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We demonstrate that in the framework of standard general relativity, polytropic spheres with properly
fixed polytropic index n and relativistic parameter σ, giving a ratio of the central pressure pc to the central
energy density ρc, can contain a region of trapped null geodesics. Such trapping polytropes can exist for
n > 2.138, and they are generally much more extended and massive than the observed neutron stars. We
show that in the n–σ parameter space, the region of allowed trapping increases with the polytropic index for
intervals of physical interest, 2.138 < n < 4. Space extension of the region of trapped null geodesics
increases with both increasing n and σ > 0.677 from the allowed region. In order to relate the trapping
phenomenon to astrophysically relevant situations, we restrict the validity of the polytropic configurations
to their extension rextr corresponding to the gravitational mass M ∼ 2M⊙ of the most massive observed
neutron stars. Then, for the central density ρc ∼ 1015 g cm−3, the trapped regions are outside rextr for all
values of 2.138 < n < 4; for the central density ρc ∼ 5 × 1015 g cm−3, the whole trapped regions are
located inside rextr for 2.138 < n < 3.1; while for ρc ∼ 1016 g cm−3, the whole trapped regions are inside
rextr for all values of 2.138 < n < 4, guaranteeing astrophysically plausible trapping for all considered
polytropes. The region of trapped null geodesics is located close to the polytrope center and could have a
relevant influence on the cooling of such polytropes or binding of gravitational waves in their interior.

DOI: 10.1103/PhysRevD.95.043009

I. INTRODUCTION

Extremely compact objects having surface R located
under the radius rph of photon circular geodesics of the
external Schwarzschild (or some generalized spherically
symmetric vacuum) spacetime are important because they
have to contain a region of trapped null geodesics that could
be relevant for trapping of gravitational waves [1], or
radiated neutrinos [2]. The existence of extremely compact
objects has been demonstrated in the physically implau-
sible, but principally very interesting case of spheres with
uniform distribution of energy density (but radii-dependent
distribution of pressure) [3–6]. However, the models of
neutron or quark stars based on the known realistic
equations of state do not allow for the existence of
extremely compact objects defined in this way, as in the
most extreme cases, R ≥ 3.5M > rph ¼ 3M, where M
denotes the mass of the compact star [7].
Surprisingly, a recent study related to the general

relativistic polytropic spheres in spacetimes with a repul-
sive cosmological constant demonstrates the possibility to
obtain relativistic polytropic spheres containing, near their
center, a region with trapped null geodesics [8]. This is an
important result, as the surfaces of such polytropes can
be located above rph ¼ 3M so we could reconsider the

definition of the extremely compact objects, restricting our
attention solely to the existence of a trapped null geodesics
region. Although the polytropic spheres represent some
physical idealization, it is well known that they represent
nonrelativistic (n ¼ 1.5) and ultrarelativistic (n ¼ 3)
degenerated Fermi gas that can be taken quite seriously,
as it is physically interesting, especially for the ultra-
relativistic Fermi gas [9].
For this reason, we study in detail the existence of

general relativistic polytropes containing a region of
trapped null geodesics. The role of the cosmological
constant is relevant only for very extended objects with
radii close to the static radius of the external spacetime
[10–12] and low central density [8]. Thus, it is clear that it
will be irrelevant for our study, and we can abandon the
influence of the cosmological constant. In order to find
the regions of trapped null geodesics, we use, following
Ref. [8], the construction of the so-called optical geometry,
related to the polytrope internal spacetime, and its embed-
ding diagrams. This is a quite efficient method, as in the
spherically symmetric spacetimes, the turning points of the
optical geometry embedding diagrams correspond to
the stable and unstable photon circular geodesics, implying
the existence of a region of trapped null geodesics [13]. We
relate the general discussion of the trapping polytropes to
situations of direct astrophysical relevance, demonstrating
their strong dependence on the central energy density and
restricting the validity of the polytropic state equations to
regions giving masses smaller than the observational limit
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of the neutron star mass (M ∼ 2M⊙). We present a detailed
discussion for the case of the ultrarelativistic Fermi gas
with polytropic index n ¼ 3.

II. POLYTROPE STRUCTURE EQUATIONS

For a spherically symmetric, static spacetime, expressed
in terms of the standard Schwarzschild coordinates, the line
element takes the form

ds2 ¼ −e2Φc2dt2 þ e2Ψdr2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ

The metric has two unknown functions of the radial
coordinate, ΦðrÞ and ΨðrÞ. The static configuration is
assumed to be a perfect fluid having the stress-energy
tensor

Tμ
ν ¼ ðpþ ρc2ÞUμUν þ pδμν ; ð2Þ

where Uμ denotes the 4-velocity of the fluid. In the fluid
rest frame, ρ ¼ ρðrÞ represents the mass-energy density
and p ¼ pðrÞ represents the isotropic pressure.
We assume the mass-energy density and pressure related

by the polytropic equation of state

p ¼ Kρ1þ1=n; ð3Þ

where the constant n denotes the polytropic index. K
denotes a constant governed by the thermal characteristics
of a given polytropic configuration by specifying the
density ρc and pressure pc at its center—it is determined
by the total mass and radius of the configuration, and the
relativistic parameter [14]

