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Scalar fields, ϕi, can be coupled nonminimally to curvature and satisfy the general criteria: (i) the theory
has no mass input parameters, including MP ¼ 0; (ii) the ϕi have arbitrary values and gradients, but
undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint,
KðϕiÞ ¼ constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is
dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale-invariant
potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological
constant; (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless
dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a
global Weyl scale symmetry and its conserved current, Kμ. At the quantum level the Weyl scale symmetry
can be maintained by an invariant specification of renormalized quantities.
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I. INTRODUCTION

There has recently been considerable interest in scale
symmetric general relativity, in conjunction with inflation
and dynamically generated mass scales [1–14]. This is a
theory containing fundamental scalar fields together with
general covariance and nonminimal coupling of the scalars
to curvature, but no Planck mass. Remarkably, starting with
a scale-invariant action, it is possible to spontaneously
generate the Planck mass scale itself and naturally produce
significant inflation. The inflation can, moreover, lead to
large hierarchies of scalar vacuum expectation values
(VEVs). All of this occurs as one unified phenomenon.
The key ingredient of this mechanism is a global Weyl

scale symmetry and its current, Kμ. Gravity drives the scale
current density, K0, to zero, much as any conserved current
charge density dilutes to zero by general expansion.
However, the particular structure of the Kμ current is such
that it has a “kernel,” i.e., Kμ ¼ ∂μK. Hence, as the scale
charge density is diluted away, K0 → 0, the kernel evolves
as K → constant. K is the order parameter that defines a
spontaneous scale symmetry breaking and the Planck scale,
K ¼ OðM2

PÞ. The breaking of scale symmetry here is
“inertial,” and is determined by the random initial values
of the field VEVs that settle down to yield a random fixed
value of K.
In the multifield case the role of the potential is to

determine the relative VEVs of the scalar fields

contributing to K. In this case the nonzero constant value
ofK defines a constraint on the scalar field VEVs, requiring
that the VEVs lie on an ellipse in multiscalar-field space.
The inflationary slow-roll conditions are consistent with
constant K and an inflationary era readily occurs in which
the field VEVs migrate along the ellipse, and ultimately
flow to an infrared (IR) fixed point. For the special case that
the potential has a flat direction the fixed point corresponds
to the potential minimum, the field VEVs flow to it, and the
final cosmological constant vanishes.
In the present paper we discuss how this “current

algebra” works in detail, and how inflation and Planck
scale generation emerge from it. We will first illustrate this
phenomenon in Sec. II, in a simplified theory with a single
scalar field, ϕ, and a nonminimal coupling to gravity
∼ − ð1=12Þαϕ2R. For us α < 0, and a nonzero VEV of
ϕ induces a positive Planck ðmassÞ2. We allow scale-
invariant potentials, such as λϕ4. This theory thus has a
global Weyl scale symmetry, and a conserved scale current:

Kμ ¼ ð1 − αÞϕ∂μϕ: ð1Þ
The prefactor is relevant and nontrivial when we consider
N-scalar fields (this current vanishes in the α ¼ 1 limit
when the Weyl symmetry becomes local [7]).
The Weyl scale current kernel is K ¼ ð1 − αÞϕ2=2. The

kernel, K, is driven to a constant during an initial period of
expansion of the Universe, as K0 is diluted to zero. There is
no ellipse in the single field case, and the field comes to rest
with a fixed, eternal VEV, ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2K=ð1 − αÞp
. The theory

acquires the Planck mass as M2
P ¼ −αK=6ð1 − αÞ. and the

resulting inflation is eternal.

*pedro.ferreira@physics.ox.ac.uk
†hill@fnal.gov
‡g.ross1@physics.ox.ac.uk

PHYSICAL REVIEW D 95, 043507 (2017)

2470-0010=2017=95(4)=043507(19) 043507-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.043507
http://dx.doi.org/10.1103/PhysRevD.95.043507
http://dx.doi.org/10.1103/PhysRevD.95.043507
http://dx.doi.org/10.1103/PhysRevD.95.043507


The Nambu-Goldstone theorem applies with the dynami-
cal spontaneous scale symmetry breaking by nonzero K,
and there is a dilaton. We will mention some of the
properties of the dilaton, with a more detailed discussion
in [15]. If the underlying Weyl scale symmetry is main-
tained throughout the full theory (including quantum
corrections), then the massless dilaton has at most deriva-
tive coupling to matter and the Brans-Dicke constraints
go away.
We discuss in Sec. III a model with two scalars, ϕ and χ.

The generalization of the Weyl current is straightforward.
After the initial expansionary phase establishing constant
K, the fields readily generate a period of slow-roll inflation
as their VEVs migrate along an ellipse defined by constant
K. If the potential VðϕiÞ is scale invariant and has a
nontrivial minimum with nonvanishing VEVs, it follows
that VðϕiÞ vanishes at its minimum and that it has a flat
direction corresponding to a definite ratio of the scalar field
VEVs. The slow-roll inflationary period is terminated by a
period of “reheating” in which the fields acquire large
kinetic energy which is rapidly damped by expansion.
Subsequently the fields flow toward an IR fixed point that
determines the ratio of their VEVs in terms of the couplings
appearing in the scalar potential (this was studied in a
two field example in Ref. [13]). The fixed point is the
intersection of the potential flat direction with the ellipsoid.
If the potential does not have a nontrivial minimum,
gravitational effects prevent the roll to the scale-invariant
minimum and the inflation is eternal, i.e., there is then a
relic cosmological constant.
In Sec. IV we discuss the N-scalar scheme and the

analytic solution for the inflationary phase in the two scalar
scheme. We consider generalized inflationary fixed point
of the N-scalar schemes, and the N ¼ 3 model is examined
in detail.
If scale symmetry is broken through quantum loops, the

resulting trace anomaly would imply that Kμ is no longer
conserved. Then the field VEVs, hence K, would relax to
zero, and with it would go the Planck mass. To avoid this it
is necessary to maintain the Weyl symmetry throughout.
One of our main theses is that this is possible, i.e., the Weyl
symmetry can be maintained at the quantum level if no
external mass scales are introduced into the theory during
the process of renormalization.
In Sec. V we turn to the quantum effects. We first

describe how the Einstein and Klein-Gordon equations are
conventionally modified by scale anomalies, leading to the
modifield Kμ current and the kernel K. Our main goal here
is to describe and construct effective Coleman-Weinberg-
Jackiw [16,17] actions where the couplings run with fields.
In Weyl invariant theories there can be no absolute

meaning to mass; only Weyl invariant dimensionless ratios
of mass scales will occur. It is therefore crucial that no
“external mass scales” are introduced at the quantum level
in renormalizing the theory. This implies that counterterms

must be field dependent and are ultimately specified by the
overall constraint that the renormalized action remains
Weyl invariant. In the effective action the running couplings
must therefore depend exclusively upon Weyl invariant
ratios of values of field VEVs, e.g., λðϕc=χcÞ, rather than
ratios involving some external mass scale, e.g., λðϕc=MÞ.
This approach makes no specific reference to any particular
regularization method (see [18,19]). The renormalization
group (RG) with nontrivial β functions remains, however
the running of parameters, is now given in terms of Weyl
invariants.
We give general formal arguments in Sec. V and more

details will be given elsewhere [20]. In Sec. V we explore a
simple two scalar model of quantum effects with a
particular choice of the running renormalized couplings
which are expected to emerge in detailed calculations.
Since the renormalization group running occurs in Weyl
invariants such as ϕc=χc rather than ϕc=M, we find that the
ellipse can be significantly distorted by these effects. K
becomes constant, and a nontrivial ratio of VEVs ϕc=χc
develops which is suggestive that a hierarchical relationship
between MP, MGUT and mHiggs might emerge from this
dynamics in more detailed models. We follow with
conclusions.

II. SINGLE NONMINIMAL SCALAR

A. The action

We begin by establishing some notation. A standard
Einstein gravitation in our sign conventions with a mini-
mally coupled massless scalar field, σ, and metric tensor g
and cosmological constant, Λ, is an action of the form1:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμυ∂μσ∂νσ − Λþ 1

2
M2

PR

�
ð2Þ

where the Einstein-Hilbert term contains the scalar curva-
ture, R, and the Planck mass: M2

P ¼ ð8πGÞ−1. For small σ
this action describes a de Sitter universe with Hubble
parameter:

H2 ¼ Λ
3M2

P
: ð3Þ

Presently, we consider a theory of a real scalar field, ϕ, in
which the Einstein-Hilbert term has been replaced with the
nonminimal scalar coupling −ð1=12Þαϕ2R, and we choose
a scale-invariant potential VðϕÞ ¼ λϕ4=4:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμυ∂μϕ∂νϕ −

λ

4
ϕ4 −

1

12
αϕ2R

�
: ð4Þ

1Our metric signature convention is ð1;−1;−1;−1Þ, and our
sign convention for the Riemann tensor is that of Weinberg [21];
our conventions are identically those of Ref. [22].
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Assuming ϕ acquires a VEV, we would generate a Planck
mass from Eq. (4) of the form M2

P ¼ −αϕ2=6. We thus
require α < 0, to obtain the correct sign for the Einstein-
Hilbert term, as in Eq. (2).
The theory of Eq. (4) is globally scale invariant. The

invariant scale transformation corresponds to the global
limit of the “Weyl transformation”:

gμν → e−2εðxÞgμν ϕ → eεðxÞϕðxÞ ð5Þ

with εðxÞ ¼ ε being constant in spacetime. If we perform
an infinitesimal local transformation as in Eq. (5) on the
action, we obtain, using Eq. (20) below, the Noether
current:

Kμ ¼
δS
δ∂με

¼ ð1 − αÞϕ∂μϕ: ð6Þ

For the N ¼ 1 single scalar case the prefactor of (1 − α)
appears spurious, but it is an essential normalization for
N > 1 scalars where the αi can take on different values,
and this factor is generated when the Noether variation is
performed, and it describes the vanishing of Kμ in the limit
α → 1 which corresponds to a particular locally Weyl
invariant theory [7].
The existence and conservation of Kμ follows by use

of the equations of motion. From Eq. (4) we obtain the
Einstein equation:

1

6
αϕ2Gαβ ¼

�
3 − α

3

�
∂αϕ∂βϕ − gαβ

�
3 − 2α

6

�
∂μϕ∂μϕ

þ 1

3
αðgαβϕD2ϕ − ϕDβDαϕÞ þ gαβVðϕÞ: ð7Þ

The trace of the Einstein equation becomes

−
1

6
αϕ2R ¼ ðα − 1Þ∂μϕ∂μϕþ αϕD2ϕþ 4VðϕÞ: ð8Þ

We also have the Klein-Gordon (KG) equation for ϕ:

0 ¼ ϕD2ϕþ ϕ
δ

δϕ
VðϕÞ þ 1

6
αϕ2R: ð9Þ

We can combine the KG equation, Eq. (9), and trace
equation, Eq. (8), to eliminate the αϕ2R term, and obtain

0 ¼ ð1 − αÞϕD2ϕþ ð1 − αÞ∂μϕ∂μϕ

þ ϕ
∂
∂ϕVðϕÞ − 4VðϕÞ ð10Þ

This can be written as a current divergence equation:

DμKμ ¼ 4VðϕÞ − ϕ
∂
∂ϕVðϕÞ ð11Þ

where Kμ is given in Eq. (6). For the scale-invariant
potential, VðϕÞ ∝ ϕ4, the rhs of Eq. (11) vanishes and
the Kμ current is then covariantly conserved:

DμKμ ¼ 0: ð12Þ

We emphasize that this is an “on-shell” conservation law,
i.e., it assumes that the gravity satisfies Eq. (7).

