
Analysis framework for the prompt discovery of compact binary mergers
in gravitational-wave data

Cody Messick,1,2,* Kent Blackburn,3 Patrick Brady,4 Patrick Brockill,4 Kipp Cannon,5,6 Romain Cariou,7

Sarah Caudill,4 Sydney J. Chamberlin,1,2 Jolien D. E. Creighton,4 Ryan Everett,1,2 Chad Hanna,1,8,2

Drew Keppel,9 Ryan N. Lang,4 Tjonnie G. F. Li,10 Duncan Meacher,1,2 Alex Nielsen,9 Chris Pankow,11

Stephen Privitera,12 Hong Qi,4 Surabhi Sachdev,3 Laleh Sadeghian,4 Leo Singer,13 E. Gareth Thomas,14

Leslie Wade,15 Madeline Wade,15 Alan Weinstein,3 and Karsten Wiesner9
1Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

2Institute for Gravitation and the Cosmos, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA

3LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125, USA
4Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics,
University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201, USA

5Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto,
Toronto, Ontario M5S 3H8, Canada

6RESCEU, University of Tokyo, Tokyo 113-0033, Japan
7Département de physique, École Normale Supérieure de Cachan, 94230 Cachan, France

8Department of Astronomy and Astrophysics, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA

9Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany
10Department of Physics, The Chinese University of Hong Kong,

Shatin, New Territories, Hong Kong, China
11Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)

and Department of Physics and Astronomy, Northwestern University,
2145 Sheridan Road, Evanston, Illinois 60208, USA

12Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany
13NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

14University of Birmingham, Birmingham, B15 2TT, United Kingdom
15Department of Physics, Hayes Hall, Kenyon College, Gambier, Ohio 43022, USA

(Received 14 June 2016; published 7 February 2017)

We describe a stream-based analysis pipeline to detect gravitational waves from the merger of binary
neutron stars, binary black holes, and neutron-star–black-hole binaries within ∼1 min of the arrival of
the merger signal at Earth. Such low-latency detection is crucial for the prompt response by
electromagnetic facilities in order to observe any fading electromagnetic counterparts that might be
produced by mergers involving at least one neutron star. Even for systems expected not to produce
counterparts, low-latency analysis of the data is useful for deciding when not to point telescopes, and as
feedback to observatory operations. Analysts using this pipeline were the first to identify GW151226,
the second gravitational-wave event ever detected. The pipeline also operates in an offline mode, in
which it incorporates more refined information about data quality and employs acausal methods that are
inapplicable to the online mode. The pipeline’s offline mode was used in the detection of the first two
gravitational-wave events, GW150914 and GW151226, as well as the identification of a third candidate,
LVT151012.
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I. INTRODUCTION

The field of gravitational-wave astronomy has come to life
in a spectacular way, with the first detections of gravitational
waves on September 14, 2015 [1] and December 26, 2015
[2] by the two detectors of the Laser Interferometer
Gravitational-wave Observatory (LIGO) [3]. These detectors
are currently undergoing further commissioning and will

reach design sensitivity in the next few years. Additionally,
they will be joined by a network of gravitational-wave
observatories that include Advanced Virgo [4], KAGRA [5],
and a third LIGO observatory in India [6]. We expect this
network to bring more observations of binary black hole
mergers [7], as well as binary neutron star (BNS) and
neutron-star–black-hole (NSBH) mergers [8].
As we enter the era of gravitational-wave astronomy,

the need for low-latency analyses becomes critical.
Gravitational waves from BNS and NSBH mergers are*Cody.Messick@ligo.org
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expected to be paired with electromagnetic emission and
neutrinos [9–11]. Gravitational-wave-triggered electromag-
netic observations may lead to the detection of prompt short
gamma-ray bursts and high-energy neutrinos within sec-
onds, followed by x-ray, optical, and radio afterglows days
to years later. Multimessenger observations will aid in our
understanding of astrophysical processes and increase our
search sensitivity [9,12]. Additionally, even in the absence
of a counterpart, the rapid identification of gravitational
waves has a number of benefits. Low-latency detection
allows us to provide feedback to commissioners when
search sensitivity drops unexpectedly, helping to return the
detector to its nominal state [13]. Furthermore, upon
identification of a candidate, we can submit timely requests
to minimize detector changes in order to gather enough data
to reliably estimate the search background and perform
follow-up calibration measurements.
In this work, we present the GstLAL-based inspiral

