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We present two methods for determining the significance of a stochastic gravitational-wave (GW)
background affecting a pulsar-timing array, where detection is based on evidence for quadrupolar spatial
correlations between pulsars. Rather than constructing noise simulations, we eliminate the GWB spatial
correlations in the true data sets to assess detection significance with all real data features intact. In our first
method, we perform random phase shifts in the signal-model basis functions. This phase shifting eliminates
signal phase coherence between pulsars, while keeping the statistical properties of the pulsar timing
residuals intact. We then explore a method to null correlations between pulsars by using a “scrambled”
overlap-reduction function in the signal model for the array. This scrambled function is orthogonal to what
we expect of a real GW background signal. We demonstrate the efficacy of these methods using Bayesian
model selection on a set of simulated data sets that contain a stochastic GW signal, timing noise,
undiagnosed glitches, and uncertainties in the Solar system ephemeris. Finally, we introduce an
overarching formalism under which these two techniques are naturally linked. These methods are
immediately applicable to all current pulsar-timing array data sets, and should become standard tools for

future analyses.
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I. INTRODUCTION

The existence of gravitational waves (GWs) was recently
confirmed with the detection of a binary black-hole
merger by LIGO, ushering in the era of observational
GW astronomy [1]. This detection relied on (amongst other
factors) precision engineering, extensive theoretical devel-
opment, and detailed detector noise characterization. The
latter is important because it tells us how confident we are
that the detector output contains a signal rather than a
spurious noise feature. Methods for this (such as “time
sliding”) are well-developed in the ground-based and space-
based interferometry literature, but until recently have been
lacking for pulsar-timing arrays [PTA, [2]]. We explore such
methods here.

PTA searches rely on the expected GW-induced corre-
lation signature between pulsars to discriminate the GW
signal against noise. These noise processes can be intrinsic
to each pulsar, such as intrinsic spin-noise due to rotational
irregularities [e.g. [3]], or delays in the pulse arrival time
due to propagation through the interstellar medium [e.g.
[4]]. Other noise processes can be correlated across pulsars,
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such as uncertainties in the Solar system ephemeris [5]
which can induce a dipole-like correlation signature, and
errors in clock standards [6] which can induce a monopolar
correlation signature. An isotropic stochastic gravitational-
wave background (GWB) induces spatial correlations in the
PTA that have a quadrupolar signature, known as the
Hellings and Downs curve [7]. This signature is only a
function of the angular separation between pairs of pulsars
in the array, although there are more general correlation
signatures for anisotropic backgrounds [8—10], and GWBs
composed of non-GR polarizations [11,12].

Upper limits on an isotropic stochastic GWB from the
three main pulsar-timing arrays (PPTA [13]; EPTA [14];
NANOGrav [15]) are now reaching the sensitivities required
to constrain models of backgrounds generated by a pop-
ulation of supermassive black hole binaries [e.g., [16-20]].
Recent projections suggest that there is significant proba-
bility that a stochastic GWB will be detected within the next
decade [21-23].

Several detection statistics exist for a GWB signal in
pulsar timing data. Frequentist methods such as the “optimal
statistic” [24,25] measure how likely it is (in terms of
number of standard deviations from zero) that a cross-
correlated signal is present in our data rather than a common
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uncorrelated signal. As it is currently formulated, this
statistic assumes that all cross correlated power comes from
the GWB, although generalization to multiple spatially
correlated processes is possible. Indeed, the Yardley statistic
[26] has recently been modified to simultaneously fit for the
presence of multiple spatially correlated signals [27].

Bayesian inference instead makes use of the fully-
marginalized likelihood (or “evidence”) to determine the
probability of one model over another. This allows for a
statistically robust comparison of models that include
contributions to the correlated signal from GWs and, e.g.,
clock or Solar system ephemeris errors. We can also perform
model comparison in more general scenarios, when the
correlation between pulsars has been modeled using either a
smooth functional form [28], or pairwise for each pulsar pair
[29]. The shortcoming of this approach is the explicit
dependence on the appropriateness of the models being
used for the evidence comparison. Objective reality is not
probed by Bayesian analysis, only our formulated models,
which should be as close as possible to being realistic
representations of the underlying physics. If we formulate a
series of poor models to test on the data, then Bayesian
model selection will select the least poor, but this does not
mean it is the best possible model.

In this paper we present two approaches for determining
the significance of GW-induced correlations present in
pulsar timing data. The first approach exploits correlations
in phase, where random phase shifts are introduced between
pulsars to destroy signal phase coherence, but which
preserve the statistical properties of the individual pulsar
datasets. The second approach exploits the expected spatial
correlation signature of a GWB. By “scrambling” the
positions of pulsars on the sky (and therefore their angular
separations) we produce a template of the correlation
signature that is effectively orthogonal to the signature of
any true signal in the real data set. In the following we use
Bayesian methods, but these techniques can be straightfor-
wardly applied to real data sets with frequentist detection
statistics.

Previous work in Cornish and Sampson [30] has inves-
tigated the requirements of a robust detection of GWs in
PTAs, focusing on issues regarding the position scrambling
approach. In Tiburzi et al. [27] several methods were
explored to mitigate the influence of spatially-correlated
noise on GWB detection significance, including (a) fitting a
clock error signal out of all the pulsars before the GW search;
(b) fitting a monopolar clock error simultaneously with the
quadrupolar GW signal; (c) fitting a dipolar ephemeris error
simultaneously with the quadrupolar GW signal; (d) fitting
an ephemeris error time-series out of all pulsars before
the GW search. In the following, we show that Bayesian
methods can avoid inference bias by simultaneously
modeling all spatially-correlated processes, intrinsic
pulsar noise, and timing model parameters. ‘“‘Phase-shifting”
and “sky-scrambling” are designed to operate on actual
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pulsar-timing data sets to provide a more conservative
estimate of detection significance than methods relying
on noise simulations, which can be biased to higher
significance if undiagnosed noise features are present.