σ ≡ pc

ρcc2
¼ K

c2
ρ1=nc : ð4Þ

For a given pressure, the density is a function of temper-
ature. Therefore, the constant K contains the temperature
implicitly. The polytropic equation is a limiting form of the
parametric equations of state for the completely degenerate
gas at zero temperature that can be relevant, e.g., for
neutron stars. In such a situation, both n andK are universal
physical constants [14]. The polytropic law assumption
enables one to describe the basic properties of the
fluid configurations governed by the relativistic laws.
The equation of state of the ultrarelativistic degenerate
Fermi gas is determined by the polytropic equation, with
the adiabatic index Γ ¼ 4=3 corresponding to the poly-
tropic index n ¼ 3, while the nonrelativistic degenerate
Fermi gas is determined by the polytropic equation of state
with Γ ¼ 5=3 and n ¼ 3=2 [9].
The structure equations of the general relativistic

polytropic spheres are determined by the Einstein field
equations

Rμν −
1

2
Rgμν ¼

8πG
c4

Tμν; ð5Þ

and by the local energy-momentum conservation law

Tμν
;ν ¼ 0: ð6Þ

The structure of the polytropic spheres is governed by
the two structure functions. The first one, θðrÞ, is related
to the mass-energy density radial profile ρðrÞ and the
central density ρc [14],

ρ ¼ ρcθ
n; ð7Þ

with the boundary condition θðr ¼ 0Þ ¼ 1. The second one
is the mass function given by the relation

mðrÞ ¼
Z

r

0

4πr2ρdr; ð8Þ

with the integration constant chosen to be mð0Þ ¼ 0, to
guarantee the smooth spacetime geometry at the origin
[15]. At the surface of the configuration at r ¼ R, we
get ρðRÞ ¼ pðRÞ ¼ 0, the total mass of the polytropic
configuration M ¼ mðRÞ. Outside the polytropic con-
figuration, the spacetime is described by the vacuum
Schwarzschild metric.
The structure equations of the polytropic spheres related

to the two structure functions θðrÞ and mðrÞ and the
parameters n, σ can be put into the form [8,14]

σðnþ 1Þ
1þ σθ

r
dθ
dr

�
1 −

2GmðrÞ
c2r

�
þ GmðrÞ

c2r
¼ −

G
c2

σθ
dm
dr

;

ð9Þ
dm
dr

¼ 4πr2ρcθn: ð10Þ

Introducing the characteristic length scale L of the
polytropic sphere [14],

L ¼
�ðnþ 1ÞKρ1=nc

4πGρc

�1=2
¼

�
σðnþ 1Þc2
4πGρc

�
1=2

; ð11Þ

and the characteristic mass scale M of the polytropic
sphere,

M ¼ 4πL3ρc ¼
c2

G
σðnþ 1ÞL; ð12Þ

the structure equations, Eqs. (9) and (10), can be trans-
formed into a dimensionless form by introducing a dimen-
sionless radial coordinate

ξ ¼ r
L
; ð13Þ

and a dimensionless gravitational mass function
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vðξÞ ¼ mðrÞ
4πL3ρc

: ð14Þ

The dimensionless structure equations then take the form
(for details, see Refs. [8,14])

ξ2
dθ
dξ

1 − 2σðnþ 1Þðv=ξÞ
1þ σθ

þ vðξÞ ¼ −σξθ
dv
dξ

; ð15Þ

dv
dξ

¼ ξ2θn: ð16Þ

For fixed parameters n, σ, the structure equations (15)
and (16) have to be simultaneously solved under the
boundary conditions

θð0Þ ¼ 1; vð0Þ ¼ 0: ð17Þ

From Eqs. (16) and (17), it follows that vðξÞ ∼ ξ3 for ξ → 0
and, according to Eq. (15), we obtain

lim
ξ→0þ

dθ
dξ

¼ 0: ð18Þ

The surface of the polytropic sphere, r ¼ R, is represented
by the first zero point of θðξÞ, denoted as ξ1:

θðξ1Þ ¼ 0: ð19Þ

Therefore, the solution ξ1 determines the surface radius of
the polytropic sphere, and the solution vðξ1Þ determines its
gravitational mass.
The solutions of the polytropic structure equations can

be obtained by numerical methods only [14], with the
exception of the n ¼ 0 polytropes governing the spheres
with a uniform distribution of the energy density when
the solution can be given in terms of the elementary
functions [3,8].

III. CHARACTERISTICS
OF THE POLYTROPIC SPHERES

A polytropic sphere constructed for given parameters n,
σ and ρc is characterized by two solutions of the structure
equations ξ1 and vðξ1Þ and by the scale factors L and M.
Then, the radius of the polytropic sphere reads

R ¼ Lξ1; ð20Þ

while the gravitational mass of the sphere is given by

M ¼ Mvðξ1Þ ¼
c2

G
Lσðnþ 1Þvðξ1Þ: ð21Þ

The radial profiles of the energy density, pressure, and
mass distribution are given by the relations

ρðξÞ ¼ ρcθ
nðξÞ; ð22Þ

pðξÞ ¼ σρcθ
nþ1ðξÞ; ð23Þ

MðξÞ ¼ M
vðξÞ
vðξ1Þ

: ð24Þ

The temporal metric coefficient takes the form

e2Φint ¼ ð1þ σθÞ−2ðnþ1Þ
�
1 − 2σðnþ 1Þ vðξ1Þ

ξ1

�
; ð25Þ

and the radial metric coefficient takes the form

e−2Ψint ¼ 1–2σðnþ 1Þ vðξÞ
ξ

: ð26Þ

Detailed discussion of the polytropic spheres, including
their gravitational binding energy and the internal energy,
can be found in Refs. [8,14].
The compactness parameter governing the effectiveness

