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We study the nonlinear E-mode clustering in Lagrangian space by using large scale structure N-body
simulations and use the displacement field information in Lagrangian space to recover the primordial linear
density field. We find that, compared to Eulerian nonlinear density fields, the E-mode displacement fields
in Lagrangian space improves the cross-correlation scale k with initial density field by a factor of 6–7,
containing 2 orders of magnitude more primordial information. This illustrates ability of potential density
reconstruction algorithms, to improve the baryonic acoustic oscillation measurements from current and
future large scale structure surveys.
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I. INTRODUCTION

Our Universe starts from primordial Gaussian perturba-
tions at a very early stage, and from those fluctuations,
the gravitational instability drives the formation of the large
scale structure (LSS) distribution of matter [1,2]. These
structures grow linearly until the perturbations are large
enough so that the first order perturbation theories are
unable to analytically describe the LSS distributions [3]. As
a result, the final nonlinear LSS distribution contains higher
order statistics, and thus makes it more challenging to be
interpreted into basic cosmological parameters. One such
example is that the baryonic acoustic oscillation (BAO)
scale can be used as a “standard ruler” to constrain the
cosmic expansion history and thus probes the dark energy
properties [4], but nonlinear evolution smears the BAO
features and lowers the measurement accuracy [5,6]. There
are various attempts to recover earlier stages of LSS, in
which statistics are closer to Gaussian [7,8]. Because
Gaussian fields can be adequately described by two-point
statistics, ideally after some recovery algorithms, more
information can be extracted, more straightforwardly, by
power spectra or two-point correlation functions [9,10].
Standard BAO reconstruction algorithms apply in

Eulerian space. They usually smooth the nonlinear density

field on linear scale (∼10 Mpc=h) and reverse the large
scale bulk flows by a negative Zel’dovich linear displace-
ment [11–13]. In the linear Lagrangian perturbation theory
(LPT), the negative divergence of the displacement field
−∇q ·ΨðqÞ with respect to Lagrangian coordinates q gives
the linear density field [14], and in many literatures [15–17]
∇q ·ΨðqÞ is compared with various standard LPT and
corrected LPT initial conditions. Their motivation was
trying to correct or modify the LPT displacement fields
in order that the final positions of particles are brought
closer to N-body results. Because of the absence of
Lagrangian space information in observations, few density
reconstruction algorithms are developed according to the
relation between displacement and linear density. However,
there are techniques to estimate the displacement field
from a final distribution of matter. For example, when a
homogeneous initial matter distribution is assumed, there is
a unique solution of curl-less displacement field to relate
the initial and final distributions without shell crossing.
This solution can be solved by a metric transformation
equation [18,19]. In the one-dimensional (1D) case, this
solution simplifies to an ordering of mass elements by
their final, Eulerian coordinates. Zhu et al. [20] apply this
algorithm to the result of a 1D simulation [3] and obtain an
estimated displacement field ~ΨðqÞ, and find that this new
method well recovers the linear information and recon-
structs the 1D BAO peak in the correlation function. In 3D
and more realistic cases, one needs to carefully consider
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effects of curl, shell crossing, complicated baryonic physics
and biased tracers (galaxies).
Before these steps, we need to quantify the amount of

linear information that can be recovered1 from the full
nonlinear displacement field ΨðqÞ. This field can be
decomposed into a curl-less “E-mode” component and a
divergenceless “B-mode” component, Ψ¼ΨEþΨB, where
the B-mode is raised by late stage non-Gaussianities and is
not dominant in Ψ [16]. In ΨðqÞ from N-body simulations,
(1) E-mode displacement field is used for recovering the
linear information (although B-mode is also present);
(2) shell-crossing effects are fully considered; (3) the setup
is clean in the absence of baryons and realistic observables.
Further reconstructions by ~ΨðqÞ can be compared with this
result. Furthermore, we study the scale dependent cross
correlation between −∇q ·ΨðqÞ and linear density field and
construct optimal Wiener filters to get the optimal filtered
recovered linear density field and recovered linear power
spectrum.
In the rest of the paper, we describe the simulation,

density recovery algorithm and Wiener filter setups in
Sec. II. We show results in Sec. III. Discussion and the
conclusion are in Sec. IV.