In Sec. II we introduce the Bayesian pulsar-timing like-
lihood. In Sec. III we discuss the phase and spatial
correlations of pulsars due to the influence of a GWB,
and introduce our two methods of phase shifting and sky
scrambling. These methods are applied in Sec. IV to (1) an
idealized simulation; (2) a more realistic simulation; (3) a
simulation for which our noise model is incomplete, where
there are large glitches in each pulsar; and (4) a simulation
which contains additional noise processes that induce
spatial correlations, i.e. a clock and ephemeris error. With
the latter two, we show the superiority of our methods
over repeated noise-only simulations. We summarize our
findings in Sec. V.

II. A PULSAR TIMING LIKELIHOOD

For any pulsar we can write the times of arrival (TOAs)
for the pulses as a sum of both a deterministic and a
stochastic component:

tior = taer 1 oo (1)

where t, is a vector of length Ntg, for a single pulsar,
with ty. and tg, the deterministic and stochastic contri-
butions (modeled as Gaussian random processes) to the
total respectively. An initial estimate, f, for the m timing
model parameters for each pulsar can be obtained through a
standard weighted least-squares fit, or using Bayesian
analysis routines [31], both of which are included in the
TempoO2 [32,33] timing package. This allows us to generate
an initial set of timing residuals, which we denote
Ot =ty — tdet(ﬂﬂ)'

We assume that the difference between this initial
solution B, and the final solution #; obtained from a joint
analysis that includes a GWB term will be small. Therefore
a linear approximation of the timing model can be used
such that any deviations from the initial guess of the timing
model parameters are encapsulated using the vector € of
length m, such that ¢; = fy; — fp;- These small timing
model deviations influence the timing residuals via the
term Me, where M is the Nt X m timing model “design
matrix” describing the dependence of the residuals on the
timing model parameters.

Furthermore, we include the influence of all low-
frequency processes on the timing residuals (such as intrinsic
spin-noise, acommon red-noise process, and a GWB) via the
term Fa. The vector a of length 2N, describes the Fourier
coefficients of any low-frequency process at a limited
number of harmonics of the base sampling frequency 1/T
(where T is the observation time span of a single pulsar, or the
maximum coverage of the entire pulsar timing array), and

042002-2



ALL CORRELATIONS MUST DIE: ASSESSING THE ...

Fisthe Ntoa X 2N geqs “Fourier design matrix” consisting of
alternating columns of sines and cosines.

We can also explicitly include the influence of white-
noise terms on the timing residuals, such as from TOA
measurement uncertainties (which may be modified by
additional system-dependent scaling parameters such as
EFACs and EQUAD:s), correlated measurement uncertain-
ties in simultaneous multifrequency observations (ECORR),
or pulse phase jitter [34]. However we implicitly marginalize
over these effects in the following such that their influence is
confined to the Npps X Ntoa White noise covariance
matrix, N, for each pulsar.

The model-dependent timing residuals, r, for each pulsar
can thus be written in terms of the input residuals, 6t as

r = ot — Me — Fa, (2)
with a likelihood given by

exp (—3r"N-'r)
det(2zN)

p(dtle.a,n) = (3)

where M encapsulates any parameters not already repre-
sented by € or a.

We group all low-frequency and reduced rank signals
into a common description, such that

r =0t —Tb, (4)

where

T=[M F]. b:m. (5)

We place a Gaussian prior on the coefficients, b:

exp (—31b"B~'b)

p(blp) = Get(2B) (6)
with,
o 0
- { 0 rp} ’ 7

such that the timing model portion of b has an infinite
variance to approximate a uniform unconstrained prior on
timing model parameter deviations, €.

The low-frequency portion of b has a variance, ¢, given
by the spectrum of all low-frequency processes in the data.
Since this may include a GWB we must naturally model
spatial correlations in the data:

(@) (ai).(bj) = LanPibij + Kai%apdijs (8)

where «,; is the intrinsic low-frequency (“spin-noise”)
spectrum of pulsar a at the ith sampling frequency; p; is
the GWB spectrum at the ith sampling frequency; and I',;,
is the overlap reduction function (ORF) between pulsars a
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and b describing the reduction in correlated power due to the
spatial separation of the pulsars. For an isotropic stochastic
GWB this I',, depends only on the separation between
pulsars and is commonly known as the “Hellings and Downs
curve.” We note that both kx and p can either be modeled with
afunctional form (such as a power-law or a smooth turnover)
or as a free spectrum with a parameter per frequency. In the
following we consider all low-frequency processes to be
well described by power-law spectra at all sampling
frequencies v;, such that (taking x,; as an example)

Ag 1 Ui “a
=t (ryer) ®)

For a GWB the exponent has a value of y = 13/3 for a
circular GW-driven population of supermassive black-hole
binaries. All intrinsic red noise and GWB power-law
spectral parameters are grouped into the parameter vector
n. We can trivially include other spatially correlated signals
in the model by adding additional terms to Eq. (8), e.g. a
monopolar-correlated process to model clock errors, or a
dipolar-correlated process as a (suboptimal) model of
ephemeris uncertainties. Ephemeris uncertainties can be
modeled coherently [5,14,35] rather than through spatial-
correlation analysis.

We can now write the joint probability density of the
timing model and reduced rank signal parameters,
p(b,n|ét), as:

p(b.7|ot) & p(6t|b) x p(bly) x p(n). (10

Taking the logarithm of Eq. (10) and extremizing gives
the maximum likelihood vector of coefficients b:

b=1x"d, (11)

where £ = (T'N-!T + ¢~!) and d = T'N-!6t.
We can also analytically marginalize Eq. (10) over the
coefficients b, giving:
exp (—16t7C716t)
det(2zC)

p(n|ot) x p(n), (12)

where C = N + TBT. In practice, the Woodbury matrix
identity [36] is used to reduce Eq. (12) to lower rank
operations and thus accelerate computations.

