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Detecting the imprint of inflationary gravitational waves on the B-mode polarization of the cosmic
microwave background (CMB) is one of the main science cases for current and next-generation CMB
experiments. In this work we explore some of the challenges that ground-based facilities will have to face in
order to carry out this measurement in the presence of galactic foregrounds and correlated atmospheric
noise. We present forecasts for stage-3 (S3) and planned stage-4 (S4) experiments based on the analysis of
simulated sky maps using a map-based Bayesian foreground-cleaning method. Our results thus consistently
propagate the uncertainties on foreground parameters such as spatially varying spectral indices, as well as
the bias on the measured tensor-to-scalar ratio r caused by an incorrect modeling of the foregrounds. We
find that S3 and S4-like experiments should be able to put constraints on r of the order σðrÞ ¼
ð0.5–1.0Þ × 10−2 and σðrÞ ¼ ð0.5–1.0Þ × 10−3 respectively, assuming instrumental systematic effects are
under control. We further study deviations from the fiducial foreground model, finding that, while the
effects of a second polarized dust component would be minimal on both S3 and S4, a 2% polarized
anomalous dust emission component would be clearly detectable by stage-4 experiments.
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I. INTRODUCTION

The cosmic microwave background (CMB) B-mode
polarization signal contains a wealth of information on
both the physics of the primordial Universe, through the
unequivocal signal of gravitational waves generated during
inflation [1,2], as well as on the late-time evolution of the
Universe, through the distortion of E-mode polarization
caused by gravitational lensing [3]. A detection of the
former would not only strengthen the position of the
inflationary hypothesis, but also effectively measure
the energy scale of inflation. Constraining this quantity
below the level of r ∼ 10−2–10−3 would be of tremendous
importance for inflationary theories [4]. For these reasons,
significant effort has been put by the CMB community into
building experiments sensitive enough to measure this
signal, and the first detections of the lensed B-mode signal
have recently started to appear [5–7]. However, the first
attempts to measure the primordial signal [8] have been
limited by the presence of high polarized galactic fore-
grounds, in particular, polarized thermal dust emis-
sion [9,10].
The challenge of measuring the primordial B-mode

polarization signal is therefore strongly dependent on
our ability to disentangle the different sky components.
Accurate models for the spectral properties of both signal
and foregrounds must be developed in order to optimally
separate both components and yield a robust measurement
of the B-mode power spectrum on degree scales l≲ 200.
The wide angular and frequency coverage afforded by
space-borne missions would therefore make these experi-
ments ideal for B-mode measurements (e.g. [11–13]). In

practice, however, the high cost of space missions, together
with the higher angular resolution achievable from large
ground-based telescopes, has motivated the design of
several highly competitive suborbital facilities. These
experiments must, nevertheless, cope with a number of
limitations, such as the potentially large atmospheric
systematics on large angular scales or the reduced number
of atmospheric frequency bands in which CMB observa-
tions can be carried out. The latter factor can have a
significant impact on an experiment’s ability to separate
signal and foregrounds, while the former makes it hard to
reliably measure some of the most important large-scale
features of the primordial B-mode signal, such as the
reionization bump at l ∼ 10.
In this work we study the ability of ground-based

experiments to measure primordial Bmodes in the presence
of these difficulties. Similar forecasts for space and
balloon-borne missions have been presented by [14,15],
and a general forecasting framework in the context of the
Fisher matrix approximation was presented in [16], includ-
ing a consistent treatment of delensing.
Our methodology to produce these forecasts consists of

generating sky simulations containing both the cosmologi-
cal signal as well as realistic galactic foregrounds spanning
a range of plausible models. Each simulation is then run
through a Bayesian component-separation algorithm fol-
lowed by a power-spectrum estimator, with the aim of
mimicking as closely as possible the analysis pipeline that
real observations would be subjected to. This way we
can robustly quantify the potential bias on r caused by
an incorrect modeling of the foregrounds, consistently
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propagate the uncertainties on foreground spectral param-
eters, and study the needs of these experiments in terms of
frequency and area coverage.
The paper is structured as follows: Sec. II describes the

method, including the models used in the sky simulations,
the map-based Bayesian component-separation algorithm
and the estimator used to obtain a measurement of the
tensor-to-scalar ratio from the angular power spectrum of
the foreground-clean map. Section III then presents the
main results of the paper, starting with a simple Fisher
forecast in the ideal case of flat noise levels and homo-
geneous foreground spectral parameters. We then study the
degradation in the constraints on r when accounting for
spatially varying spectral indices and in the presence of
correlated large-scale noise. Making use of more complex
foreground simulations, we then quantify the bias on r
induced by an incorrect modeling of the foregrounds.
Finally we compare the results of this method with those
of a blind foreground-cleaning algorithm, in order to
evaluate the robustness of our findings. Section IV sum-
marizes the main results of the papers, and a number of
technical details regarding the Bayesian component-
separation algorithm are discussed in Appendixes A and B.

II. METHOD

A. Simulations

In order to study the effect of foregrounds on CMB
B-mode searches we have generated simulations of the
observed sky that include the most relevant components.
For this we use the code PySM [17], including the
following components:
(1) CMB: the CMB primary anisotropies are straight-

forward to simulate as Gaussian random realizations
for a particular power spectrum. We obtained this
power spectrum from the Boltzmann code CAMB
[18], using as input the best-fit cosmological param-
eters of [19] with a tensor-to-scalar ratio r ¼ 0.
Besides the primary anisotropies, it is also im-

portant to include the effect of CMB lensing, which
generates a B-mode signal from the associated E-B
leakage. CMB lensing is a second order effect and is
therefore non-Gaussian and harder to simulate. For
this PySM uses the algorithm presented in [20],
which lenses the primordial anisotropies given a
realization of the lensing potential ϕ using a Taylor
expansion of the displaced anisotropies around the
position of the nearest pixel.
CMB lensing represents a problem for B-mode

searches in that it drowns the primordial signal by
lifting the amplitude of the BB power spectrum (and
consequently the cosmic-variance contribution to the
statistical uncertainties). However, given an external
estimate of the lensing potential it is in principle
possible to “delens” the B modes [21–24], thus

reducing the final uncertainties on r. Here we have
simulated the effects of delensing simply as a
constant efficiency factor fdl, multiplying the power
spectrum of the lensing potential,

Cϕϕ;delens
l ¼ fdlC

ϕϕ
l ð1Þ

(with the cross-power spectra CTϕ
l and CEϕ

l multi-
plied by

ffiffiffiffiffiffi
fdl

p
). The delensing factor used here

depends on the map-level noise of the experiment,
and was determined using the results of [16].
As noted above, the model used in our simula-

tions assumes no primordial B modes (r ¼ 0). The
final uncertainties on r would however increase with
respect to the values found in this paper if the true
value of r was nonzero, caused by the corresponding
non-negligible cosmic variance. Thus, the uncer-
tainties quoted in this work correspond to the
smallest value of r that would be possible to discard
at the 1σ level.
Since the focus of this work is large-scale pri-

mordial B modes, we have not included other
secondary anisotropies (e.g. Sunyaev-Zel’dovich)
or contamination from extragalactic sources (e.g.
the cosmic infrared background or point sources).