pipeline, a gravitational-wave search pipeline based on the
GstLAL library [14], and derived from GStreamer [15] and
the LIGOAlgorithm Library [16]. The pipeline can operate
in a low-latency mode to ascertain whether a gravitational-
wave signal is present in data, provide point estimates for
the binary parameters, and estimate event significance.
Analysts running the low-latency mode of this pipeline
were the first to identify the second gravitational wave
event detected, GW151226 [2]. The pipeline can also
operate in an “offline” configuration that can be used to
process archival gravitational-wave data with additional
background statistics and data quality information. The
offline configuration was used in the detection of
GW150914, LVT151012 [17], and GW151226 [2].
The GstLAL-based inspiral pipeline expands on the

parameter space covered by previous low-latency searches
[18–21]. In addition, it extends many of the techniques used
in prior searches for compact binary coalescences [22,23]
to operate in a fully parallel, stream-based mode that allows
for the identification of candidate gravitational-wave events
within seconds of recording the data. The key differences
include the following: (1) time-domain [24] rather than
frequency-domain [25] matched filtering, (2) time-domain
rather than frequency-domain [26] signal consistency tests
to reject nonstationary noise transients, (3) a multidimen-
sional likelihood ratio ranking statistic to robustly identify
gravitational-wave candidates in a way that automatically
adjusts to the properties of the noise [27], and (4) a
background estimation technique that relies on tracking
noise distributions to allow rapid evaluation of significance
of identified candidates [28]. For a discussion of perfor-
mance differences between time-domain and frequency-
domain matched filtering, the reader is referred to Ref. [24].
This paper is organized as follows: In Sec. II, we discuss

inputs to the low-latency and offline analyses, the online
acquisition of data, measurement of the power spectral
density (PSD), and whitening and conditioning of the data
for matched filtering. We also present the basic offline and

low-latency workflows in Figs. 1 and 2, respectively. In
Sec. III, we discuss the matched-filter algorithm and our
procedure for producing a list of ranked candidate events.

FIG. 1. Diagram of the offline search mode of the GstLAL-based
inspiral pipeline. First, data are transferred from each observatory
(H;L;…) to a central computing cluster (Sec. II A). Next, data are
read from the disk, and the PSD is estimated (Sec. II B) in chunks of
time t0; t1;…; tN for each observatory. The median over the entire
analysis time of each observatory PSD estimate is computed. The
input template bank, which is generated upstream of the analysis, is
split into regions of similar parameters θ̄0; θ̄1;…; θ̄N (Sec. II D) and
then decomposed into a set of orthonormal filters weighted by the
median PSD for each observatory. The data are filtered to produce a
series of triggers characterized by the signal-to-noise ratio (SNR), ρ,
signal consistency check, ξ2 (Secs. III A, III B, and III C), and
coalescence time. Coincident triggers between detectors are iden-
tified and promoted to the status of events (Sec. III D). Events are
ranked according to their relative probability of arising from signal
versus noise (Sec. III E). The data are then reduced to the most
highly ranked event in 8 s windows (Sec. III F). In parallel, triggers
not found in coincidence are used to construct the probability of
obtaining a given event from noise, PðΛjnÞ. Finally, the event
significance and false-alarm rate are estimated (Sec. IVA).Note that
the arrows drawn between nodes in this diagram do not imply the
output of one node is the input of the next node; they simply indicate
the order in which tasks are performed.

CODY MESSICK et al. PHYSICAL REVIEW D 95, 042001 (2017)

042001-2



In Sec. IV, we explain the significance calculation for
identified candidate events and the procedure for respond-
ing to significant events via alerts to our observing partners.
Differences between the offline and low-latency operation
modes will be highlighted when relevant.