III. DESTROYING SIGNAL COVARIANCE

To assess GWB signal significance, we ideally want
many equally likely realizations of noise-only pulsar-
timing data sets. If our detection statistic from the real
data set were smaller than in a fraction p of these noise-
only data sets, then the p-value of the GWB detection is
less than or equal to p. Our aim in the following is to make
this statement by removing correlations from the real pulsar
timing data sets, instead of making many noise simulations
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FIG. 1. The two detection significance techniques operate
on real pulsar timing data sets, and are naturally linked through
the common result of destroying cross-pulsar GWB signal
correlations.

where the properties are based on a potentially incomplete
noise model. We try to make our noise models as realistic as
possible, but any undiagnosed features in the data will not
be represented in a noise simulation. Our approach keeps
all features of the data intact, and we show that this
produces a more conservative estimate of the GWB
detection significance. Some progress has recently been
made toward forming these kinds of null streams for
continuous-GW analysis [37,38].

The reduced rank description of the GW signal covari-
ance (as in Sec. II) provides two ways for us to remove the
GWB’s correlated influence between pulsars. The time-
domain covariance induced by a GWB takes the following
form:

ngb = <F agwbaZwar>
= F<agwba;wb>FT
= F(pgwaT9 (13)
where F is the Fourier design matrix of the signal, and @y,

is the variance of the zero-mean signal coefficients ag,y,.

This variance is proportional to the power spectral density
of the GWB-induced time delays:

Powb = <agwb a;wb>

_r XAéwbl v
@ 12227 \1 yr!

>_7 yi2.  (14)

With the following two techniques we destroy signal
covariance by either operating on the phase coherence
through F, or on the induced spatial correlations through
I, In Eq. (13) and Fig. 1 we see that these are naturally
linked through the common result of mitigating cross-
pulsar signal correlations in the data.

A. Phase shifting

Phase shifting attacks the phase coherence of the GWB
signal that is induced between different pulsars in the PTA.
There are two approaches one can take in phase shifting—
we can either construct phase shifted data sets (data-
driven), or we can search for the GWB with a phase
shifted model (model-driven).
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FIG. 2. Example of phase shifting on J2317 + 1439 in Simu-
lation 1 (blue points, top panel). The maximum-likelihood signal
realization for the lowest 3 frequencies is shown as a red line in
the top panel. We subtract this from the data set to obtain a set of
residuals (middle panel), where there is still clear structure left
over. After phase shifting as in Sec. III A we obtain the new signal
(red line, bottom panel), which we add back to the residuals to
obtain a new, shifted data set (blue points, bottom panel).

1. Data-driven

In this approach we must first reconstruct the signal in
each individual pulsar. We determine the maximum like-
lihood parameters of the intrinsic pulsar noise (without
including a GWB in the model), then solve Eq. (11) to
obtain the maximum likelihood signal coefficients, b. By
selecting only the components, a, that correspond to the
frequencies we want to shift, we can reconstruct the
maximum likelihood signal realization with s = Fa.

We also construct a shifted signal, s’, using the adjusted
matrix F', defined as:

F'(v,t) = sin 2zvt + 68,), (15)

and equivalent cosine terms, with §, a frequency-dependent
random phase between 0 and 2z. This gives our shifted
signal as s’ = F'a.

We can then construct a new, shifted data set &t’:

ot =6t —s+¢'. (16)

An example of this shifting process is shown in Fig. 2 for
12317 + 1439 in Simulation 1.' Crucially (as will be shown
in Sec. IV B) this process retains the statistical properties of

'Residuals in the top panel of Fig. 2 are given by TEMPO2
performing a generalized least-squares fit of the timing-
model parameters, where the .par file has the following red-
noise estimates: TNRedAmp=-13.301, TNRedGam=4.333,
TNRedC=50.
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the original data set, including any unmodeled stochastic or
systematic effects. However by shifting the phases of the
signal we have removed any correlations between pulsars.2

2. Model-driven

This approach is rather simple, in that we employ the
pulsar data sets as they are, and search on the data with new
phase-shifted Fourier design matrices, F’, in the model for
low-frequency processes. The data will now prefer a model
with a common (but uncorrelated) red process instead of a
GWB. We use the model-driven phase-shifting in all of the
following since it is so easily implemented. However, both
approaches produce consistent results, and the data-driven
approach is important in illustrating that the statistical
properties of each pulsar data set remain unaffected.

B. Sky scrambles

Sky scrambles attack the spatial correlations induced by
the GWB signal. These correlations are described by the
distinctive quadrupolar Hellings and Downs signature. By
contrast, a common uncorrelated low-frequency signal
will have zero spatial correlations, and stochastic clock-
standard drifts can be modeled as a low-frequency
process with constant (monopole) spatial correlations [6].
Inaccuracies in the Solar system ephemeris may lead to
dipole-like spatial correlations between pulsars [27], but
modeling them as such is suboptimal when coherent methods
are available [5,14,35]. Unlike phase shifting, sky scram-
bling requires us to make specific assumptions about the
expected spatial correlation signature of the signal.

1. Model-driven

Our GWB search pipelines use a Hellings and Downs
template for the spatial correlations to filter out noise
processes against the true signal. To sky scramble, we
artificially move pulsar positions from their true values® so
that the angular separations between pulsars will be
scrambled. Thus, when we impose our template correlation
signature it will be at odds with the spatial correlation
signature of any true GWB in the data. Our goal is to make
the overlap of the true spatial correlations as orthogonal as
possible to our scrambled correlation model. We want to
make it a maximally poor template to effectively null the
influence of GWB-induced spatial correlations in the data.
We stress that we are not merely interchanging pulsar

“We have implicitly assumed a stationary GWB signal, since
our phase-shifting approach applies an independent random
phase per sampling frequency. If the GW signal has nonstationary
features then we need to account for frequency correlations in
the data by performing correlated phase shifts, such that
8;/8; = v;/v;. From here on we only consider stationary GW
§1gnals

Their true values are retained for fitting astrometric terms in
the timing model.
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positions in the array—the sky scrambles are constructed
by searching for new pulsar positions over the entire sky to
minimize the overlap of the scrambled template with the
true correlations.