II. METHOD

We show the LSS simulation and displacement field
setups in Sec. II A. In Sec. II B, we recover the linear
density field from the displacement field ΨðqÞ from
simulations. Note that potential reconstruction algorithms
are based on an estimated displacement field ~ΨðqÞ instead
of ΨðqÞ. In the following sections we use δR to label the
recovered linear density field from ΨðqÞ.

A. Simulation

We use the open source cosmological simulation code
CUBE [21]. Cosmological parameters are set as Ωm ¼ 0.27,
ΩΛ ¼ 0.73, h0 ¼ 0.68, ns ¼ 0.96 and σ8 ¼ 0.83. Initial
conditions are generated at redshift z ¼ 50 using
Zel’dovich approximation, and using a CLASS transfer
function [22]. Np ¼ 5123 N-body particles are evolved
via their mutual gravitational interactions to z ¼ 0, in a
periodic box with L ¼ 400 Mpc=h per side. The code is set
to use a standard particle-mesh algorithm [23] on two-level
mesh grids (for details, see [24]) and cloud-in-cell (CIC) is
used in particle interpolations in force calculation and
obtaining the density field ρðxÞ in Eulerian coordinates x
at late stages. We use density contrast δ≡ ρ=hρi − 1 to
describe the density fluctuations. The primordial linear
density field δL is given by the initial stage and scaled to

z ¼ 0 by the linear growth factor. In the top and middle
panels of Fig. 1 we show projections of the nonlinear
density field δN given by the simulation and the linear
density field δL. δN is obtained by the particle distribution

FIG. 1. Visualization of the nonlinear density field δN (top),
linear density field δL (middle) and the raw recovered density field
δR (bottom). These projections have 9.375 Mpc=h thickness and
400 Mpc=h per side. The top panel shows the nonlinear displace-
ment field Ψ by the deformed mesh, which traces the LSS of δN .

1To avoid ambiguity, we call δR ≡ −∇q ·ΨðqÞ recovered
linear density field, which requires ΨðqÞ from N-body simu-
lations, while −∇q · ~ΨðqÞ is called the reconstructed density
field, which uses the estimated displacement field.
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at redshift z ¼ 0, and the particles are interpolated by using
the cloud-in-cell (CIC) algorithm. Because δN is highly
nonlinear and follows an approximate log-normal distri-
bution, we plot log10ðδN þ 1Þ instead, and show the color
scale log10ðδN þ 1Þ ∈ ½−1; 1� (or ρN=hρNi ∈ ½0.1; 10�)
only, for a better visualization. The nonlinear evolution
of δN makes it very different from δL in appearance.
The two-point statistics of these density fields are

quantified by the cross power spectrum PijðkÞ≡
ð2πÞ−3hjδiðkÞ∥δjðkÞji, where subscripts i, j may refer to
linear (L), nonlinear (N), recovered (R), or noise (n) density
fields. When i ¼ j it reduces to the auto power spectrum
PiiðkÞ or PðkÞ. We usually plot the dimensionless power
spectrum Δ2ðkÞ≡ k3PðkÞ=2π2.

B. Density recovery

In the simulation, we use particle-ID (PID) to record the
initial (Lagrangian) location q of particles, and the infor-
mation is tracked until the z ¼ 0 and we can get the
Lagrangian displacement vector Ψ≡ x − q for every par-
ticle. Then these vectors are interpolated onto the initial
Lagrangian coordinates q of particles and we get the
displacement field ΨðqÞ. To visualize the Ψ field, we draw
a 3D uniform mesh over the volume, and use the given Ψ
field to deform the mesh according to the direction and
physical amplitude of Ψ. In the top panel of Fig. 1, The
resulting mesh illustrates a “pseudocurvilinear coordinate”
similar to [18], however the mesh can be overlapped due to
shell crossing. The densest mesh grids trace the densest
structures of δN , whereas the undeformed grid positions are
the Lagrangian coordinates in which we do the density
recovery. The raw recovered density field is given by the
differential motion of matter elements,