of the gravitational binding of the polytropic spheres is
given by the relation

C≡ GM
c2R

¼ 1

2

rg
R

¼ σðnþ 1Þvðξ1Þ
ξ1

; ð27Þ

where we have introduced the standard gravitational radius
of the polytropic sphere that reflects its gravitational mass
in length units,

rg ¼
2GM
c2

: ð28Þ

The compactness C of the polytropic sphere can be
represented by the gravitational redshift of radiation emit-
ted from the surface of the polytropic sphere [6].
All the characteristic functions introduced above can

only be determined by numerical procedures for the
polytropic equations of state with n > 0. The special case
of polytropes with n ¼ 0 corresponds to the physically
unrealistic polytropic configurations with a uniform dis-
tribution of energy density; their characteristic functions
can be given in terms of elementary functions, and they
could serve as a test bed for more complex general
polytropes [3,8].
The external vacuum of the polytropic sphere is repre-

sented by the Schwarzschild spacetime with the same
gravitational mass parameter M as those characterizing
the internal spacetime of the polytropic sphere, and it is
given by the metric coefficients

e2Φext ¼ e−2Ψext ¼ 1 −
2GM
c2r

: ð29Þ

The photon sphere of the Schwarzschild spacetime,
given by the photon circular geodesics, is located at the
radius [15]
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rph ¼
3GM
c2

¼ 3

2
rg: ð30Þ

In the following, we compare the radius of the obtained
polytropic spheres containing a region of trapped null
geodesics to this radius of the photon sphere in order to
test if the original definition of the extremely compact
objects (R < rph) is satisfied. The relevant condition then
reads C > 1=3.
In order to have a deeper insight into the character of

polytropes containing a region of trapped null geodesics,
we also consider the locally defined compactness of the
polytrope, related to a given radius r ¼ Lξ and given by
the relation

CðξÞ≡ σðnþ 1ÞvðξÞ
ξ

: ð31Þ

We can then test if the condition CðξÞ > 1=3 is satisfied
inside the trapping polytropes.

IV. EMBEDDINGS OF THE OPTICAL
GEOMETRY RELATED TO
POLYTROPIC SPHERES

We concentrate our attention on the visualization of the
structure of the internal spacetime of the general relativistic
polytropes, considering the optical geometry of the space-
time. Such a visualization enables us to easily find the
polytropic structures containing a region of trapped null
geodesics.

A. Embedding diagrams

The curvature of the internal spacetime of the poly-
tropes can conveniently be represented by the standard
embedding of 2D, appropriately chosen, spacelike surfa-
ces of the ordinary 3-space of the geometry (here, these
are t ¼ const sections of the central planes) into 3D
Euclidean space [15].
The 3D optical reference geometry [16] related to the

spacetime under consideration enables us to introduce a
natural “Newtonian” concept of gravitational and inertial
forces, reflecting some hidden properties of the test
particle motion [13,17–19]. For an alternative approach
to the concept of inertial forces, see, e.g., the “special
relativistic” one [20]. Properties of the inertial forces are
reflected by the embedding diagrams of appropriate 2D
sections of the optical geometry. The embedding diagrams
of the n ¼ 0 polytropes were presented in Ref. [4]; here,
they are applied for relativistic polytropes with n > 0.
Note that using the optical reference geometry, it can be
shown that extremely compact configurations allowing the
existence of bound null geodesics exist [4,21]. For the
extremely compact relativistic polytropes with trapped null
geodesics, a turning point of the embedding diagram of
the optical geometry occurs [13].

We embed the equatorial plane of the optical
reference geometry into the 3D Euclidean space with the
line element

d ~σ2 ¼ dρ2 þ ρ2dα2 þ dz2: ð32Þ

The embedding is represented by a rotationally symmetric
surface z ¼ zðρÞ with the 2D line element

dl2
ðEÞ ¼

�
1þ

�
dz
dρ

�
2
�
dρ2 þ ρ2dα2: ð33Þ

B. Optical reference geometry

In the static spacetimes, the metric coefficients of the
optical 3D space are determined by [16]

hik ¼
gik
−gtt

: ð34Þ

In the equatorial plane, the line element has the form

dl2
ðoptÞ ¼ hrrdr2 þ hϕϕdϕ2 ð35Þ

which has to be identified with dl2
ðEÞ. The azimuthal

coordinates of the optical space and the Euclidean space
can be identified (α≡ ϕ), but the radial coordinates are
related by

ρ2 ¼ hϕϕ: ð36Þ

Then, the embedding formula is determined by

�
dz
dρ

�
2

¼ hrr

�
dr
dρ

�
2

− 1: ð37Þ

We transform the embedding formula into a parametric
form zðρÞ ¼ zðrðρÞÞ, implying

dz
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hrr −

�
dρ
dr

�
2

s
: ð38Þ

The turning points of the embedding diagrams are given by
the condition [13]

dρ
dr

¼ 0: ð39Þ

We also have to take into consideration the so-called
reality condition determining the limits of embeddability,

hrr −
�
dρ
dr

�
2

≥ 0: ð40Þ
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C. Embeddings of the polytrope optical geometry