An intuitive picture is given by considering the behavior
of the signal-to-noise ratio from the GWB optimal-statistic
in the frequency domain:

S Xrab( )S
Z Z|: Vl Pb( ) ’ (17)

a,b#a i

where a and b index pulsars, i indexes sampling frequen-
cies of the pulsar time series, primes denote template (or
model) quantities, and unprimed quantities indicate true
signal or noise processes in the data.* The power spectral
density of the GWB-induced time delays, S;, takes the
usual power-law functional form throughout. This equation
can be seen as a noise-weighted inner product of an ORF
template with the actual correlations in the data.

Applying a sky-scrambled ORF to Eq. (17) minimizes
the overlap of the template with the signal, and diminishes
the detection significance of the GWB in the data. This
equation can also be used as a generator of sky scrambles—
we can insert typical pulsar noise properties along with
signal assumptions to find a scrambled template ORF that
makes (p) as small as possible. These scrambles can then
be used to construct the spatial correlation template in a
Bayesian analysis of real data sets. We repeat this process to
generate many sky scrambles, and analyze the real data
with the corresponding scrambled ORFs. Each analysis will
return a Bayes factor for a GWB versus a common-
uncorrelated red process. By virtue of the scrambling,
these should now favor a model with a common-uncorre-
lated red process. The distribution of these Bayes factors is
the desired null hypothesis distribution. We can then assess
how frequently spurious noise correlations can give a
Bayes factor that exceeds the Bayes factor found from
the true unmodified data set.

In practice, a more straightforward generator of sky
scrambles is through minimization of the normalized inner
product of the template ORF with the expected true ORF.
This “match statistic” has been explored in [30], and we
reiterate its form here:

M= Za.brabF;b
(Za,brabrab X Za,brizhr;h)]ﬂ
M — Ea,b#arabr‘;b

, (18)
(Za.b#arabrah XZa,b;ﬁa ;b ;b)l/Z

“In principle we can apply different template ORFs at each
frequency, however for the purposes of this study we assume no
frequency evolution of the GWB angular-power distribution, and
thus no evolution of the true or template ORF.
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where in M the sum is over all unique pulsar pairings, while in
M the sum excludes pulsar self-pairings since these merely
add positive terms regardless of whether the pulsar positions
are scrambled or not. The benefit of these match statistics is
that they rely purely on the geometric properties of the array
through the sky locations of the pulsars. We use the mini-
mization of M to generate sky scrambles for the analyses in the
rest of this paper, employing a particle swarm optimization
(PSO) algorithm [39,40] to find scrambled positions for which
M is below a given threshold with respect to the true ORF and
all other previously discovered sky-scrambles.

There is a concern that, for a given number of pulsars,
there are only a finite number of unique sky scrambles which
produce ORFs that are orthogonal to the true ORF and all
other scrambled ORFs. This is not easy to assess since we are
not merely interchanging the pulsar positions, but it could
bias our assessment of detection significance if there are
repeated scrambles. Ideally we want all scrambles to be
independent so that we have equally weighted Bayes factors
to produce the null hypothesis distribution. This is similar to
the geometric problem known as a “spherical code,” where
one tries to fit as many independent points as possible on the
surface of a unit hypersphere whose position vectors have
certain overlaps with each other. This issue is unsolved in an
arbitrary number of dimensions, but if we were to insist on
mutual-orthogonality of all scrambled ORFs then we cannot
have more than N (N, — 1) scrambles, and even fewer if
the scrambled ORFs must correspond to physical perturba-
tions of pulsar positions. In practice we can partially mitigate
this issue by not demanding that the scrambled ORFs be
exactly mutually orthogonal, but merely that their normal-
ized inner product be below some threshold. A larger
threshold value gives more sky-scrambles, but at the cost
of reduced independence.

2. Data-driven

We perform an initial search on the entire pulsar array
data set for a GWB signal, from which we extract the
maximum likelihood signal coefficients ., in each pulsar.
At each frequency, the variance of these signal coefficients
is equal to the power spectral density of the GWB-induced
time delays, scaled by the ORF between the pair of pulsars
in question: (a,a}); =I',,S;. In the following we denote
the vector of all pulsars’ GWB signal coefficients at a
particular frequency, v;, by a,. The expected covariance
matrix of this vector of coefficients is then the Hellings and
Downs spatial correlation matrix, scaled by S;. Explicitly,
the spatial correlation matrix, I” is

1—‘11 FIZ

r= Iy Ty 0| (19)
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We Cholesky factorize I', then operate on a; with the
inverse Cholesky factor to decorrelate the signal between
different pulsars. Hence,

I =LLT,
4 =L a, (20)

1

where a is the vector of new pulsar signal coefficients
at frequency i, which are uncorrelated between pulsars but
retain the same spectral properties. We repeat this process at
all sampling frequencies in our rank-reduced approxima-
tion of the GWB signal, giving new vectors of signal
coefficients for each pulsar. However, this produces only
one set of uncorrelated signal coefficients—to produce
many scrambled data sets we can correlate the coefficients
again by Cholesky factorizing a scrambled ORF,
I’ = L'L'T, and operating on the uncorrelated signal
coefficients such that a} = L’a’. As in the data-driven
phase shifting approach, we now form new pulsar data sets
such that:

st' = ot — Fa + Fa', 1)

We now have new pulsar data sets with their individual
spectral properties intact, but which are correlated accord-
ing to a scrambled ORF. Each scrambled ORF gives a new
PTA data set which is analyzed under the assumption that
the true ORF is present, and iterating over scrambles gives
the distribution of the Bayes factor under the null hypoth-
esis. The analog with Eq. (16) is now easy to see: when
phase shifting we modify F while in sky scrambling we
modify 4. As in the case of phase shifting, the model-driven
sky-scrambling approach is a more straightforward prac-
tical implementation, so we use it in all of the following.