(2) Synchrotron: galactic synchrotron radiation is
caused by cosmic-ray electrons interacting with
the galactic magnetic field, and is characterized
by a smooth power-lawlike spectral dependence
(see [25] for an extended discussion of the physical
principles of synchrotron emission). Synchrotron is
the most important polarized foreground at low
frequencies. The effects of Faraday rotation in the
spectral dependence of polarized synchrotron are
negligible at the typical frequencies of CMB experi-
ments, and we therefore ignore them here.
In order to simulate galactic synchrotron, PySM

uses a process similar to the one used in the design of
the Planck Sky model [26]. The code generates
degree-scale templates in intensity for the amplitude
and spectral index based on the observed variations
in sky temperature between the 408 MHz Haslam
map [27] and the WMAP maps [28], using the
estimate from [26].
We add small-scale structure to the large-scale

amplitude template through a procedure similar to
that used in [26,29]. First, we extrapolate the power
spectrum of the large-scale template to smaller
scales as a power law Cl ∝ lαs, with αs ¼ −2.7.
We then generate a Gaussian realization of this
power spectrum and apply a high-pass filter on it
to suppress its power on scales already constrained
by the large-scale template. The amplitude of this
small-scale contribution is further modulated spa-
tially by multiplying it by a power of the normalized
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local mean intensity of the large-scale template
smoothed on scales θsm ¼ 10°. The small-scale
fluctuations are then added to the large-scale am-
plitude template, and then scaled to different
frequencies using the spectral index template assum-
ing a perfect power-law behavior. Explicitly, the
model used for these simulations is

Tsyncðν; n̂Þ ¼
�
TLSðν0; n̂Þ þ A

�
T10°ðn̂Þ
T̄10°

�
γ

TSSðn̂Þ
�

×

�
ν

ν0

�
βsðn̂Þ

; ð2Þ

where γ ¼ 1.5, TLS is the large-scale template at
ν0 ¼ 23 GHz, T10° is a smoothed version of TLS
using a Gaussian kernel with FWHM 10°, βsðn̂Þ is
the spectral index template and TSS is the small-scale
realization. Note that this procedure is different from
the method used to generate the default sky tem-
plates provided with the PySM package.
For the polarized synchrotron templates PySM

follows a similar procedure to the intensity. To date,
however, there is no precise determination of the
spatial variation of the synchrotron spectral index,
either in intensity or polarization (e.g. see [30,31]).
Thus, for our purposes we use the K-band meas-
urement of WMAP smoothed with a Gaussian
kernel of 1° FWHM as a large-scale amplitude
template. PySM then extrapolates it to different
frequencies assuming the same spectral index tem-
plate derived for intensity. This template is com-
pleted on small scales using a procedure similar to
the one described above, where this time the
amplitude of the small-scale component is modu-
lated by the local mean polarized intensity P ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ U2

p
smoothed on a 10-degree scale. In this

work we have not considered departures from a
power-law spectral behavior for synchrotron.

(3) Thermal dust: the long-wavelength tail of the ther-
mal emission by galactic dust grains heated by
stellar radiation is the main foreground source at
frequencies larger than ∼100 GHz. Furthermore, the
alignment of nonspherical grains with the galactic
magnetic field generates linear polarization orthogo-
nal to it and to the line of sight, thus making thermal
dust arguably the most important contaminant for
B-mode searches.
The emission of thermal dust has been shown to

be relatively well fit by a modified black-body
spectrum (MBB) with a power-law emissivity
[31]. In this work we have generated simulations
of the thermal dust emission using a method similar
to the one described above for synchrotron. As
before, we use a template for the emission amplitude

on large scales at a fixed frequency generated by
PySM, on top of which small-scale fluctuations are
added as a high-pass filtered Gaussian realization of
a power-law power spectrum Cl ∝ lαd , with
αd ¼ −2.3, modulated by the normalized local mean
of the large-scale template smoothed on scales
θFWHM ¼ 10°. This amplitude map is then extrapo-
lated by PySM to different frequencies using tem-
plates for the spectral parameters of the modified
black-body intensity (spectral index βd and dust
temperature Θd). The explicit model used here is
then

Tdustðν; n̂Þ ¼
�
TLSðν0; n̂Þ þ

�
T10°ðn̂Þ
T̄10°

�
γ

TSSðn̂Þ
�

×

�
ν

ν0

�
βdðn̂Þ BνðΘdðn̂ÞÞ

Bν0ðΘdðn̂ÞÞ
; ð3Þ

where γ ¼ 1.5 and

BνðΘÞ≡ 2hν3

c2

�
exp

�
hν
kΘ

�
− 1

�
−1

ð4Þ

is the black-body spectrum. We must note that, even
though the amplitude of different foreground com-
ponents should be spatially correlated, we have
neglected this correlation on the small scales
where we add power. The effect of this assumption
should be irrelevant for the large-scale observables
(l≲ 100) we are interested in.
For intensity PySM uses the Commander tem-

plates for the amplitude and spectral parameters at
ν0 ¼ 545 GHz [31]. In polarization, we use the
Commander templates for the Q and U amplitudes
at ν0 ¼ 353 GHz, which are extrapolated to other
frequencies using the same spectral parameter tem-
plates used for intensity. Note that this model is not
completely realistic: the different alignment effi-
ciency of different types of dust grains should induce
a different frequency dependence in intensity and
polarization, and there is evidence for this in the
Planck data [32] in terms of a global spectral index.
However, there is no estimate to date of the spatial
variation of the polarized dust spectral index, and
therefore we adopt the model above in order to
simulate this spatial variation.
It has been noted in the literature [33,34] that a

two-component dust model, with independent spec-
tral indices and dust temperatures for both compo-
nents, provides a marginally better fit when
combining the Planck and DIRBE data. Although
the joint emission from these two components can
be qualitatively fit by a single MBB spectrum (see
Fig. 1), future experiments might be sensitive to the
differences between both models. Therefore we have
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run a number of simulations using a two-component
dust model. For this, in intensity PySM uses the
amplitude and dust temperature templates provided
by [33], together with their best-fit parameters. The
corresponding polarization templates at 353 GHz are
then generated as

ðQ;UÞ353ðn̂Þ
¼ p353ðn̂ÞT2c

353ðn̂Þðsin 2γðn̂Þ; cos 2γðn̂ÞÞ; ð5Þ

where T2c
353 is the predicted intensity of the two-

component model at 353 GHz, and p353ðn̂Þ and γðn̂Þ
are maps of the polarized fraction and polarization
angles at 353 GHz predicted by the best-fit Com-
mander single-component dust model.
It is worth noting that, even though by using this

second model we have tried to explore departures
from our fiducial single-component model, the
actual nature of thermal dust emission could be
significantly more complicated than either of them.

(4) AME/spinning dust. The rotation (as opposed to
vibration) of dust grains can also produce micro-
wave emission, and this process is believed to be
behind the so-called anomalous dust emission
(AME), most prominent at low frequencies.
Although the level to which this component is
polarized is not clear, a failure to account for it
could bias the measurement of r in B-mode searches,
and for this reason we have run a few simulations
including this effect.
We use the AME templates provided in the

PySM package. In intensity, the code uses the
best-fit Commander AME model and templates
[31]. This model allows for two spinning dust
components with different amplitudes and spectral
parameters. The model spectrum is computed using
SpDust2 [35,36] for a cold neutral medium, and
can be rigidly shifted in logðνÞ by varying the peak
frequency parameter. The peak frequency of the first
component varies spatially at degree scales in the

range νp1ðn̂Þ ∼ 19� 3 GHz, but the second compo-
nent is spatially constant at νp2 ¼ 33 GHz. These
spectra are then used to extrapolate two templates at
reference frequencies ν1; ν2 ¼ 22.8, 41.0 GHz,
which are also limited to degree-scale resolution.
The model can be summarized as

TAME
ν ðn̂Þ ¼ Tν1ðn̂ÞfSpDustðνp1ðn̂Þ; νÞ

þ Tν2ðn̂ÞfSpDustðνp2; νÞ: ð6Þ

The resulting total spectrum is much broader than
those of the individual components, and peaks in the
range ∼20–30 GHz. It is stressed in [31] that the
second component is included only because a single
component model left significant dust-correlated
residuals. The use of a second component is there-
fore not physically motivated, but is a convenient fit
to the data.
In polarization, PySM uses a simple model based

on assuming a constant polarized fraction pAME and
using the polarization angle γðn̂Þ for thermal dust
emission found at 353 GHz. Thus

ðQ;UÞνðn̂Þ ¼ pAMETAME
ν ðn̂Þðsin 2γðn̂Þ; cos 2γðn̂ÞÞ:

ð7Þ
In our simulations we assumed a 2% polarization
fraction (pAME ¼ 0.02). Since there are physical
reasons to expect that spinning dust should be
almost unpolarized [37], the model adopted here
represents a conservative case. However note that
other alternative models for AME, such as magnetic
dust [38], could be significantly more polarized.

Table I lists all the different simulations that were used for
this work, corresponding to different variations of the
models quoted above, together with different choices of
the experiment design as well as the foreground-cleaning
algorithm. We note that the results quoted in this paper
correspond to those extracted from a single simulation for
each combination of experiment, sky and noise model, sky

TABLE I. Summary of the different simulations run in this work. The column Nβ
side shows the size of pixels over which the spectral

indices are assumed to be constant in our Bayesian cleaning approach, while the quantity BNILC determines the number of needlet
coefficients (and their resolution in l-space) used in the needlet internal linear combination (NILC) analysis.