II. MATCHED FILTERING INPUT

Matched filtering algorithms for compact binary mergers
have traditionally filtered the data dðtÞ against a set of
complex template waveforms fhci ðtÞg in the frequency
domain using the relation

ziðtÞ ¼ xiðtÞ þ iyiðtÞ ¼ 4

Z
∞

0

df
~hc�i ðfÞ ~dðfÞ
SnðfÞ

e2πift; ð1Þ

where ziðtÞ is the complex SNR using the ith template,
xiðtÞ is the matched filter response to a gravitational wave
signal with orbital coalescence phase ϕ0 (the real part of the
template in the time domain), yiðtÞ is the matched filter
response to the same signal with orbital coalescence phase
ϕ0 þ π=4 (the imaginary part of the template in the time
domain), and SnðfÞ is the single-sided noise PSD. The
templates are normalized such that

1 ¼ 4

Z
∞

0

df
j ~hci ðfÞj2
SnðfÞ

: ð2Þ

Defining the SNR, ρðtÞ, as the modulus of the complex
SNR, zðtÞ, allows one to search efficiently over the
unknown coalescence phase, while its expression in the
frequency domain allows one to efficiently implement

matched filtering using fast Fourier transform (FFT)
routines.
The GstLAL-based inspiral pipeline, however, performs

matched filtering in the time domain with real templates
fhiðtÞg. The matched filter output is thus the real-valued
xiðtÞ instead of the complex-valued ziðtÞ. We can recast
Eq. (1) in the time domain using the convolution theorem,
which gives

xiðtÞ ¼ 2

Z
∞

−∞
df

~h�i ðfÞ ~dðfÞ
SnðjfjÞ

e2πift ð3aÞ

¼ 2

Z
∞

−∞
dτĥiðτÞd̂ðtþ τÞ; ð3bÞ

where

d̂ðτÞ ¼
Z

∞

−∞
df

~dðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SnðjfjÞ

p e2πifτ ð4Þ

is the whitened data; the whitened template ĥiðτÞ is
defined similarly. As a consequence of using real tem-
plates, Eq. (3) returns the matched filter response to a
single coalescence phase, while Eq. (1) returns the
response to two phases. Thus, Eq. (3) must be evaluated
a second time using the template corresponding to the
π=4-shifted phase in order to compute the SNR. To
account for using twice as many templates, the template
index, i, used on real templates is related to the index used
on complex templates via

h2iðtÞ ¼ Re½hci ðtÞ�; ð5aÞ

FIG. 2. Diagram of the low-latency search mode of the GstLAL-based inspiral pipeline. First, data are received over a network
connection from each observatory to a data broadcaster in a central computing facility. The data are then broadcast over the entire cluster
with an efficient multicast protocol. The online analysis uses precomputed bank decompositions for each observatory from reference
PSDs as input to jobs that combine the filtering, vetoing, coincidence, ranking, and significance estimation steps from the offline
pipeline. Unlike the offline case, the online analysis workflow cannot be described as a directed acyclic graph, and in fact, data from
each filtering job are exchanged bidirectionally and asynchronously to a process that constantly evaluates the global background
estimates for the entire analysis. Events that are identified by any one filtering job, and subsequently pass a predetermined significance
threshold, are sent to the Gravitational-Wave Candidate Event Database (GraceDB) [29] within a matter of seconds of the data being
recorded at the observatories.
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h2iþ1ðtÞ ¼ Im½hci ðtÞ�: ð5bÞ

A different template normalization is also used, specifically

1 ¼ 4

Z
∞

0

df
j ~hiðfÞj2
SnðfÞ

: ð6Þ

In this section, we discuss the inputs to the time-domain
matched filtering calculation expressed in Eq. (3). We begin
by discussing the low-latency distribution of the data
themselves. We then describe our method for estimating
the PSD, which we use to construct the whitened data d̂ðtÞ
and whitened templates ĥiðtÞ. In describing our construc-
tion of the whitened data stream, we also describe the
removal of loud noise transients and dealing with data
dropouts in the low-latency broadcast. Finally, we describe
the construction of the whitened template filters, which
involves a number of computational enhancements to
reduce the cost of filtering in the time domain.

