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We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that,
even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in
certain limits by big bang nucleosynthesis.
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I. INTRODUCTION

Despite the fact that the baryon number asymmetry of
the Universe is constrained to be B ∼ 10−10 by big bang
nucleosynthesis (BBN) [1] and observations of the cosmic
microwave background (CMB) [2], the Universe is allowed
to have a large lepton number asymmetry (L defined
similarly to B but for leptons) as long as such an asymmetry
is associated with neutral particles. In particular, a large
asymmetry of neutrinos [e.g. L≳Oð1Þ� is quite attractive
in view of its impacts on cosmology (for example, as a
solution to the problem of topological defects via a
symmetry nonrestoration [3,4], generation of B from L
via sphaleron [5], and/or as a contribution to the extra
relativistic species ΔNeff which may lead to a better fit to
cosmological data). Even if the total lepton number
vanishes, L ¼ 0, the asymmetry Lα (for a neutrino flavor
να) could be large enough to have an impact on the
generation of B [6] and ΔNeff .
The main constraints on large neutrino asymmetries

come from BBN (especially the abundance of 4He) [7,8]
and ΔNeff , which is constrained by both BBN and CMB
observations [2]. In particular, BBN strongly constrains the
asymmetry of electron neutrinos such that the degeneracy
parameter (ξα ≡ μα=T, with μα being the chemical potential
of να and T the temperature) is constrained as [9]

−0.018 ≤ ξe ≤ 0.008 ⇒ −4.5≲ 103Le ≲ 2.0; ð1Þ

while recent Planck satellite data of CMB observations
constrain ΔNeff ≲ 0.36 at 95% C.L. (Planck, TT, TE,
EEþ lowPþ BAO) [2] which conventionally translates to

jξμ;τj ≲ 0.89 ⇒ jLμ;τj≲ 0.24; ð2Þ

where Lα ≡ ðnα − nαÞ=nγ with nα=nα and nγ being the
number density of να=να and photons, respectively.

Meanwhile, there has been a series of works showing
that neutrino oscillations in the early universe mix three
neutrinos such that any asymmetry Lμ;τ which is estab-
lished well before BBN is converted significantly to Le
[9–15] (see also [16]). As a result, although in Ref. [17]
it was shown that sizable asymmetries of νμ;τ leading to
largeΔNeff ofOð0.1–1Þ are possible, this was the case only
for θ13 ¼ 0. Later, Refs. [9,14] showed that for a nonzero
θ13, as measured by experimental observations, BBN
requires jLμ;τj≲ 0.1 which translates to ΔNeff ≲ 0.07.
However, in these numerical simulations, the quantum

kinetic equations of neutrino/antineutrino density matrices
were solved using a scheme such that the mixed three-
flavor neutrino system was handled as successive effective
two-flavor systems (νμ-ντ and νe-νμ;τ) before and after νμ-ντ
equalization, as can be seen by the fact that the νμ-ντ
degeneracy once established is never lifted [18], which is
not consistent with the three mixing angles being nonzero,
as will be discussed below. For the evolution up to the point
of νμ-ντ equilibrium, the two-flavor description is enough
since νe participates in the oscillations only afterwards.
However, once νe is involved, the evolution of the mixed
three-flavor system becomes quite complicated, and the
νμ-ντ equalization may not be maintained anymore. In
addition, the choice of neutrino mixing parameters has a
significant impact on the final asymmetry of each flavor
after the mixing and oscillation effects settle the system to
an equilibrium state. More importantly, the total asymmetry
L does not need to be small as long as its contribution to B
is suppressed by symmetry nonrestoration [22]. In this
regard, it is worthwhile to reexamine the impact of three-
flavor oscillations of neutrinos on the BBN bound of the
lepton number asymmetries with all the mixing angles
different from zero as experiments indicate.
In this paper, we argue that the effective two-flavor

description of the mixed three-flavor neutrino system does
not necessarily capture the real physics of neutrino oscil-
lations in the early universe. We demonstrate our argument
by presenting the numerical solution to the three-flavor
evolution equations, which is different from the results in
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earlier work based on a two-flavor effective description. We
also show that BBN still allows large asymmetries which
can lead to ΔNeff ∼Oð1Þ.

