polarization spectra, the first mode
captures all the correlation, and after projection the residual
correlation in all cases becomes extremely small (consistent
with zero given the uncertainty of the Monte Carlo sim-
ulations). For the temperature case, one can see some
residual correlations at low reconstruction multipoles
reaching a few percent, which disappear completely if
we also project out the second singular vector from the
SVD. Both analytic predictions (colored solid lines) and
simulations (colored crosses, with the shaded region
denoting the uncertainty from the MC simulations) are
in agreement, despite for example the initial difference seen
for the B-mode case if lϕMVϕMV

max < 2000.
The lower panel of Fig. 6 shows the first singular vectors

coming from the SVD of the cross-covariance matrix. The
upper row of four subpanels shows the right singular
vectors vlUV

[normalized by lUVðlUV þ 1Þ]. In the case
of TT, EE, and TE, they mainly correspond to the difference
between lensed and unlensed CMB power spectra (but not
completely, due to the presence of the type-B trispectrum
contribution). In the case of BB, the first right singular
vector has the shape of the E-mode power spectrum.15 The
bottom row of subpanels shows the left singular vectors
ulϕMVϕMV

. In all cases, the large-scale lenses are the

dominant cause of the covariance with the lensed spectra,
and the corresponding signal term is easy to model.

We also performed this analysis by extending the range
of multipoles for both CMB spectra and lensing
reconstruction up to lmax ¼ 4000. We found that results
on polarization do not change (at S4 noise and beam levels,
CMB polarization spectra are dominated by the noise for
multipoles beyond 3000), so only temperature results
change. At these small scales, the lensed temperature
power spectrum is driven by the lensing power, and the
uncertainty on the lensing amplitude from the lensed
temperature spectrum is reduced by a factor of 3 compared
to the case where lmax ¼ 3000, becoming comparable to
constraints from B modes (see Table I). The correlation
between the lensing amplitude estimates is also slightly
enhanced, reaching 30% in the case of temperature (for
polarization spectra, the correlation already reached a
plateau at lower lensing reconstruction multipoles).
However, given that polarization does not provide addi-
tional constraints at scales beyond l ∼ 3000, and it might
well be difficult to access those smaller scales in practice
for temperature, we do not further consider scales beyond
lmax ¼ 3000.
Given that the lensing amplitudes estimated from the

BB power spectrum and the minimum-variance lensing
power spectrum have similar error bars and are rather
correlated, one might worry that lensing reconstruction
does not add much independent lensing information to the
lensed BB power spectrum (or vice versa). Table II shows
how the error on the estimate of the lensing amplitude
changes using different data sets: joint estimation from
lensed CMB spectra and lensing reconstruction, lensing
reconstruction only, and lensed CMB spectra. Using the
non-Gaussian covariance avoids double-counting the same
lensing information, and therefore increases the uncertain-
ties on the lensing amplitude compared to treating the
constraints as independent. However, for S4, the lensed
CMB does still add additional information on the lensing
amplitude, so the measurements are still somewhat com-
plementary.16 In addition, systematics may affect these
measurements in different ways in practice, making it
useful to consider both. Furthermore, iterative/maximum-
likelihood lensing reconstruction methods [33] that are
more optimal than the quadratic estimator used in this
paper are expected to improve the accuracy of the lensing
reconstruction significantly. We therefore always expect
the lensing information from lensing reconstruction to be
extremely useful.

14There is a factor ∼50 between the first and the second
singular values, and a factor ∼10 between the second and the
third singular values.

15Although vlBB
disagrees between model and simulations at

high lBB, we believe this is not important in practice because the
BB power spectrum is mostly noise dominated on these scales.

16In the limit of perfect noiseless measurements, the lensing
field would be reconstructed perfectly, and the lensed CMB
power spectra then cannot contain additional (direct) information
on the lensing amplitude, as there are no additional lensing modes
to constrain. However, in general the perturbative maximum-
likelihood lensing power spectrum estimator does include both
the four-point reconstruction and the response from the lensed
power spectra [6].
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B. Cosmological parameter estimation

In this section, we quantify the effect of the covariances
for the estimation of cosmological parameters from the
joint data vector described in Eq. (42). As in the previous
section, we base our full covariance model on all the
contributions that are left after RDN0 subtraction (listed in
Secs. III A, III B 1 and III C 1). We first discuss Fisher
forecasts, which are fast to evaluate for many combinations
of experimental configurations. We then discuss small
differences obtained with Monte Carlo Markov chain
(MCMC) forecasts that better account for the non-
Gaussian posterior shape. In both cases we approximate
the binned Ĉl distribution as having a Gaussian distribu-
tion in a fiducial ΛCDM model, and investigate the change
in results when the covariance matrix is approximated
using the form expected for Gaussian fields, compared to
the approximate more accurate model developed in this
paper (accounting for non-Gaussianity of the lensed CMB
fields and the lensing reconstruction estimator).
Our base ΛCDM set of parameters is based on the latest

Planck constraints [32], with Ωbh2 ¼ 0.02214, Ωch2 ¼
0.1207, 109As ¼ 2.11788, ns ¼ 0.9624, τ ¼ 0.0581,
100θMC ¼ 1.0411. We do not include large-scale Planck
(or other) CMB data, but do include a τ prior motivated by
the recent Planck measurement τ ¼ 0.0581� 0.01 (which
we discuss further below).

1. Fisher matrix forecasts

The effect of the covariance on the estimation of a set of
cosmological parameters pα can be estimated using the
Fisher matrix

Fαβ ¼
X
l1l2

∂Cl1

∂pα
ðcov−1Þl1l2

∂Cl2

∂pβ
; ð54Þ

where cov−1 is the inverse covariance matrix of the joint
data vector in Eq. (42). The error σpα

on the parameter pα is
then given by

σpα
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þαα

q
: ð55Þ

We show in Table III the impact of non-Gaussian
covariances for a base set of flat ΛCDM cosmological
parameters. The first column shows the 1σ bound for
the base parameters assuming the covariance matrix of the
joint data vector is fully non-Gaussian (containing all
blocks, each of which contains off-diagonal elements).
The second column shows the fractional change in this 1σ
bound when switching between non-Gaussian and
Gaussian covariances:

Degradation ¼ σpα
− σGpα

σGpα

; ð56Þ

where σpα
and σGpα

are the errors on parameter pα in the case
of non-Gaussian and Gaussian covariances, respectively.
The impact of non-Gaussian covariances on the errors is
modest, at most 9% for this set of base parameters. The
third column shows consistency between errors from the
analytic model developed in Sec. III and the results
obtained from simulations:

Agreement ¼ σpα
− σsims

pα

σsims
pα

; ð57Þ

where σpα
and σsims

pα
are the errors on parameter pα obtained

from the analytical model and the simulations, respectively
(both using non-Gaussian covariances). The agreement
between both is good, with a difference on the error of
at most a few percent, which is sufficient to validate the
model developed in this paper. The larger fractional
differences in the off-diagonal covariances seen in
Figs. 3 and 4 are not that important, because the magnitude

TABLE II. Constraints on lensing amplitude estimates using

the CMB power spectra ðĈ ~T ~T
l;expt; Ĉ

~E ~E
l;expt; Ĉ

~T ~E
l;expt; Ĉ

~B ~B
l;exptÞ and

lensing reconstruction ϕϕ ¼ ðĈϕMVϕMV

l;RDN0 Þ, using the whole range

of multipoles (i.e., lϕϕ
max ¼ lCMB

max ¼ 3000) and keeping other
cosmological parameters fixed. We show results using Gaussian
covariance (σGAα

) and non-Gaussian covariance (σAα
) for the joint

constraint, from the lensing reconstruction alone, and from the
lensed CMB spectra alone.

σGAα
σAα

α ¼ CMBþ ϕϕ 0.0020 0.0035
α ¼ ϕϕ 0.0037 0.0037
α ¼ CMB 0.0024 0.0039

TABLE III. Impact of non-Gaussian covariances for the
base set of parameters from a Fisher matrix analysis using our
fiducial CMB-S4 configuration: 1σ bound for parameters
using full non-Gaussian covariance, degradation with respect
to Gaussian covariance, and relative difference between analyti-
cal predictions and simulations (error on the error). Parameters
used: Ωbh2 ¼ 0.02214, Ωch2 ¼ 0.1207, 109As ¼ 2.11788,
ns ¼ 0.9624, τ ¼ 0.0581, 100θMC ¼ 1.0411. We assume a
Gaussian prior on τ (�0.01).

pα σpα

Degradation
(%)

Agreement with
simulations (%)

Ωbh2 0.00004 0.7 −0.4
Ωch2 0.00066 2.4 −3.2
109As 0.022 9.3 −1.1
ns 0.0022 0.5 −0.1
τ 0.0062 6.4 −1.6
100θMC 0.00010 −0.2 −3.9
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of the non-Gaussian terms is small compared to Gaussian
terms, so it is not necessary to model them with very high
accuracy.
We also probe one-parameter extensions to the base set

of parameters by considering three other parameters: the
sum of neutrino masses, the effective number of relativ-
istic degrees of freedom, and the fraction of baryonic mass
in helium. In all three cases we use fiducial values of
Mν ¼ 100 meV, Neff ¼ 3.046, and Yp ¼ 0.245. The neu-
trino sector is modeled as three massive neutrinos follow-
ing a normal hierarchy, using the measured mass splitting
from oscillation experiments.17 The impact of non-
Gaussian covariances from the Fisher matrix is shown
in Table IV. For these one-parameter extensions, and this
experimental configuration, only the sum of neutrino
masses is affected by the non-Gaussian covariance: we
obtain a 1σ error of 72 meVon the sum of neutrino masses
with a mild ∼10% degradation from the non-Gaussian
covariance. Notice that if we discard information from the
measurement of the lensing potential (using only TT, EE,
TE, and BB spectra), the constraint on the sum of neutrino
masses is even less sensitive to the choice of covariance
(i.e., including or not the off-diagonal elements in the
auto-covariance of the lensed CMB spectra makes a
change of −0.9% in the result),18 and the 1σ error becomes
94 meV.
We study the impact of the experimental set-up by

looking at the impact of the non-Gaussian covariances
for various noise levels. The results are summarized in

Fig. 7. We show the errors on parameters and the
degradation factors as a function of the instrumental
noise level, for noise values from 0.75 μK:arcmin to
12 μK:arcmin, and for a ΛCDMþMν model. The results
for our assumed S4 configuration, the main focus of this
paper, are highlighted with bigger circle marks. The
degradation increases for smaller noise levels, reaching
around 15%–20% for the parameters directly influenced by
the lensing (i.e., the optical depth, the scalar amplitude, and
the sum of neutrino masses).19 And not only does the
degradation factor increase with decreasing noise level, but
the error on the parameters plateaus. From Fig. 7, we
observe, for example, that the error on τ is rather similar for
a noise level of 1.5 μK:arcmin or 6 μK:arcmin if the full
non-Gaussian covariance is considered. However, as soon
as we increase further the level of noise, the degradation
factor quickly decreases, with degradation factors for all
parameters less than 5% for a final (temperature) noise
of ≳10 μK:arcmin.
CMB-S4 will observe from the ground, and therefore the

largest scales will be difficult to measure. We have
conservatively set to zero scales with l < 20, which means
that we do not constrain τ directly from the CMB
polarization. Lensing does provide some amplitude infor-
mation, but relating that to τ via the observed CMB
amplitude is partly degenerate with the effect of other
parameters like the neutrino mass. External priors will
therefore be crucial to break parameter degeneracies and
get tight constraints [34]. For the sum of the neutrino
masses, there is a great improvement on the 1σ error if we
use the Planck τ prior �0.01 (see Table V) compared to no
prior at all: the error is reduced by almost a factor of 3.
Moving from the current Planck prior on τ to the lowest
achievable bound�0.002 by a CMB experiment (assuming
an instantaneous reionization process, for a full-sky cosmic
variance limited experiment up to l ¼ 2500 as described in
Ref. [35]), as shown in Table VI, the error is again reduced
by almost a factor of 1.5. Introducing a prior on τ also helps
to decrease the non-Gaussian degradation factor in all the
cases, and the impact of non-Gaussian covariance is less
than 5% for a τ prior equal to 0.002 (see Table VI). In the
future, 21 cm experiments could provide even better
constraints on τ as shown in Ref. [36] and therefore further
lower the error on cosmological parameters depending
on it.20

TABLE IV. Constraints on one-parameter extensions to the
base ΛCDM model from a Fisher matrix analysis using our
fiducial CMB-S4 configuration: 1σ bound for parameters using
full non-Gaussian covariance, degradation with respect to Gaus-
sian covariance, and relative difference between analytical
predictions and simulations (error on the error). Fiducial param-
eters used: Mν ¼ 100 meV, Neff ¼ 3.046, and Yp ¼ 0.245. We
assume a Gaussian prior on τ (�0.01). Each row represents
the constraint on the parameter after marginalization over
the base set.

pα σpα

Degradation
(%)

Agreement with
simulations (%)

Mν=meV 72 11 0.1
Neff 0.052 3.1 −1.1
Yp 0.0030 2.8 −0.8

17Physically, we also could use an inverted hierarchy,
since the lowest possible total mass allowed is around
100 meV. We approximate the full normal hierarchy by
two distinct mass eigenstates, where the lower mass state
has degeneracy 2.