A. Data acquisition

Gravitational-wave strain data acquired at the LIGO sites
are digitized at a sample rate of 16384 Hz and bundled into
interferometric gravitational wave detector (IGWD) frames,
a custom LIGO file format described in Ref. [30], on a four-
second cadence. Information about the state of the instru-
ment and data quality is distilled from a host of auxiliary
environmental and instrumental-control-system channels
into a single channel, referred to as the state-vector channel.
The four-second frames containing the gravitational-wave
strain and state-vector channels are delivered for low-latency
processing at computing clusters across the LIGO Data Grid
within ∼12 s of the data being acquired.
Searches for compact binary coalescences require using

hundreds or thousands of compute nodes in parallel to
process all the possible template waveforms. Low-latency
data must be made available to all of these nodes as soon as
they arrive; thus an efficient multicast protocol is used to
broadcast the data in low latency to the entire cluster. The
nature of the low-latency transmission causes some small
data loss within the tolerances acceptable to the pipeline,
with efforts underway to reduce these losses.

B. PSD

Abstractly, we define the (one-sided) noise power
spectral density SnðfÞ as

h ~nðfÞ ~n�ðf0Þi ¼ 1

2
SnðfÞδðf − f0Þ; f > 0; ð7Þ

where h� � �i denotes an ensemble average over realizations
of the detector noise nðtÞ, which is assumed to be stationary
and Gaussian. In practice, we cannot use Eq. (7) to
calculate the PSD for a variety of reasons. To begin with,

our knowledge of the detector noise comes exclusively
from the observed data, which may contain signal in
addition to noise. Furthermore, real data may contain brief
departures from stationarity (commonly called “glitches”),
which we do not want to contribute to the PSD estimate.
Finally, the PSD can drift slowly over time scales shorter
than the duration of a typical detector lock segment, and we
want to track these changes. For low-latency applications,
we also require a PSD estimate that converges quickly
using only data from the past, so that we obtain an accurate
estimate of the PSD as soon as possible after the data begin
to flow. In this subsection, we discuss the PSD estimation
algorithm and how the result is used to whiten the data and
template bank. We also present the results of a study done
on the convergence of an estimated PSD to its known
spectrum.

1. Estimation and whitening

We use a median and a running geometric mean to meet
these requirements for each analyzed segment of data. The
median estimate operates on medium time scales and is
robust against shorter time-scale fluctuations in the noise,
while the running geometric mean tracks longer time-scale
changes in the PSD, averaging the PSD estimates with the
most recent estimates weighted more strongly. The time
scales of the median and geometric mean are set, respec-
tively, by the tunable parameters nmed and navg.
The PSD calculation begins by partitioning the strain

time series into blocks of length N points with each block
overlapping the previous by N=2þ Z points, where N and
Z are even-valued integers. Each block of data, denoted
dj½k�, is windowed and Fourier transformed,

~dj½l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NP
N−1
k¼0 w½k�2

s
Δt

XN−1

k¼0

dj½k�w½k�e−2πilk=N; ð8Þ

where k ∈ ½0; N − 1� is the time index, l ∈ ½0; N
2
� is the

frequency index, Δt is the time sample step, and

w½k� ¼

8>><
>>:

0; 0 ≤ k < Z

sin2 πðk−ZÞ
N−2Z ; Z ≤ k < N − Z

0; N − Z ≤ k ≤ N − 1

ð9Þ

is a zero-padded Hann window function. The mean and
Nyquist terms of Eq. (8), ~d½0� and ~d½N=2�, are set to zero,
and the zero-padded Hann window is defined such that the
sequence of overlapping window functions sum to unity
everywhere. The squared magnitude of Eq. (8) is propor-
tional to the instantaneous PSD and has a frequency
resolution of Δf ¼ 1

NΔt.
The median of the most recent nmed instances of the

instantaneous PSD, Smed
j ½l�, is determined for each fre-

quency bin l. Mathematically,
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Smed
j ½l� ¼ medianf2Δfj ~dk½l�j2gk¼j

k¼j−nmed
: ð10Þ

The median is relatively insensitive to short time-scale
fluctuations, which must occur over a time scale of
1
2
nmedðN=2 − ZÞΔt in order to affect the median.
The median is used to estimate the geometric mean of

the last nmed samples for each frequency bin. Assuming
the noise is a stationary, Gaussian process allows us to
assume that the measured frequency bins of the estimated
PSD are χ2-distributed random variables. The geometric
mean of a χ2-distributed random variable is equal to
the median divided by a proportionality constant β.
The logarithm of the running geometric mean of median
estimated PSDs, log Sj½l�, is computed from one
part log Smed

j ½l�=β and ðnavg − 1Þ parts log Sj−1½l�.
Mathematically,

Sj½l� ¼ exp

�
navg − 1

navg
log Sj−1½l� þ

1

navg
log

Smed
j ½l�
β

�
:

ð11Þ

Changes to the PSD must occur over a time scale of
at least navgðN=2 − ZÞΔt to be fully accounted for
by Eq. (11).
To whiten the data and the templates, the arithmetic

mean is estimated from the geometric mean. The arithmetic
mean of a χ2-distributed random variable is equal to the
geometric mean multiplied by expðγÞ, where γ is Euler’s
constant. If the noise assumptions are violated, then the true
arithmetic mean of the spectrum will differ from the
measured spectrum by some unknown factor. This esti-
mated arithmetic mean is referred to as SnðfÞ in the
continuum limit [see, e.g., Eq. (7)].
The low-latency operating mode must whiten the data

and update the running geometric mean of the PSD at the
same time. The whitening process is done after the running
geometric mean has been updated and is performed by
dividing each frequency bin of Eq. (8) by the square root of
the corresponding frequency bin in the estimated arithmetic
mean of the PSD. Mathematically,

~̂dj½l� ¼
~dj½l�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sj½l� expðγÞ
p ; ð12Þ

d̂j½k� ¼ 2Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1

m¼0

w½m�2
vuut Δf

XN=2

l¼0

~̂dj½l�e2πilk=N: ð13Þ

The extra terms in the inverse Fourier transform are
necessary for unity variance.
The low-latency analysis typically uses N ¼ fsð8 sÞ and

Z ¼ fsð2 sÞ, where fs ¼ 1=Δt is the sampling frequency,
resulting in 1=4 Hz frequency resolution. This introduces

four seconds of latency into the analysis. Unlike the low-
latency case, the offline analysis begins with a known list of
data segments. The PSD of each segment is estimated using
N ¼ fsð32 sÞ and Z ¼ 0; the final result of the running
average is written to disk as a “reference PSD.” The median
of the reference PSDs is used to whiten the template
bank before matched filtering. However, the data segments
are whitened in a procedure similar to the low-latency
analysis, using N ¼ fsð32 sÞ and Z ¼ fsð8 sÞ. At the
time of writing, the typical values used are nmed ¼ 7 and
navg ¼ 64 for both modes of operation. The only pro-
cedural difference between the offline and low-latency
whitening steps is that the offline analysis seeds the running
average with the segment’s reference PSD.

2. Convergence

For low-latency applications, we require a PSD estimate
that converges quickly using only data from the past, so that
we obtain an accurate estimate of the PSD as soon as
possible after the data begin to flow. To quantify the
convergence, we create noise with a known power spectrum
and compute a quantity that is proportional to the expected
SNR for a given PSD in the absence of noise (commonly
referred to as the “optimal SNR”). In the stationary phase
approximation, binary waveforms in the frequency domain,
hðfÞ, are proportional to f−7=6 [31], and thus

ρ ∝
Z

f2

f1

df
f−7=3

SnðfÞ
: ð14Þ

We choose f1 ¼ 10 Hz and f2 ¼ 2048 Hz. Specifically,
we compare the quantity computed using the measured

FIG. 3. PSD convergence properties. Estimating the PSD is a
critical part of ensuring that events are detected and assigned the
appropriate significance. This figure illustrates the convergence
properties of the PSD estimation in terms of the impact on SNR.
Within 20 s the PSD will have an Oð10%Þ impact on SNR, and
within 200 s the impact drops to Oð1%Þ, where it remains.
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spectrum SnðfÞ, which we denote simply as ρ, to the SNR
computed from the known spectrum ŜnðfÞ, which we
denote as ρ̂. Figure 3 shows the fractional change of ρ
with respect to ρ̂ as a function of time,

δρ

ρ
ðtÞ ¼ ρðtÞ − ρ̂

ρðtÞ : ð15Þ

We find that convergence happens quickly relative to the
length of the data. The approximation of the true PSD does
not affect the measured SNR after tens of seconds.