C. Unified formalism

We now examine the combined influence of phase
shifting and sky scrambling on the timing-residual corre-
lation between two pulsars. For simplicity we consider only
the correlation due to the GWB. We also initially consider
only one sampling frequency in the reduced rank descrip-
tion of the signal, but generalize later. The covariance
between timing residuals at 7,; in pulsar a and at 7,; in
pulsar b is

= F(ak)(pabF{b[)! (22)

where, with only one sampled frequency at v;, F4) takes
the form:

Cak). (1)

Fay = [sin(2rv;t,)  cos(2avity) |, (23)

and F ;) is likewise. The spectrum, ¢y, at each frequency
is as in Eq. (14), but is explicitly represented here as a
2Nfreqs X 2Nreqs matrix (since each frequency has a sine
and cosine basis function):
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Log-Bayes factor for a correlated GWB model versus a common-uncorrelated red process. Black stars correspond to operating

on the real data set without modeling spatial correlations in the lowest N coefficients, e.g. the black star at a frequency index of 1
signifies that the correlation has not been included in the lowest frequency. The green circles and histogram correspond to operating on
the unmodified data set with 300 phase-shift instances, while the red triangles and histogram are for 300 sky-scramble instances. The
case of equal model evidences is indicated with a dashed grey line at zero, and the true Bayes factor of spatial correlations in the data set

is indicated with a dash-dot magenta line.

0

Pab ] . (24)
0 Dab

The result of phase shifting and sky scrambling is to
convert F,) and ¢, into the following:

Pap = |:

F/(ak) = [sin(2av;ty + 84i) cosav;ty + 8,4i)
1—*/
Pap = T X Pab- (25)
ab

If we explicitly evaluate Eq. (22) with the phase shifted
and scrambled quantities (and generalize to multiple
sampling frequencies) we get the following for our
scrambled model of the induced correlations:

Nfreqs 7
Clan).on = Z F—:Z%b [cos(2zv;(tar — 1)) €OS(84; — Op;)

— Sin(27v;(tax — 1p1)) SIN(S,4; — pi)]- (26)

One can easily see that without phase shifting (or with a
common phase shift for all pulsars at each frequency) and
without sky scrambling, the correlation is

N freqs

C/(ak),(bl) = Z Pab COS(27Il/i(l‘ak - tbl))’ (27)

which is the just the discrete Wiener-Khinchin conversion
between the power spectral density of a process and the
time-domain correlation. The autocovariance of each pulsar
can be examined by setting @ = b in Eq. (26). In this case
r',, =T, =1, and phase shifts cancel at each sampling
frequency, such that the statistical properties of each
individual pulsar data set remain intact.

IV. APPLICATION TO SIMULATIONS

In the following we test our two techniques against
several different types of PTA data sets. All Bayesian
analysis and evidence recovery is performed using the
PTA analysis suite NXO01 [41] with the MULTINEST sampler
[42—45], where 1000 live points are employed in Secs. [IVA
and IVC1 (for a 2-D parameter space), and 5000 live
points are employed in Secs. IV B and IV C 2 (for a 22-D
and 26-D parameter space, respectively).

A. Simulation 1 (IPTA MDC open 1)

We apply the techniques to the first open data set of the
publicly available, International Pulsar Timing Array [46]
mock data challenge.5 This data set contains 5 years of
observations for a set of 36 pulsars, each with a 14 day
cadence, and each with uncorrelated TOA measurement
uncertainties of 1077 seconds. These data sets do not
include any intrinsic red noise processes, clock errors, or
Solar system ephemeris uncertainties, but do include a
GWB with a power-law spectrum (Agy, =5 x 10714,
Yewb = 13/3). While this does not represent a realistic
data set by any metric, it is a simple initial test case upon
which to explore the effectiveness of our approaches for
eliminating the correlation between pulsars due to the
GWB. In the following analyses, our noise model includes
only TOA uncertainties given by the observations (i.e. no
search parameters) while the signal model is a power-law
GWB (two search parameters).

We first need to assess how many sampling frequencies
contain information about correlations between the pulsars,

5http J/Iwww.iptadgw.org/?page_id=214
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FIG. 4. The null hypothesis distribution of Bayes factors for a
GWB versus a common-uncorrelated red process is obtained with
different techniques. The result of 300 phase shifts (green, long-
dash) and 300 sky scrambles (red, short-dash) on the real data set
are compared to the distribution from noise simulations (blue,
solid). The Bayes factor from the real data sets are shown as a
vertical dash-dot magenta line in both panels.

and thus how many frequencies we need to phase shift. We
analyze the data set with a model which neglects spatial
correlations in a successive number of sampling frequen-
cies, beginning with the base frequency 1/7 and then
increasing. As we see in Fig. 3(a), the evidence for a GWB
without spatial correlations in the lowest ~20 frequencies is
indistinguishable from a common-uncorrelated red process.
So long as we apply random phase shifts to at least the first
20 sampling frequencies in our model, the phase coherence
between pulsars will be destroyed. Sky scrambles are
generated using the match-statistic minimization approach
described in Sec. III B, with a threshold of 0.2.

The result of carrying out 300 phase-shifting and 300
sky-scrambling analyses of the data set are also shown in
Fig. 3(a) as green and red log-Bayes factor histograms,
respectively. The Bayes factor is for a GWB versus a
common-uncorrelated red process. The fact that these
histograms are centred around ~—30 shows two things:
(i) the data contains a lot of information about spatial
correlations; and (ii) the data now strongly favor a
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TABLE 1. Details of simulation 2.

Pulsar Tobs [YeafS] Oy [/45] 1OgIOAred Vred
J0613 — 0200 16.054 1.58 —13.90 3.18
JO751 + 1807 17.606 2.60 —14.14 2.58
J1012 4+ 5307 16.831 1.47 -13.09 1.65
J1640 + 2224 16.735 1.99 —-13.24 0.03
J1643 — 1224 17.300 1.65 —18.56 4.04
J1713 + 0747 17.657 0.26 —14.90 4.85
J1744 — 1134 17.250 0.65 —13.60 2.00
J1857 + 0943 17.310 1.51 —-16.00 1.35
J1909 — 3744 9.379 0.12 -13.99 2.06
J2145 - 0750 17.161 1.19 —13.87 4.02

common-uncorrelated red process under the modified
models. The phase-shifting and sky-scrambling techniques
produce consistent null hypothesis (i.e. no correlations)
distributions. The true log-Bayes factor of ~+4-47 is seen to
be highly significant in the context of these distributions.
To make robust statements about the p-value of correla-
tions one would need to perform many more analyses than
our 300 to fill out the tails of the distributions. However it is
clear that spurious noise correlations are an improbable
source of producing the very high Bayes factor given by the
data, with a probability of <1/300. Indeed, this is a clear-
cut case to begin with since the Bayes factor already favors
the signal model by ¢*7: 1 odds. We will see the real use of
these techniques in the more realistic and marginal simu-
lation to follow.