18A negative non-Gaussian degradation factor means that
the error on the parameter is better when the non-Gaussian
covariance is used. This is the case when the parameters are
anticorrelated (partially or fully) rather than correlated.

19Without a prior on τ, the degradation factor reaches more
than 50% for τ and As, and almost 40% for Mν. For a very
optimistic experimental setup (and no prior on τ), with noise of
0.5 μK:arcmin, beam size of 1 arcmin and extending the multi-
pole range up to 5000 in polarization, the impact of covariance
reaches 50% on Mν and 70% for τ and As.

20However, we found that the improvement on the sum
of neutrino masses for values of the prior lower than 0.002 is
minor (for the values of noise, beam and bandwidth considered
here).
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We also include a prior from future DESI and Euclid
BAO measurements (see Tables V and VI in Ref. [37] for
the numbers used). These combined constraints are shown
in Tables V and VI, for two different priors on the optical
depth τ. The inclusion of BAO priors lowers the errors, and
the biggest effect is seen for the sum of neutrino masses,
θMC (or H0), and As, for which a measurement of BAO
helps to strongly break the geometric degeneracy in the
CMB data [38]. The non-Gaussian degradation factor

becomes smaller in the case without the BAO as the
lensing becomes less important, as the results are degen-
eracy limited.

2. Monte Carlo Markov chain posterior
likelihood estimation

To check the results obtained with the Fisher analysis, we
make a direct likelihood exploration using a Monte Carlo
Markov chain (MCMC) approach by using the mean log

FIG. 7. Impact of the covariances on the cosmological parameter (Fisher) errors as a function of experimental noise, in the context of a
ΛCDM þMν model. The figures on the left show the errors on the parameters in the case of non-Gaussian covariance (solid curves) and
Gaussian covariance (dashed curves). The errors have no units, but the sum of neutrino masses are in units of eV. The figures on the right
show the degradation factor on the error for parameters when using non-Gaussian covariance instead of Gaussian covariance [see
Eq. (56)]. The CMB-S4 case described in this paper is highlighted with bigger circle markers (temperature noise level of
1.5 μK:arcmin). We keep the beam width and fraction of observed sky fixed, with values 3.0 arcmin and 40%, respectively, and
we apply a Gaussian prior τ ¼ 0.058� 0.01. The degradation factor is smaller for bigger values of the experimental noise. See text for
more explanations.

TABLE V. Comparison between the Fisher matrix analysis and the MCMC. For both methods, we show the impact of non-Gaussian
covariances for a ΛCDMþMν model: 1σ bound for parameters using full non-Gaussian covariance and degradation with respect to
Gaussian covariance. The two columns on the left use only our fiducial CMB-S4 configuration, and the two columns on the right use our
fiducial CMB-S4 configuration and forecasted BAO measurements from DESI and Euclid. For all results in this table, we assume a
Gaussian prior on τ of �0.01.

CMB-S4 alone CMB-S4+DESI/Euclid BAO

σpα
Degradation σpα

Degradation σpα
Degradation σpα

Degradation

pα Fisher Fisher MCMC MCMC Fisher Fisher MCMC MCMC

Ωbh2 0.000037 1% 0.000035 −4% 0.000035 1% 0.000035 3%

Ωch2 0.00083 1% 0.00074 1% 0.00054 3% 0.00075 8%

109As 0.036 17% 0.033 11% 0.028 11% 0.031 13%

ns 0.0023 1% 0.0023 −2% 0.0020 1% 0.0019 2%

τ 0.0086 14% 0.0081 10% 0.0072 9% 0.0080 11%

100θMC 0.00011 4% 0.00011 0% 0.000090 0% 0.000088 2%

Mν=meV 72 11% 69 5% 24 4% 34 5%
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likelihood evaluated at the fiducial model. We focus on the
ΛCDMþMν model, and run MCMC chains using
COSMOMC

21 for the following cases: a CMB-S4-like experi-
ment, Gaussian or non-Gaussian covariances, with or
without inclusion of external BAO measurements, and
two different priors on τ (0.01 and 0.002).
Figure 8 shows one- and two-dimensional joint margin-

alized posterior distributions in the fτ;Mνg parameter space
(using the 0.01τ prior on the left and the 0.002τ prior on the
right). The corresponding 1σ errors and non-Gaussian
degradation factors are shown in Table V (using the 0.01τ
prior) and Table VI (using the 0.002τ prior). These tables
also list results for the other cosmological models of the
ΛCDMþMνmodel. Note that the numerical sampling error
for the MCMC is a few percent, so the degradation factors
are reported at this level of precision and small percent-level
changes should not be overinterpreted. To ease the com-
parison between both methods, we also report the results
from the Fisher method at this level of precision.
The left panel of Fig. 8 shows that if we use the prior on τ

from the recent Planck measurement, the MCMC results
(filled ellipses and solid lines) are not in good agreement
with the Fisher matrix results (dashed). This disagreement
is seen for Gaussian and non-Gaussian covariances, with
and without BAO information. While the directions of
degeneracy axes are similar, the parameter errors inferred
from the posterior distributions differ significantly between
the Fisher matrix and MCMC analyses in some cases
(hinting at a non-Gaussian posterior, which is better
captured by the MCMC analysis as discussed at the end
of this section).
From Table V, we find the MCMC results to be less

sensitive to the impact of non-Gaussian covariance than the
results from the Fisher matrix for CMB-S4 alone, although
the orders of magnitude remain the same. One notable
difference is on the sum of the neutrino masses, where the
Fisher method indicates twice the degradation of MCMC.