Cleaning method Nβ
side

BNILC Thermal dust AME lknee Delensing area (103 deg2) Experiment # sims

Bayesian 4, 8, 16 N/A 1 comp. None 0 w., w.o. 16, 8, 4, 2 S3 24
Bayesian 8, 16, 32 N/A 1 comp. None 0 w., w.o. 16, 8, 4, 2 S4 24
Bayesian 4, 8, 16 N/A 1 comp. None 50, 100 w. 4 S3 6
Bayesian 8, 16, 32 N/A 1 comp. None 50, 100 w. 4 S4 6
Bayesian 4, 8, 16 N/A 2 comp. None 0 w., w.o. 16, 8, 4, 2 S3 24
Bayesian 8, 16, 32 N/A 2 comp. None 0 w., w.o. 16, 8, 4, 2 S4 24
Bayesian 4, 8, 16 N/A 1 comp. 2% pol. 0 w., w.o. 16, 8, 4, 2 S3 24
Bayesian 8, 16, 32 N/A 1 comp. 2% pol. 0 w., w.o. 16, 8, 4, 2 S4 24
NILC N/A 1.5, 2 1 comp. None 0 w. 16, 8, 4, 2 S3 8
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area and foreground-cleaning method. However, we veri-
fied that our main results, in terms of the final uncertainty
on the tensor-to-scalar ratio, depend very little on the
particular realization used.
Figure 2 shows the B-mode amplitude of the two main

foreground sources (dust and synchrotron) as well as their
spectral parameters in the widest of the observable patches
defined in Sec. III B 1. The B-mode power spectra of these
components in the four different sky patches, together with
the cosmological primordial and lensing power spectra, are
shown for reference in Fig. 3.

B. Experimental setups

The previous generation of ground-based CMB experi-
ments, such as ACTPol [7] and SPT-Pol [6], has now been

upgraded, or is being upgraded into so-called stage-3 (S3)
facilities, including AdvACT [39] and SPT-3G [40].
Looking ahead, S3 experiments will be superseded by a
S4 experiment, likely to be built by combining the
observing power of different ground-based facilities, with
similar potential for wide sky coverage and significantly
lower noise levels.
Here we have considered two different experimental

setups, corresponding to a stage-3 AdvACT-like experi-
ment, characterized by a 1.4 arcmin beam and∼8 μKarcmin
rms noise (for a nominal fsky ¼ 0.4 sky coverage), and a
future S4-like experiment, with roughly eight times lower
noise. The frequency channels and noise levels used in both
cases are summarized in Table II. For the S4-like experi-
ment, the specifications are not yet well defined so we use
map depths estimated by [41], derived by scaling the

FIG. 1. Upper row: B-mode amplitude for dust (left) and synchrotron (right) at 90 GHz for the 16000 deg2 mask shown in Fig. 5.
Middle row: dust spectral index (left) and temperature (right). Lower row: synchrotron spectral index.
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achieved performance of the BICEP2/Keck experiments
[42]. Note that, in the case of S3, we have also added the
Planck 353 GHz data, which should help remove thermal
dust. In the rest of this work, whenever we study the effects
of using a reduced sky fraction, these noise levels are scaled
down with

ffiffiffiffiffiffiffiffi
fsky

p
accordingly, assuming a constant obser-

vation time. In terms of defining the observable sky fraction,
we also assume that both experiments are located in the
southern hemisphere.

Each simulation consists of a set of I, Q and U maps in
the frequency bands listed in Table II. These maps were
generated using the HEALPix pixelization scheme [44]
with resolution parameter Nside ¼ 256 [45], enough for
detecting the large-scale B-mode signal, and instrumental
Gaussian noise was added to every map.
Atmospheric correlated noise is an important concern for

ground-based experiments, in particular, regarding large-
scale observables such as primordial B modes. For this
reason, we have studied the effects of correlated noise by
simulating the noise maps as Gaussian realizations of a
power spectrum Nl consisting of an uncorrelated and a
correlated, power-lawlike component,

Nl ¼ σ2N

�
1þ

�
l

lknee

�
γ
�
; ð8Þ

where σ2N is the noise variance per steradian (given by
the white noise levels shown in Table II) and γ ¼ −1.9. The
parameter lknee determines the scale below which the
correlated component dominates, and we have studied
the cases lknee ¼ 0, 50 and 100, where the first case
corresponds to purely white noise. By default we report
on the results with lknee ¼ 0, and we analyze the effects of
correlated noise in Sec. III C.
The value of the power-law index was chosen to roughly

mimic the noise power spectrum achieved by the BICEP2/
Keck experiments [42], and we assume the same shape for
the noise power spectrum in intensity and polarization. The
actual noise properties of specific experiments, however,
depend on a number of factors, such as atmospheric
properties, instrumental specifications including modula-
tion method, or survey strategy. We do not study these
details further in this paper.

C. Map-based component separation

In order to separate the different components that make
up the total sky emission we have adopted here a map-
based Bayesian scheme [15,46–49]. An advantage of map-
based methods over power-spectrum-based foreground
cleaning (e.g. [9]) is that the effect of spatially varying
foreground spectra can be taken into account, thus avoiding
potential biases on large scales. The advantage of Bayesian
methods over blind methods such as the widely used
internal linear combination method (ILC) [50] is that the
resulting CMB maps are closer to optimal in terms of
signal-to-noise ratio (SNR), and that the foreground uncer-
tainties can be propagated consistently. On the other hand,
the success of Bayesian methods relies on the goodness of
the models adopted to describe the different components.
We discuss these differences further in Sec. III D 1.

1. Description of the model

In this method, the combined sky emission is modeled as
a sum of several components with different frequency

FIG. 3. Frequency dependence of the mean dust temperature for
the two-component model of [33] (red solid line, individual
components shown as black solid and dashed lines) and for the
single MBB model of [31] (blue solid line). Both models provide
a good fit to the data for most of the frequency range typically
covered by CMB experiments, and data at higher and lower
frequencies would be necessary to distinguish them.

FIG. 2. B-mode power spectra at 150 GHz for the three main
components: synchrotron (red), dust (blue) and CMB (yellow) in
the sky areas displayed in the bottom right panel of Fig. 5.
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dependences. Let us consider a sky map with Nθ pixels, Np
polarization channels (e.g. T, Q, U), and Nν frequency
bands. A model containing Nc components can then be
written, in general, as

d ¼ F̂Tþ n; ð9Þ

where
(i) d is the data, written as a vector of Nθ × Np × Nν

elements;
(ii) n is the instrumental noise, also with Nθ × Np × Nν

elements;
(iii) T is a vector with Nθ × Np × Nc elements contain-

ing the amplitudes of the different components;
(iv) F̂ is a ðNθ × Np × NνÞ × ðNθ × Np × NcÞ matrix

containing the spectral dependence of the different
components, with the form

Fði0p0νÞ;ðipaÞ ≡ faðν;bp
aðiÞÞδi;i0δp;p0 : ð10Þ

Here i, p, ν and a label the different angular pixels,
polarization channels, frequency bands and sky
components respectively, and b is a set of spectral
parameters. In our case these are the synchrotron
spectral index and the dust temperature and spectral
index. Explicitly, for the three components consid-
ered here, F̂ is

CMB∶fCðνÞ ¼
dBνðΘÞ
dΘ

����
Θ¼ΘCMB

; ð11Þ

synch∶fsðν; βsÞ ¼
�
ν

νs0

�
βs ð12Þ

dust∶fdðν; βd;ΘdÞ ¼
�
ν

νd0

�
βd BνðΘdÞ
Bνd

0
ðΘdÞ

: ð13Þ

The method then consists of sampling the distribution of
the free parameters of the model, which are given by

(i) Amplitudes, T, 3 × Np × Nθ of them.

(ii) Spectral indices, bp
a . We assume independent

spectral indices in intensity and polarization, but a
common index for Q and U. Furthermore, we make
the simplifying assumption that spectral indices vary
only over pixels larger than our base resolution.
Labeling the total number of such pixels as N0

θ < Nθ

we then have 2 × 3 × N0
θ spectral parameters.