For the general relativistic polytropes, the metric coef-
ficients of the optical geometry take the form

hrr ¼
e2Ψ

e2Φ
¼ ½1þ σθðξÞ�2ðnþ1Þ

1 − 2σðnþ 1Þvðξ1Þ=ξ1
×

�
1 − 2σðnþ 1Þ vðξÞ

ξ

�
−1
; ð41Þ

hϕϕ ¼ r2

e2Φ
¼ r2½1þ σθðξÞ�2ðnþ1Þ

1–2σðnþ 1Þvðξ1Þ=ξ1
: ð42Þ

It is convenient to introduce new dimensionless coordinates
η and ~z by

η ¼ ρ

L
; ~z ¼ z

L
: ð43Þ

Then, we can write

η ¼ ξ½1þ σθðξÞ�nþ1h
1 − 2σðnþ 1Þ vðξ1Þξ1

i
1=2 ð44Þ

and

dη
dξ

¼
h
1þ σθðξÞ�n

n
1þ σ½θðξÞ þ ðnþ 1Þξ dθ

dξ

io
h
1–2σðnþ 1Þ vðξ1Þξ1

i
1=2 : ð45Þ

The condition governing the turning points of the embed-
ding diagrams reads

σ

�
θðξÞ þ ðnþ 1Þξ dθ

dξ

�
¼ −1: ð46Þ

The embedding formula takes the form

�
d~z
dξ

�
2

¼
�
1–2σðnþ 1Þ vðξ1Þ

ξ1

�
−1
�
1–2σðnþ 1Þ vðξÞ

ξ

�
−1
2σðnþ 1Þ½1þ σθðξÞ�2n

×

��
1þ σ

�
θðξÞ þ ðnþ 1Þξ dθ

dξ

��
2 vðξÞ

ξ
− ξ

dθ
dξ

�
1þ σθðξÞ þ σ

2
ðnþ 1Þξ dθ

dξ

��
: ð47Þ

The condition of embeddability giving the limits of
applicability of the embedding procedure takes the form

�
1þ σ

�
θðξÞ þ ðnþ 1Þξ dθ

dξ

��
2 vðξÞ

ξ

− ξ
dθ
dξ

�
1þ σθðξÞ þ σ

2
ðnþ 1Þξ dθ

dξ

�
≥ 0: ð48Þ

Notice that the embedding diagrams are purely related to
the solutions of the dimensionless structure equations of the
general relativistic polytropes, which are independent of
the length scale factor L governing the physical extension
and gravitational mass of the polytropes. For this reason,
the existence of the zones of null geodesics trapping will
also be independent of the length scale factor L. The
trapping phenomenon is thus fully governed by the poly-
trope parameters n and σ—it is formally independent of the
central density ρc that enters the definition of the relativistic
parameter σ.
Using numerically obtained solutions of the polytrope

structure equations, we give examples of the embedding
diagrams. In Fig. 1, the embedding diagram of the optical
geometry of the internal n ¼ 3 polytrope spacetime is given
for the extremal value of the relativistic parameter σ ¼ 3=4
allowed by the causality limit [14]. As demonstrated in
Ref. [13], the turning points of the diagram correspond

to the (inner) stable null circular geodesics at radius
rphðsÞ ¼ rc and to the (outer) unstable null circular geodesic
at radius rphðuÞ ¼ rb. The radius rc corresponds to the center
of the trapping region, while the radius rb corresponds to its
outer boundary. In Fig. 2, we demonstrate how the optical
geometry embeddings depend on the polytrope index n
and on the relativistic parameter σ for fixed n. In the
next section, we use the embeddings for a detailed study of
the existence of the trapping zones for null geodesics
polytropic parameters n and σ.

FIG. 1. Optical geometry of the polytropic sphere having
n ¼ 3 and σ ¼ 3=4. The turning points corresponding to the
stable and unstable null circular geodesics are depicted as
circles rc and rb.
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V. GENERAL RELATIVISTIC
POLYTROPES CONTAINING A REGION

OF TRAPPED NULL GEODESICS

Numerical solutions of the structure equations of the
polytrope spheres yield the dimensionless radial profiles
of energy density, mass and metric coefficients, and the
dimensionless extension and mass parameters ξ1 and
v1 ¼ vξ1 . These solutions are governed by the parameters
n and σ, since they are independent of the third parameter
governing the polytrope spheres, ρc, that governs the
length and mass scales of the polytropes. We restrict our
attention to the polytropic spheres with the standard
choice of the polytropic index, 0 ≤ n ≤ 4.

A. Demarcation of trapping region
in n–σ parameter space

As demonstrated in the previous section, a region with
trapped null geodesics can exist in the interior of the
polytropic spheres, if the parameters n and σ are conven-
iently chosen. Thus, we first give the region of the n–σ
parameter space, determining the polytropic spheres dem-
onstrating the trapping phenomenon.
First, we have to put the upper causal limit on the

relativistic parameter. To avoid a superluminal speed of
sound in the gas, a maximal value of the relativistic
parameter σ for fixed polytropic index n is limited. For
adiabatic processes in the polytropic spheres, the phase
velocity of the sound is given by

v2s ¼
�
dp
dϱ

�
adiabatic

: ð49Þ

Because the radial profile of the pressure in any polytropic
fluid sphere is a monotonically decreasing function, the
limit on the maximum value of σ results from the restriction
on the speed of sound in the center, thus giving the relation

vsc ≡ c

�
nþ 1

n
σ

�
1=2

< c: ð50Þ

Hence, for a given polytropic index n, one gets the upper
limit restriction

σ ≤
n

nþ 1
≡ σmax: ð51Þ

Using the behavior on the left-hand side of Eq. (46),
denoted as the turning function σ½θðξÞ þ ðnþ 1Þξ dθ

dξ�≡
Tðξ; σ; nÞ, we can numerically search for the existence
of polytropic spheres demonstrating the trapping effect
by solving the equation Tðξ; σ; nÞ ¼ −1, as graphically
depicted in Fig. 3 in the special case of n ¼ 3 polytropes. If
there are, for a fixed n, some values of σ implying two
different solutions ξc and ξb of this equation, the trapping
region exists, and the solutions give radii of the stable and
unstable circular geodesics. We confirm this conclusion in
the following by a direct study of the effective potential
of the null geodesics of the internal spacetime of such
polytropic configurations. If, for the fixed n, there is only
one solution, where ξc ¼ ξb, the minimal value of the
relativistic parameter σmin allowing for trapping is found.
The numerical analysis demonstrates that the trapping
region starts to exist for a properly selected relativistic