If we include the BAO measurement, parameter errors
shrink in both cases, although differences between Fisher
analysis and MCMC remain in some cases (most notably
for Ωch2 and Mν). Significant non-Gaussian degradations
tend to agree better in most cases if BAO information is
included. Generically, better agreement between Fisher and
MCMC analyses when including BAO information might
be related to the fact that the inclusion of BAO helps to
break the degeneracies present in the CMB data, which
should make the likelihood more Gaussian.
If we now put a tighter prior on τ by assuming the lowest

possible bound from CMB measurement (right panel of
Fig. 8, and Table VI), the agreement between the MCMC
and Fisher results are in better agreement, although still
slightly different. For the sum of neutrino masses, the
difference in 1σ error is decreased slightly with σMν

¼
53 meV from Fisher and σMν

¼ 55 meV from MCMC
results in the CMB-S4 case, and σMν

¼ 17 meV from
Fisher and σMν

¼ 19 meV in the case of CMB-S4+BAO.
The corresponding degradation factors do change, but they
remain small (less than 5%) for both methods (comparable
to the sampling error in the MCMC case).
Several works, e.g. Refs. [39–41], already point out that

a Fisher analysis may not give very accurate error estimates
for some combinations of parameters, noting significant
discrepancies between Fisher matrix estimation and
MCMC results. When there are curving degeneracies or
excluded regions in the parameter space (like Mν < 0), the
shape is very non-Gaussian, and Fisher results are expected
to be unreliable. To get more reliable Fisher estimates, we
could find a set of more Gaussian parameters for which the
Fisher errors could be calculated. For example, Ref. [40]
proposed physically motivated Gaussian parameterizations
(although still strongly advocating for the use of MCMC),
and Ref. [42] proposed performing Box-Cox transforma-
tions on the parameter space. However, these extensions are
beyond the scope of this paper. The shape of actual data
posteriors would, of course, also depend on the true model,
and the actual realization of the data obtained.

TABLE VI. Same as Table V, but we assume a Gaussian prior on τ of �0.002.

CMB-S4 alone CMB-S4+DESI/Euclid BAO

σpα
Degradation σpα

Degradation σpα
Degradation σpα

Degradation

pα Fisher Fisher MCMC MCMC Fisher Fisher MCMC MCMC

Ωbh2 0.000036 1% 0.000035 −2% 0.000035 0% 0.000035 0%

Ωch2 0.00083 2% 0.00068 −2% 0.00030 −1% 0.00023 2%

109As 0.0098 4% 0.0092 −3% 0.0082 4% 0.0084 4%

ns 0.0023 3% 0.0022 −2% 0.0018 6% 0.0017 6%

τ 0.0020 1% 0.0020 1% 0.0020 1% 0.0020 3%

100θMC 0.00011 3% 0.00011 4% 0.000087 1% 0.000086 −1%
Mν=meV 53 3% 55 −1% 17 1% 19 1%

21http://cosmologist.info/cosmomc/.
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VI. CONCLUSIONS

We developed a detailed (but approximate) model for the
auto- and cross-covariances of the CMB and CMB lensing
power spectra and tested it against simulations. The main
conclusions are that
(1) There are correlations between the CMB and lensing

reconstruction power spectra, as well as small off-
diagonal non-Gaussian contributions to the cova-
riances of auto–power spectra. The correlation and
non-Gaussian contributions are small, but are easily
detectable in a fit to future S4-like data (at ∼5σ,
improving the model fit to the data).

(2) Non-Gaussian contributions to the CMB auto-
correlation are small, but can be accurately modeled
using the approximations of Sec. III A [3–6,28]. B
modes produce the dominant off-diagonal contribu-
tions to the auto-covariance. Temperature and E
modes perform equally well, with a combined impact
as large as the B modes alone.

(3) Using estimators with realization-dependent
reconstruction noise subtraction, the auto-covariance
of the lensing reconstruction power spectrum is well
approximated by the simplest Gaussian model.

(4) The cross-correlation with the CMB is well modeled
by the approximation

covðĈϕXYϕZW

l1;RDN0
; Ĉ ~U ~V

l2;exptÞ ≈
X
l3

∂CϕXYϕZW

l1

∂Cϕϕ
l3

2

2l3 þ 1
ðCϕϕ

l3
Þ2 ∂C

~U ~V
l2

∂Cϕϕ
l3

þ Cϕϕ
l1

2l2 þ 1

��
AXY

l1
C ~X ~U
l2;expt

2l1 þ 1

X
l3

~gXYl2l3ðl1Þ ~fVYl2l1l3 þ ðX ↔ YÞ
�
þ ðX ↔ Z; Y ↔ WÞ

�
þ ðU ↔ VÞ;

ð58Þ

FIG. 8. One- and two-dimensional joint marginalized posterior distributions at 68% and 95% confidence levels in the τ −Mν plane
from a ΛCDMþMν set of parameters. The left panel assumes a prior on τ from the current Planck measurement (�0.01), and the right
panel assumes the lowest bound from CMB measurement (�0.002). In each panel, we plot the contours for CMB-S4 alone (red-filled
ellipses for the Gaussian covariance; blue-filled ellipse for the non-Gaussian covariance) and CMB-S4+BAO measurements (green-
filled ellipses for the Gaussian covariance; orange-filled ellipse for the non-Gaussian covariance). For comparison, we also show the
results from the Fisher matrix (dashed ellipses). The disagreement between MCMC and Fisher results is smaller when BAO
measurements are added. This is for the sum of neutrino masses, as we do not account for the excluded parameter regionMν < 0 in the
Fisher approach, making a direct comparison with MCMC of one-dimensional joint marginalized posterior distributions difficult (see
Tables V and VI for marginalized 1σ errors on parameters).
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where the first term dominates.22 In practice, one can
quickly test the impact of the non-Gaussian covari-
ance by using the simplified expression for the
cross-covariance:

covðĈϕXYϕZW

l1;RDN0
; Ĉ ~U ~V

l2;exptÞ

≈
X
l3

∂CϕXYϕZW

l1

∂Cϕϕ
l3

2

2l3 þ 1
ðCϕϕ

l3
Þ2 ∂C

~U ~V
l2

∂Cϕϕ
l3

: ð59Þ

For the considered possible CMB-S4 experi-
mental setup, the correlation is most important
for large lensing scales (lϕϕ < 500) but affects a
large range of CMB scales (lTT;EE;TE > 1000 and
20 < lBB < 2000).

(5) These simple analytic models match S4-like
simulations with excellent accuracy for the auto-
correlation, and good, but not perfect, accuracy for
the cross-correlation.

(6) The impact of the non-Gaussian covariance is not
negligible for a CMB-S4 experiment: neglecting it
would lead to an underestimation of errors on the
lensing amplitude, because the lensed CMB and
lensing reconstruction are double-counting the same
information (the estimates are correlated by up to
60% if the BB spectrum is included). However,
the correlation is dominated by one or two eigenm-
odes, which could be projected out to reduce the
correlation.

(7) Using a Fisher matrix analysis, we show that
correlations can affect standard cosmological param-
eter errors from the CMB by up to several tens of
percent for an CMB-S4 experiment. For lower-
sensitivity observations, the correlations should be
safely negligible. Using additional external data
(priors on τ, BAO measurements) also makes the
correlations negligible with CMB-S4. A more ac-
curate analysis using MCMC gives similar conclu-
sions but also highlights some inaccuracies of the
Fisher matrix analysis.