We can compare the total number of parameters of the
model, Npar ¼ 3 × Np × Nθ þ 6 × N0

θ, with the total num-
ber of data points, Ndata ¼ Np × Nν × Nθ, to see that we
need Nν > 3 frequency channels to prevent the system
from becoming overparametrized.
Using Bayes’ theorem, we can write the posterior

distribution for the model parameters as

pðT;bjdÞ ∝ plðdjT;bÞppðT;dÞ; ð14Þ

where pp is the prior distribution for the parameters (which
we discuss later on) and pl is the Gaussian likelihood,
given by

−2 logplðdjT;bÞ ¼ Cþ ½d − F̂T�TN̂−1½d − F̂T�: ð15Þ

Here N̂ ≡ hnnTi is the noise covariance matrix, which we
assume to be uncorrelated between frequency and polari-
zation channels

NðipνÞ;ði0p0ν0Þ ¼ Npν
i;i0δpp0δνν0 : ð16Þ

In reality, instrumental and atmospheric effects induce
correlations between these channels. Here we further
assume, for simplicity, that the noise covariance is white,
so that

ðN̂−1ÞðipνÞ;ði0p0ν0Þ ¼ σ−2ν;pδii0δpp0δνν0 ; ð17Þ

where σ2ν;p is the per-pixel noise variance.
Note that, by assuming uncorrelated noise, the posterior

distribution can be written as a product of distributions for
the individual large pixels overwhich the spectral indices are

TABLE II. Specifications for representative CMB experiments. For S3 we use the target frequencies and noise levels of AdvACT [39]
and scale them up by a factor of

ffiffiffi
2

p
assuming that only half of the survey will be devoted to B-mode searches. For stage 4 (S4), the

authors of [41] choose a possible set of frequency channels in the atmospheric windows and noise levels designed to yield a map-level
rms noise of ∼1 μK-arcmin after foreground cleaning for fsky ¼ 0.1 [41,43]. Here the assumption is that the first three atmospheric
windows would be covered by two different frequency channels. Note that in both cases the quoted noise levels are given in intensity, in
antenna temperature units and for a full-sky experiment. When studying different sky areas the noise levels are therefore scaled withffiffiffiffiffiffiffiffi

fsky
p

accordingly. The only exception to this is the 353 GHz frequency channel for S3, which corresponds to the Planck 353 GHz map,
and therefore does not scale with sky area (see Sec. III A for further details). The noise levels above are quoted in intensity, and assume
that the noise levels in Q and U are a factor

ffiffiffi
2

p
larger.

Name Frequencies (GHz) RMS noise (μKCMBarcmin=f1=2sky )

Stage 3 (28, 41, 90, 150, 230, 353) (171, 152, 14.2, 8.9, 16.5, 24�)
Stage 4 (30, 40, 85, 95, 145, 155, 215, 270) (29, 29, 4.7, 3.7, 3.5, 3.4, 5.2, 4.5)
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allowed to vary. This greatly simplifies the task of sampling
the amplitude and spectral parameters, but is in general not a
valid assumption in the presence of atmospheric noise for
ground-based experiments. Nevertheless, even in the pres-
ence of spatially correlated noise, which we study in the
subsequent sections, this assumption should not introduce a
bias in the final component-separated maps as long as the
different frequency channels are appropriately weighted
according to their overall noise variance. The variance of the
output maps, however, is suboptimal; in the analysis of real
data the noise correlations would be included.
Note also that the logarithm of the posterior is a quadratic

function of the amplitudes T (assuming that the prior on T
takes a Gaussian form). We take advantage of this property
implementing two different methods to carry out the
sampling. First, the amplitudes can be directly sampled
(with a 100% acceptance rate) as Gaussian random fields
separately from the spectral index using Gibbs-sampling
methods as in e.g. [47,48,51]. Secondly, it is possible to
marginalize over the amplitudes analytically, and thus
sample only the spectral indices from their marginal
distribution. The latter method significantly improves the
performance of the algorithm. We give further details about
the advantages and implementation of these methods in
Appendix A.

2. Priors

In this work we imposed loose Gaussian priors on the
spectral parameters, with βs ¼ −3� 0.5, βd ¼ 1.54� 0.5
and Θd ¼ 20� 0.5 K. The width of these priors is large
enough to avoid biases in the final maps, and we verified
that they seldom drive the posterior distribution. Besides
these, we included a “volume prior” designed to take into
account the volume of likelihood space for nonlinear
parameters. This is described in detail in Appendix B,
and is equivalent to the widely used Jeffreys prior for the
spectral parameters [47].

D. Measuring r

After foreground cleaning we are left with a map of the
mean and variance of the CMB intensity and polarization
with fully propagated foreground uncertainties. From this
map we determine r and its uncertainty using a power-
spectrum-based likelihood, assuming that the BB band
powers are Gaussianly distributed,

− 2 lnLðr;ALÞ
¼ constþ

X
k;k0

½B̂k −Bth
k ðr;ALÞ�ðΣ−1Þ−1kk0 ½B̂k0 −Bth

k0 ðr;ALÞ�;

ð18Þ

where B̂k ≡P
lW

k
lĈ

BB
l and Bth

k are the measured and
model B-mode band powers. We model the B-mode power
spectrum in terms of a primordial and a lensing component,

each multiplied by a free amplitude parameter (r and AL
respectively),

Cth
l ¼ rCprim

l ðr ¼ 1Þ þ ALClens
l : ð19Þ

Here the primordial and lensing templates are held fixed to
fiducial ΛCDM values.
Note that the power spectrum band powers are not

Gaussianly distributed. However, at sufficiently large l,
the central limit theorem guarantees that their distribution
can be well approximated as such, since they are deter-
mined by averaging over all jalmj’s corresponding to the
same l. Since many ground-based experiments are
expected to be limited by atmosphere-related systematic
effects on scales l≲ 30, using this approximation is
justified.
Since ground-based observations from a single site

cannot fully cover the celestial sphere and, in any case,
galactic foregrounds prevent a clean measurement of
primordial B modes on the full sky, the angular power
spectrum must be computed in the presence of a sky mask.
There are several approaches to this problem in the
literature, which range from the optimal approaches of
the maximum likelihood estimator or the minimum-
variance quadratic estimator [52] to the minimal approach
of pseudo-Cl estimators [53]. The latter approach should
be only marginally nonoptimal for simple masks and
nonsteep power spectra (which is the case for CBB

l ), and
therefore has been our method of choice for this work.
However, the use of pseudo-Cl codes for polarized

signals (or, in general, any spin-2 field) is complicated
by the fact that a straightforward implementation of the
method gives rise to a non-negligible contamination of E
into B in the variance of the estimator. Since the CMB
E-mode signal is much larger than the B modes, this effect
can make the pseudo-Cl estimator severely suboptimal.
This problem can be solved by designing a pure-B pseudo-
Cl estimator [54], which requires a nontrivial apodization
around the edges of the mask. Since the aim of this paper is
to assess the effect of foregrounds on the measurement of
primordial B modes, rather than the complications of
power-spectrum estimation, we sidestep this problem by
taking the following steps in each simulation:
(1) Clean the foregrounds on the full sky.
(2) Rotate the foreground-cleaned maps from ðT;Q;UÞ

into the (pseudo) scalars ðT; E; BÞ on the full sky.
(3) Apply the mask on the full-sky (pseudo) scalar

maps.
(4) Run a spin-0 pseudo-Cl algorithm on the masked

ðT; E; BÞ maps.
Thus this process preserves the complications of cut-sky
observations (increased sample variance and correlations
between band powers) while mimicking an optimal meas-
urement of the B-mode power spectrum. We note that
this method yields smaller error bars than are actually
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achievable in a realistic situation. We can estimate the
magnitude of this effect by noting that, as reported in [55],
the pure-B pseudo-Cl estimator yields errors that are at
most a factor of ∼2 larger than the theoretical ∝ f−1sky
expectation, while we estimate the standard deviation of
our spin-0 pseudo-Cl to be a factor of ∼1.3 larger than this
ideal case. Thus, the uncertainties in the B-mode power
spectrum in a realistic scenario would be, assuming a
suboptimal pseudo-Cl approach, at most a factor ∼1.5
larger than those reported here.
The details of the pseudo-Cl method have been widely

described in the literature, and we only quote the main
details here. We compute the BB power spectrum in band
powers, estimated from the power spectrum of the cut-sky
anisotropies as

B̂k ¼
X
k0
ðM̂−1Þkk0 ~Bk0 ; ð20Þ

where

~Bk ¼
X
l

Wk
l

2lþ 1

X
m

j ~Blmj2; ð21Þ

~Blm are the spherical harmonic coefficients of the masked
B-mode map and M̂ is the cut-sky coupling matrix. The
latter depends only on the mask applied to the data, and its
analytic expression can be found in [53]. For this work we
have used top-hat band powers characterized by a width
Δl,

Wk
l ¼ 1

Δl
Θðl − lkÞΘðlk þ Δl − lÞ; ð22Þ

where ΘðxÞ is the Heaviside function.
We avoid the problem of noise bias by using only cross

correlations between simulations run with the same CMB
signal but different noise realizations. This mimics the
usual approach of cross correlating splits of the full data in
CMB experiments. Finally, for each simulation we com-
pute the covariance matrix of the band powers Σk;k0 from
1000 Gaussian realizations of the signal and noise BB
power spectrum measured from the two simulations. These
realizations were cut using the same mask used in the
analysis of the simulations, and therefore we fully account
for possible nonzero correlations between band powers.