II. TWO- OR THREE-FLAVOR DESCRIPTION?

The masses and mixing parameters of neutrino oscil-
lations are now measured to be [1,23]

Δm2
21 ¼ 7.53þ0.18

−0.18 × 10−5 eV2 ð3Þ

Δm2
31 ≃ Δm2

32 ¼ 2.67� 0.12 × 10−3 eV2 ð4Þ

and

sin2 2θ12 ¼ 0.846� 0.021 ð5Þ

sin2 2θ13 ¼ 0.093� 0.008 ð6Þ

sin2 θ23 ¼ 0.40þ0.03
−0.02ð0.63þ0.02

−0.03Þ; ð7Þ

where θij are the mixing angles in the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix [24,25] whose
CP-violating phase is set zero here. In the early universe,
the oscillations of neutrino flavors can be described by the
evolutions of neutrino/antineutrino density matrices. For a
mode of momentum p, the density matrices in the flavor
basis of three active neutrinos ðνe; νμ; ντÞ can be expressed
in terms of polarization vectors P=P and Gell-Mann
matrices λiði ¼ 1–8Þ as

ρp ¼ 1

3

X8

i¼0

Piλi; ρp ¼ 1

3

X8

i¼0

Piλi; ð8Þ

where λ0 is the 3 × 3 identity matrix. Then, the evolution
equations of ρp and ρp are given by [26,27] (see also [28])

i
dρp
dt

¼ ½Ωþ
ffiffiffi
2

p
GFðρ − ρÞ; ρp� þ C½ρp� ð9Þ

i
dρp
dt

¼ ½−Ωþ
ffiffiffi
2

p
GFðρ − ρÞ; ρp� þ C½ρp�: ð10Þ

In the above equations,

Ω ¼ M2

2p
−
8

ffiffiffi
2

p
GFpEl

3m2
W

; ð11Þ

where M2 is the mass-square matrix of neutrinos in the
flavor basis, GF the Fermi constant, mW the mass of the
W-boson, El ¼ diagðEee þ Eμμ; Eμμ; 0Þ the energy density
of charged leptons, ρ ¼ ð1=2π2Þ R∞

0 ρpp2dp (and similarly
for ρ), and C½� � �� is the collision term.
Practically, we numerically solve the equations of motion

(EOMs) of Pi and Pi derived from Eqs. (9) and (10). Those

equations are mixed in a complicated way, and it is nontrivial
to get an insight of what may happen unless a numerical
integration is performed. It is also difficult to see if the
maintenance of νμ-ντ equalization in an effective two-flavor
description taken in earlier works still is valid in this case.
However, it is instructive to note that, when one of the mixing
angles is set zerowith θ23 ¼ π=4, the mass-squarematrixM2

has a special pattern (for example, if θ13 ¼ 0, then M2
12 ¼

−M2
13 andM

2
22 ¼ M2

33). In this case, ignoring self-interaction
terms, which barely affect our results, and the subdominant
collision terms in Eqs. (9) and (10), one can see that some
pairs of P�

i s (for example, P−
1 -P

−
4 and Pþ

2 -P
þ
5 where

P�
i ≡ Pi � Pi) are likely to be driven in exactly the opposite

way (see the Appendix). As a result, it becomes possible to
have P−

3 −
ffiffiffi
3

p
P−
8 ¼ 0 and dðP−

3 −
ffiffiffi
3

p
P−
8 Þ=dt ¼ 0 simulta-

neously, and this implies that, once νμ-ντ equalization is
achieved, it is likely to bemaintained even if another nonzero
mixing becomes active. This is the case in which the
two-flavor description can be applicable. However, if all
the mixing angles are nonzero as the accumulated neutrino
oscillation data indicate, or θ23 ≠ π=4 even if θ12 ¼ 0 or
θ13 ¼ 0, the special pattern of the square-mass matrix
disappears, and there is no reason to expect νμ-ντ equalization
to be maintained once the second and/or third mixing get
involved. Hence, we can expect that the two-flavor descrip-
tion may be applicable only to that limited case, which does
not apply in view of the current observational data in neutrino
oscillation experiments. In the next section, wewill show that
this is in fact the case.