Finally, we check how phase-shifting and sky-scrambling
compare to noise simulations as a way to construct the null
hypothesis Bayes factor distribution. In Fig. 4(a) we
compare our histograms of log-Bayes factors from phase-
shifting and sky-scrambling with a histogram from analyz-
ing 300 independent noise-only data sets. In the latter, each
pulsar has the same statistical properties as in the original
data set but without spatial correlations. We see that our
techniques match the performance of noise simulations
very well.

B. Simulation 2 (a more realistic simulation)

We now apply the techniques to a more realistic
10-pulsar EPTA data set. Table I lists the timespan, rms
of the white noise, and the properties of the red noise for
each pulsar in the simulation. These values are chosen to be
similar to those given in Caballero et al. [47] in order to
provide as realistic a simulation as possible. The observa-
tion schedule matches that of the true EPTA pulsars. We
also add a power-law GWB signal with spectral index,
Yewb = 13/3, and amplitude Ay, = 5 x 107'%. While this
is significantly in excess of current upper limits, we choose
this amplitude so that the change in log-evidence between
models that do or do not include spatial correlations is
~+3. Therefore the phase-shifting and sky-scrambling
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operations can produce a measurable change in the
evidence.

As in the previous section, we first investigate how many
frequencies are informative of spatial correlations in the
data. We see in Fig. 3(b) that the majority of information is
contained in the lowest ~2-3 frequencies. The evidence
is reduced to that of a common-uncorrelated red process
after neglecting spatial correlations in the lowest ~10
frequencies. We therefore apply phase shifts to at least
these lowest 10 frequencies in the GWB signal model. As
before, sky scrambles are generated by minimizing the
unique off-diagonal match statistic, M, with a threshold
of 0.5.

Figure 3(b) also shows the histograms of log-Bayes
factors produced from several hundred phase-shifting and
sky-scrambling experiments, where the techniques are
shown to match very well. Although not as significant
as the signal in IPTA MDC open 1, we see that the Bayes
factor for spatial correlations in this more realistic simu-
lation is still highly convincing and unlikely to have been
formed via spurious noise correlations. As discussed
previously, in a real analysis we would desire a quantitative
assessment of the significance; this would require many
more phase shifting or sky scrambling experiments than are
examined here in order to produce smooth distributions
which are well sampled in the tails. We must also bear in
mind that we used a larger match threshold than before to
generate the sky-scrambles. Therefore they are not com-
pletely independent of one another, which may introduce
some bias in assessments of detection significance (see
Sec. III B).

As before, we confirm that phase-shifting and sky-
scrambling produce Bayes factor distributions under the
null hypothesis which compare well with the distribution
produced from analyzing many noise-only simulations.
The results for this are shown in Fig. 4(b), where all
distributions are shown to be in good agreement.

Finally, we use this more realistic data set to demonstrate
that phase-shifting and sky-scrambling do not alter the
statistical properties of each individual pulsar data set.
Figure 5 shows the posterior distributions of the intrinsic
red noise parameters for a subset of the pulsars in
simulation 2. Red lines show the mean parameter estimates
over 50 realizations of simultaneous phase-shifting and
sky-scrambling on the original data set, where the model
includes separate red noise per pulsar and a GWB. Blue
lines show parameter estimates from an analysis of the
unmodified data set, where the model includes separate red
noise per pulsar and a common-uncorrelated red process.
As desired, the shifting and scrambling processes have not
significantly affected the parameter estimates for individual
pulsars. This indicates that the underlying statistics of the
data set remain consistent whether we analyze with a
shifted/scrambled GWB model or with a common-
uncorrelated red process.
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FIG. 5. One dimensional marginalized posterior distributions
for the log-amplitude (top) and spectral index (bottom) of the
intrinsic red noise for three of the pulsars in simulation 2. Blue
lines represent the analysis for the unmodified data set containing
the uncorrelated common red noise term, red lines are the mean of
the posterior distributions over 50 realizations of the combined
phase and position shifted data sets.

C. Influence of unmodeled noise processes

So far we have shown that phase-shifting and sky-
scrambling provide null hypothesis distributions that agree
with what is given by noise simulations. We now go further
to show that phase-shifting and sky-scrambling can in fact
be superior. This occurs when our noise models are poor so
that our understanding of noise processes in the data set is
incomplete.

1. Simulation 3 (mismodeled intrinsic noise)

We generate an extreme example of a data set with large
unmodeled noise that is intrinsic to each pulsar. We inject
loud independent glitches (negative ramps in the residual
time-series due to spontaneous increases in the pulsar
rotational frequency) into each pulsar of simulation 1
(described in Sec. IVA). This glitch term is injected as:

Setien (1) = —AX (1 =1, )H(t = 1,) x spd,  (28)
where ¢ is the Modified Julian Date (MJD) of a given pulsar
observation, H(-) is the Heaviside step function, A is the
glitch amplitude, 7, is the MJD of the glitch epoch, and
spd = 86400 is the number of seconds per day. The glitch
epochs are randomly drawn as 7, € MJD U[53000, 54806,
while the glitch amplitudes are randomly drawn
as log;gA € U[-18,-17].

We analyze this simulation as we would do for a real data
set, with the following checklist:

(1) Analyze the true PTA data set for a GWB signal.
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(2) Analyze the true PTA data set for a common-
uncorrelated red process.
(3) Generate many noise-only simulated data sets. We

simulate pulsars with the maximum-likelihood noise
properties of the true data set, and also inject a
common-uncorrelated red process with the maximum-
likelihood parameters of the recovered GWB signal
in the true data set. Analyze each simulated data set
for a GWB signal and for a common-uncorrelated
red process.