III. RESULTS

A. Fisher matrix forecasts

As a preliminary step, and in order to have an estimate of
the most optimistic constraints on r one can expect from
our two model experiments, we have computed their
corresponding Fisher forecast uncertainties. For this we
assume global foreground spectral parameters βs ¼ −3,

βd ¼ 1.54 and Θd ¼ 20.9 K, and a fiducial value of r ¼ 0.
The foreground spectral parameters were held fixed, and
thus these forecasts yield the best possible uncertainties on
r. Moreover, we assume a delensing factor fdl related to the
map noise level as described in [16].
The left panel of Fig. 4 shows the expected 1σ con-

straints as a function of the minimum multipole lmin
included in the analysis with and without delensing (solid
and dashed lines respectively) for S3 and S4 (red and blue
respectively). The results in the absence of the Planck
353 GHz map are shown as dot-dashed lines in both cases,
and all curves assume a sky fraction fsky ¼ 0.1 for both
experiments. As is evident from the figure, while delensing
is vital for S4 in order to significantly reduce the uncer-
tainties on r, it is a lot less relevant for S3. Furthermore, the
contribution of the 353 GHz map is irrelevant for S4, while
it has a non-negligible impact for S3.
Although the high-signal region lmin ≲ 10 caused by the

reionization bump is likely inaccessible for ground-based
experiments, the plateau between lmin ∼ 10 and lmin ∼ 70
can still be used to impose competitive constraints on r.
Beyond lmin ∼ 70, the sensitivity to r decreases sharply,
and therefore it is important to cover the aforementioned
plateau. In order to ensure that these large scales are
sufficiently well sampled, we only consider sky fractions
fsky ≳ 0.05 for the rest of the analysis. The right panel of
Fig. 4 shows the dependence of σðrÞ on fsky for our fiducial
value of lmin ¼ 30.

B. Simulated forecasts

1. Foreground masks

In order to study the effects of foregrounds on B-mode
searches as a function of sky fraction we have designed sky
masks covering the cleanest 16000, 8000, 4000, and 2000
square degrees of the southern sky. We do so by first
creating a map of the combined foreground emission by
synchrotron and dust at 100 GHz smoothed on scales of
∼20° and then selecting the connected regions in this map
with the lowest foreground emission in P≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ U2
p

.
We further restrict these regions to lie in the range of
declination dec ∈ ½−75°; 28°�. The resulting masks are
shown in Fig. 5.

2. Results: fiducial foregrounds

We start by examining the fiducial simulations, with a
single thermal dust component and without polarized
AME. One of the free parameters of our method is the
size of the large pixels, over which the spectral parameters
are assumed to be constant. Smaller pixels allow us to
capture the spatial variation of spectral indices more
faithfully, at the cost of including a larger number of
model parameters, which inevitably increases the final
map-level noise (and consequently the uncertainty on r).
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We study the minimum resolution (in terms of the
HEALPix Nside resolution parameter) needed to avoid
biasing our r measurement for the stage-3 and stage-4
experiments, given the fiducial foregrounds model adopted
here. Figure 6 shows the 68% uncertainty on r for different
resolutions for S3 and S4 (left and right panels respec-
tively). The increase in σðrÞ caused by using more finely
resolved spectral parameters is evident, and can be as large
as a factor of ∼1.8 for S3. We determined that Nside ¼ 4,
corresponding to an angular scale of ∼14°, is enough to
avoid a bias in r at the 1.5σ level [i.e. r̄ < 1.5σðrÞ] given
the noise levels of S3, while at least Nside ¼ 16 (∼3.5°) was
needed for S4 following the same criteria. Note that the
resolution needed to fit for spectral parameters depends
directly on the properties of the foregrounds, and therefore

the values quoted here are specific to the simulations
described in Sec. II A.
Figure 6 also shows the effect of delensing in the final

uncertainties. As we saw before, the improvement for S3 is
only moderate, while the noise level of S4 makes the
measurement of r cosmic variance limited in the absence of
delensing. This can be clearly seen in the right panel of
Fig. 6, not just as an increase in σðrÞ with respect to the
delensed case, but also in the fact that, without delensing, a
larger area is always preferred, in spite of its higher noise
level. This trend reverts after delensing, when the meas-
urement of B modes becomes again noise dominated. This
is consistent with findings in e.g. [16,41].
Finally, Fig. 6 also shows the value of σðrÞ predicted by

the Fisher matrix approach described in the previous
sections (which assumes fixed foreground spectral indices).
The Fisher prediction is always more optimistic than our
simulated results, although both are similar for S3 in the
Nside ¼ 4 case. This makes sense as, in the absence of
spatially varying spectral parameters (i.e. in the limit
Nside → 0), the Fisher prediction should be recovered.
In what follows, all results are presented in the delensed

case and for spectral parameters sampled in pixels of
resolutionNside¼4 andNside¼16 for S3 andS4 respectively.

3. Results: deviations from the fiducial model

One of the drawbacks of Bayesian component-separation
methods is that specific models have to be assumed
regarding the properties of the different components (e.g.

FIG. 5. Sky masks used in the analysis, corresponding to the
cleanest 2000, 4000, 8000 and 16000 deg2 of the sky accessible
from Chile in terms of foreground contamination.

FIG. 4. Left panel: 68% uncertainty levels on r as a function of the minimum multipole included in the analysis for a fiducial sky area
of 4000 deg2. Red and blue lines correspond to S3 and S4 respectively. Solid (dashed) lines show the results with (without) delensing,
and the dot-dashed lines correspond to the same experiments, with delensing, after excluding the Planck 353 GHz channel. Right:
uncertainty on r as a function of sky area for a fixed observation time and for a fiducial lmin ¼ 30. The figure uses the same color code
and line styles used in the left panel. Note that, while the Planck 353 GHz channel could help reduce the final uncertainty on r for S3,
especially for larger sky areas (higher noise), it is irrelevant for S4, given its lower noise levels (the blue solid and dot-dashed lines are
indistinguishable).
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frequency or spatial dependence). An incorrect modeling
can therefore introduce biases that could potentially leak
into the final cosmological parameters. In order to explore
this possibility we have repeated the exercise described in
the previous section on simulations containing foregrounds
that are not described by the model used by our component-
separation code (i.e. the single thermal dust component
an power-law synchrotron). Specifically we generated
simulations containing two thermal dust components,

described by the model of [33], and containing a 2%
polarized AME component.
The results are summarized in Fig. 7, which shows the

uncertainty on r as a function of sky area as solid lines,
together with its best-fit value as dashed lines. The left
panel shows the results for the simulations with two dust
components. Both for S3 and S4, the single-component
model is able to fit well the joint emission of the two
dust components, and no significant bias on r is observed.

FIG. 6. Simulated 68%-level uncertainties on r. Left: results for S3 with (without) delensing in gray (red). Results are shown for
foregrounds cleaned assuming constant spectral indices on pixels of resolution Nside ¼ 4 and 16 (solid and dashed lines respectively).
Right: results for S4 with (without) delensing in green (blue), and for spectral indices assumed constant on pixels of size Nside ¼ 16 and
32 (solid and dashed lines respectively). In both panels, the dot-dashed lines show the Fisher matrix forecasts, which assume fixed
spectral indices.