III. RESULTS OF THREE-FLAVOR
NUMERICAL INTEGRATION

In our numerical analysis,M2 was taken to correspond to
a normal hierarchy of neutrino masses. Also, since a precise
treatment of collision terms has only a minor effect in the
scope of this paper (see for example [19]), we take for
simplicity C½ρp� ¼ −iDαβ½ρp�αβ for α ≠ β only, and sim-
ilarly for C½ρp� [11]. The initial condition for the simu-
lations was set as

ρp ¼ fðy; 0Þ−1diagðfðy; ξeÞ; fðy; ξμÞ; fðy; ξτÞÞ; ð12Þ

and similarly for ρp but with ξα → −ξα, where fðy; ξαÞ ¼
ðey−ξα þ 1Þ−1 is the occupation number of να for a
mode y≡ p=T.
In the presence of charged lepton backgrounds and/or

collisional dampings, the dynamics of the occupation
number of a mode is not oscillationlike, but transitionlike.
In this case, the dynamics of flavor asymmetries (as a
mode-integrated collective behavior) can be mimicked by a
typical mode (i.e., corresponding to the averaged momen-
tum or close to it) even without the self-interaction term
[i.e., the term proportional to ρ − ρ in Eq. (9) or (10)],
modulo an overall normalization [13]. We take this single
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mode approach with y ¼ 3.15 which is nearly the same as
the mode of average momentum, but in order not to miss
the specific phenomena caused by self-interaction (e.g.,
blocking of transition [11]), we keep the self-interaction
term in a way that ρ− (≡ρ − ρ) is replaced by ρ−p
(≡ρp − ρp), normalized initially to match ρ−. In order to
see the result in terms of the lepton number asymmetries,
the initial occupation numbers of our reference mode were
normalized to match the initial lepton number asymmetries
accounting all modes.
The validity of our approach was checked by reproduc-

ing some results in earlier works, for example, as shown in
Fig. 1 (see Fig. 5 of Ref. [11] for comparison). The figure
shows that the main features of the evolution of Lα

governed by Eqs. (9) and (10) are captured by our
simplified approach, proving the validity of our approach.
The minor difference of the amplitude of synchronized
oscillation (which depend on jηαj or ξα) may be the
difference between effective two-flavor description and
three-flavor full description. If the initial asymmetries are
large enough and are not forced to obey a specific pattern
(e.g., equal and opposite), the evolution of the asymmetries
appears to be essentially independent of the self-interaction
term. This implies that for aligned initial asymmetries,
when the self-interaction is large enough, Pþ hardly
deviates from the direction of I− ≡ ffiffiffi

2
p

GF

R
P−p2dp=

ð2π2Þ (or simply P− in our simplified simulation).
As our first new result, Fig. 2 shows the evolution of Lα

with different sets of mixing angles. The self-interaction
term did not make any meaningful change in this case, as
expected. As shown in the figure, the first dynamics takes
place due to θ23 ∼ π=4 which mixes νμ and ντ completely,
leading to Lμ ¼ Lτ irrespective of the value of θ23 due to
frequent collisions. At later time, collisions become ineffi-
cient. In this circumstance, if θ23 ¼ π=4 and θ13 ¼ 0
(dotted lines), this equalization is maintained even if
nonzero θ12 gets involved later. Checking the dynamics

of all components of polarization vectors, we found that the
reason for such a behavior is exactly what is discussed in
the previous section. The same behavior appears if θ12 is set
zero instead of θ13. On the other hand, if all the mixing
angles are nonzero (dashed lines) or θ23 ≠ π=4 (solid lines),
the equalization is broken, as the second dynamics appears
due to another mixing. Therefore, we conclude that, for the
neutrino mixing parameters measured so far, Lμ ≠ Lτ as a
result of neutrino mixings.
Obviously, the final Lα depends on L. So, we now

consider some initial values of Lα for L ¼ 0 and L ≠ 0
cases as shown in Figs. 3 and 4, respectively. In the case of
Fig. 3, due to the equal and opposite asymmetries of νμ and
ντ, neutrino self-interaction blocks the νμ-ντ mixing until
the dynamics due to the nonzero θ13 becomes active. This
phenomenon was observed already in an earlier work [11],
but the subsequent synchronized oscillation was not clear
in the result, in contrast to our case. The large synchronized
oscillation seems to be due to the delayed mixing of
νμ-ντ that is dominated by the vacuum contribution in
Eq. (11). The final asymmetries depend on the mixing
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FIG. 1. Evolutions of Lα for θ ¼ ðθ12; θ13; θ23Þ and
ðξe; ξμ; ξτÞ ¼ ð0;−0.1; 0Þ with self-interaction switched on/off
(solid/dotted lines). The green/red/blue line is for Le=Lμ=Lτ. The
black dotted line is the total asymmetry.
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FIG. 2. Evolutions of Lα for θ ¼ ðθ12; θ13; θ23Þ and
ðξe; ξμ; ξτÞ ¼ ð0; 1; 0Þ with self-interaction switched on. The
color scheme is the same as Fig. 1.
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FIG. 3. Evolutions of Lα for θ ¼ ðθ12; θ13; θ23Þ and
ðξe; ξμ; ξτÞ ¼ ð0; 1;−1Þ. The color scheme is the same as Fig. 1.
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angles and configuration of Lα;0. However, for L ¼ 0, even
if Le;0 ¼ 0, the oscillation-averaged values turn out to be