FIG. 2. Embedding diagram constructed for several polytropic
spheres having the polytropic and relativistic parameters fn; σg
valued gradually as f2.2; 11=16g, f2.5; 5=7g, f2.7; 27=37g,
f3; 7=10g, f3; 18=25g, f3; 3=4g (curves in the same order as
the growing η coordinate of the turning points rc and rb
corresponding to null circular geodesics).

FIG. 3. Search of the critical relativistic parameter σminðnÞ and
the turning points of the “turning” optical geometry embedding
diagrams. If the turning function Tðξ; σ; nÞ ¼ −1 for two differ-
ent values of the coordinate ξ, the trapping effect exists for a given
pair fn; σg. Curves are depicted for n ¼ 3. The parameter σ is
gradually increased from the given nonzero value up to σmax.
A similar behavior of plotted turning functions can also be seen
for other values of the polytropic index n > 2.138.
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parameter σ, if the polytropic index overcomes the critical
minimal value of nmin ≐ 2.1378. The limiting maximal
(and simultaneously minimal) allowed value of the rela-
tivistic parameter reads σmaxðn ¼ 2.1378Þ ¼ 0.681.
Based on the above given procedure, the turning point

limit σminðnÞ presented in Fig. 4 has been obtained.
Together with the causal limit of σmaxðnÞ, the turning point
limit provides, in the parameter n–σ plane, a restriction on
the existence of polytrophic spheres containing trapped null
geodesics.

B. Physically relevant polytropic spheres

Now we can provide more detailed information
on the physical properties of the polytropic spherical

configurations containing regions of trapped null geo-
desics. For selected values of the polytropic index n and
related maximal allowed values of the relativistic parameter
σmaxðnÞ, properties of such configurations—like the total
gravitational mass, the surface radius, and the radii rc and
rb governing the trapping zone of the polytrope—
are summarized in Table I for the special selection
of the central energy density of the polytropic sphere
ρc ¼ 5 × 1015 g cm−3. We also give the ratio ρðrÞ=ρc at
the radii r ¼ rc, r ¼ rb. Compactness of these polytropes
will be studied separately.
Second, we put our results into an astrophysical context,

related to the observational restrictions of the neutron stars,
by considering the dependence of our general dimension-
less results on the central energy density parameter ρc
governing the extension and mass of the polytrope con-
figuration. Note that all the characteristic radii and masses
of the polytropic spheres depend significantly on the central
energy density—when increasing the central density, the
radii and masses decrease as 1=

ffiffiffiffiffi
ρc

p
.

Because of the observationally given limit on the mass
of the neutron stars MmaxðoÞ ∼ 2M⊙ [7,22], we assume that
the physical relevance of the polytropic equation of state is
limited by the radius rextr where the polytrope sphere
reaches the mass mðrextrÞ ¼ 2M⊙; above this radius, the
sphere should be described by different equations of state,
as is well known from the theory of neutron stars [9]. The
maximum mass of neutron stars allowed theoretically by
realistic equations of state is MmaxðtÞ ∼ 2.8M⊙ [23], while
the minimal surface radius is Rmin ∼ 10 km [24]. Moreover,
we assume that the central energy density is supernuclear,
i.e., ρc > 1015 g cm−3.

FIG. 4. Trapping polytropes in parameter n-σ space. We show
the span of the possible parameter σ for a given polytropic index
in the interval 2.138 < n < 4 for which the trapping effect exists.

TABLE I. List of parameters describing a polytropic fluid sphere of given n having σ ¼ σmax. For the calculation
of the scale parameter L, the value 5 × 1015 g cm−3 was used as ϱc.