(4) Analyze the true data set to assess how many
sampling frequencies contain information about
spatial correlations. Perform many phase-shift analy-
ses on the true data set.

(5) Generate scrambled sky positions from either an
optimal-statistic analysis or the match statistics.
Perform many sky-scramble analyses on the true
data set.

(6) Item (3) gives the distribution of the Bayes factor
under the null hypothesis from simulations. Items
(4) + (2) are used to give the phase-shifting
estimation of the null hypothesis Bayes factor
distribution. Items (5) + (2) are used to give the
sky-scrambling estimation of the null hypothesis
Bayes factor distribution.

For item (1), our model consists of a GWB signal,
and white-noise given by the reported TOA measure-
ment uncertainties. We purposefully do not model the
glitch in each pulsar to assess how phase-shifting and
sky-scrambling perform when we have an incomplete
noise model. The parameter estimation of the GWB
spectrum will be dominated by the self-pairings of the
pulsars (since the off-diagonal elements of the ORF
matrix are at most half of the diagonal terms). Therefore
the glitches (which are negative ramps) are interpreted
as an additional low-frequency component of the GWB,
so that the recovered signal will have a higher amplitude
than the true signal. This is indeed the case, where the
maximum-likelihood GWB signal parameters are found
to be Ay, =9.60 x 107 and ygy, =4.24, and the
posterior distributions are inconsistent with the true
GWB signal parameters of Ay, =5 X 10°* and
Yewp = 4.33. The log-Bayes factor for spatial correla-
tions in this dataset is ~ + 4.

We create 300 PTA data set simulations which contain
white-noise at the level of the reported TOA uncertainties,
and a common-uncorrelated red process in each pulsar with
A =9.60 x 107'* and y = 4.24. Since this amplitude is
larger than what is actually in the true data set, the
significance of the GWB signal should be biased high.
The histogram of log-Bayes factors from these noise
simulations is contrasted with the phase-shifting histogram
and sky-scrambling histogram in Figure 6. Phase-shifting
gives a more conservative estimate of the GWB signifi-
cance in the true data set (dash-dot magenta line) than noise
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FIG. 6. Simulation 3: Null hypothesis distributions of Bayes
factors for a GWB versus a common-uncorrelated red process.
Left: performing 300 noise simulations (blue solid, both panels)
is compared to performing 300 phase-shifting experiments (green
long-dash, left panel). Right: the noise simulations are compared
to performing 300 sky-scrambling experiments (red short-dash,
right panel). The Bayes factor in the true data set is shown as a
vertical dash-dot magenta line in both panels.

simulations, while sky-scrambling gives a significance that
is less than noise simulations but more than phase-shifting.

2. Simulation 4 (influence of clock
and ephemeris errors)

As mentioned previously, a GWB is not the only process
that can induce spatial correlations between pulsars.
We create a new data set with the same realistic properties
as simulation 2, and inject a power-law GWB signal
with spectral index, ygu, = 13/3, and amplitude Ay, =
2 x 1074, This signal is four times larger in amplitude than
in simulation 2. We also add two other processes that
could induce spatial correlations—(i) a stochastic clock-
error process that has the same waveform across all
pulsars, and has the same power-law spectrum
parameters as the GWB; (ii) a very large error in the
mass of Jupiter in our model of the Solar system
ephemeris (AM;,, = 3.2 x 1077M ).

We model the clock error as a stochastic process with
monopole correlations between pulsars (the correlation
is 1 at all angular separations). Previous work has noted
that clock errors only induce monopole correlations if
the pulsar data spans are identical and the same timing
model fits are applied [6]. However our Bayesian
approach performs regression on the timing model
simultaneously with all noise and signal processes. So
we do not need to be concerned about potential
inference biases caused by the timing model fit.
Furthermore, we model the ephemeris uncertainty as
a coherent process rather than as a spatially correlated
signal. We search for the magnitude and sign of the
Jupiter mass error [5]. If an ephemeris uncertainty is not
simply due to a planetary mass offset then we can still
model the wuncertainty coherently [14,35], without
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FIG. 7. Simulation 4: 2-dimensional marginalized posterior

distributions for GWB spectrum parameters (left panel), clock-
error spectrum parameters (middle panel), and ephemeris un-
certainty parameters (Jupiter mass error, sign of mass error; right
panel). Black lines mark the 68% and 95% credible regions when
all processes are modeled, while the orange corresponds to only a
GWB being modeled. Light green lines and points indicate the
injected parameters.

needing to resort to a dipolelike spatial-correlation
model.®

Figure 7 shows the 2-D marginalized posterior distribu-
tions for the GWB, clock error, and Jupiter mass errors
from analyzing this simulation. The black credible regions
correspond to the case where all processes are simulta-
neously modeled, while the orange credible regions are
when the simulation is assumed to contain only a GWB.
When all processes are modeled, the recovered posteriors
are consistent with the injected values. We have verified
that either the clock error or ephemeris uncertainty by
themselves would still produce systematic parameter-
estimation errors if unmodeled.