FIG. 7. Simulated 68%-level uncertainties (solid lines) and measured value (dashed lines) of r for foreground simulations that depart
from our fiducial foreground model (used by the component-separation code). Results are shown for S3 (red) and S4 (blue) for the
fiducial and alternative foreground simulations (light and dark colors respectively). Left: results for 2 versus 1 independent thermal dust
components. In this case we do not observe a significant (>1.5σ) bias on r. Right: results with and without 2%-polarized AME. The
presence of this component would significantly bias the best-fit value of r in the case of S4 if neglected at the component-separation
stage, particularly for larger (more contaminated) sky areas.
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The slight increase in σðrÞ with respect to the single-
component model is caused by the different weighting of
the different frequency maps needed to accommodate the
spectral behavior of the two-component model. We there-
fore conclude that the existence of a second dust compo-
nent (with spectral properties compatible with current data)
would not generate an important foreground bias in the
measurement of primordial B modes if unaccounted for.
The right panel of Fig. 7 shows the results in the presence

of AME. As before, the bias on r induced by the
unaccounted-for AME is masked by the large noise levels
of S3, and no significant bias can be appreciated. In the case
of S4, however, we observe a dramatic biasing of r caused
by the presence of polarized AME, which lies above the 2σ
level for the largest sky areas. Given such a large fore-
ground bias, it is worth exploring whether the existence of
an unmodeled component would have been detected at the
foreground-cleaning stage. For this we studied the χ2

statistic of the mean amplitude and spectral parameter
maps output by the component-separation code. The results
are shown in Table III. For sky areas of 4000 sq deg or less,
we find an acceptable probability for the incorrect model,
with probability to exceed (PTE) of 7%–10%, and a bias of
about 1σ in the estimated value for r. Larger sky areas give a
larger bias, but here the problemmore likely to be identified
as the PTE is only ∼1%–2%. At this stage in the foreground
cleaning, steps would be taken to account for an uniden-
tified sky component. As noted by [15], however, there is
no guarantee that a foreground bias in r would be
recognized by a map-space component-separation algo-
rithm, although other strategies, such as studying the
isotropy of the recovered primordial B modes, would also
help in identifying foreground residuals.

C. Results: correlated noise

So far we have assumed ideal experiments characterized
by a Gaussian beam and purely white noise. However, one

of the main disadvantages of ground-based CMB experi-
ments is the effect of atmospheric emission and other
contamination, which can be correlated (nonwhite) on large
scales. Although the properties of this atmospheric noise
depend on the geographical location of the experiment, it
generically affects any measurement of large-scale observ-
ables, such as the signature of primordial tensor perturba-
tions. In polarization, the effects of atmospheric noise can
be mitigated instrumentally through the use of half-wave
plates, which efficiently separate the polarized sky signal
from the unpolarized atmospheric noise. Therefore it is
important to explore the impact of correlated atmospheric
noise on the final uncertainties in order to translate the
science requirements into instrument specifications.
In order to do this we repeated the analysis of our fiducial

simulations (single thermal dust component and 0% polar-
ized AME) now including correlated noise. For this we
used the model described in Sec. II A, characterized by the
parameter lknee, which determines the scale above which
the noise becomes dominated by the correlated component.
As shown in the left panel of Fig. 4, the optimal range of
scales for constraining B modes accessible to ground-based
experiments is l≲ 100, and therefore we studied the cases
lknee ¼ 50 and lknee ¼ 100 (we also show results for
lknee ¼ 0, corresponding to the white-noise case studied
before). Figure 8 shows examples of the noise power
spectra used for S3 in this analysis. Note that, as before,
in all cases we only used multipoles l > 30 in the analysis.
The results are shown in Fig. 9. Not surprisingly, the

final constraints on r are sensitive to the level of large-scale
noise, with the uncertainties increasing by factors of∼5 and
∼3 for S3 and S4 respectively between the lknee ¼ 0 and
lknee ¼ 100 cases. Under the requirement that S3 and S4
experiments should be able to constrain the tensor-to-scalar
ratio to better than σðr ¼ 0Þ≃ 10−2 and 10−3 respectively

TABLE III. Values of the map χ2 for the mean amplitudes and
spectral indices for S4 simulations with and without a polarized
AME component, as well as the associated p-values. Although
the overall χ2 per degree of freedom is close to 1 in all cases, the
unaccounted-for AME component is associated with much
smaller PTEs, which in the case of the higher sky areas would
be a clear sign for missing components in the model used by the
foreground-cleaning algorithm. In this case, all spectral param-
eters were allowed to vary in pixels of resolution Nside ¼ 16.

χ2=dof − 1 PTEðχ2Þ
Area (deg2) No AME W. AME No AME W. AME

2000 −5.91 × 10−4 2.81 × 10−3 0.24 0.099
4000 2.54 × 10−4 2.31 × 10−3 0.18 0.072
8000 1.02 × 10−3 2.52 × 10−3 0.44 0.013
16000 5.62 × 10−4 1.93 × 10−3 0.61 0.008

FIG. 8. Noise curves assumed for S3 in the cases lknee ¼ 100,
50 and 0 (solid, dashed and dot-dashed lines). The dashed vertical
line marks the smallest multipole included in the analysis in
all cases.
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for a 10% sky fraction, we estimate that the lowest
multipole below which large-scale atmospheric noise
can be allowed to dominate should be approximately
lmax
knee ∼ 50.

D. Results: robustness

1. Cleaning method

Many different methods have been used in the past to
tackle the problem of component separation, and it would
be interesting to study whether the results obtained here
concerning the detectability of primordial B modes are
qualitatively universal across methods. To this end we have
also implemented an independent version of the NILC
algorithm [56] and compared its results with those of the
Bayesian approach described above. A key difference
between both methods is the complete model independence
of the NILC, which does not assume a specific spectral
dependence for any components other than the one we wish
to separate (in this case the CMB). This should make the
NILC more robust to badly modeled foreground compo-
nents, at the cost of suboptimal final uncertainties. On the
other hand, a key drawback of ILCmethods is that the noise
level of the output maps, as well as a potential bias in them,
must be measured using simulations. However, for the
purposes of verifying the validity of our results in terms of
the expected uncertainties on the tensor-to-scala ratio, the
NILC is an appropriate alternative algorithm to compare
with.
The details of the NILC algorithm have been thoroughly

described in the literature [57,58], and we only describe the
method briefly here. It consists of three main steps.

(i) All the maps in the different frequency bands are
first decomposed into a set of needlet coefficients
ψ jðn̂; νÞ. These can be thought of as band-limited
versions of the original maps in a set of multipole
bands bjðlÞ characterized by a scale index j.

(ii) For each scale, an internal linear combination of the
different frequency channels that extracts the CMB
component is determined for each pixel using
information from all other pixels in a disc around
it. The size of this disc is chosen such that the
number of independent modes in the disc is large
enough to ensure a reliable determination of the
frequency-frequency covariance matrix.

(iii) After applying the internal linear combination, we
are left with a set of foreground-cleaned needlet
coefficients ψc

jðn̂Þ, which are then synthesized to
generate the final cleaned CMB map.

In practice, we generalize this method to make use of
polarized data by first transforming the input ðT;Q;UÞ
maps at each frequency into the (pseudo) scalars ðT; E; BÞ
and then applying the algorithm above to each component
separately.
As described above, the needlet transforms needed to

carry out the NILC algorithm are defined by the set of
multipole bands bjðlÞ. In our implementation we define
these functions through the so-called B-adic mechanism
[57]. In this case all the bands are defined in terms of a
single function hðxÞwith support in the range x ∈ ½1=B; B�.
The band functions are then defined as bjðlÞ ¼ hðl=BjÞ
and therefore have support in l ∈ ½Bj−1; Bjþ1�. Thus, the
spectral resolution of these bands is determined by the
choice of B > 1, and can be increased by choosing values
of B closer to 1. The specific choice of hðxÞ used in our
implementation uses the guidelines of [58], and we studied
the results for B ¼ 1.5 and 2. The corresponding l-bands
for both cases are shown in Fig. 10.
The result of this exercise is shown in Fig. 11 for S3 as a

function of sky area. We see that, overall, we obtain
uncertainties on r that are somewhat larger than those
obtained by the Bayesian component-separation algorithm
in the optimal Nside ¼ 4 case. This reinforces our con-
fidence in the expected uncertainties reported above.
Furthermore, we observe a slight bias in the measured
value of r on the largest sky areas (still below 2σ), caused
by the inability of the NILC method to fully remove the
large-scale foregrounds when more contaminated regions
are included in the analysis.