B. The kernel

It is clear that the scale current can be written as
Kμ ¼ ∂μK where the kernel K ¼ ð1 − αÞϕ2=2. This has
immediate implications for the dynamics of this theory.
Consider a Friedman-Robertson-Walker (FRW) metric:

gμν ¼ ½1;−a2ðtÞ;−a2ðtÞ;−a2ðtÞ� H ¼ _a
a

G00 ¼ −3
_a2

a2
R ¼ 6

�
ä
a
þ _a2

a2

�
: ð13Þ

Starting with an arbitrary classical ϕ, after a period of
general expansion, in some regions of space ϕ becomes
approximately spatially constant, but time dependent. The
conservation law of Eq. (12) becomes

K̈ þ 3H _K ¼ 0: ð14Þ
If we take ϕ to be a function of time t only, we have by
Eq. (14)

KðtÞ ¼ c1 þ c2

Z
t

t0

dt0

a3ðt0Þ ; ð15Þ

where c1 and c2 are constants. Therefore we find that, under
general initial conditions, KðtÞ will evolve to a constant
value, K ¼ Kðt → ∞Þ. The (00) Einstein equation, with
G00 ¼ −3H2, gives

H2 ¼ −
λϕ2

0

2α
: ð16Þ

Thus, with α < 0 we have a self-consistent, exponential
relaxation to constant ϕ ¼ ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=ð1 − αÞp

, and eternal
inflation.
Note that this situation contrasts what happens in conven-

tional Einstein gravitywith a fixedMP and a λϕ4=4 potential.
Inflation is possible for super-Plankian values of ϕ which
slow roll to ϕ ¼ 0. Hence, while normal Einstein gravity
causes ϕ to relax to zero, the scale-invariant gravity theory
leads to constant nonzero ϕ ¼ ϕ0 which generates MP and
eternal inflation.
Anticipating our discussion in Sec. V, we can ask how

the trace anomaly, arising through quantum effects, would
affect these conclusions. The Weyl current is not conserved
if there are trace anomalies, and Eq. (11) becomes

WEYL CURRENT, SCALE-INVARIANT INFLATION, AND … PHYSICAL REVIEW D 95, 043507 (2017)

043507-3



DμKμ ¼ 4VðϕÞ − ϕ
∂
∂ϕVðϕÞ ¼ −

βλðϕÞ
4

ϕ4 ð17Þ

where βλðϕÞ ¼ dλ=d lnϕ is the β function associated
with the radiative corrections of the quartic coupling λ
in Eq. (4).2 Indeed, this anomaly enters the rhs of Eq. (12),
and it would lead to slow-roll relaxation of ϕ to zero,
K → 0, and thus the Planck mass goes to zero as well. With
nonzero trace anomaly, the enterprise of generating infla-
tion and the Planck mass as a unified phenomenon would
then fail. One of our main arguments here is that we can
maintain the Weyl symmetry in any regularization scheme
by renormalizing the theory with counterterms that main-
tain Weyl invariance. β functions then describe the running
of couplings in terms of Weyl invariants, such as βλðϕÞ ¼
dλ= lnðϕ= ffiffiffiffi

R
p Þ, but the trace anomaly is then zero, as

discussed in Sec. V. This maintains the vanishing of the rhs
of Eq. (12), and the Planck mass is then stabilized.

C. Weyl transformation and the dilaton

We can identify the spatially constant field ϕ with a new
field, σ=f where f is a “decay constant” (analogue of fπ),
and ϕ0 is constant:

ϕ ¼ ϕ0 expðσ=fÞ; ð18Þ

and perform the metric transformation:

gμν ¼ expð−2σ=fÞ~gμν: ð19Þ

Using gμν ¼ expð−2εÞ~gμν:

R → expð2εÞ ~Rþ 6 expð2εÞð∂με∂με − ~Dμ∂μεÞ ð20Þ

where ~R; ð ~DμÞ is the curvature (covariant derivative)
expressed in terms of ~gμν, we then have

S ¼
Z ffiffiffiffiffiffi

−~g
p �

ϕ2
0

2f2
~gμν∂μσ∂νσ −

λ

4
ϕ4
0

−
1

2
αϕ2

0

�
1

6
~Rþ 1

f2
∂μσ∂μσ −

1

f
~Dμ∂μσ

��
: ð21Þ

The canonical normalization of the σ field thus requires
the decay constant f ¼ ffiffiffiffiffiffiffiffi

2K0

p
where K0 ¼ ð1 − αÞϕ2

0=2.
Dropping a total divergence, and defining

Λ ¼ λ

4
ϕ4
0; M2

P ¼ −
1

6
αϕ2

0 ð22Þ

we have

S ¼
Z ffiffiffiffiffiffi

−~g
p �

1

2
~gμν∂μσ∂νσ − Λþ 1

2
M2

P
~R

�
: ð23Þ

Therefore, we see that the scale-invariant theory, Eq. (4),
can be viewed as the “Jordan frame,” equivalent to the
“Einstein frame” action Eq. (23), as we originally wrote
down in Eq. (2). The massless field σ is the dilaton, but this
feature is virtually hidden in the Einstein frame, since there
σ couples to gravity only through its stress tensor. Note the
identical correspondence of Eq. (16) with Eq. (3).
Remarkably Eq. (3) contains a hidden Weyl symmetry.

We see that Λ and M2
P are related to the ϕ2

0, and can be
written in terms of the dilaton decay constant as

Λ ¼ λ

4ð1 − αÞ2 f
4;

M2
P ¼ −

1

6ð1 − αÞ αf
2: ð24Þ

These relations are the analogue, in a chiral Lagrangian,
of the Goldberger-Treiman relation, mN ¼ gNNπfπ relating
the mass of the nucleon, mN , to fπ and the strong coupling
constant gNNπ . The variation of the action of Eq. (23) with
respect to σ=f yields the current, Kμ ¼ f∂μσ which is the
representationKμ in the Einstein frame, and the analogue of
the axial current, fπ∂μπ, of the pion.
The dilaton reflects the fact that the exact scale symmetry

remains, though hidden in the Einstein frame. We can
rescale both the VEV ϕ0 → eεϕ0 and the Hubble constant
H0 → eεH0 while their ratio remains fixed:

H2
0

ϕ2
0

¼ λ

2jαj : ð25Þ

It is straightforward to extend this effective Lagrangian to
matter fields. If the dilaton develops a “hard coupling” to,
e.g., the nucleon, then stars would develop dilatonic halo
fields. This would then be subject to strict limits from Brans-
Dicke theories, and the models would fail to give acceptable
inflation. However, if all ordinary matter fields have masses
that are ultimately associated with the spontaneous breaking
of the Weyl scale symmetry, then the dilaton only couples
derivatively. There are then no Brans-Dicke-like constraints,
as no star or black hole, etc., will generate a σ field halo.
In Ref. [15] we discuss the dilaton halo phenomenology in
greater detail.

III. TWO SCALAR THEORY

A. Classical two scalar action

Consider an N ¼ 2 model, with scalars ðϕ; χÞ, and the
potential:

Wðϕ; χÞ ¼ λ

4
ϕ4 þ ξ

4
χ4 þ δ

2
ϕ2χ2: ð26Þ

2There is also an anomaly associated with the running of α.
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The action takes the form:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμυ∂μϕ∂νϕþ 1

2
gμυ∂μχ∂νχ

−Wðϕ; χÞ − 1

12
α1ϕ

2R −
1

12
α2χ

2R

�
: ð27Þ

This has been studied in [1–4,13]. For example, [2] studied
this theory in the context of a unimodular gravity and
performed a Weyl transformation taking Eq. (27) from a
Jordan frame to an Einstein frame. We follow the approach
of [13] and work directly in the defining frame of Eq. (27),
and then just follow the dynamics. The result is an effective,
emergent Einstein gravity where the Planck mass is
induced by the VEVs of ϕ and χ. We will see in
Sec. IV that, due to the conserved K current, the slow-
roll inflation of the classical system is amenable to an
analytic treatment. We will also extend this to include
quantum corrections that have a significant effect in the
next section.
The sequence of steps follows those of the previous

single scalar case. The Einstein equation is

M2
PGαβ ¼

�
1−

1

3
α1

�
∂αϕ∂βϕþ

�
1−

1

3
α2

�
∂αχ∂βχ

− gαβ

�
1

2
−
1

3
α1

�
∂μϕ∂μϕ− gαβ

�
1

2
−
1

3
α2

�
∂μχ∂μχ

þ 1

3
α1ðgαβϕD2ϕ−ϕDβDαϕÞ

þ 1

3
α2ðgαβχD2χ − χDβDαχÞþ gαβWðϕ;χÞ

ð28Þ

where

M2
P ¼ −

1

6
ðα1ϕ2 þ α2χ

2Þ: ð29Þ

The trace of the Einstein equation becomes

R ¼ 1

M2
P
ððα1 − 1Þ∂μϕ∂μϕþ ðα2 − 1Þ∂μχ∂μχ

þα1ϕD2ϕþ α2χD2χ þ 4Wðϕ; χÞÞ: ð30Þ

The Klein-Gordon equations for the scalars are

0 ¼ D2ϕþ δϕ2χ þ λϕ3 þ 1

6
α1ϕR

0 ¼ D2χ þ δϕχ2 þ ξχ3 þ 1

6
α2χR ð31Þ

and we again use the trace equation to eliminate R:

0 ¼ ϕD2ϕ −
α1ϕ

2

6M2
P
ðð1 − α1Þ∂μϕ∂μϕþ ð1 − α2Þ∂μχ∂μχ

− α1ϕD2ϕ − α2χD2χ − 4WÞ þ δϕ2χ2 þ λϕ4

0 ¼ χD2χ −
α2χ

2

6M2
P
ðð1 − α1Þ∂μϕ∂μϕþ ð1 − α2Þ∂μχ∂μχ

− α1ϕD2ϕ − α2χD2χ − 4WÞ þ δϕ2χ2 þ ξχ4: ð32Þ

We again see that the sum of the Klein-Gordan equations
implies the conserved current, where the potential terms
cancel owing to scale invariance:

0 ¼ Dμ½ð1 − α1Þϕ∂μϕþ ð1 − α2Þχ∂μχ� ð33Þ

so

Kμ ¼ ð1 − α1Þϕ∂μϕþ ð1 − α2Þχ∂μχ ð34Þ

is conserved DμKμ ¼ 0. The kernel is now given by

K ¼ 1

2
½ð1 − α1Þϕ2 þ ð1 − α2Þχ2�: ð35Þ

B. Synopsis of two scalar dynamics

The two scalar theory has a number of interesting
features, which we will summarize presently. We first
discuss the classical case and, after the discussion of the
scale-invariant renormalization procedure, we consider the
modifications that can occur when including radiative
corrections in Sec. V.
The potential of Eq. (26) has the general form:

Wðϕ; χÞ ¼ ξ

4
ðχ2 − ς2ϕ2Þ2 þ λ0

4
ϕ4 ð36Þ

with λ0 ¼ λ − ξς4. For the case λ0 ¼ 0 the potential has a
flat direction with χ ¼ ςϕ, and the vacuum energy vanishes
for nonzero VEVs of the fields.
The theory can lead to a realistic cosmological evolution

as illustrated in Fig. 1 for a representative choice of
parameters and initial conditions. In an initial “transient
phase,” the theory will redshift from arbitrary initial field
values and velocities, ðϕ; _ϕ; χ; _χÞ. Owing to the conserved
K current, the redshifting will cause ð _ϕ; _χÞ → 0 and the K0

charge density to dilute away as ∼aðtÞ−3 leading to a state
with constant kernel K. The arbitrary, nonzero value of K
determines the scale of the Planck mass, K ∼M2

P, and
spontaneously breaks scale symmetry. The fields ðϕ; χÞ are
now approximately constant in space VEVs and are con-
strained to lie on the ellipse defined by Eq. (35). This initial
location of the VEVs on the ellipse, ðϕð0Þ; χð0ÞÞ, is
random.
As K settles down to its constant value, Einstein gravity

has emerged with a fixed Planck mass. This can be seen
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analytically for the classical case as in Sec. III C below.
The initial values of ðϕ0; χ0Þ are random and would not be
expected to lie on the flat direction.
For a significant region of initial values the fields then

slow roll along the ellipse, migrating toward a minimum of
the potential and generating a period of inflation. The flat
direction is a ray in the ðϕ; χÞ plane that intersects the
ellipse defined by the kernel, Eq. (35). If we assume ς ≪ 1
this intersection occurs near the rightmost end of the ellipse
where χ ≪ ϕ in quadrant I ðϕ; χÞ > 0 in Fig. 2. Note that
ς ≪ 1 is a particular choice of the dynamics, since for ς ∼ 1
the flat direction can be arbitrary in the ðϕ; χÞ plane, and the
inflation can still be significant, but we will not then
generate a large hierarchy in the VEVs of ϕ and χ.
The inflationary period ends when the slow-roll con-

ditions are violated and the system enters a period of
“reheating” when the potential energy is converted to
kinetic energy which rapidly redshifts. Although this period
cannot be solved analytically a numerical simulation shows
that the kernel remains constant and that the fields
ultimately resume slow roll with expectation values that
are in the domain of attraction of an infrared fixed point
[13].3 The fixed point is determined by the parameters of
the potential and the αi and, if the potential has a nontrivial
minimum corresponding to λ0 ¼ 0 in Eq. (36), the fixed

point corresponds to the minimum of the potential with
vanishing cosmological constant (otherwise the fixed point
corresponds to nonvanishing VEVs, with nonvanishing
potential energy, leading to eternal inflation).

C. Inflation in the two scalar scheme

In this section we give a detailed analysis of the infla-
tionary era in the two scalar theory and determine the full
analytic solution in the slow-roll regime.
In what follows we will be interested in a large hierarchy

between the scalar VEVs that can develop after an initial
period of inflation. In this case the large field VEV (we will
choose parameters such that this is the ϕ VEV) sets the
magnitude of the Planck scalewhile the small field VEV sets
the scale in the “matter” sector characterized by the χ field.4

As before we assume the potential of Eq. (26), and that
there is a Hubble size volume in which the fields are time
dependent but spatially constant. Then following the argu-
ment in Sec. II B we see that the kernel K becomes a
constant, which we take to be an arbitrary mass scale
(related ultimately to the Planck mass K ∼M2

P). The
residual motion of the scalars during slow roll is

FIG. 1. Plot of the Hubble parameter, H, ϕ, χ and the ratio of
the two components of the effective Planck mass, M2

ϕ and M2
χ ,

as a function of a; we have normalized the x axis to the scale
factor at the end of inflation, ae. The chosen parameters are
α1 ¼ −1.25 × 10−2; α2 ¼ −6.19; δ ¼ 0; λ ¼ 10−24; ξ ¼ 10−9;
ϕð−60Þ ¼ 1 and χð−60Þ ¼ 0.5 in Planck units; initial velocities
are set to zero.

FIG. 2. The K ellipse in ðϕ; χÞ. The potential flat direction lies
along the ϕ axis for the potential ζχ4. Initial values of fields and
their velocities rapidly redshift to constant K and then slow roll
on the ellipse toward the fixed point. The ellipse is mapped into
xþ y ¼ 1; initial value of x ¼ xð0Þ slow rolls to the final fixed
point x0 (presently x0 ≈ 1).

3By coupling χ to standard model fields one has that energy
will be transferred—the Universe will “reheat”—during the
oscillatory phase; the oscillations will be damped driving the
dynamics to the fixed point (which remains unchanged). 4In [23,24] this field models the Higgs of the Standard Model.
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constrained to lie on the K ¼ constant ellipse and is then
described by a difference of the KG equations. We thus
form the convenient combination:

α2
D2ϕ

ϕ
− α1

D2χ

χ

¼ −ðα2λ − α1δÞϕ2 þ ðα1ξ − α2δÞχ2: ð37Þ

We take the slow-roll limit of Eq. (37) and we pass to
the “inflation derivative” D2ϕ → 3H _ϕ ¼ 3H2∂Nϕ where
N ¼ lnðaðtÞÞ hence ∂tϕ ¼ H∂Nϕ:

3

2
H2

�
α2

∂Nϕ
2

ϕ2
− α1

∂Nχ
2

χ2

�

¼ −ðα2λ − α1δÞϕ2 þ ðα1ξ − α2δÞχ2: ð38Þ

We eliminate H2 using the (00) Einstein equation in the
slow-roll limit:

M2
PG00 ¼ −

1

2
H2ðα1ϕ2 þ α2χ

2Þ ≈ g00W: ð39Þ

Without loss of generality we can choose the ellipse K ¼ 1
and we can map quadrant I of the ellipse into the variables:

x ¼ ð1 − α1Þϕ2 and y ¼ ð1 − α2Þχ2: ð40Þ

The ellipse then becomes the line segment 1 ¼ xþ y in
quadrant I. With the fields constrained to be on the ellipse,
we see that ðx; yÞ are each constrained to range from 0 to 1.
The slow-roll differential equation on the ellipse,

Eq. (38), can then be written as

∂Nx ¼ SðxÞ
WðxÞ xð1 − xÞðx − x0Þ; ð41Þ

where

SðxÞ ¼ 2

3

ðð1 − α2ÞAþ ð1 − α1ÞBÞ
ð1 − α1Þ2ð1 − α2Þ2

×
ððα1 − α2Þxþ α2ð1 − α1ÞÞ

ðα2ð1 − xÞ þ α1xÞ
ð42Þ

A ¼ ðα2λ − α1δÞ
B ¼ ðα1ξ − α2δÞ ð43Þ

and

WðxÞ ¼ λx2

4ð1 − α1Þ2
þ ξð1 − xÞ2
4ð1 − α2Þ2

þ δxð1 − xÞ
2ð1 − α1Þð1 − α2Þ

ð44Þ
x0 is the “fixed point” in x, as defined in [13], and takes the
form:

x0 ¼
Bð1 − α1Þ

Að1 − α2Þ þ Bð1 − α1Þ
: ð45Þ

The solutions to Eq. (41) depend critically on the
behavior of SðxÞ=WðxÞ. To demonstrate there is a region
of parameter space that does undergo slow-roll inflation we
consider the case studied in Ref. [13], in which ξ ≫ δ ≫ λ,
such that B ≫ A, x0 ≈ 1 and, during the initial inflationary
era, W ≈ ξð1 − xÞ2=4ð1 − α2Þ2. In this case

∂Nx ¼ −
4

3
x

α1
ð1 − α1Þ

ððα1 − α2Þxþ α2ð1 − α1ÞÞ
ðα2 þ ðα1 − α2ÞxÞ

: ð46Þ

The above result is an exact solution for slow roll in the
model of [13]. The slow-roll conditions are readily satisfied
for small, negative α1 in which case:

∂Nx ≈ −
4

3
α1x ð47Þ

and xðtÞwill roll from an initial xð0Þ toward xðtEÞ ¼ x0 ≈ 1
where tE is the time at the end of inflation.
Equation (46) can readily be integrated:

ln
xðtÞ
xð0Þ − α1 ln

�
α2α1 − α1xðtÞ − α2ð1 − xðtÞÞ
α2α1 − α1xð0Þ − α2ð1 − xð0ÞÞ

�

¼ −
4

3
α1ðNðtÞ − Nð0ÞÞ: ð48Þ

In this limit of small α1 Eq. (48) implies the number of
e-folds of inflation, N, is given by

N ¼ NðtEÞ − Nð0Þ ¼ 3

4α1
ln

�
xð0Þ
xðtEÞ

�
: ð49Þ

Inflation ends when slow roll ceases corresponding to the
inflation parameter, ε, approaching unity: ε ¼ −ð1=2Þ
ðd lnH2=dNÞ ≈ 1. This implies

2

3

�
2α1

1 − xðtEÞ
−

α1
1 − xðtEÞ þ α1=α2

�
xðtEÞ ≈ 1 ð50Þ

hence, when xðtEÞ ¼ 1 −Oðα1Þ. The number of e-folds
of inflation is weakly governed by the initial value on the
ellipse, xð0Þ. This is any value of order, but less than,
unity, e.g., xð0Þ ∼ 0.5, so to get large ðNðtEÞ − Nð0ÞÞ we
require jα1j ≪ 1.
The resulting values for the spectral index, ns, and the

tensor to scalar fluctuation ration, r, are presented in [13].
An acceptable value for ns is possible for jα1j < 0.1. The
value of r is sensitive to α2 and is between 1 and 2 orders
of magnitude less than the current observational bound
for jα2j > 1.
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D. The “reheat” phase

Once ε ≈ 1, the slow-roll conditions are violated and
there is a period of rapid field oscillation—the “reheat”
phase in which the scalar fields acquire large kinetic energy.
We have not been able to find an analytic solution in this
phase but a numerical study confirms this is the case.
An example is shown in Fig. (1) where it may be seen

that after about 150 e-folds of inflation the Hubble
parameter drops very rapidly before rolling to the infrared
fixed point value. As the Hubble parameter drops the fields
undergo very rapid oscillations (too rapid to show up in the
Figure) after which they re-enter the slow-roll regime with
values in the domain of attraction of the IR stable fixed
point. During the “reheat” phase, and all subsequent
evolution, the kernel, K, remains constant.

E. Infrared fixed point

After the “reheat” phase the fields enter a second slow-
roll phase that is again described by Eq. (41). One may see
that this equation has an IR stable fixed point given by

xðt → ∞Þ ¼ x0: ð51Þ

This corresponds to the final ratio of the field VEVs
given by

hχfi2
hϕfi2

¼ α2λ − α1δ

α1ξ − α2δ
: ð52Þ

A large hierarchy between the “matter” sector scale and the
Planck scale requires that the χ mass be hierarchically small
compared to the Planck scale and this in turn requires
δ ≤ hχfi2=hϕfi2. In addition it is desirable that the cos-
mological constant after inflation be small or zero and this
in turn requires a fine-tuning of the parameters in the
potential so that it is (or is close to) a perfect square. For this
to happen we need λ ≤ hχfi4=hϕfi4. Note that these
choices are consistent with our assumption that W ∼ ξχ4

and B ≫ A during inflation when ϕ and χ are both large.
What happens to the scale factor in the IR? For static

scalar fields the FRW equation is

3M2

�
_a
a

�
2

¼ W ¼
�
λ

4
þ ξμ4

4
þ δμ2

2

�
ϕ4
0 ð53Þ

(where μ2 ≡ hχfi2=hϕfi2) and we can define an effective
cosmological constant Λeff ¼ ðλ=4þ ξμ4=4þ δμ2=2Þ
ϕ2
0=ðα1 þ α2μ

2Þ. With the ordering of the couplings dis-
cussed above Λeff ≤ ξχ4f=4M

2
P. If this is nonzero there will

be a late stage of eternal inflation. To obtain zero cosmo-
logical constant requires fine-tuning of the couplings
corresponding to the potential having the form of a perfect
square.

F. The dilaton

The dilaton effective action can be derived in analogy
to the single scalar case in Sec. II C (see IV B below).
Once the ratio of fields is fixed, the dilaton can readily be
identified in the two scalar case from the fact that the scale
current has the form Kμ ∝ ∂μσ and under a scale trans-
formation σ → σ þ ε. Since the scale current has the form
Kμ ¼ ∂μK with K given by Eq. (35) we know that σ must
be some function ofK. In order for scale symmetry to act as
a shift symmetry implying

K ¼ 1

2
f2e2σ=f ð54Þ

with

f ¼
ffiffiffiffiffiffiffiffi
2K0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − α1Þϕ2

0 þ ð1 − α2Þχ20
q

: ð55Þ

Upon passing to the “Einstein frame,” the dilaton σ appears
in the action only in its kinetic term as for the single scalar
case, Eq. (23). The dilaton decoupling is due to the exact
underlying global Weyl invariance that is broken only
spontaneously via the VEVof K. This will be discussed in
detail elsewhere [15].

IV. N-SCALAR CASE

The analysis generalizes readily to the case of N scalars.
Here the scale current and its associated kernel are derived
and the dilaton identified. It is also shown that the IR fixed
point structure determines the ratios of all the scalar field
VEVs in terms of the couplings entering the potential,
so a hierarchical structure can emerge if the couplings are
themselves hierarchical.
However, the existence of an initial inflationary era

needs to be justified if there are large couplings between
the fields as this can prevent a period of slow roll from
occurring. This is of particular relevance if we treat the
additional scalars as a model for the low-energy “matter”
sector, for then there is no reason why the couplings should
be anomalously small. To illustrate this we consider below
the case of 3-scalar fields, ϕi, with large self and cross
couplings between the two matter fields.

A. N-scalar action

The mathematical generalization to N scalars is straight-
forward. Consider a set of N-scalar quantum fields ϕi,
i ¼ ð1; 2;…NÞ and action:

S ¼
Z ffiffiffiffiffiffi

−g
p �X

i

1

2
gμυ∂μϕi∂νϕi −WðϕiÞ −

X
i

αiϕ
2
i

12
R

�
:

ð56Þ

The Einstein equation is
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1

6

X
i

αiϕ
2
i Gαβ ¼ gαβWðϕiÞ

þ
X
i

��
1 −

αi
3

�
∂αϕi∂βϕi

−
�
1

2
−
αi
3

�
gαβ∂μϕi∂μϕi

þ
�
αi
3

�
ðgαβϕiD2ϕi − ϕiDβDαϕiÞ

�
: ð57Þ

The trace of the Einstein equation becomes

−
1

6

�X
i

αiϕ
2
i

�
R

¼ 4WðϕÞ þ
X
i

½ðαi − 1Þ∂μϕi∂μϕi þ αiϕiD2ϕi�: ð58Þ

The N Klein-Gordon equations are

0 ¼ D2ϕi þ
δ

δϕi
WðϕÞ þ 1

6
αiϕiR ð59Þ

and we can write the sum of the Klein-Gordon equations:

−
1

6

�X
i

αiϕ
2
i

�
R ¼

X
i

ϕiD2ϕi þ ϕi
δ

δϕi
WðϕÞ: ð60Þ

Combine Eqs. (58), (60) to eliminate R:

0 ¼
X
i

½ðαi − 1Þ∂μϕi∂μϕi þ ðαi − 1ÞϕiD2ϕi�

þ 4WðϕÞ − ϕi
δ

δϕi
WðϕÞ: ð61Þ

If we assume a scale-invariant potential we have:

0 ¼ 4WðϕÞ −
X
i

ϕi
δ

δϕi
WðϕÞ: ð62Þ

We thus see that Eqs. (61), (62) implies a covariantly
conserved current:

Kμ ¼
X
i

ð1 − αiÞðϕi∂μϕiÞ ð63Þ

where DμKμ ¼ 0. The current Kμ arises from a “Weyl
gauge transformation” and the Kμ current has a “kernel,”
i.e., it can be written as a gradient, Kμ ¼ ∂μK where

K ¼ 1

2

X
i

ϕ2
i ð1 − αiÞ: ð64Þ

B. N-scalar dilaton

The scale symmetry is spontaneously broken by the
constraint of Eq. (64). The fixed value of K has been

generated inertially by the dynamical dilution of the
bibliography charge density, K0. The value of K is arbitrary
and it can be shifted at no cost in energy due to overall
Weyl invariance. This implies a dilaton. We can define the
dilaton as

σ ¼ f
2
log

�
2K
f2

�
: ð65Þ

To obtain the dilaton action we perform a local Weyl
transformation using the dilaton field itself:

gμνðxÞ → expð−2σðxÞ=fÞgμνðxÞ
ϕiðxÞ → expðσðxÞ=fÞϕiðxÞ: ð66Þ

Hence, the action S of Eq. (56) becomes Sþ δS with

δS ¼
Z ffiffiffiffiffiffi

−g
p �

1

f

X
i

ð1 − αiÞϕi∂μϕið∂μσðxÞÞ

þ 1

2f2
X
i

ð1 − αiÞϕ2
i ð∂ρσðxÞ∂ρσðxÞÞ

�

¼
Z ffiffiffiffiffiffi

−g
p �

1

f
Kμð∂μσðxÞÞ þ K

f2
ð∂ρσðxÞ∂ρσðxÞÞ

�
: ð67Þ

This implies

f ¼
ffiffiffiffiffiffiffi
2K

p
ð68Þ

is the dilaton decay constant, (for constant K). We can
integrate the first term by parts and use the covariant Kμ

current divergence, DμKμ ¼ 0, leaving a decoupled dilaton
in the Einstein frame. Technically, we should include a
Lagrange multiplier to enforce the constraint of Eq. (64) on
the ϕi.