n σmax R [km] M=M⊙ rc [km] ϱðrcÞ=ϱc rb [km] ϱðrbÞ=ϱc rextr [km] ϱðrextrÞ=ϱc
4.0 0.80000 1.87 × 108 1251.82 6.2323 0.23344 11.0981 0.04914 9.9120 0.06835
3.9 0.79592 3.99 × 107 1102.78 6.2476 0.23275 10.9720 0.05055 9.8988 0.06840
3.8 0.79167 9.27 × 107 1602.90 6.2639 0.23200 10.8431 0.05205 9.8854 0.06843
3.7 0.78723 64276.3 54.1217 6.2813 0.23115 10.7111 0.05367 9.8719 0.06845
3.6 0.78261 21288.2 42.8887 6.3001 0.23021 10.5758 0.05541 9.8584 0.06843
3.5 0.77778 11280.6 34.6763 6.3203 0.22916 10.4370 0.05730 9.8448 0.06839
3.4 0.77273 7173.57 28.0331 6.3422 0.22798 10.2943 0.05935 9.8313 0.06831
3.3 0.76744 4998.89 22.3502 6.3661 0.22664 10.1475 0.06158 9.8179 0.06819
3.2 0.76190 3598.36 17.3233 6.3923 0.22512 9.9961 0.06404 9.8047 0.06801
3.1 0.75610 2476.05 12.8706 6.4211 0.22338 9.8396 0.06674 9.7919 0.06777
3.0 0.75000 1446.86 9.21101 6.4531 0.22138 9.6774 0.06975 9.7796 0.06746
2.9 0.74359 692.632 6.71466 6.4890 0.21906 9.5088 0.07313 9.7680 0.06706
2.8 0.73684 325.643 5.27798 6.5297 0.21633 9.3327 0.07695 9.7574 0.06655
2.7 0.72973 173.764 4.45141 6.5766 0.21308 9.1475 0.08134 9.7481 0.06591
2.6 0.72222 106.141 3.92699 6.6317 0.20915 8.9513 0.08646 9.7406 0.06510
2.5 0.71429 71.9182 3.55954 6.6981 0.20429 8.7406 0.09257 9.7356 0.06410
2.4 0.70588 52.5214 3.28159 6.7817 0.19804 8.5094 0.10011 9.7338 0.06285
2.3 0.69697 40.5057 3.05917 6.8949 0.18950 8.2453 0.11002 9.7365 0.06128
2.2 0.68750 32.5327 2.87357 7.0776 0.17591 7.9080 0.12503 9.7454 0.05931
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In order to search for trapping polytropes having
physical relevance, we have to compare the characteristic
radii of the trapping zone rc and rb to the rextr radius,
giving a limit on the physical relevance of the polytropic
sphere. This can be done using the results presented in
Table I for the central density ρc ¼ 5 × 1015 g cm−3. We
can see that the gravitational mass and the surface radius
of the relativistic polytropes significantly exceed the mass
and radii related to the observed neutron stars; the
discrepancy strongly increases with increasing polytropic
index n. On the other hand, the limiting radius rextr is for
all considered values of n, quite comparable to the
observed radii of neutron stars (rextr < Rmin). For all
values of n, the central radius of the trapping zone
rc < rextr, thus guaranteeing that the trapping is possible
for all considered polytropes. However, rb < rextr only for
the polytropes with n < 3.1. The whole trapping zone will
be contained in the allowed region only for these poly-
tropic spheres.
We can also see that the energy density at the loci of the

stable circular geodesic is on the level of 10−1ρc, but only
on the level of 10−2ρc at the unstable circular null geodesic,
giving the outer edge of the trapping zone. Of course, the
energy ratio depends significantly on the values of the
spacetime parameters n, σ, ρc, as demonstrated in Table I.
On the other hand, the ratio ϱðrextrÞ=ϱc ∼ 0.07 with only a
slight dependence on n.
In order to illustrate the situation of physical

relevance of the trapping zones, in Fig. 5 we give the
functions mðrc; n; σmaxÞ and mðrb; n; σmaxÞ, and in
Fig. 6 we give the functions rcðn; σmaxÞ, rbðn; σmaxÞ and
rextrðn; σmaxÞ. In order to have good insight into the
character of the trapping polytropes, we also give
the functions ρðrcÞ=ρcðn; σmaxÞ, ρðrbÞ=ρcðn; σmaxÞ, and

ρðrextrÞ=ρcðn; σmaxÞ in Fig. 7. We give these functions
for three characteristic selections of the central density:
ϱc ¼ 1015, 5 × 1015, 1016 g cm−3. The numerical results
show that all of the trapping zones are located under rextr for
all the polytropes with n ≤ 4, if ρc ¼ 1016 g cm−3.
On the other hand, all of the trapping zones are located
above rextr for all the polytropes with n ≤ 4, if
ρc ¼ 1015 g cm−3—in this case, the trapping effect should
be physically implausible. In the intermediate case of
ϱc ∼ 5 × 1015 g cm−3, the trapping zones can be fully
contained in polytropes with n ≤ 3. For n > 3, the trapping
zones reach the polytrope surface at rextr.

FIG. 5. The mass of the trapping polytropes with σ ¼ σmax,
contained under the radius of photon circular orbits rc and rb, is
given, depending on the polytropic index n, for three central
densities ϱc: (1) 1015 g cm−3 (dashed lines), (2) 5 × 1015 g cm−3

(solid lines), and (3) 1016 g cm−3 (dotted lines).

FIG. 6. Position of the null geodesics stable rc and unstable rb
radii and the limit radius rextr, depending on the polytropic index
n, is given for the polytropes with three central densities ϱc:
(1) 1015 g cm−3 (dashed lines), (2) 5 × 1015 g cm−3 (solid lines),
and (3) 1016 g cm−3 (dotted lines). For the last case and n < 2.17,
the polytropic balls have mass M < 2M⊙; therefore, rextr3 does
not exist for such values of n.

FIG. 7. Trapping polytropes with σ ¼ σmax. Energy density
located at the null geodesics and loci of rextr, depending on the
polytropic index n, is given for three central densities ϱc:
(1) 1015 g cm−3 (dashed lines), (2) 5 × 1015 g cm−3 (solid lines),
and (3) 1016 g cm−3 (dotted lines). The functions ϱðrcÞ=ϱc and
ϱðrcÞ=ϱc are the same for all three depicted cases. For the last case
and n < 2.17, the polytropic balls have mass M < 2M⊙.
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C. Effective potential of null geodesics

We test the validity of our results, based on the study of
the embedding diagrams of the optical geometry of the
polytropic spheres, by using the direct study of the effective
potential of the null geodesics that gives all of the
information on the trapping zones [2].
The four-momentum pμ of particles moving along null

geodesics satisfies the geodesic equation (λ is an affine
parameter)