(8) Although the impact is small for standard cosmo-
logical parameters if external data are included, an
accurate likelihood model should include the corre-
lations, which is easy using the model presented
here. The code is available at https://github.com/
JulienPeloton/lenscov.

In practice, the full covariance could be estimated from
simulations, in which case there would be no need for an
analytic model. However, accurate covariance estimates
require running a large number of CMB realizations
(typically corresponding to a total area of hundreds of full

skies), which is very computationally expensive. In par-
ticular, the entire suite of simulations needs to be rerun
from scratch every time experiment specifications such as
noise level, beam size, or sky coverage change. Making
these changes is much simpler using our analytic covari-
ance model by changing, for example, noise level or beam
size when evaluating the equations. Another potential
disadvantage of simulated covariances is that they are
always somewhat noisy due to the finite number of
simulations used, which can lead to suboptimal error bars.
Based on our covariance model and comparisons with
simulations, one might be able to obtain less noisy
covariance estimates by exploiting the fact that the cova-
riances are dominated by a few singular modes, which
could be estimated from much fewer realizations than the
covariance between all multipole bins. The analytic model
could also be used as a prior or regulator for simulation-
based estimators.
A potential disadvantage of the analytic covariance

model is that it relies on the quadratic estimator of the
lensing reconstruction, and it is not immediately clear how
to extend it to more optimal lensing reconstruction estima-
tors that rely on iterative estimates [33]. However, the
leading cross-covariance term [Eq. (59)] is caused by a
signal covariance which would likely remain of the same
form, and would therefore probably still dominate the non-
Gaussian covariance.
We have not modeled the covariance with delensed CMB

spectra. While the delensing process should reduce corre-
lations between CMB and lensing, we would still expect
the residual covariances to contain some non-Gaussianities
(see, for example, Ref. [43] for the detailed B-modes case,
or Ref. [7], which proposes an analytical model of the
covariance of the delensed spectra). Future work could
investigate this further with simulations, or extend the
analytic model of this paper.
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APPENDIX A: DERIVATIONS OF TERMS IN
COVARIANCES

1. Auto-covariance of the CMB

Here we give a partial derivation for some of the terms in
the auto-covariance of the CMB (see Sec. III A) to build
some intuition for where the various terms come from.
First, note that the lensed CMB is linear in the unlensed

CMB, so ~Ulm ¼ P
X;l0m0Xl0m0 ∂ ~Ulm∂Xl0m0 , where the unlensed

fields are X ∈ fT; E; Bg. Contractions over unlensed fields
can therefore be done using

P
XYδll0δmm0 1

2
CXY
l

∂2
∂Xlm∂Y�

l0m0
.

For a set of isotropic Gaussian fields with covariance matrix
Cl, we can also relate power spectrum derivatives to
expectations of field derivatives using

∂hAi
∂CXY

l
¼ ð2lþ 1Þ

2
h½ðC−1

l ĈlC−1
l ÞXY − ðC−1

l ÞXY �Ai

¼
X
m
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2

∂2A
∂Xlm∂Y�

lm



; ðA1Þ

where A is any function of the Gaussian fields. Isotropy of
expectation values then implies, for example, that
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∂2Ĉ ~U ~V
l1

∂Xlm∂Y�
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¼ δll0δmm0

2lþ 1

∂C ~U ~V
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l

: ðA2Þ

To analyze the auto-covariance, we expand it into a
Gaussian piece,

covGðĈ ~U ~V
l1;expt; Ĉ

~U0 ~V 0
l2;exptÞ

≡ δl1l2
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2l1 þ 1
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ðA3Þ

plus fully connected non-Gaussian pieces as follows:
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The leading-order connected piece is given by
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where we use the definition of the nonperturbative response
functions [23]
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This leading-order term is generally small, but for

covðĈ ~X ~Y
l1;expt; Ĉ

~B ~B
l2;exptÞ, where X; Y ∈ fT; Eg, it is more

important and can be included in alternative ways. For
example, for the covariance between EE and BB, to lowest
order we have
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This term can also be included more generally by instead
doing CMB cross contractions using
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where in the second line we use Eq. (A2). This includes
both leading- and next-order terms in Cϕϕ

l and is
nonperturbative in the derivative response functions.
Unfortunately, it is not straightforward to generalize this
to terms not involving BB, since complications then arise
with disconnected terms appearing.
In all cases, at the next order, there is also a simple term

connected by two lensing fields given by
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where we use Eq. (A2) with X ¼ Y ¼ ϕ. The term is
numerically important and accounts for the correlated
fluctuations in the lensed CMB induced by fluctuations
in the lensing power. We neglect various other contractions
at this order that do not simplify into simple power
spectrum derivatives.

2. CMB and lensing cross-covariances:
Terms canceled by the use of RDN0

As seen in Sec. III B 2, The RDN0 correction of the
measured lensing power spectrum cancels two terms.

a. Fully disconnected six-point functions: Noise term

The first identified contribution comes from fully
disconnected terms (disconnected six-point functions of
zeroth order in Cϕϕ), the leading covariance from the
reconstruction noise being dependent on the CMB power.
Taking Gaussian contractions between two power spectra
and taking the Gaussian noise part of the expectation,
we have
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	 ∂ĈϕXYϕZW

l1

∂ ~a�lm;expt
~bl0m0;expt




ðC ~a ~U
l;exptC

~b ~V
l0;expt þ C ~b ~U

l0;exptC
~a ~V
l;exptÞδll2δl0l2

¼
X
ðabÞ

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l2;expt

covGðĈ ~a ~b
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for CMB pairs ðabÞ ∈ fTT; TE; EE;BBg and Gaussian
covariance covG. This term reflects the fact that both the
noise bias of the reconstructed lensing potential and the
lensed CMB fields share the same CMB fields: if the CMB
power fluctuates high, both the estimated lensed CMB
power and the Gaussian lensing reconstruction noise Nð0Þ
fluctuate high. It produces broadband correlations between
wide ranges of scales, and dominates the full covariance
with small-scale lensing power.
The large-scale (lϕϕ ≲ 1000) lensing modes are recon-

structed with a high signal-to-noise ratio for S4, and hence
noise covariance only makes a small contribution to the
total correlation there. On smaller lensing reconstruction
scales, lϕϕ ≳ 1000, fluctuations in the CMB power do
induce larger correlations, with the relative importance of
the correlation for the different CMB power spectra

depending on the weights of the different CMB modes
in the minimum-variance lensing estimator. The MV
lensing estimator gives the most weight to the EB estimator
at low lϕϕ, but the temperature estimator becomes rela-
tively more important for the reconstruction of smaller-
scale lenses (see Fig. 1). Low lϕϕ are therefore only very
weakly correlated to the TT spectrum on large scales, even
ignoring the signal variance, with BB and EE correlations
dominating the noise contributions there; the TT and TE
correlations dominate the noise contributions at high lϕϕ.
Additionally, the lensing reconstruction depends on