C. Slow roll

The evolution equations take the form:

0
BBBBB@

1þ α2
1
ϕ2
1

6M2

α1α2ϕ1ϕ2

6M2 � � � α1αNϕ1ϕN
6M2

α1α2ϕ1ϕ2

6M2 1þ α2
2
ϕ2
2

6M2 � � � α2αNϕ2ϕN
6M2

� � � � � � � � � � � �
α1αNϕ1ϕN

6M2

α2αNϕ2ϕN
6M2 � � � 1þ α2Nϕ

2
N

6M2

1
CCCCCA

0
BBB@

3H _ϕ1

3H _ϕ2

� � �
3H _ϕN

1
CCCA

¼ −

0
BBBBB@

4α1ϕ1

6M2 W þWϕ1

4α2ϕ2

6M2 W þWϕ2

� � �
4αNϕN

6M2 W þWϕN

1
CCCCCA
: ð69Þ

As before we assume that U≡ λNϕ
4
N dominates. We then

have
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0
BBBBB@

4α1ϕ1

6M2 W þWϕ1

4α2ϕ2

6M2 W þWϕ2

� � �
4αNϕN
6M2 W þWϕN

1
CCCCCA

¼ 4U
6M2

0
BBB@

α1ϕ1

α2ϕ2

� � �
−
P

N−1
i

αiϕ
2
i

ϕN

1
CCCA: ð70Þ

We can now solve this system to get

−3H

0
BBB@

_ϕ1

_ϕ2

� � �
_ϕN

1
CCCA ¼ 4UP

N
i αið1 − αiÞϕ2

i

0
BBB@

−α1ð1 − αNÞϕ1

−α2ð1 − αNÞϕ2

� � �P
N−1
i

αið1−αiÞϕ2
i

ϕN

1
CCCA

:ð71Þ

We now define Xi ¼ αiϕ
2
i to get

−
3

2
H

0
BBB@

_X1

_X2

� � �
_XN

1
CCCA ¼ 4UP

N
i ð1 − αiÞXi

×

0
BBB@

−α1ð1 − αNÞX1

−α2ð1 − αNÞX2

� � �
αN

P
N−1
i ð1 − αiÞXi

1
CCCA: ð72Þ

If we now change variables to ln a and use the FRW
equation

3H2 ¼ U
M2

ð73Þ

we get

0
BBB@

X0
1

X0
2

� � �
X0
N

1
CCCA ¼ 4

3

P
N
i XiP

N
i ð1 − αiÞXi

0
BBB@

−α1ð1 − αNÞX1

−α2ð1 − αNÞX2

� � �
αN

P
N−1
i ð1 − αiÞXi

1
CCCA:

ð74Þ

If we now take the XN ≫ Xi (with i ¼ 1;…; N − 1) we get

0
BBB@

X0
1

X0
2

� � �
X0
N

1
CCCA ¼ 4

3

0
BBB@

−α1X1

−α2X2

� � �
αN

1−αN

P
N−1
i ð1 − αiÞXi

1
CCCA: ð75Þ

We can solve with νi ¼ − 4
3
αi and γi ¼ αNð1−αi

αið1−αNÞ:

Xi ¼ Xð0Þ
i eνi ln a i ¼ 1;…; N − 1

XN ¼ Cþ
XN
i¼1

γiX
ð0Þ
i eνi ln a: ð76Þ

D. Fixed point structure

The fixed points are found solving the N equations:

4αiϕ

6M2
W þWϕi

¼ 0: ð77Þ

We can rewrite this:

4αiϕi

X
jk

ϕ2
jWjkϕ

2
k − 4

X
j

αjϕ
2
j

X
k

ϕiWikϕ
2
k ¼ 0: ð78Þ

We divide out αiϕi and define a set of N matrices (labeled
by i):

AðiÞ
jk ¼ Wjk −

αj
αi

Wik: ð79Þ

We then have that the N quadratic forms satisfy
X
jk

ϕ2
jA

ðiÞ
jkϕ

2
k ¼ 0: ð80Þ

If this is to be possible then we must have Det½A� ¼ 0.
But this is trivially so. If we pick the ith matrix, it will have
that its ith line will be

AðiÞ
ik ¼ Wik −

αi
αi
Wik ¼ 0 ð81Þ

which means that its rank is less than or equal thanN − 1. If
all the αi are different, and if we assumeWik is nonsingular,
we have that the rank is N − 1 and the solution will be a
line in ϕ2

i space with one free parameter, the overall scale.
Interestingly, if some of the αi are degenerate, then the
subspace will have a higher dimensionality.

E. Slow roll in a 3-scalar scheme

The fixed point structure proves to be important in the
slow-roll regime for the case that more than one coupling is
significant in the scalar potential during slow roll. We
illustrate this presently in a particular 3-scalar example.
Consider the case that the significant couplings during slow
roll involve only twomatter fields,ϕ2 andϕ3. In this case the
potential is dominantly of the form W ¼ U þ Y þ T where

U ¼ aϕ4
2; T ¼ bϕ4

3; V ¼ cϕ2
2ϕ

2
3: ð82Þ

In writing the slow-roll equations it is convenient to define
new fields:

X ¼ −α1ϕ2
1; Y ¼ −α2ϕ2

2; Z ¼ −α3ϕ2
3: ð83Þ

Hereϕ2 andϕ3 are thematter fields andwe allowa,b andc to
beOð1Þ. Then the evolution equations in the slow-roll region
have the form:
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0
B@

X0

Y 0

Z0

1
CA ¼ −

4

3

�
X þ Y þ Z

β1X þ β2Y þ β3Z

�
1

ðU þ T þ VÞ

×

0
BBBBB@

−α1Xfβ2ðU þ VÞ þ β3ðT þ VÞg
α2
n
β1X

�
U þ V

2

�
þ β3

h
Z
�
U þ V

2

�
− Y

�
T þ V

2

�io

α3
n
β1X

�
T þ V

2

�
þ β2

h
Y
�
T þ V

2

�
− Z

�
U þ V

2

�io

1
CCCCCA

ð84Þ

where βi ¼ 1 − αi.
The problem is that, even if αi are very small, the large

couplings a, b and c cause the fields Y and Z to roll quickly
and violate the slow-roll conditions used to derive the
evolution equations. In the small α1 regime we see from
Eq. (84) that the dominant terms are proportional to
�ðZðU þ V=2Þ − YðT þ V=2ÞÞ, respectively, with positive
coefficients. These terms have an IR stable fixed point with

ZðU þ V=2Þ ¼ YðT þ V=2Þ; i:e:
ϕ2
2

ϕ2
3

¼ 2bα2 − cα3
2aα3 − cα2

:

ð85Þ

At this fixed point the evolution equation becomes

0
BB@

X0

Y 0

Z0

1
CCA ¼ −

4

3

�
X þ Y þ Z

β1X þ β2Y þ β3Z

�
1

ðU þ T þ VÞ

×

0
BBB@

−α1Xfβ2ðU þ VÞ þ β3ðT þ VÞg
α2β1X

�
U þ V

2

�

α3β1X
�
T þ V

2

�

1
CCCA: ð86Þ

As in the two scalar case all derivatives are proportional
to X. Since X0 is proportional to α1, if α1 is small the slow-
roll constraints can indeed be satisfied. Also the evolution
of Y and Z is much faster than X in the α1 ≪ α2;3 regime, so
the inflationary era in the three scalar case will be similar to
that in the two scalar case.

V. QUANTUM EFFECTS AND THE Kμ CURRENT

We now consider the quantum effects. We first give a
formal derivation of the conventional anomalies of the Kμ

current, and show how this is realized in a Coleman-
Weinberg-Jackiw effective action. We then discuss how
Weyl invariance can be maintained in the renormalized
theory. This implies that renormalized quantities satisfy
renormalization group equations in which they run in Weyl
invariant combinations of fields, such as the ratios of scalar

fields. The trace anomaly is then absent and the Kμ current
is identically conserved.

A. Weyl invariance and effective action

Scale symmetry of a theory is normally considered to be
broken by quantum loops. However, this happens because
at some stage in the renormalization procedure, we intro-
duce explicit “external” mass scales into the theory by
hand. These are mass scales that are not part of the defining
action of the theory, and they lead to nonconservation of the
scale current.
The renormalization procedure, however, can be made

scale invariant if we specify these quantities, not by
introducing external mass scales, but rather by using the
VEVs of scalar fields that spontaneously break the scale
symmetry but are part of the action itself. In this case, all
logarithmic corrections arising in loops will have as their
arguments scale-invariant ratios of the internal field VEVs.
At the formal level, which we develop presently, the choice
of dependencies of renormalized quantities appears arbi-
trary. However, calculations can be performed in which this
arbitrariness is removed, and we will discuss this else-
where [20].
We can see the usual “external mass parameter” renorm-

alization in the famous paper of Coleman and Weinberg
[16]. Starting with the classical λϕ4=4 theory, in their
Eq. (3.7) to renormalize λ at one-loop level, they introduce
a mass scaleM. Once one injectsM into the theory, one has
broken scale symmetry. The one-loop effective potential
then takes the form:

VðϕÞ ¼ βλ
4
ϕ4 lnðϕ=MÞ; ð87Þ

where βλ is the one-loop approximation, (OðℏÞ), to the β
function, βλ ¼ dλðμÞ=d ln μ.
The heart of our proposal is to replace M by the VEVof

another dynamical field, e.g., χ, that is part of the action of
our theory:

V ¼ βλ
4
ϕ4 lnðϕ=χÞ: ð88Þ
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We see that the Weyl symmetry, ϕ → eεϕ, χ → eεχ,
is now intact.
The manifestation of this can be seen in the trace of the

improved stress tensor [22].5 In a single scalar theory, the
trace anomaly is the divergence of the scale current Sμ and,
using Eq. (87), is given by [25]

∂μSμ ¼ Tμ
μ ¼ 4VðϕÞ − ϕ

∂
∂ϕVðϕÞ ¼ −

βλ
4
ϕ4: ð89Þ

We see, as usual, that the trace anomaly is directly
associated with the β function of the coupling constant
λ, and it exists on the rhs of Eq. (89) because we have
introduced the explicit scale breaking into the theory by
hand via M. On the other hand, with two scalars we have

∂μSμ ¼ Tμ
μ ¼ 4V − ϕ

∂
∂ϕV − χ

∂
∂χ V ¼ 0 ð90Þ

and this is vanishing with Eq. (88). In effect, the trace
anomaly has been transferred onto the lhs of the divergence
equation, and the overall scale current conservation is
maintained. We will see that this applies to the Weyl
current Kμ as well.
Of course, there is nothing wrong with the Coleman-

Weinberg procedure, if one is only treating the effective
potential as a subsector of the larger theory. That is, we are
simply deferring the question of what is the true origin ofM
in the larger theory. If, however, scale symmetry is to be
maintained as an exact invariance of the world, then M
must be replaced by an internal mass scale that is part of
action, i.e.,M must then be the VEVa field appearing in the
extended action, such as χ. IfM is replaced by a dynamical
field in our theory, we will still have renormalization group
evolution, but the resulting physics can now depend only
upon ratios of dynamical VEVs, and the running of
couplings is given in terms of these ratios.
In fact, this is something we do in practice. All

mass scales we measure in the laboratory are referred
to other mass scales. Even derived scales, such as ΛQCD
can be viewed as arising from a specification of αQCD at
some higher energy scale, such as a grand-unification
scale, or the Planck mass, MPlanck. With the boundary
condition, specifying αQCDðMPlanckÞ then ΛQCD is
computed from the solution to the renormalization
group equation. We obtain ΛQCD ¼ cMPlanck, where c
is an exponentially small coefficient (at one loop
c ∼ expð−2π=jb0jαQCDðMPlanckÞÞ). The question is then
whether the fundamental reference scale, usually taken
to be MPlanck, is an external input scale (such as the string

constant), or the dynamical VEVof a field, such as χ. In the
latter case, we can in principle maintain an overall Weyl
symmetry, and derived mass scales, such as ΛQCD become
Weyl covariant: χ → eεχ, ΛQCD → eεΛQCD.