C. Data conditioning

Matched filtering is optimal under the condition that the
noise, nðtÞ, is both stationary and Gaussian. Although
nonstationarity on long time scales can be handled by
tracking the PSD, short noise transients, commonly referred
to as glitches, can cause high-SNR matched filter outputs
that mimic signal detections. Glitches are handled by either
removing them from the data or using signal consistency
checks to vet the matched filter output. Section III C
provides more details on the latter.
The GstLAL-based inspiral pipeline removes glitches

from the data in two ways. In some cases, the matched filter
outputs of glitches have considerably higher amplitudes
than any expected output from a compact binary signal
and can thus be safely removed from the data through a
process called gating. Once the data have been whitened,
they have unit variance. If a momentary excursion greater
than some number of standard deviations, σ, is observed in
the whitened data, then the gating process zeros the
excursion in the whitened data with a 0.25 s padding on
each side. An example of this is shown in Fig. 4. When
gating the strain data, care must be taken to choose a
threshold that will not discard real gravitational wave

signals. The threshold is chosen by testing with simulated
gravitational wave signals.
The choice of 0.25 s padding is conservative for LIGO

PSDs, where the whitening filter in the time domain can be
approximated as a narrow sinc function. An initial LIGO
PSD and the time domain representation of its correspond-
ing whitening filter, estimated from data taken during the
initial LIGO’s sixth science run [32,33] (referred to as S6),
are shown in Fig. 5. The ∼0.98 whitening filter’s square
magnitude is contained within �10 ms of the filter’s peak;
thus we expect no significant spectral leakage when gating
glitches with 0.25 s padding.
In many cases, auxiliary information is available through

environmental and instrumental monitors that can ascertain
times of clear coupling between local transient noise
sources [34,35]; in cases where data quality is known to
be poor, vetoes are applied after the strain data are
whitened. Since whitened data are, by definition, uncorre-
lated between adjacent samples for stationary Gaussian
processes, vetoes are applied by simply replacing the
whitened data during vetoed times with zeros.
Large noise transients occasionally remain in the absence

of clear instrumental or environmental coupling.
In some cases, the matched filter outputs of these glitches

have considerably higher amplitude than any expected
output from a compact binary signal and can thus be safely
removed from the data through a process called gating.
Once the data have been whitened, it has unit variance. If a
momentary excursion greater than some number of stan-
dard deviations, σ, is observed in the whitened data, then
the gating process zeros the excursion in the whitened data
with a 0.25 s padding on each side. An example of this is
shown in Fig. 4. When gating the strain data, care must be

FIG. 4. Data conditioning. In this two second block of LIGO S6
data, three noise transients (glitches) are visible. The glitch at
time zero surpassed the threshold of 50 standard deviations (σ),
triggering the gate to veto a�0.25 s window around the glitch by
replacing the data with zeros (black). The gray trace shows what
the data looked like prior to gating.

FIG. 5. Top: Time domain representation of the whitening filter
computed from a PSD estimated in an analysis of one week of S6
data. The ∼0.98 of the filter’s square magnitude is contained
enclosed within �10 ms of the peak. Bottom: The PSD used to
compute the whitening filter.
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taken to choose a threshold that will not discard real
gravitational wave signals. The threshold is chosen by
testing with simulated gravitational wave signals.

D. Template bank decomposition

In order to detect any compact binaries within a region of
the mass parameter space, we filter the data against a bank of
template signals. As the true binary parameter space is
continuous, actual signals may not exactly match any one
template from the bank; such signals incur a loss of SNR.
The parameters of the templates in the bank are chosen to
minimize this loss of SNR using as few templates as possible
[36–38]. Techniques for efficiently covering the binary
parameter space with templates have been extensively
developed [39–45]. We assume here that such a template
bank has already been constructed, and we describe how the
bank is decomposed to more efficiently filter the data.
The standard methods for template bank construction