δR ¼ −∇ ·ΨðqÞ: ð1Þ
Because the recovery processes are implemented on
Lagrangian coordinates, δR takes the coordinates of q
instead of x. We just write q’s Fourier wave number kq
as k to simplify the expression.
To quantify the linear information in the recovered

density field δR, we decompose δL in Fourier space into
two uncorrelated parts,

δLðkÞ ¼ r0δR þ δn; ð2Þ
where the first term r0δR is completely correlated with δR,
meaning the linear information we can extract from δR. The
noise term δn is uncorrelated with δR, since the rest of the
linear information is not contained in δR. Correlating
Eq. (2) with δR gives

PLR ¼ r0PRR þ PnR; ð3Þ
where Pij ≡ hδiδji denotes the cross power spectrum.
Since δn is uncorrelated with δR, PnR ¼ 0. With the

definition of cross correlation coefficient rðδL; δRÞ≡
PLR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PLLPRR
p

and bias b2 ¼ PRR=PLL, we solve
r0 ¼ PLR=PRR ¼ rb−1. Note that these computations above
and below can also be applied on δN for comparison, by
replacing “ R” with “ N” in the equations, while we do
not rewrite them explicitly in the paper for simplicity.
From these, we plot the cross correlation coefficient rLN ¼
rðδL; δNÞ and rLR ¼ rðδL; δRÞ in Fig. 2. rLN shows no
correlation starting from k≃ 0.4 h=Mpc [25]. Clearly, δR
contains much more linear information on smaller scales.
According to Eq. (2), the auto power spectrum of δL is

decomposed as

PLL ¼ r2b−2PRR þ Pnn; ð4Þ

and Pnn ¼ ð1 − r2ÞPLL. We also explicitly compute the
cross power spectrum between δR and δn ¼ δL − rb−1δR,
and found that rb−1PnR is about 2 orders of magnitude
lower than PLL, being consistent with zero. This confirms
that the signal term rb−1δR and the noise term δn is indeed
uncorrelated and validates Eq. (4). According to these
two terms, we construct a Wiener filter to filter out the
uncorrelated part in δR:

WðkÞ ¼ r2b−2PRR

r2b−2PRR þ Pnn
¼ r2: ð5Þ

The optimal recovered density is given by

~δR ¼ Wb−1δR; ð6Þ

and the optimal recovered power spectrum is given by

FIG. 2. Correlation functions rðδL; δNÞ and rðδL; δRÞ (solid
lines) and their scaled BAO damping models (dotted lines).
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~P ¼ W2b−2PRR ¼ W2PLL þW2b−2PNN: ð7Þ

Here W2 describes the damping of the linear power
spectrum.

III. RESULTS

To visualize the above algorithms, a projection of δR is
plotted in the bottom panel of Fig. 1, which looks closer
to δL compared to δN . However the smallest scale structures
are unable to be recovered.
As discussed in Sec. II B, Fig. 2 shows the cross

correlation functions rLN and rLR. The latter extends the
correlation with δL to smaller scales by nearly an order of
magnitude. The extra correlation scales well cover the BAO
scales of our interest.
In Fig. 3, we show the auto power spectra of δL and δN in

black dashed and blue solid curves. Their difference shows
the nonlinear evolution of LSS on small scales. Their cross
power (not shown for clarity of the figure) drops to a very
low value on scales k≳ 0.1 h=Mpc, indicating a loss of
linear information in the nonlinear power spectrum PNN .
This scenario directly leads to how PLL is decomposed
according to Eq. (4). In the nonlinear case [with R replaced
by N Eq. (4)], on small scales k≳ 0.1 h=Mpc, PLL is
dominated by uncorrelated, nonlinear noise, shown in the
green dotted line. In the case of δR, however, PLL is
decomposed into the orange dash-dotted correlated part and
the purple dotted uncorrelated part according to Eq. (4).
The correlated power spectrum is dominated on BAO
scales of our interest.
To quantify the improvement of cross correlation in

the power spectrum, we compute the damping factors
W2ðkÞ respectively for the optimal filtered nonlinear and

recovered density fields ~δN and ~δR. We fit Gaussian BAO
damping models DðkÞ ¼ expð−k2Σ2=2Þ to these W2ðkÞ’s
and give Σ ¼ 1.8 Mpc=h and Σ ¼ 12 Mpc=h for δR
and δN . Since DðkÞ ¼ W2 ¼ r4, we plot D1=4