B. Conventional anomalies of the Kμ current

Let us first formulate the anomalies of the Kμ current in
the conventional renormalization framework that introdu-
ces an external mass scale M, in a theory with fields
ϕ; gμν;…. The Weyl transformation is

ϕ → eεϕ; gμν → e−2εgμν;… ð91Þ

The contravariant metric must then transform as
gμν → e2εgμν. Here, if εðxÞ is a function of spacetime the
transformation is local; if ε is a constant in spacetime the
transformation is global.
It is useful to define a differential operator that acts upon

fields:

δWϕ ¼ ϕδε; δWgμν ¼ −2gμνδε: ð92Þ

δW acts distributively, and, δWgμν ¼ þ2gμνδε, δWðϕ−1Þ ¼
−ϕ−1δε, and δWðlnϕÞ ¼ ϕ−1δWðϕÞ ¼ δε. In general, a
field Φ of “mass dimension D” transforms covariantly as
Φ → eDεΦ or δWΦ ¼ DΦδε.
Any locally Weyl invariant functional of fields

Qðϕ; gμν…Þ satisfies

δWQ ¼ 0: ð93Þ

We typically seek an effective Coleman-Weinberg-Jackiw
action as a functional of classical fields for the study of
inflation and spontaneous scale generation.
For the single scalar field ϕ, consider the effective action,

constructed by adding sources to the fields, performing a
Legendre transformation to the classical background fields,
and integrating out quantum fluctuations [16,17]. The
result for a single scalar field theory is a functional of
local classical background fields ϕðxÞ and gμνðxÞ:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμυ∂μϕ∂νϕ −

λðϕ; gÞ
4

ϕ4 −
αðϕ; gÞ
12

ϕ2R

�
:

ð94Þ

It is important to maintain locality in the Lagrangian, since
general covariance is a local symmetry, and therefore
requires that effective coupling constants be local functions
of the fields.
Computing δWS we obtain the difference between the

Einstein trace equation and the Klein-Gordon equations
that yields the conservation law for Kμ. This calculation is
simplified by noting the local Weyl invariants satisfy:

5Technically, the improved stress tensor is defined only for
α ¼ 1, and in the flat space limit, but its anomaly parallels that of
the Kμ current; the Kμ current is the more relevant scale current
for α ≠ 1 theories.
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δW

Z ffiffiffiffiffiffi
−g

p �
1

2
gμυ∂μϕ∂νϕ −

1

12
ϕ2R

�
¼ 0

δW

Z ffiffiffiffiffiffi
−g

p
ϕ4 ¼ 0: ð95Þ

Hence

δWS ¼ −
Z ffiffiffiffiffiffi

−g
p

δε

�
DμKμ þ

1

4
ðδWλÞϕ4 þ 1

12
ðδWαÞϕ2R

�

¼ 0 ð96Þ

where we integrate terms with ∂μðδεÞ, by parts and discard
surface terms. Kμ is given by the usual expression, but now
contains the field dependent αðϕ; gαβÞ:

Kμ ¼
1

2
∂μð1 − αðϕ; gαβÞÞϕ2: ð97Þ

Equation (96) defines the anomaly of the current:

DμKμ ¼ −
1

4
ðδWλÞϕ4 −

1

12
ðδWαÞϕ2R: ð98Þ

Consider the theory in a limit where we ignore all but
internal ϕ loops. If we renormalize the effective action,
introducing an external mass scale,M, then the β functions
are

ϕ
∂λ
∂ϕ ¼ βλ

�
¼ 9λ2

8π2

�

ϕ
∂α
∂ϕ ¼ βα ¼ ðα − 1Þγα

�
γα ¼

3λ

8π2

�
ð99Þ

where in brackets we quote the 1-loop computed values that
follow from the ϕ loops in this theory.
Renormalizing with an external mass scaleM implies the

constraint:

0 ¼ ϕ
∂λ
∂ϕþM

∂λ
∂M ; 0 ¼ ϕ

∂α
∂ϕþM

∂α
∂M : ð100Þ

The ∂=∂M terms in the above equations are not due to the
loop calculations, but rather, are external conditions we
impose upon the couplings. That is, Eq. (100) defines the
functional dependence of the counterterms in the theory
upon the external mass parameter M.
Note that the RG equation for α is ∝ ðα − 1Þ, which is

why we introduce the factor γα into its β-function defi-
nition. We can write ϕ∂α0=∂ϕ ¼ α0γα where, α0 ¼ α − 1,
and this leads, for approximately constant γα, to the
solution Eq. (101) below. The solutions to the RG equa-
tions in the approximation of a fairly constant or small λ,
i.e., small βλ, are

λðϕÞ ¼ βλ ln

�
cϕ
M

�
αðϕÞ ¼ 1þ ðα0 − 1Þ

�
ϕ

M

�
γα ð101Þ

where the constants c and α0 define the RG trajectories of
the running couplings, λ and α.
Equation (98) with Eq. (101) then implies the form of the

Kμ anomalies:

DμKμ ¼ −
1

4
βλϕ

4 −
1

12
βαϕ

2R: ð102Þ

The nonconservation of the Kμ current arises because
the external mass parameter, M, breaks the Weyl scale
symmetry.
Armed with the solutions of Eq. (101) we then have

the effective action, where Weyl symmetry is broken by the
effect of M:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμυ∂μϕ∂νϕ −

1

4
βλ ln

�
cϕ
M

�
ϕ4

−
1

12

�
1þ ðα0 − 1Þ

�
ϕ

M

�
γα
�
ϕ2R

�
: ð103Þ

We cannot have our program of a stable, dynamically
generated Planck mass without maintaining the Weyl
symmetry, and we must therefore eliminate the explicit
M dependence and, hence, the anomalies in the Kμ current.

C. Maintaining exact Weyl scale symmetry in
renormalized quantum theory

1. The single scalar theory

To preserve the Weyl invariance, we need to eliminate
the anomaly, which requires replacing the constraint
Eq. (100) that introduces the external mass scale M.
From Eq. (98) we see that we can maintain the Weyl
invariance of Eq. (92) in the renormalized theory provided
the running coupling constants are Weyl invariant:

δWλ ¼ 0; δWα ¼ 0: ð104Þ

Equation (104) is thus a new constraint that replaces
Eq. (100). Hence, together with Eq. (99), imposing
Eq. (104) we see from Eq. (96) that DμKμ ¼ 0.
This is an almost obvious result: the coupling constants

must be local functions of Weyl invariants in order to
maintain the Weyl symmetry. However, just as the ∂=∂M
terms in Eq. (100) are not due to the loop calculations, and
are really part of the UV completion of the theory, neither
do the dependencies upon various compensating fields
implicit in Eq. (104) necessarily arise from the loops alone.
These are external conditions that presumably come from
the UV completion.
Logically, this procedure is analogous to having a theory

in which we have a chiral anomaly that violates a given
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axial current which we may want to gauge. This is usually
done explicitly by judicious choice of fermion representa-
tions in the theory. However, it can also be done by
constructing a Wess-Zumino-Witten term that generates
the anomaly through bosonic fields and can be used to
cancel the fermionic chiral anomaly. For example, the
Wess-Zumino-Witten term for the original Weinberg model
of a single lepton pair ðν; eÞ, can be written in terms of the
0− and 1− mesons of QCD, and the W, Z and γ. Including
this term into the original Weinberg model gives the an
anomaly free description for first generation lepton ðν; eÞ
and the visible states of low-energy QCD (and correctly
describes Bþ L violation, see [26]). Of course, this
represents the effects of the underlying confined ðu; dÞ
quarks. In our present situation we do not know what the
underlying Weyl invariant UV complete theory of gravity
and scalars is, but we can imitate the Wess-Zumino-Witten
term by demanding an overall Weyl invariant constraint that
maintains the renormalization group (the ϕ loops).
The solutions to the constraint Eq. (104) are coupling

constants that are functions of Weyl invariants. These
clearly must be Lorentz scalars, and also invariant under
general coordinate transformations (diffeomorphisms). In
the single scalar theory, we only have at our disposal the
Weyl invariant objects, ϕ2gμν, and ϕ−2gμν, which are
obviously not scalars. The quantity

ffiffiffi
g

p
ϕ4 is Weyl invariant,

but is a scalar density and not diffeomorphism invariant.
This leaves the Ricci scalar, Rðϕ2gμνÞ, expressed as a
function of the invariant combination ~gμν where ~gμν ¼
ϕ2gμν (and ~gμν ¼ ϕ−2gμν):

Rðϕ2gÞ ¼ ϕ−2RðgÞ þ 6ϕ−3gμνDμ∂νϕ: ð105Þ

Therefore, we can consider the arguments of the logs to
be general functions Fi½Rðϕ2gÞ�. The coupling constants
become