CMB modes satisfying the triangle constraint up to an
lUV
max, where they become noise dominated (and hence are

cut off by the weights), unless an lUV
max cutoff scale is

imposed. For lϕϕ ≪ lUV
max, most of the temperature (and E

polarization) lensing reconstruction is from squeezed
shapes involving only high-lUV modes, which have the
largest weights and lowest cosmic variance; the noise
correlation at moderate lϕϕ is therefore mainly with high
lUV
max for TT. For lϕϕ ∼ lUV

max, the triangles can no longer be
squeezed, and a wide range of larger-scale CMB modes
contribute (with small weight on large scales being com-
pensated by the other mode being near lUV

max). The cosmic
variance of the large-scale CMB modes is, however,
much larger than that of the small-scale ones, resulting
in a strong correlation structure around lUV ∼ 200 and the
first few peaks where there is the smallest number of
modes. The noise correlation with EE has a similar
structure at high lϕϕ, but at lower lϕϕ there is a broader
range of correlation scales (as for BB), because the E
modes also enter the EB estimator.
As demonstrated for temperature in Ref. [6], and shown

in Figs. 3 and 4 in the general case, this leading-order noise
term can be efficiently mitigated by the use of the
realization-dependent N̂ð0Þ correction.23

b. Connected four-point function: Type-A trispectrum

In addition to the noise term, there is another contribu-
tion from the CMB trispectrum to the cross-covariance,
denoted type-A trispectrum hereafter. It is a correction term
to the noise contribution in Eq. (A11) containing higher-
order terms in Cϕϕ, and its general form is given by

covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ
TypeA
trispectrum

¼
X

ðabÞ;l3

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

~U ~V
l2;exptÞconn:4pt: ðA12Þ

See Appendix A 3 for more details on the derivation of
this term.

23See also the first line of Eq. (18).
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3. Cross-covariances between two-point
and four-point functions: Connected

four-point functions

We are interested in the connected four-point-function
contribution to the six-point function in the last line of
Eq. (32). This is basically the contribution from the
lensed CMB trispectrum to the cross-covariance. We
split the six-point function in three groups G of two
fields:

~Xl3

~Yl4|fflfflffl{zfflfflffl}
G1

j ~Zl5
~Wl6|fflfflffl{zfflfflffl}

G2

j ~Ul2m2
~Vl2;−m2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
G3

: ðA13Þ

Following Ref. [6], we can show that the nonvanishing
contributions are of the form24 hG1G2i × hG1G2G3G3ic
(type A) and ½hG1G3i × hG1G2G2G3icÞ þ hG2G3i ×
hG1G1G2G3ic� (type B).

a. Type A

One can express the full expression in a rather
simple form by noticing that the pairing hG1G2i gives
rise to the lensed CMB power spectrum, while the pairing
hG1G2G3G3ic is the connected four-point-function
contribution to the lensed CMB auto-correlation (see
Sec. III A). Then, using a sum over m’s and Eq. (11),
we obtain

covðĈϕXYϕZW

l1
; Ĉ ~U ~V

l2;exptÞ
Type A
trispectrum

¼
X

ðabÞ;l3

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

~U ~V
l2;exptÞconn:4pt

ðA14Þ

for the CMB pair ab ∈ fTT; TE; EE;BBg. We can
interpret the covariance [Eq. (A14)] as the correction
to the noise contribution of Eq. (A11) due to the
nondiagonal parts of the lensed CMB auto-covariance
at higher orders in Cϕϕ [Eq. (A11) is Oð½Cϕϕ

l �0Þ, while
Eq. (A14) contains in our development Oð½Cϕϕ

l �1Þ and
Oð½Cϕϕ

l �2Þ terms].

b. Type B

In general, there are eight nonvanishing terms.
To compute this term, we need the expression for the
lensed CMB trispectrum. First, let us notice that the
connected four-point function h ~Yl4

~Zl5
~Wl6

~Vl2;−m2
ic at

Oð½Cϕϕ
l �1Þ contains only terms h ~Yl4

~Zl5
δWl6

δVl2;−m2
ic

and permutations thereof (h ~Yl4
~Zl5

~Wl6
δ2Vl2;−m2

ic, and
permutations are canceled by the disconnected part).
Therefore, using Eq. (5) we have

h ~Yl4

~Zl5
~Wl6

~Vl2;−m2
ið2Þc

¼ 1

8

X
lm

ð−1Þm
�
l3 l4 l

m3 m4 −m

��
l5 l6 l

m5 m6 m

�

× Cϕϕ
l

~fYZl3ll4
~fWV
l5ll6

þ all permutations; ðA15Þ

where the superscript “(2)” indicates that we stopped the
development at Oð½Cϕϕ

l �1Þ. The general formula for the
lensed CMB trispectrum contribution to the covariance
does not have a simple expression [see Eq. (37) for the
general case], so we focus here on only a few combinations
that simplify.
Let us consider X ¼ Y ¼ Z ¼ W ¼ U ¼ V; then

inserting Eqs. (A15), (11), and (13) in the cross-covariance
equation leads to the final result

covðĈϕXXϕXX

l1
; Ĉ ~X ~X

l2;exptÞTypeB-primary
trispectrum

¼ 2
Cϕϕ
l1

AXX
l1

∂Nð0Þ;XXXX
l1

∂C ~X ~X
l2;expt

2

2l2 þ 1
ðC ~X ~X

l2;expt
Þ2: ðA16Þ

If we consider X¼Z¼E, Y¼W¼B, and U ¼ V ∈ fE;Bg,
we have only four nonvanishing terms (terms with hEBi
will vanish), and we obtain

covðĈϕEBϕEB

l1
; Ĉ ~U ~U

l2;exptÞ
TypeB-primary
trispectrum

¼ 2
Cϕϕ
l1

AEB
l1

∂Nð0Þ;EBEB
l1

∂C ~U ~U
l2;expt

2

2l2 þ 1
ðC ~U ~U

l2;expt
Þ2: ðA17Þ

These simplified forms are useful to gain some
intuition: we can see that the effect of the type-B
trispectrum will be the same as the noise term from
Eq. (A11), modulated by the signal-to-noise ratio of the
reconstruction ðCϕϕ=AÞ.