Dpμ

dλ
¼ 0; ð52Þ

simultaneously with the normalization condition

pμpμ ¼ 0: ð53Þ

Because of the spherical symmetry of the internal metric
studied, the motion plane is central, and for a single-particle
motion, it is reasonable to choose the equatorial plane
(θ ¼ π=2). Moreover, axial symmetry and time independ-
ence of the metric induce the existence of two Killing
vector fields, resulting in conserved energy and axial
angular momentum of the particle,

E ¼ −pt; L ¼ pψ : ð54Þ

Then, the radial component of the geodesic motion, derived
using (53), has to fulfill the relation

ðprÞ2 ¼ e−2ðΦþΨÞE2

�
1 − e2Φ

l2

r2

�
; ð55Þ

where l≡ L=E is the impact parameter. For both the
internal and external spacetime of the polytropic sphere, the
turning points of the radial motion can thus be expressed
by an effective potential Veff with respect to the impact
parameter. The motion is then allowed in regions where the
impact dimensionless parameter ~l satisfies the condition

~l2 ≡ l2

L2
≤ V int=ext

eff ≡ ξ2

expð2Φint=extÞ
: ð56Þ

In the polytrope interior with parameters ðn; σÞ, the
effective potential V int

eff is determined by the metric coef-
ficient gttðξ;n; σÞ with its radial profile fully governed by
the function θðξ; n; σÞ.
The condition for the existence of the local maxima

and minima of the internal spacetime effective potential,
dV int

eff=dξ ¼ 0, determines the loci of the null circular
geodesics in terms of the equation

θðξÞ þ ðnþ 1Þξ dθðξÞ
dξ

¼ −
1

σ
: ð57Þ

For a given polytrope index n, the limiting case correspond-
ing to coalescence of the radii of the circular null geodesics at
an inflexion point of the effective potential, determined by
the condition d2V int

eff=dξ
2 ¼ 0 implying the relation

1þ σ

�
σθðξÞ2 þ ðnþ 1Þξ

�
dθðξÞ
dξ

�
4þ ð2nþ 1Þσξ dθðξÞ

dξ

�
þ ξ

d2θðξÞ
dξ2

�
þ θðξÞ

�
2þ ðnþ 1Þσξ

�
4
dθðξÞ
dξ

þ ξ
d2θðξÞ
dξ2

���
¼ 0;

ð58Þ

gives the minimal allowed value of the relativistic parameter
σminðnÞ. For a given n > 2.138, allowing the existence of the
circular null geodesics, we can find the minimal value of the
relativistic parameter σminðnÞ due to simultaneously solving
the condition for an inflexion point of the effective potential;
with the extrema relation given by Eq. (57), we obtain a
simple relation governing σminðnÞ in the form

ðnþ 2Þ dθðξÞ
dξ

þ ðnþ 1Þξ d
2θðξÞ
dξ2

¼ 0: ð59Þ

The two solutions of Eq. (57) for given n and σ ∈
ðσmin; σmax ≡ n=ðnþ 1ÞÞ give the stable circular null geo-
desics located at rc, where d2V int

eff=dξ
2 < 0, and unstable

circular null geodesics at rb, where d2V int
eff=dξ

2 > 0.
The effective potential V int

effðξ; n; σÞ is constructed
for the trapping polytropes with the index n ¼ 3 for
various values of relativistic parameters from the interval
σminðnÞ < σ < σmaxðnÞ, illustrated in Fig. 8. The stable

(unstable) null geodesics correspond to the local maxima
(minima) of V int

eff . Their positions are given by values of ξ
close to 1 for the whole region of trapping. This means
that for large configurations the trapping zones are located
near the center, but for small configurations they are located
near the surface. The exact ratio rc=R is obtainable using
Table I for selected values of n (for σmax).
We demonstrate the dependence of the extension of the

trapping zone on the parameter σ. The zone extension is
given by the intersection of the line Veffðr ¼ rbðn; σÞÞ ¼
const with the effective potential at r < rcðn; σÞ, denoted
as rinðn; σÞ. The trapped null geodesics are restricted to the
region rinðn; σÞ < r < rbðn; σÞ.

D. Local compactness radial profiles
of the trapping polytropes

Finally, we consider the behavior of the compactness of
the trapping polytropic spheres. We present the compact-
ness of the total polytropic spheres and the compactness
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related to their interior at rc, rb, and rextr for the polytropes
with a maximal relativistic parameter and for the central
density ρc ¼ 5 × 1015 g cm−3 in Table II. We can see that
the compactness of the complete polytropes is very small,
especially for n close to n ¼ 4. However, surprisingly,
even the compactness inside the polytrope at the center

of the trapping zone (rc) and its outer boundary (rb) is
not close to the critical value of C ¼ 1=3. We always
have Cðn; σmaxÞ < Cðrcðn; σmaxÞÞ < Cðrbðn; σmaxÞÞ.
One could intuitively expect that the compactness inside

the region where the trapping effect occurs is high and
maximal near the radius rc. However, this is not true, as
seen in Fig. 9, which gives the dimensionless radial profiles
of the compactness function CðξÞ for selected values of n
and a related maximal value of σ.
It is explicitly demonstrated that the maximal values of

the compactness function CðξÞ occur near (slightly above)
the outer edge of the trapping zone and never cross the
critical value of C ¼ 1=3. The maximal value of the
compactness function increases with a decreasing value
of the polytropic index n. It seems that the trapping
phenomenon is ruled by the strong gradient of the compact-
ness function CðrÞ rather than by the compactness itself.