jLej ∼ jLμ;τj≲ 10−2jLμ;0j; ð13Þ

where Lα;0 is the initial asymmetry of να, and ξα;0 ≲ 1 was
assumed. Hence, in this case we end up with the same
conclusion as earlier works.
Contrary to the case of L ¼ 0, if L ≠ 0, one can take

arbitrary initial values of Lα. This means that, as shown in
Fig. 4, at the late time equilibrium it is possible to have
small Le but large jLμ;τj which can result in ΔNeff ∼Oð1Þ.
Note that the net asymmetry L can be large enough to
suppress the conversion of L to B by symmetry non-
restoration [29]. This is our main result.
Finally, in Fig. 5 we show the θ23-dependence of Lα for

θ23 ¼ ðπ=3.4; π=4; π=4.6Þ which covers the favored values
at NOνA data [23]. In the figure, one can see that for given
nonzero values of θ12;13 the larger θ23 the smaller Lμ-Lτ

separation, keeping the average of Lμ and Lτ barely
changed (or Le barely changed). This behavior is non-
trivial, but one may get an idea from the evolution
equations associated with Lα (see the Appendix):
Ignoring self-interaction terms, for ρ�p ≡ ρp � ρp one finds

dρ−p
dt

����
ee

¼ 2

3
ðΩ12P

þ
2 þΩ13P

þ
5 Þ ð14Þ

dρ−p
dt

����
μμ

¼ −
2

3
ðΩ12P

þ
2 − Ω23P

þ
7 Þ ð15Þ

dρ−p
dt

����
ττ

¼ −
2

3
ðΩ13P

þ
5 þ Ω23P

þ
7 Þ; ð16Þ

where Ωij for i ≠ j can be approximated as

Ω12 ≈ Δm2
31c13s13s23 ð17Þ

Ω13 ≈ Δm2
31c13s13c23 ð18Þ

Ω23 ≈ Δm2
32c

2
13c23s23: ð19Þ

It is not easy to see how Pþ
2 , P

þ
5 , and Pþ

7 would depend
on θ23. However, from the property of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [24,25] describing
neutrino mixings, it is clear that the evolution of ðρ−pÞee is
invariant under the change of θ23. This implies that the θ23-
dependence in the right-hand side of Eq. (14) is canceled
out. Hence, from Eqs. (15)–(19) one finds that the
evolutions of ðρ−pÞμμ and ðρ−pÞττ should depend on θ23 in
an equal and opposite way, but they are not symmetric
with respect to θ23 ¼ π=4, as shown in Fig. 5. The impact
of θ13 on Lα can be easily read off from Fig. 2, and it is
straightforward to see that the larger θ12 the closer Le
and Lμ;τ.

IV. CONCLUSIONS

In this paper, we showed that, contrary to the widely held
conventional expectation, lepton number asymmetries of
neutrinos can be quite large while keeping the asymmetry
of electron-neutrino small enough to satisfy the BBN
bound. Large asymmetries of muon- and tau-neutrinos
are expected to be constrained mainly by CMB through
ΔNeff (extra neutrino species or “dark” radiation), but the
asymmetries are better constrained in terms of neutrino
mass eigenstates instead of flavor eigenstates [30].
In the literature, even if there were several works in which