In Fig. 8 we phase-shift and sky-scramble on this
simulation with different noise model assumptions. In the
left panel, we assume that the noise is characterized by the
TOA uncertainties and intrinsic pulsar red-noise. In the right
panel the noise model additionally includes a clock error and
Jupiter mass error. In the left panel we now see the
limitations of phase-shifting and sky-scrambling, since
the clock-error produces a large positive offset in the spatial
correlations between pulsars. Referring back to Eq. (26), we
see that phase-shifting essentially multiplies the spatial
correlations in the true data set by a random number in
the range [—1, 1]. Although this makes Hellings & Downs
correlations consistent with zero, this does not work when
we have spatial correlations with a large positive
offset. Model selection still prefers a GWB signal over a

°In this approach, we marginalize over the separate compo-
nents of an ephemeris-error vector with zero-mean Gaussian
priors, whose variances we parametrize. The variance is propor-
tional to the power-spectrum of the ephemeris-error component,
and can be modeled with a power-law or free-spectrum. If
ephemeris uncertainties are caused by a large number of objects
(like asteroids) then they should show up as spikes in the
recovered spectrum at their relevant orbital frequencies. This
approach is still coherent because we retain directional informa-
tion of the ephemeris uncertainties.
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FIG. 8. Simulation 4: Null hypothesis distributions of Bayes

factors for a GWB versus a common-uncorrelated red process.
Left: Phase-shifting (green long-dash) and sky-scrambling (red
short-dash) diagnose the presence of other spatially correlated
signals in this data set, since the null hypothesis distributions still
favor a GWB. Right: If we correctly include clock and ephemeris
errors in our noise model, then phase-shifting and sky-scrambling
give consistent null hypothesis distributions, showing that GWB
correlations in this data set are insignificant.

common-uncorrelated red process. Likewise, model selec-
tion still prefers our scrambled ORF over an uncorre-
lated model.

These limitations make phase-shifting and sky-scrambling
very valuable diagnostic tools—the fact that they could not
completely eliminate all spatial correlations is an indication
of an unmodeled spatially correlated process. When we
assume that only a GWB is present, and make noise
simulations to assess detection significance, we get a highly
significant (biased) detection of a GWB. By contrast, in the
right panel of Fig. 8 we include a clock error and Jupiter mass
error in our noise model. The GWB is then properly isolated
from these two effects. We only phase shift in the GWB basis
functions, leaving the clock spatial correlations unaffected.
Likewise, only the GWB correlation signature is sky-
scrambled. When we do this we get consistent null hypoth-
esis distributions which show that the GWB spatial corre-
lations are insignificant in this data set. The spatial
correlations are swamped by the clock error. Hence our
techniques are valuable diagnostic tools, and can be used in
conjunction with models for other spatially correlated
processes to properly isolate the significance of the GWB.

V. CONCLUSIONS

We have studied two methods of determining the
significance of a GWB in a pulsar-timing array. Within
our Bayesian context, we can compute the Bayes factor for
a spatially correlated GWB signal versus a common-
uncorrelated red process in the pulsars. But to put this in
context we need to know how often spurious noise
correlations can give similar Bayes factors. If noise alone
can often produce values as large as what we see in the true
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data then this Bayes factor is clearly not very significant.
Standard rule-of-thumb guides exist for assessing Bayes
factor significance [48,49], but using them in any produc-
tion-level analysis is unsatisfactory since they are not
designed with the specifics of a given problem in mind.
We must resort to numerical experiments to produce
distributions of Bayes factors under the null hypothesis
i.e. where there are no spatial correlations in the data set.

Our first technique involves adding random phase shifts
to all basis functions modeling the low-frequency processes
in a given pulsar data set. This is performed separately for
each pulsar so that the statistical properties of each
individual pulsar remain intact. But all phase coherence
between pulsars is eliminated. The second technique
involves scrambling (not merely interchanging amongst
other pulsars) the pulsar positions used to construct the
Hellings and Downs ORF template in our search models.
This is designed to be orthogonal to the true signal’s ORF
so that correlations between pulsars are destroyed. Both of
these techniques operate on the true, measured PTA data set
rather than on noise simulations. This incorporates all
idiosyncrasies of the true data set into assessing the
detection statistic significance, instead of being biased
by our (possibly incomplete) noise model assumptions.

We tested our techniques against several different types of
PTA data sets, including (1) an idealized data set (with a
large number of evenly sampled pulsars, high timing
precision, and no intrinsic red noise); (2) a more realistic
data set (realistic cadence, timing precision, and red
noise levels); and (3) + (4) data sets for which our noise
model is incomplete (i.e. includes either intrinsic or spa-
tially-correlated noise processes which we do not explicitly
model). By performing several hundred phase-shifting and
sky-scrambling analyses, we constructed a distribution of
the Bayes factor for spatial correlations under the null
hypothesis, which allows us to quote the p-value of the
true Bayes factor. Quoting p-values when our detection
statistic is Bayesian may seem like an ill-conceived mixture
of two distinct inference philosophies, but it is merely trying
to answer the question of what our recovered Bayes factor
actually means, and how often noise alone could produce it.
Our techniques can also easily be used with frequentist
detection statistics, in which case there is no conflict of
philosophies.

For the idealized and realistic data sets, we found that the
distribution of Bayes factors produced by phase-shifting and
sky-scrambling compared well with that of analyzing many
noise simulations. We took a further step in showing that our
two techniques are actually superior to noise simulations in
the case where we have a poor or incomplete noise model.
Noise simulations will include only the processes of our
incomplete noise model, and so will provide a null
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hypothesis distribution which exaggerates the significance
of the true Bayes factor. Phase-shifting operates on the real
PTA data set and provides a more conservative estimate of
detection significance, while sky-scrambling is found to
give a significance somewhere between the noise-simulation
and phase-shifting results. For this reason, and the fact
that there are limitations on the number of independent
sky-scrambles we can make, the more general and reliable
approach appears to be phase-shifting.

These techniques can be readily deployed on all existing
and future PTA data sets, and should become standard tools
for contextualizing the GWB Bayes factors that we report
in future PTA analyses. They already exist as modeling
options within the Bayesian pulsar-timing analysis pack-
age, NXO1 [41]. Understanding the significance of our
quoted detection statistics is of vital importance as PTAs
move closer to the first detection of nanohertz gravitational
waves. Growing the GWB detection significance needs
strategies that are designed to resolve the spatial correla-
tions between pulsars. This requires many well-timed
pulsars with long observational baselines, and which are
widely separated across the sky. Without broad sky cover-
age, a PTA will not be able to distinguish between a GWB,
clock errors, or potentially other spatially correlated
processes. The International Pulsar Timing Array plays a
vital role in this effort by pooling observations and pulsars
from the individual PTAs, and coordinating a unified
international GW search program.
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