2. Foreground complexity

The foreground models explored in this work allow for
spatially varying spectral indices, which is to be expected
if, for instance, dust properties are allowed to vary across
the sky. However, this spatial variation should apply in
three dimensions and thus, along a given line of sight, we
can expect the total foreground emission to be generated by

FIG. 9. 68% uncertainties on r for S3 (upper panel) and S4
(lower panel) as a function of sky area and lknee, the scale above
which the correlated noise component dominates. Results are
shown for lknee ¼ 0 (uncorrelated noise, red lines), lknee ¼ 50
and lknee ¼ 100 (green and blue lines respectively). The sensi-
tivity to r degrades rapidly as the noise power on large scales
increases.
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a linear combination of several components with different
spectral parameters. In order to verify the robustness of our
forecasts against this case we have carried out the following
exercise:
(1) We generate sky simulations where our main fore-

ground sources, synchrotron and dust, are modeled
as a superposition of Ncomp components,

ð ~Q; ~UÞaνðn̂Þ

¼
XNcomp

i

xifaðν;biðn̂ÞÞR̂ðϕiÞ · ðQ0; U0Þaν0ðn̂Þ;

ð23Þ

where ðQ0; U0Þ are the amplitude maps of the
single-component simulations, biðn̂Þ are a set of
spectral parameter maps generated as random rota-
tions of the single-component templates, R̂ðϕiÞ is a
matrix that rotates ðQ;UÞ by a random angle ϕi and
xi are random fractions 0 ≤ xi < 1 (with the con-
straint

P
ixi ¼ 1). The random values of xi and ϕi

are drawn per component (and not per pixel).
(2) For Ncomp ∈ f1; 2; 3g in both dust and synchrotron

(i.e. nine cases), we repeat the analysis carried out in
the previous sections for a fiducial S4 experiment
with lknee ¼ 50 in 4000 deg2, where our fore-
ground-cleaning model assumes a single component
for both foreground types.

Figure 12 shows the best-fit value of r of the nine different
cases explored normalized by its uncertainty. We do not
observe a significant foreground bias caused by the
frequency decorrelation produced by the superposition of
several emission laws, and our results remain unchanged
also in terms of the final uncertainty on r. This is not
entirely surprising, given the mild spatial variation of
spectral parameters in the models used for this paper,
consistent with current observations.

IV. DISCUSSION

The detection of degree-scale CMB B modes is one of
the most important science cases for current and future
CMB experiments, given the wealth of information

FIG. 10. Window functions in harmonic space used to define
the needlet basis used in the NILC algorithm. The upper and
lower panels show the bands used for the B-adic parameter
B ¼ 1.5 and B ¼ 2 respectively.

FIG. 11. Results for S3 obtained using the Bayesian compo-
nent-separation code described in Sec. II C for spectral indices
assumed constant in pixels of size Nside ¼ 4 and 16 (light and
dark red lines) compared with the results for a NILC algorithm
defined using the B-adic mechanism for B ¼ 1.5 and 2 (light and
dark blue lines). Solid lines show the 68%-level uncertainties,
while dashed lines show the best-fit values of r in all cases.
Similar uncertainties are found with both methods, with the
Bayesian approach being the most optimal one when only a small
number of spectral indices are assumed free. A slight bias is
found for the NILC algorithm for the largest sky area.

FIG. 12. Absolute value of the measured r normalized by the 1σ
uncertainty for simulations containing different numbers of dust
and synchrotron components as described in Sec. III D 2.
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contained in this observable. The detection and precise
measurement of the B-mode power spectrum, however, is
only achievable after accurately separating the cosmologi-
cal signal from the large galactic foregrounds in which it is
immersed. In this work we have studied the ability of
current (stage-3) and future (stage-4) ground-based experi-
ments to recover the primordial B-mode signal in the
presence of uncertain foregrounds. For this, we made use of
realistic sky simulations processed through a data-analysis
pipeline consisting of a Bayesian map-space component-
separation code [59] and a power-spectrum estimator [60].
We thus try to subject the data to the analysis methods that
would be used in a realistic setting, which allows us to fully
propagate foreground uncertainties into the final constraints
on the tensor-to-scalar ratio, as well as to identify possible
biases in those constraints caused by an incorrect fore-
ground modeling.
We find that accounting for highly resolved spectral

indices causes a higher noise variance in the foreground-
clean maps, which translates into larger final uncertainties
on r. We therefore optimize the size of the resolution
elements over which foreground spectral parameters are
allowed to vary as a compromise between the size of the
final error bars and the foreground bias associated with a
poor representation of the spatial variation of these param-
eters. After doing that, we find that a stage-3 AdvACT-like
experiment should be able to constrain the tensor-to-scalar
ratio to the level of σðr ¼ 0jS3Þ≃ ð4–6Þ × 10−3, with
S4 achieving sensitivities an order of magnitude better
[σðr ¼ 0jS4Þ≃ ð4–6Þ × 10−4]. These estimates are within
the context of the foreground models considered in this
analysis, which are consistent with current data but do not
necessarily capture all possible scenarios. They also
assume full mode recovery for a small sky patch, and
Gaussian noise.
Given the noise levels expected for S3, we find that it is

always advantageous to push for deeper rather than wider
observations if r ¼ 0, while the same is true for S4 only
assuming optimal delensing levels. This is consistent with
the findings of similar studies. We also find that delensing
does not lead to a significant reduction in the forecast error
on r for S3, since the amplitude of the cosmic variance
contribution from the lensing B modes is comparable to the
irreducible noise variance. Likewise, we observe that, given
the noise levels of the 353 GHz Planck channel, its
usefulness would be marginal for S3, and completely
negligible for S4.
We have also studied the effect of atmospheric noise,

modeling it as a correlated large-scale component that
dominates on scales l below some lknee. We find that
large-scale nonwhite noise can dramatically affect the final
constraints on r, especially if it dominates on scales
l≲ 100, where most of the primordial B-mode signal is
concentrated. We find that the uncertainties for purely white
noise (lknee ¼ 0) grow by a factor of ∼3 and ∼5 for S4 and

S3 respectively after assuming a large-scale correlated noise
component dominating below lknee ¼ 100. Assuming that
large-scale atmospheric noise can be kept under control, for
instance through the use of half-wave plates, stage-3 and
stage-4 experiments should still be able to measure the
tensor-to-scalar ratio with accuracies σðr ¼ 0Þ ¼ 10−2 and
10−3 respectively, given the foregroundmodels that we have
considered. These measurements would directly translate
into interesting constraints on inflationary theories.
Given the currently large uncertainties in the nature of

polarized diffuse foregrounds, it is important to study
departures from the fiducial synchrotronþ single thermal
dust model, in order to explore the possible biases on r
caused by incorrect foreground modeling. To this extent we
have considered simulations containing two different
polarized thermal dust components and a polarized AME
component at low frequencies (modeled as polarized
spinning dust emission). We find that, given the noise
levels of both S3 and S4, a single-component dust model
should be able to describe the two-component model
sufficiently well, with no detectable foreground bias on
r. On the other hand, a 2% polarized AME component
would induce, if unaccounted for, a significant bias on r for
S4, although its effects would be negligible given the larger
noise levels of S3. This highlights the importance of future
measurements of the polarized sky at low frequencies (by
e.g. [61,62]) in order to reduce our current uncertainties on
the impact of polarized AME. There are also a variety of
ways in which the true sky could be more complicated than
any of the models we have considered here, and this will be
the subject of future studies.
It is also important to note that there are a number of

potential sources of instrumental systematic uncertainties
that we have not considered in this paper, such as temper-
ature-to-polarization leakage, beam asymmetries or ground
and scan-synchronous pickup, which could impact the final
constraints on r. In future work we also anticipate compar-
ing forecasts for a given S4-type experimental configura-
tion using our methods, with the methods described in
[16,41] as the definition of S4 is refined.
In order to obtain reliable constraints on the amplitude of

large-scale B-mode fluctuations with future sensitive
ground-based facilities, large efforts are needed both in
understanding the physics of diffuse polarized galactic
foreground and in designing experiments and data-analysis
methods able to separate these foregrounds from the
cosmological CMB signal. To this extent, map-based
component-separation methods are able to consistently
propagate foreground uncertainties caused by spatially
varying spectral parameters, and, as we have shown, can
provide clear diagnostics of incomplete foreground clean-
ing. These, together with suites of null tests aimed at
identifying sources of astrophysical or instrumental sys-
tematic effects, provide a path towards placing robust
constraints on the physics of the inflationary Universe.
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APPENDIX A: SAMPLING THE POSTERIOR

Here we describe the strategies used to sample the
posterior distribution introduced in Sec. II C.