N and D1=4
R

over rLN and rLR in Fig. 2. The analyses are repeated with
various box sizes (100, 300, 800 Mpc=h per side) and give
consistent results.
To further illustrate the improvement in real space one

point function correlations, in Fig. 4 we use the probability
distribution as functions (PDFs) of ðδL; δNÞ and ðδL; δRÞ to
show the point-point correlation between these two pairs of
density fields. Since δn in Eq. (2) is uncorrelated, we use
Wiener filtered fields. To keep the consistency over δL, δN
and δR, we use the WðkÞ ¼ r2LR as the Wiener filter.
The grey-scaled plots in the center of both panels show

FIG. 3. Power spectra of δL, δN , and the decomposition of PLL
into correlated parts and noise terms according to Eq. (4).

FIG. 4. Probability distribution functions (PDFs) fðδL; δNÞ and
fðδL; δRÞ, showing in the upper and lower panels respectively.
Both red curves on the x axes show fðδLÞ, following a Gaussian
distribution. The two curves on the y axes in the upper and the
lower panel show respectively fðδNÞ and fðδRÞ.
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the two-variable PDFs, whereas their projections onto
each variable are just one-variable PDFs—fðδLÞ, fðδNÞ
and fðδRÞ, shown as red/blue curves on the axes of Fig. 4.
In the top panel, δN shows an approximate log-normal
distribution (blue curve) and δL follows an expected
Gaussian distribution. They show tiny positive correlation
in the 2D PDF. Because in Fourier space, δL and δN have
correlations on only very large, linear scales (Fig. 2), they
result in little correlation in real space—initial density
fluctuations in Lagrangian coordinates are evolved/
transformed to Eulerian coordinates. As the recovery is
done in Lagrangian space, it recovers a certain amount of
correlation, as shown in the 2D PDF of the bottom
panel of Fig. 4. One can also see that δR follows a much
closer Gaussian distribution (blue curve of the bottom
panel). In denser regions of δL, δR is saturated at δR ¼ 3,
signifying the extreme collapsing of matter [15]:
δR ¼ −∇ ·Ψ ¼ ∇ · q ¼ 3. Shell crossing makes δR oscil-
late around 3. These second uncorrelated peaks damp out as
we go to higher redshifts.

IV. DISCUSSION AND CONCLUSION

We extract the actual displacement field of matter
elements in cosmological N-body simulations, and use
this displacement field to study the LSS nonlinear cluster-
ing in Lagrangian space. The displacement information is
used to recover the primordial linear perturbations. The
result shows a prominent improvement from rLN to rLR in
Fig. 2—recovering the lost linear information on nearly an
order of magnitude smaller scales. This is achieved by
implementing differential movement information of matter
elements on Lagrangian coordinates, rather than on
Eulerian coordinates. This result illustrates the feasibility
of using estimated displacement field ~ΨðqÞ to reconstruct
the primordial linear density field. A straightforward
example of an estimation of ~ΨðqÞ is given by [18,19].
In reality, one needs to consider all aspects including
vorticity, shell crossing, bias, noise and data complexities.
The impact of these factors can be quantitatively compared

with the impact of different estimation methods, and with
the exact solution by N-body simulations.
The advantage of using displacement field in

reconstruction is its insensitive response from high non-
linearities. Nonlinear densities δN can be arbitrarily large—
one expects virialized regions to be observable, where
nonlinear density is given by the inverse determinant of the
Jacobian δN ¼ jJj−1 ≳ 200. However, reconstructed den-
sities δR are given by the trace trðJÞ and saturates at 3.
Actually, the displacement fields are dominated by early
stage linear processes, which is the Lagrangian-Eulerian
coordinate transform, while late stage shell crossing, non-
linear and baryonic processes only fine-tune the final
position x [16]. Compared with estimated displacement
fields ~ΨðqÞ by [18], which do not have shell crossing, the
additional shell-crossing information in ΨðqÞ is uncorre-
lated with δL. This insensitive response from nonlinearities
enables the stability of reconstruction algorithms, which are
expected to give similar results of this paper. In contrast,
traditional treatments in reconstruction deals directly on
density fields which sensitively relies on nonlinear
processes—density values can vary by orders of magnitude
due to nonlinear/baryonic physics and many sources of
errors.
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