λðϕÞ ¼ 1

2
βλ ln ðFλ½Rðϕ2gÞ�Þ

α ¼ 1þ ðα0 − 1ÞðFα½Rðϕ2gÞ�Þγα=2: ð106Þ

For example, we might choose

Fi ¼
ciϕ2

RðgÞ þ 6
ϕ g

μνDμ∂νϕþ c0iϕ
2
: ð107Þ

With the solutions of Eq. (101) we have the Weyl invariant
Coleman-Weinberg effective action:

S ¼
Z ffiffiffiffiffiffi

−g
p �

1

2
gμυ∂μϕ∂νϕ −

1

4
βλ ln ðFλ½Rðϕ2gÞ;ϕ2�Þϕ4

−
1

12
ð1þ ðα0 − 1ÞðFα½Rðϕ2gÞ;ϕ2�Þγα=2Þϕ2R

�
: ð108Þ

The renormalization group equations Eq. (99) are now
modified:

Fλ
∂λ
∂Fλ

¼ βλ

Fα
∂α
∂Fα

¼ ðα − 1Þγα: ð109Þ

In writing Eq. (109) we have solved the constraint of
Eq. (104). Since this is a constraint, it only dictates that the
functional form of the Fi, be Weyl invariant. In lieu of an
exact calculation is at this stage, the Fi arbitrary. However,
such a calculation of the Coleman-Weinberg potential can
be done (in a simple locally Weyl invariant two scalar
theory) and it yields a specific functional form, as will be
presented elsewhere [20].
We can specify Fi if we match onto the calculated β

functions from ϕ loops For example, our choice in
Eq. (107) will be consistent with the computed β functions
of Eq. (99) from ϕ loops, (but not necessarily with
calculated functions associated with graviton loops). It is
interesting to note that while βλ of Eq. (99) produces a
Landau pole in the running of λ with large ϕ, the choice of
nonzero c0λ implies that asymptotically λðϕÞ approaches a
constant, λðc=c0Þ.6

2. The two scalar theory

In the case of the two scalar scheme, defined by
Eqs. (26), (27), we have the five couplings,
ðλ; ξ; δ; α1;α2Þ and will have RG equations for running
in ϕ or χ. For the sake of discussion we will presently
assume that the field VEVs ϕ and χ are large compared to
curvature R. If we consider a typical coupling constant λwe
therefore have the scale-invariant constraint:

δWλ

δε
¼ ϕ

∂λ
∂ϕþ χ

∂λ
∂χ ¼ 0: ð110Þ

We reinterpret the usual RG equations in terms of λðFÞwith
running in a Weyl invariant function of ϕ and χ, such as an
arbitrary function of the ratio, Fλ ¼ Fðϕ=χÞ, for example,
F ¼ ϕ=χ. The renormalization group β function is now:

βλ ¼ F
∂λ
∂F : ð111Þ

Hence, we can maintain the Weyl symmetry while having β
functions that now describe the running of couplings in
Weyl invariants. Elsewhere we will demonstrate how to

6There is a characteristic difference between RG running in
field VEVs and running in momentum space. E.g., the top quark,
etc., never decouples if the Higgs VEV runs into the IR. RG
running for deep scattering processes in momentum will be
standard and remains sensitive to the Landau pole as usual.
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obtain this result by a direct calculation of the Coleman-
Weinberg effective potential while maintaining a local
Weyl symmetry [20].

3. Relation to other scale-invariant schemes

There have been several proposals for maintaining Weyl
invariance that focus on the regularization schemes e.g.,
see [18,27–32].

a.Dimensional regularization
Extensively studied is the case of dimensional regulari-

zation in which the external mass scale, μ is replaced by a
combination of fields, μðϕ; χÞ. In this approach the
Coleman-Weinberg formula for the 1-loop correction scalar
potential:

−i
Z

d4pTr ln½p2 − Vðϕ; χÞ þ iε� ð112Þ

is continued to d-dimensions. This gives

Vðϕ; χÞ ¼ μðϕ; χÞ4−dV0ðϕ; χÞ ð113Þ

where V0ðϕ; χÞ is the potential in 4D. The first factor gives
additional corrections to V that, due to the divergent
structure of the integral in 4D, give finite contributions
to the scalar potential (see [31,32]). Weyl invariance is
maintained by choosing μ to be a function of ϕ and χ of
scaling dimension 1.
For the very simple choice μ ∝ ϕ the resulting correc-

tions are of the form χ6=ϕ2 þ � � � and the theory must be
viewed as an effective field theory valid for χ2=ϕ2 ≪ 1.
Arbitrariness obviously enters here in the choice of μðϕ; χÞ,
and will affect the β functions as we have discussed above.

b.“Renormalized” perturbation theory
In the case of renormalized perturbation theory the

Feynman rules are derived from the Lagrangian computed
in terms of the physical parameters of the theory. In this
case the potential will have a dependence on the scaleM at
which the couplings are determined. Writing M as a
function of ϕ and χ of scaling dimension 1, Weyl invariance
can be maintained. However the field dependence of M ¼
Mðϕ; χÞ will, as in the case of dimensional regularization,
give additional contributions to M2 that give rise to non-
renormalizable and arbitrary corrections of the form found
in dimensional regularization.

c.“Bare” perturbation theory
An alternative possibility is bare perturbation theory in

which the Feynman rules are based on the bare Lagrangian.
In this case the bare potential has no dependence on the scale
M and so there are nonewcontributions to the potential of the
form discussed above.Weyl invariance can bemaintained by
identifying the cutoff scale,M, in the loop calculationswith a

function of the fields of scaling dimension 1 and is equivalent
to the procedure proposed in Sec. V C.

D. An ansatz for a quantum corrected theory

What might be the physical effects that arise from Weyl
invariant renormalization? In the following we initially
consider a general form, FðxÞ for the argument of the log
and then specialize the case where F ¼ x. We shall see that
this will lead to modifications during inflation to elliptic
path in (ϕ, χ) that we described above.
The one-loop Coleman-Weinberg (CW) action (neglect-

ing terms in δ) can then take the form of Eq. (27) with the
potential:

Wðϕ; χÞ≃ λϕ4

4
þ βξ

4
χ4 lnðcFðϕ=χÞÞ

¼ λϕ4

4

�
1þ βξ

λx4
lnðcFðxÞÞ

�
ð114Þ

where x ¼ ϕ=χ and c is a constant. A nontrivial minimum
exists for the field values ðϕ0; χ0Þ if

∂W
∂x ¼ 0 → cFðx0Þ ¼ expðx0F0ðx0Þ=4Fðx0ÞÞ
∂W
∂ϕ ¼ 0 → 1þ βξ

λx40
lnðcFðx0ÞÞ ¼ 0: ð115Þ

Combining gives us one combination of the equations:

1

x30

F0ðx0Þ
Fðx0Þ

¼ −
4λ

βξ
: ð116Þ

An independent combination of the equations gives us a
fine-tuning constraint on c.
We can consider the simple case,F≡ Fξ ¼ 1=x ¼ χ0=ϕ0

and we thus find x0 ¼ ϕ0=χ0 ¼ ðβξ=4λÞ1=4. Note however
the consistency condition lnðcFðx0ÞÞ ¼ −λx40=β ¼ −1=4
requires that c is fine-tuned as c ¼ x0 expð−1=4Þ.
Once tuned, this not only corresponds to a minimum but

also to a zero of the potential, i.e. a locus in field evolution
of fixed x0 ¼ ϕ0=χ0 with no cosmological constant. It is
straightforward to consider the more general case with a
fixed point and late time accelerated expansion, general-
izing the results we found in the previous sections.
Including a running α1 term and α2 ≈ constant, we have

the action:

S ¼
Z ffiffiffiffiffiffi

−g
p 	

1

2
gμν∂μϕ∂νϕþ 1

2
gμν∂μχ∂νχ −Wðϕ; χÞ

−
1

12
½1þ ðα0 − 1ÞFðxÞγ1 �ϕ2R −

1

12
α2ϕ

2R



:

ð117Þ
The quantum corrections deform the ellipse shown in

Fig. 2, arising from the running of the αi (mainly α1
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presently). γ1 is a parameter appearing in the β function for
α1, and α10 < 0 is an initial value of α1 at the “scale”
ϕ=χ ¼ 1. We reiterate that, in the Weyl invariant frame-
work, one must get used to the notion that there are no
fundamental mass scales anymore, and only invariant ratios
of field VEVs can arise in scale-invariant physical quan-
tities such as dimensionless couplings like the αi.
Hence, given the fixed value of K, we have in the

classical and quantum cases:

classical∶ 2K ¼ ð1 − α1Þϕ2 þ ð1 − α2Þχ2
quantum∶ 2K ¼ ð1 − α10Þϕ2½FðxÞ�γ1 þ ð1 − α2Þχ2: ð118Þ

If we now specialize to FðxÞ≡ Fα ¼ x, we find the
differences illustrate in Fig. 3. In this case, the Planck
mass is now given by

classical∶ 6M2
P ¼ −α1ϕ2 − α2χ

2

quantum∶ 6M2
P ¼ −

�
1 − ð1 − α10Þ

�
ϕ

χ

�
γ1
�
ϕ2 − α2χ

2:

ð119Þ

At the rightmost end of the ellipse, where χ → 0 we thus
have, approximately

classical∶ 2K ≈ ð1 − α1Þϕ2

quantum∶ 2K ≈ ð1 − α10Þϕ2

�
ϕ

χ

�
γ1
: ð120Þ

The fields ultimately reach the fixed point, the intersection
of the ellipse and the flat direction, and then satisfy the
potential minimum constraint χ ¼ εϕ.