integrations of the full three-flavor evolution equations were
considered in some contexts, an effective two-flavor descrip-
tion after the first transition betweenmuon- and tau-neutrinos
has been used by fixing the asymmetries of νμ and ντ equal as
a kind of conventional method in the estimation of late time
neutrino asymmetries in thepresence of neutrinooscillations.
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FIG. 4. Evolutions of Lα for θ ¼ ðθ12; θ13; θ23Þ and
ðξe; ξμ; ξτÞ ¼ ð−1.0; 1.6; 0.3Þ. The color scheme is the same as
Fig. 1. Dotted lines (the case of “Self Of”) were overlapped by
solid lines.
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The neutrino asymmetries in this case were tightly con-
strained, leading toΔNeff ≲ 0.07. However, such a setting is
questionable in the presence of three nonzeromixing angles.
In addition, neither BBN nor CMB data forbid a large
nonzero total lepton number asymmetry. Motivated by these
observations, we numerically integrated the quantum kinetic
equations of the full three-flavor density matrices of neu-
trinos and antineutrinos, and found that the asymmetries
of νμ and ντ after all the transitions are finished before BBN
are actually different, and can be large enough to result in
ΔNeff ∼Oð0.1–1Þ which is an order of magnitude larger
than the one in earlier literature and may lead to a better fit to
cosmological data [30].
For large arbitrary initial lepton number asymmetries

well before BBN, the stringent BBN bound on the
asymmetry of electron neutrinos appears to require a
fine-tuning of the initial condition. However, such a tuning
is certainly allowed by data, and could well be explained by
some physics beyond the standard model.
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APPENDIX POLARIZATION VECTOR
EQUATIONS OF MOTIONS

From Eqs. (9) and (10), when the self-interaction terms
are ignored, the equations of motion (EOMs) of Pi and Pi
are derived as follows:

_P0 ¼ 0 ðA1Þ

_P1 ¼ −D12P1 − ðΩ11 −Ω22ÞP2 þ Ω23P5 þΩ13P7 ðA2Þ

_P2 ¼ðΩ11 −Ω22ÞP1 −D12P2 − 2Ω12P3 −Ω23P4 þ Ω13P6

ðA3Þ

_P3 ¼ 2Ω12P2 þ Ω13P5 − Ω23P7 ðA4Þ

_P4 ¼ Ω23P2 −D13P4 − ðΩ11 −Ω33ÞP5 − Ω12P7 ðA5Þ

_P5 ¼ −Ω23P1 þ ðΩ11 −Ω33ÞP4 −D13P5 þΩ12P6

−Ω13ðP3 þ
ffiffiffi
3

p
P8Þ ðA6Þ

_P6 ¼ −Ω13P2 −Ω12P5 −D23P6 − ðΩ22 −Ω33ÞP7 ðA7Þ

_P7 ¼ −Ω13P1 þ Ω12P4 þ ðΩ22 −Ω33ÞP6

−D23P7 þΩ23ðP3 −
ffiffiffi
3

p
P8Þ ðA8Þ

_P8 ¼
ffiffiffi
3

p
ðΩ13P5 þΩ23P7Þ: ðA9Þ

EOMs of Pi are obtained by taking Ωij → −Ωij and
Pi → Pi in the above equations. Hence, for P�

i ≡ Pi � Pi
one finds

_P∓
0 ¼ 0 ðA10Þ

_P∓
1 ¼ −D12P

∓
1 − ðΩ11 − Ω22ÞP�

2 þ Ω23P�
5 þΩ13P�

7

ðA11Þ

_P∓
2 ¼ ðΩ11 −Ω22ÞP�

1 −D12P
∓
2 − 2Ω12P�

3

−Ω23P�
4 þΩ13P�

6 ðA12Þ

_P∓
3 ¼ 2Ω12P�

2 þ Ω13P�
5 − Ω23P�

7 ðA13Þ

_P∓
4 ¼ Ω23P�

2 −D13P
∓
4 − ðΩ11 −Ω33ÞP�

5 − Ω12P�
7 ðA14Þ

_P∓
5 ¼ −Ω23P�

1 þ ðΩ11 − Ω33ÞP�
4 −D13P

∓
5

þΩ12P�
6 −Ω13ðP�

3 þ
ffiffiffi
3

p
P�
8 Þ ðA15Þ

_P∓
6 ¼ −Ω13P�

2 −Ω12P�
5 −D23P

∓
6 − ðΩ22 − Ω33ÞP�

7

ðA16Þ

_P∓
7 ¼ −Ω13P�

1 þΩ12P�
4 þ ðΩ22 −Ω33ÞP�

6

−D23P
∓
7 þΩ23ðP�

3 −
ffiffiffi
3

p
P�
8 Þ ðA17Þ

_P∓
8 ¼

ffiffiffi
3

p
ðΩ13P�

5 þ Ω23P�
7 Þ: ðA18Þ
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