4. Lensing auto-covariances: Terms canceled
by the use of RDN0

By expanding the second term on the rhs of Eq. (41) in
terms of the different contributions from Sec. III B, the last
term on the rhs is canceled because of contributions coming
from Eqs. (A11) and (A12) from Appendix A 2, and we are
left with

24The notation hG1G2i means that we correlate one field from
group G1 with one field from group G2.
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covðĈϕXYϕZW

l1;RDN0
; ĈϕX0Y0ϕZ0W0

l2;RDN0
Þ ¼ covðĈϕXYϕZW

l1
; ĈϕX0Y0ϕZ0W0

l2
Þ −

X
ðabÞ;l3

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

ϕX0Y0ϕZ0W0

l2
ÞSec: III B I

−
X

ðabÞ;l3
covðĈϕXYϕZW

l1
; Ĉ ~a ~b

l3;exptÞSec: III B I

∂Nð0Þ;X0Y 0Z0W0
l2

∂C ~a ~b
l3;expt

−
X

ðabÞ;ðcdÞ;l3;l4

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

~c ~d
l4;exptÞ

∂Nð0Þ;X0Y 0Z0W0
l2

∂C~c ~d
l4;expt

: ðA18Þ

The second and third terms of this equation contain the signal and type-B trispectrum contributions from Sec. III B 1
[Eqs. (36) and (37), respectively]. The last term of the rhs of this equation contains the noise and type-A trispectrum
contributions from Appendix A 2 [Eqs. (A11) and (A12), respectively] that we explicitly expand to make the auto-
covariance of the CMB appear.

a. Contribution from reconstruction noise fluctuating with the lensed CMB power

The last term on the rhs of Eq. (A18) contains the auto-covariance of the lensed CMB. It cancels contractions that appear
in the raw estimator power spectrum, specifically those terms arising from connecting two lensed CMB fields in each of the
estimators:

1

4

X
ðabcdÞ
fl0m0g

ðhal1 0m1
0;exptb�l2 0m2

0;exptcl3 0m3
0;exptd�l4 0m4

0;expti − hal1
0m1

0;exptb�l2 0m2
0;exptihcl3 0m3

0;exptd�l4 0m4
0;exptiÞ

×

	 ∂2ĈϕXYϕZW

l1

∂ ~al1 0m1
0;expt∂ ~b�l2 0m2

0;expt


	 ∂2ĈϕX0Y0ϕZ0W0

l3

∂ ~cl3 0m3
0;expt∂ ~d�l4 0m4

0;expt




≈
X

ðabÞ;ðcdÞ;l3;l4

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l3;expt

covðĈ ~a ~b
l3;expt; Ĉ

~c ~d
l4;exptÞ

∂Nð0Þ;X0Y 0Z0W0
l2

∂C~c ~d
l4;expt

; ðA19Þ

where the CMB auto-covariance includes both Gaussian and non-Gaussian parts, but we keep only the Gaussian
reconstruction noise part of the estimator expectations.

b. Contribution from signal and trispectrum terms in the lensing reconstruction CMB cross-covariance

The second and third terms on the rhs of Eq. (41) cancel terms appearing in the raw estimator covariance involving
terms described in Sec. III B 2. We expect that these terms might be relevant because the connected six-point function and
the primary (type B) connected four-point function have a large effect on the cross-covariance between CMB and
reconstruction power spectra. We expect the dominant terms in Eq. (39) that multiply a CMB two-point with a CMB six-

point function to be h ~Xl3
~Zl5

ih ~Yl4
~Wl6

Ĉϕϕ
l2
i, h ~Xl3

~Wl6
ih ~Yl4

~Zl5
Ĉϕϕ
l2
i, h ~Yl4

~Zl5
ih ~Xl3

~Wl6
Ĉϕϕ
l2
i, and h ~Yl4

~Wl6
ih ~Xl3

~Zl5
Ĉϕϕ
l2
i,

and four similar terms obtained from l1 ↔ l2, as
25

AXY
l1
AZW

l1

ð2l1 þ 1Þ
X

l3;…;l6;m1

ð−1Þm1 ~gXYl3l4ðl1Þ~gZWl5l6ðl1Þ
�
l3 l4 l1

m3 m4 −m1

��
l5 l6 l1

m5 m6 m1

�

× ½h ~Xl3

~Zl5
ih ~Yl4

~Wl6
ĈϕX0Y0ϕZ0W0

l2
ið1Þþð2Þ þ 3 similar� þ ðl1 ↔ l2Þ

¼
X

ðabÞ;l4

∂Nð0Þ;XYZW
l1

∂C ~a ~b
l4;expt

covðĈ ~a ~b
l4;expt; Ĉ

ϕX0Y0ϕZ0W0

l2
ÞSec: III B I þ

X
ðabÞ;l4

covðĈϕXYϕZW

l1
; Ĉ ~a ~b

l4;exptÞSec: III B I

∂Nð0Þ;X0Y 0Z0W0
l2

∂C ~a ~b
l4;expt

; ðA20Þ

25The last line can be obtained as follows: In the permutation written out, h ~Xl3
~Zl5

i enforces l3 ¼ l5 andm3 ¼ −m5. The sum overm1

and m3 then enforces l4 ¼ l6 and m4 ¼ −m6. Summing over m4 leads to hĈ ~Y ~W
l4 ĈϕX0Y0ϕZ0W0

l2
ið1Þþð2Þ, which can be expressed in terms of

contributions to the covariance between the measured lensed CMB and lensing reconstruction power spectra from Sec. III B 1. The sum
over l3 leads to ∂Nð0Þ=∂C ~a ~b

expt.
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where ð1Þ þ ð2Þ means that only Oð½Cϕϕ
l �1Þ connected

four-point contributions [Eq. (37)], and an Oð½Cϕϕ
l �2Þ

matter cosmic variance contribution [Eq. (36)] from the
connected six-point function are included in the cross-
covariance between the reconstructed lensing potential
power spectrum and lensed CMB power spectra in the
last line [excluding the Oð½Cϕϕ

l �0Þ noise contribution
because it is already included in Eq. (A19)]. We show
the contribution of Eq. (A20) to the total auto-correlation in
Fig. 9 (dashed blue curves). This term is responsible for
large off-diagonal correlations, and it dominates over other
contributions at small scales, but also at large scales
because of the signal term from Eq. (36).

c. Comparison against simulations

In Fig. 9, we plot the different contributions removed by
the RDN0 subtraction (from Appendices A 4 e and A 4 f).
For comparison, we overplot the results obtained using
our set of simulations. The agreement is good overall,
although some discrepancies can be seen especially at large
scales (lϕϕ < 1000). Those differences appear to be
unimportant for our purpose (as seen in Sec. V B), since
after applying the realization-dependent bias subtraction,
the auto-covariance is predominantly dominated by diago-
nal elements. The agreement of diagonal elements [con-
sidering only Eq. (40)] between the model and the
simulations is at the subpercent level.