1. Sampling the posterior I: Gibbs sampling

The Gibbs-sampling algorithm tries to solve the problem
of sampling from a multivariate distribution by alternatively
sampling from the distribution of the different parameters
(or sets of parameters) conditional on the previous iter-
ations of the rest. In our case, let Ti, bi denote the ith
sample of the amplitudes and spectral indices. We then
draw the (iþ 1)th sample as

Tiþ1 ← plðTjd;biÞ ∝ pðdjT;biÞppðTÞ; ðA1Þ

biþ1 ← plðbjd;Tiþ1Þ ∝ pðdjTiþ1;bÞppðbÞ: ðA2Þ

The advantage of this method is that, since the amplitudes
are Gaussianly distributed, they can be sampled analyti-
cally with a 100% acceptance ratio, thus gaining an
enormous speed-up factor with respect to a naive
Monte Carlo sampling of the individual parameters.
Explicitly, the conditional distribution for T assuming no

prior on the amplitudes can be written as

pðTjd;bÞ ∝ exp
h
−
1

2
ðT − T̄ÞTN̂−1

T ðT − T̄Þ
i
; ðA3Þ

where

N̂−1
T ¼ F̂TN̂−1F̂; T̄ ¼ N̂TðF̂TN̂−1dÞ: ðA4Þ

Samples from Eq. (A3) can then be easily drawn as

Ti ¼ T̄þ L̂−1u; ðA5Þ

where u is an uncorrelated, unit-variance Gaussian random
vector, and L̂ is the Choleski decomposition of N̂−1

T (i.e.
N̂−1

T ¼ L̂TL̂). The spectral indices are then sampled jointly
using a multidimensional MCMC Metropolis-Hastings
algorithm.

2. Sampling the posterior II: marginalizing
over amplitudes

Since the amplitudes T are Gaussianly distributed, it is
also possible to analytically marginalize over them to
obtain the marginal distribution for the spectral indices.
As noted above, the likelihood plðdjT;bÞ in Eq. (15) can
be written as in Eq. (A3). Writing the b-dependent
proportionality constant explicitly we obtain

pðT;bjdÞ ∝ exp ½− 1
2
ðT − T̄ÞTN̂−1

T ðT − T̄ÞT �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðN̂TÞ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðN̂TÞ

q
exp

h1
2
T̄TN̂−1

T T̄
i
ppðbÞ: ðA6Þ

Integrating this equation over the amplitudes we see that the
first term integrates out to a constant factor, and thus we
obtain the marginal distribution for the spectral indices,

pðbjdÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðN̂TÞ

q
exp

h1
2
T̄TN̂−1

T T̄
i
ppðbÞ: ðA7Þ

Why is it relevant to go through all this trouble?
Ultimately we are interested in the moments of the
distribution of the amplitude of the CMB component.
The expectation value for any function of the amplitudes
can be computed as an integral over the marginal distri-
bution,

hgðTÞjdi ¼
Z

dTdbgðTÞpðT;bjdÞ; ðA8Þ

¼
Z

dbhgðTÞjb;dipðbjdÞ: ðA9Þ

Since the conditional distribution pðTjd;bÞ is Gaussian, it
is completely defined by the first two moments of the
distribution,

hTjd;bi¼ T̄; hðT− T̄ÞðT− T̄ÞT jd;bi¼ N̂T; ðA10Þ

which can be computed analytically for any value of b.
Thus we can compute the marginalized mean and covari-
ance of the amplitudes by sampling only the spectral
indices from their marginal posterior in Eq. (A7) and
computing the analytical conditional mean and covariance
for each sample.
It is easy to see how doing this would improve the

performance of the method. By skipping the intermediate
sampling of the amplitudes [Eq. (A1)], we reduce the
correlation length of the MCMC chains for b, and fewer
samples are needed to cover the posterior. Figure 13 shows
a Monte Carlo chain for βs in the full Gibbs-sampling
scheme of the previous section (left) and sampling directly
from the marginal distribution (right).
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APPENDIX B: VOLUME PRIOR
FOR SPECTRAL PARAMETERS

As has been noted in the literature, when dealing with
nonlinear parameters, a flat prior is not necessarily appro-
priate to describe quantitatively our ignorance about their
value. This can be easily illustrated using the results of
Appendix A 2.
Consider first the case of a noise-dominated map, where

we can approximate the data as being completely made up
of noise. In that case, the expectation value of the exponent
in Eq. (A7) is given by

hT̄N̂−1
T T̄i ¼ Tr½N̂TF̂

TN̂−1hddTiN̂−1F̂� ¼ NA; ðB1Þ

where NA is the number of amplitudes. Thus, in this
regime, the posterior for the spectral parameters b is

dominated by the prefactor
ffiffiffiffiffiffiffiffiffi
jN̂T j

q
. In the simplified case

where the only component is synchrotron, and in the
absence of polarized channels, this volume factor is
given by

ffiffiffiffiffiffiffiffiffi
jN̂T j

q
∝
�X

ν

�
ν

νs0

�
2βs 1

σ2ν

�
−1=2

; ðB2Þ

which becomes arbitrarily large for βs → −∞. This result
makes qualitative sense: in the absence of data, we must
cancel the synchrotron component. This can be achieved
by either having very small amplitudes or a very steep
spectral index. Since a large jβsj would give rise to a
negligible synchrotron component, even for very large
amplitudes, this option covers a larger volume of the space
of parameters.
However, is this behavior desirable? Presumably, we

would expect that, in the absence of signal, the spectral

indices would be completely unconstrained, or else domi-
nated by the prior ppðbÞ. More importantly, since this
volume factor does not depend on the data, could its
presence bias our estimate of b in the case where the data
contain a measurable amount of signal? This can be easily
shown to be the case [47]. The upper panels of Fig. 14 show
the likelihood contours for the dust and synchrotron
spectral indices in a simulated patch of the sky with
relatively high signal to noise. The left and right panels
present the result before and after canceling the volume
factor respectively. The dashed lines show the true values of
the spectral indices, and the red circles correspond to the
mean of the posterior. The presence of the volume factor
biases the estimate of the spectral indices by more than 4σ,
and their true value is recovered within 1σ after accounting
for it. The situation in a low-S=N region is illustrated in the
lower panels of Fig. 14, even using a broad Gaussian prior
with σβ ∼ 1. Centered on the true values of the spectral
indices, the mean estimated indices are hundreds of σs
away from their true values. These, however, are well
recovered after canceling the volume factor and, as shown
in the right panel of this figure, their uncertainty is not
dominated at all by the Gaussian prior.
These two undesirable features (i.e. the nonflat posterior

for the spectral indices in the signal-less case, and the bias it
entails) can be avoided by including a factor jN̂T j−1=2 in our
prior that exactly cancels the volume factor. This problem
can also be solved by applying a Jeffreys prior, given by the
square root of the Fisher information matrix [47]

pJefðθÞ ∝
ffiffiffiffiffiffiffi
Fθθ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�∂2L
∂θ2

	s
: ðB3Þ

Note, however, that for the case of a power-law spectral
index, this is given by

FIG. 13. Left panel: Markov chain Monte Carlo (MCMC) chain for βs in the case where amplitudes are sampled via Gibbs sampling.
Right panel: MCMC chain for βs for indices sampled directly from the marginal distribution.
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pJefðβsÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ν

��
ν

νs0

�
βs 1

σv
ln

�
ν

νs0

��
2

s
; ðB4Þ

which is equivalent to the volume prior pVol ≡ jN̂T j−1=2 defined by Eq. (B2) except for the subdominant logarithmic term.
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