In the classical case the results are simple. We see that ϕ
is determined by Eq. (120), and likewise, 6M2

P ≈ −α1ϕ2

follows in χ → 0 limit from Eq. (119). We also have that
χ ¼ εϕ is determined from the flat direction of the
potential. Hence, M2

P ¼ −α1K=3ð1 − α1Þ. This defines
the vacuum of the theory, and the slow-roll migration
along the ellipse to the fixed point can generate many
e-foldings of inflation, N ∝ −1=α (see Sec. V).
The quantum case is somewhat different. As χ → 0, we

see that the constraint of fixed K and the running of α1
cause ϕ to track χ:

ϕ ∝ χγ1=ð2þγ1Þ: ð121Þ

Hence χ approaches zero quickly, while ϕ also tends to
zero but does so more slowly. The Planck mass, however,
approaches a constant:

quantum∶ 6M2
P ≈ ð1 − α10Þϕ2

�
ϕ

χ

�
γ1 ð122Þ

thus we see that at the end of the ellipse with χ → 0:

M2
P ¼ 1

6

�
ð1 − α10Þ

�
ϕ

χ

�
γ1
�
ϕ2 ¼ 1

3
K: ð123Þ

While ϕ and χ are becoming smaller, they do not become
zero. The fixed point, the terminus of inflation, corresponds
to the minimum of the potential in the flat direction, hence

χ ¼ εϕ: ð124Þ

Combining, this yields the final VEVs of the fields:

ϕ ¼ MP

�
6εγ1

1 − α10

�
1=2

χ ¼ ςϕ: ð125Þ

It is interesting to speculate about the implications of this
result in realistic models. The present model supposes only
the potential interactions amongst ϕ and χ and the non-
minimal gravitational interactions. The quantities γi in the
present scheme are determined by the quartic couplings λ,
δ, ξ and involves mixing induced by δ. If the only relevant
term was λ, as in the single scalar model, we compute
γ1 ¼ 3λ=8π2. However, with the flat direction we have
λ ¼ −ς2δ, and mixing effects in γi are dominant. In any
case, if the potential coupling contributions to γi are small
and if they are the only effects, we would have the classical
result, ϕ ¼ c0MP with c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð1 − α10Þ

p
of order unity.

However, other schemes would likely have additional
interactions, including gauge interactions. For example, ϕ
and χ could have separate Uð1Þi gauge groups and gauge
couplings ðe1; e2Þ, hence γi ∼ ke2i =16π

2. Moreover, what is
relevant is the “UV” behavior of these couplings i.e., the
large ϕ=χ limit, and they could become large. Hence, is

FIG. 3. We expand the right-handed quadrant, ðϕ; χÞ > 0where
the classical ellipse has rightmost endpoint at χ ¼ 1. The
“quantum ellipse” turns back toward the origin due to the
quantum running of α1 where ϕ tracks χ as ϕ ∝ χγα=ð2þγ1Þ.
The potential flat direction is indicated as the nearly horizontal
line.
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possible that in such schemes γ1 can become large,
perturbatively ranging, perhaps, from ∼0.1 to 1, and
nonperturbatively even larger. We thus would have
ϕ ¼ c0MPε

γ1=2 and

ϕ ¼ c0M
2=ð2þγ1Þ
P χγ1=ð2þγ1Þ χ ¼ ςϕ: ð126Þ

If we then identify χ with the Higgs VEV, vH ¼ 175 GeV,
then we determine ϕ ¼ c0M where M ¼ 2.6 × 1013 GeV
with γ ¼ 1 andM ¼ 1.6 × 1018 GeV with γ ¼ 0.1. So, it is
possible that the quantum running of α10 plays a role in
establishing the grand-unification scale, identified with the
VEV of ϕ. Even more extreme, if we identify χ with the
QCD scale, 0.1 GeV and allow a nonperturbative at large
ϕ=χ, γ1 ≈ 10, then we find χ ≈ vH ≈ 175 GeV. Perhaps χ
could then be identified with the Higgs boson itself (this
would be a “Higgs inflation model” with a dynamically
generated Planck mass), where MP ∼mHðmH=ΛQCDÞγ1.
The quantum effects are clearly of great interest. A

detailed study of the renormalization of this theory and
various models is beyond the scope of the present paper
(see [20]). In particular the worked example of the ellipse
we have presented involves a particular choice of an
“ansatz” of FðxÞ, that might be anticipated from full
calculation. Full details will be presented elsewhere [20].

VI. CONCLUSIONS

In the present paper we have discussed how inflation and
Planck scale generation emerge from a dynamics associated
with global Weyl symmetry and its current, Kμ. In the
preinflationary universe, the scale current density, K0, is
driven to zero by general expansion. However, Kμ has a
kernel structure, i.e., Kμ ¼ ∂μK, and as K0 → 0, the kernel
evolves as K → constant. This resulting constant K defines
the scale symmetry breaking, indeed, defines M2

P. The
breaking of scale symmetry is thus determined by random
initial values of the field VEVs. In addition, a scale-
invariant potential of the theory ultimately determines
the relative VEVs of the scalar fields contributing to K.
This mechanism entails a new form of dynamical scale

symmetry breaking driven by the formation of a nonzero
kernel, K, as the order parameter of scale symmetry
breaking. The scale breaking has nothing to do with the
potential in the theory, but is dynamically generated by
gravity. The potential ultimately sculpts the structure of the
vacuum (together with any quantum effects that may distort
the K ellipse). There is a harmless dilaton associated with
the dynamical symmetry breaking.
We illustrated this phenomenon in a single scalar

field theory, ϕ, with nonminimal coupling to gravity
∼ − ð1=12Þαϕ2R, and a λϕ4 potential. The theory has a
conserved current, Kμ ¼ ð1 − αÞϕ∂μϕ. The scale current
charge density dilutes to zero in the preinflationary phase
K0 ∼ ðaðtÞÞ−3. Hence, the kernel, K ¼ ð1 − αÞϕ2=2,

and the VEV of ϕ are driven to a constant. With α < 0,
this induces a positive Planck ðmassÞ2. The resulting
inflation is eternal. However, if we allowed for breaking
of scale symmetry through quantum loops, by conventional
scale breaking renormalization, the resulting trace anomaly
would imply that Kμ is no longer conserved. Then ϕ would
relax to zero, and so too the Planck mass.
In multiscalar-field theories we see that the generalized

K ¼ P
ið1 − αiÞϕ2

i =2. As this is driven to a constant by
gravity, it defines an ellipsoidal constraint on the scalar
field VEVs, and the Planck scale is again generated ∝ K.
An inflationary slow -roll is then associated with the field
VEVs migrating along the ellipse, ultimately flowing to an
infrared fixed point. This is shown to be amenable to
analytic treatment, again owing to the Weyl symmetry. If
the potential has a flat direction, which is a ray in field
space that intersects the ellipse, then the fixed point
corresponds to the potential minimum, and the field
VEVs flow to it. This is associated with a period of rapid
reheating and relaxation to the vacuum. This terminal phase
of inflation is similar to standard ϕ4 inflation, since the
effective theory is now essentially Einstein gravity with a
fixed M2

P. The vacuum is determined by the intersection of
the flat direction and the ellipse. The final cosmological
constant vanishes by the scale symmetry.
These classical models illustrate the essential require-

ment of maintaining the Weyl symmetry, including quan-
tum effects throughout. Any Weyl breaking effect will
show up as a nonzero divergence in the Kμ current.
Quantum anomalies will occur with conventional running
couplings constants (β functions). We show that a Weyl
invariant condition can be imposed on renormalized cou-
pling constants to enforce the symmetry in the renormal-
ized action. The coupling “constants” are then functions of
Weyl invariant quantities. For example, λ, which previously
ran with ϕ=M, now runs with theWeyl invariant function of
the fields, Fλðϕ; χ; gμνÞ. This preserves all of the features of
the classical global Weyl invariant model, but enforces a
constraint on the original β functions that can only be
satisfied by introducing field dependent counterterms. This
is similar to adding the Wess-Zumino-Witten term to a
theory as a counterterm to cancel (or provide) unwanted (or
desired) chiral anomalies. We will explore detailed calcu-
lations that explicitly exhibit these results elsewhere [20].
We have experimented with the anticipated effects of

quantum corrections in a simple ansatz model of the
quantum effects. Here we see that the ellipse may be
significantly distorted near the intersection with a potential
flat direction. The final phase of inflation can involve a
trajectory in which both scalar field VEVs shrink, but
subject to a constraint that maintains constant K, and thus
constant M2

P. If the quantum effects are large, we may
generate multiple hierarchies with possible intriguing
relationships, such as MP ¼ MGUTðMGUT=mHiggsÞγ.
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The Nambu-Goldstone theorem applies in these models,
with the dynamical scale symmetry breaking by nonzeroK,
and there is a dilaton. We touch upon some of the properties
of the dilaton, with a more detailed discussion of its
phenomenology in a subsequent work [20]. If the under-
lying exact Weyl scale symmetry (though spontaneously
broken via K) is maintained throughout the theory, then the
massless dilaton has at most derivative coupling to matter,
becomes harmlessly decoupled, and any putative Brans-
Dicke constraints go away [33]. Again, here it is essential
that quantum breaking of global Weyl scale symmetry be
suppressed to maintain the decoupling of the dilaton.
An unsolved problem in these schemes is that the flat

direction generally can exist only for the special case of a
fine-tuned parameter. This has been argued to be enforced
in certain cases by a symmetry, such as in an SOð1; 1Þ
invariant potential, ∼λðϕ2 − χ2Þ2 [5]. However, there is
no such symmetry in the full theory as, e.g., the ϕ and χ
kinetic terms are Oð2Þ invariant, and these symmetries will
clash in loop order, and the flat direction will be lifted. If c
is not fine-tuned, then we get either a trivial minimum at
ϕ0 ¼ χ0 ¼ 0, or a saddle point. Hence, a fundamental
problem for us is how to naturally maintain flat directions.
Though we have not discussed it in detail presently, we

expect there are implications here for novel UV comple-
tions of gravity. There is an inherent UV “softening” of
quantum general relativity in these schemes since, essen-
tially, we have no graviton propagator in this theory until
the Planck scale forms. The low-energy Einstein gravity is

then emergent. The UV completion of gravity would have
to be scale-free and it might be viewed as a theory that
contains only a metric, matter fields with nonminimal
couplings, general covariance, but no stand-alone curvature
terms. The construction of such a theory is beyond the
scope of the present paper.
Global Weyl invariance may be a veritable and profound

constraint on nature. It hints at intriguing consequences,
dramatically including a dynamical origin of inflation and
MP as a unified phenomenon, dynamically generated mass
hierarchies, including new effects that involve the running
to the nonminimal coupling parameters, and leading
ultimately to a vacuum with (near) zero cosmological
constant.
After completing this paper we received a related work

by Kannike, et al., [14], who discuss the effect of explicit
sources of scale invariance breaking on the stability of the
Planck scale with nonminimally coupled scalars, including
Coleman-Weinberg potentials. The authors find it chal-
lenging to construct viable models, lending support to the
result here that Weyl symmetry must be maintained and its
breaking can only be spontaneous.
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