VI. CONCLUSIONS

In our study we demonstrate the existence of standard
general relativistic polytropes containing a zone of trapped
null geodesics. The trapping polytropes can exist if the
polytropic index n ≥ 2.1378 and if the relativistic param-
eter σ is sufficiently high but lower than the maximal value
given by the causality limit. The critical value of the
relativistic parameter related to the n ¼ 2.1378 polytrope
reads σmax ¼ 0.681. For the whole range of polytropic
indices, the trapping zone cannot exist, if σ < 0.677.
Estimates on limits on the polytropic indices are pre-

sented for some equations of state in Ref. [25]. The
possibility of applying different polytropic equations of
state in different regions of the neutron star radial profile is
mentioned in Ref. [25]. Moreover, our preliminary searches
indicate the existence of the trapping zones in neutron star
models related to sufficiently realistic equations of state.

FIG. 8. The null geodesic effective potential V int
eff reflecting the

trapping phenomenon for the polytrope spacetime having param-
eters from the trapping region in n–σ space. The effective
potential is illustrated for the n ¼ 3 polytropes. The parameter
σ is evenly distributed between its maximum and minimum
values. For each pair fn; σg, loci of the stable and unstable
circular null geodesics are marked. The rin radius is constructed
for the σ ¼ σmax effective potential.

TABLE II. List of compactness parameters describing a poly-
tropic fluid sphere of a given n having σ ¼ σmax. Compactness
CðRÞ, CðrcÞ and CðrbÞ are independent on the central density ϱc.
Values of CðrextrÞ are calculated for central density
ϱc ¼ 5 × 1015 g cm−3.

n σmax CðRÞ CðrcÞ CðrbÞ CðrextrÞ
4.0 0.80000 9.88 × 10−6 0.25492 0.29788 0.29794
3.9 0.79592 4.08 × 10−5 0.25595 0.29829 0.29834
3.8 0.79167 2.55 × 10−5 0.25703 0.29872 0.29874
3.7 0.78723 0.00124 0.25817 0.29914 0.29915
3.6 0.78261 0.00297 0.25937 0.29956 0.29956
3.5 0.77778 0.00454 0.26065 0.29998 0.29998
3.4 0.77273 0.00577 0.26199 0.30040 0.30039
3.3 0.76744 0.00660 0.26342 0.30081 0.30080
3.2 0.76190 0.00711 0.26493 0.30121 0.30120
3.1 0.75610 0.00768 0.26655 0.30160 0.30160
3.0 0.75000 0.00940 0.26828 0.30197 0.30198
2.9 0.74359 0.01432 0.27014 0.30230 0.30233
2.8 0.73684 0.02393 0.27215 0.30260 0.30266
2.7 0.72973 0.03783 0.27434 0.30283 0.30295
2.6 0.72222 0.05463 0.27673 0.30299 0.30318
2.5 0.71429 0.07308 0.27939 0.30301 0.30334
2.4 0.70588 0.09226 0.28241 0.30283 0.30340
2.3 0.69697 0.11152 0.28595 0.30228 0.30331
2.2 0.68750 0.13043 0.29057 0.30084 0.30304

FIG. 9. The radial profiles of the local compactness in the
region of trapping and in its vicinity. Profiles are plotted for
n ∈ f2.138; 2.5; 3; 3.5; 4g and the corresponding maximal value
of σ. On each of the local compactness profiles, loci of the stable
and unstable circular null geodesics are marked.
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The trapping polytropes do not fulfill the standard
requirement on the existence of extremely compact objects,
stating that the surface has to be located under the photon
circular orbit of the external spacetime, and C > 1=3,
established for the configurations with uniformly distrib-
uted energy density [2]. We have demonstrated the
inverse—the compactness parameter can be much lower
than the critical value of C ¼ 1=3. Moreover, even the local
compactness radial profile CðξÞ does not reach this critical
value, and its maximum lies outside the trapping zone.
Seemingly, the gradient of the local compactness functions
is decisive for the occurrence of the trapping effect.
We have considered if the existence of trapping poly-

tropes could be physically relevant, namely, in the case of
neutron stars. Thus, we assumed the applicability of the
polytropic equation of state up to the region where the
gravitational mass of the polytropic configuration reaches
the value of M ¼ mðrextrÞ ¼ 2M⊙, given by the recent
observational restrictions on the neutron star mass. The
trapping polytropes representing neutron stars can exist if
the trapping zone is located under the radius of applicabil-
ity, rextr. We have shown that the trapping n ¼ 3 polytropes
can exist if the central energy density reaches the value
of ρc ¼ 5 × 1015 g cm−3.
The trapping zones of the polytropes with index n ¼ 3

(or n ∼ 3) could be expected to give an astrophysically

relevant illustration of the effect of trapped null geodesics,
as the n ¼ 3 polytropes correspond to the ultrarelativistic
degenerated Fermi gas, which could serve as an astro-
physically relevant basic approximation of matter in the
central parts of neutron stars [9]. Moreover, it is known
that the realistic equations of state could be, at least
partially, approximated by the polytropic equations of
state [25–27].
We expect that the trapping zones of the general

relativistic polytropes could be relevant in the trapping
of neutrinos and related cooling of neutron stars, or in the
case of trapping of gravitational waves.
Stability of the trapping polytropes will be studied in a

forthcoming paper. Of course, it could also be interesting to
study the possibility of the existence of trapping zones in
polytropes governed by alternative gravitational theories
and, especially, in neutron stars governed by the recently
considered realistic equations of state.
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