APPENDIX B: EVALUATING POWER
SPECTRUM DERIVATIVES

Following Ref. [27], the lensed CMB temperature power
spectrum can be written as

C ~T ~T
l ¼ 2π

Z
1

−1
ξðβÞdl00ðβÞdðcos βÞ; ðB1Þ

where ξ is the correlation function and dlmm0 is the Wigner
(small) d matrix.26 The correlation function can be
expressed in terms of the unlensed spectrum and the
lensing potential power spectrum to good accuracy as

ξðβÞ ≈
X
l1

2l1 þ 1

4π
CTT
l1
e−l1ðl1þ1ÞσðβÞ2=2

×

�
dl100ðβÞ þ

l1ðl1 þ 1Þ
2

Cgl;2ðβÞdl11−1ðβÞ
�
; ðB3Þ

FIG. 9. Different slices of the reconstructed lensing potential power spectrum correlation matrix: l0 ¼ 220 (top), l0 ¼ 1020 (middle),
l0 ¼ 2020 (bottom). The analytic model (solid red curves) contains the different contributions listed in Appendix A 4 (contributions
removed by the use of RDN0), namely the contributions from Appendix A 4 e (yellow dashed-dotted curves) and from Appendix A 4 f
(dashed blue curves). For visualization purposes, we subtract the reconstruction variance (see Sec. III C 1 a), and we emphasize the scale
l0 ¼ l0 by a vertical line. We also show the results obtained on simulation (black crosses). The model and the simulations are in
relatively good agreement, although some differences are seen. After RDN0 subtraction, only the Gaussian reconstruction variance is
considered in our model. See text for discussions.

26The integration in Eq. (B1) (and the same for polarization) is
done using a Gauss-Legendre quadrature rule:

C ~T ~T
l ¼ 2π

Z
1

−1
ξðβÞdl00ðβÞdðcos βÞ ≈ 2π

Xn
i¼1

ξðxiÞdl00ðxiÞwi;

ðB2Þ
where here wi are Gauss-Legendre integration weights.
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where σðβÞ2 ¼ Cglð0Þ − CglðβÞ, and

CglðβÞ ¼
X
l

ð2lþ 1Þðlþ 1Þl
4π

Cϕϕ
l dl11ðβÞ; ðB4Þ

Cgl;2ðβÞ ¼
X
l

ð2lþ 1Þðlþ 1Þl
4π

Cϕϕ
l dl1−1ðβÞ: ðB5Þ

Then we obtain the derivative of the lensed CMB power
spectrum using

∂C ~T ~T
l1

∂CXY
l2

¼ 2π

Z
1

−1

∂ξðβÞ
∂CXY

l2

dl100ðβÞdðcos βÞ; ðB6Þ

where X; Y ∈ fT; E; B;ϕg. Extending these results to
polarization gives

∂C ~E ~E
l

∂CXY
l2

−
∂C ~B ~B

l

∂CXY
l2

¼ 2π

Z
1

−1

∂ξ−ðβÞ
∂CXY

l2

dl2−2ðβÞdðcos βÞ; ðB7Þ

∂C ~E ~E
l

∂CXY
l2

þ ∂C ~B ~B
l

∂CXY
l2

¼ 2π

Z
1

−1

∂ξþðβÞ
∂CXY

l2

dl22ðβÞdðcos βÞ; ðB8Þ

∂C ~T ~E
l1

∂CXY
l2

¼ 2π

Z
1

−1

∂ξ×ðβÞ
∂CXY

l2

dl120ðβÞdðcos βÞ; ðB9Þ

where ξþ, ξ−, and ξ× are defined in Ref. [27]. Thismethod of
calculating the lensed power spectrum derivatives is more
accurate than using the leading-order series expansion
method (see, for example, Ref. [18]), and prevents an
artificially high correlation between the lensed CMB power
spectra and the reconstructed lensing potential power spec-
trum.The fact that the correlations are enhanced in the case of
the series expansion can bepartly understoodbynoticing that
the series expansionmethod tends to overlens the signal with
respect to the correlation function method, as shown in
Fig. 10. In the acoustic region, for example, the features due
to lensing are artificially enhanced if we use the series
expansion, and therefore the correlation between the lensing
amplitude estimates becomes (artificially) stronger.

APPENDIX C: N1 DECONVOLUTION

The estimation of the lensing potential power spectrum
suffers from several biases. The influence of the Nð0Þ bias
on the covariance is reduced using realization-dependent
bias subtraction [see Eq. (19)]. However, there is still an
Nð1Þ bias, which is mostly seen at very small scales. This
can be modeled analytically, and subtracted from the
lensing potential power spectrum estimate (with perturba-
tive corrections to account for model dependence when
used for a likelihood [10]). However, subtracting it does not
reduce the off-diagonal elements of the covariance of the

estimator (Nð1Þ
l depends on the lensing spectrum over a

wide range of l). Instead, we could deconvolve the
estimator from the bias using

ĈϕMVϕMV

l;decon ¼
X
l0

ðIþ Nð1Þ;MVÞ−1ll0 ðĈϕMVϕMV

l0 − N̂ ð0Þ;MV
l0 Þ;

ðC1Þ

where the elements of the Nð1Þ;MV matrix are given by

Nð1Þ;MV
ll0 ¼

X
XY;ZW

wXY
l wZW

l
∂Nð1Þ;XYZW

l

∂Cϕϕ
l0

: ðC2Þ

We show in Fig. 11 the effect of the Nð1Þ deconvolution on
the auto-correlation of the reconstructed lensing potential
power spectrum, with and without the realization-
dependent noise subtraction applied. One can see that
the effect of the Nð1Þ deconvolution on the off-diagonal
elements takes place at very small scales (where Nð1Þ is
relatively important), but also between large and inter-
mediate lensing scales. However, given the experimental
setup chosen here, and the smallness of the off-diagonal
elements prior to the deconvolution, the deconvolution has
a negligible impact on cosmological parameter estimation.
This is consistent with our neglect of the off-diagonal Nð1Þ
covariance in the covariance model of Sec. III C.

FIG. 10. First singular vector of the signal covariance matrix [Eq. (36)] when using a correlation function (colored lines, with TT, EE,
TE, BB in red, blue, green, and yellow, respectively) or series expansion methods (black lines) to compute the derivative of the lensed
CMB spectra with respect to the lensing potential power spectrum. This first singular vector represents mainly the difference between
lensed and unlensed CMB power spectra (or E modes in the case of the B modes). The computation of derivatives using series expansion
overlenses the power spectra compared to the correlation function method [Eqs. (B7)–(B9)].
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