naturally lead to banks of highly redundant templates. In
the frequency domain, filtering directly with the physical
templates has the advantage of admitting computationally
efficient searches over the unknown signal coalescence
phase and time; this advantage is lost in the time domain.
The GstLAL-based inspiral pipeline therefore does not
directly filter the data against the physical template wave-
forms themselves. Rather, it employs the Low Latency
Online Inspiral Detection (LLOID) method [24] (see also
Sec. III A), which combines singular value decomposition
(SVD) [46–48] with near-critical sampling to construct a
reduced set of orthonormal filters with far fewer samples.
In order to prepare the templates for the LLOID

decomposition, the template bank is first split into partially
overlapping “split banks” of templates with similar time-
frequency evolution based on the template parameters, as
depicted in Fig. 6. Templates corresponding to binary black
hole systems with circular orbits and component spins
parallel to the orbital angular moment can be characterized
by the component masses mi and the dimensionless spin

parameters χi ¼ ~Si · L̂=m2
i for i ¼ 1, 2, where ~Si are the

spin vectors and L̂ is the orbital angular momentum unit
vector. Circularized binary neutron star templates with
aligned spins can also be characterized by mi and χi,
however, not as accurately due to neutron-star specific
effects such as tidal disruption. The templates for these
systems are binned in a two-dimensional space, first by an
effective spin parameter χeff,

χeff ≡m1χ1 þm2χ2
m1 þm2

; ð16Þ

and then by chirp mass M,

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

: ð17Þ

2NT real templates are placed in each split bank, where NT
is typically Oð100Þ. The factor of 2 is a result of using two
orthogonal real-valued templates in place of one complex-
valued template (Sec. II). The input templates in adjacent
M bins are overlapped in order to mitigate boundary
effects from the SVD. Overlapping regions are clipped after
reconstruction such that the output has no redundant
template waveforms.1 The waveforms are then whitened
using reference PSDs, as described in Sec. II B, and each
split bank is decomposed via the LLOID method, described
below and in Fig. 7.
Each split bank is divided into various time slices after

prepending the templates with zeros such that every
template has the same number of sample points; this allows
us to efficiently sample different regions of our waveforms
with the appropriate Nyquist frequency instead of over-
sampling the low-frequency regions of the waveform with
the sampling frequency required for the high-frequency
regions. The SVD is then performed on each time slice of
each split bank and truncated such that we retain only the

FIG. 6. An illustration of how the physical parameter space is
tiled into regions in which the LLOID decomposition is done.
The physical parameter space is projected onto the M, χ plane.
Tiles of equal template number, 2NT , are constructed and
overlapped in the M direction by Oð10%Þ. Above a specified
chirp mass, Mc, waveforms that use the full inspiral-
merger-ringdown description are used. Below Mc, waveforms
that model only the inspiral phase are used. Tiles of similar chirp
mass are then grouped together to define a one-dimensional
family of similar parameters, θ̄, used in the evaluation of the
likelihood-ratio ranking statistic (Sec. III E).

1Split banks that contain the lowest and highest M templates
in a given χ bin are padded with duplicate templates from within
the split bank in order to keep the clipping uniform between split
banks.

ANALYSIS FRAMEWORK FOR THE PROMPT DISCOVERY … PHYSICAL REVIEW D 95, 042001 (2017)

042001-7



most important basis waveforms returned by the SVD
algorithm, as measured by the match between the original
templates and the reconstructed waveforms [24].
In addition to being used for the LLOID decomposition,

split banks are binned by the lowest chirp mass in each split
bank to construct bins of similar templates. These are
referred to as θ̄ bins and define a binning of the likelihood-
ratio detection statistic defined in Sec. III E.

III. EVENT IDENTIFICATION STAGE

Borrowing the language commonly used in particle
experiments, the GstLAL-based inspiral pipeline identifies
“triggers” from individual interferometer data streams.
Triggers which arrive in coincidence are elevated to the
“event” classification and ranked by the likelihood-ratio
ranking statistic. In this section, we discuss how a list of
triggers is generated by the matched-filtering algorithm and
how coincidences are identified and ranked as events.

A. Matched filtering and the LLOID method

As discussed in Sec. II D, groups of templates are
partitioned into time slices as part of the LLOID decom-
position [24]. Specifically, any split-bank H can be written
as a collection of matrices Hs,

H ¼ fHsg; ð18Þ

where eachHs contains time slice s of all 2NT templates in
the split bank,

Hs ¼ fĥsi ðtÞ∶i ∈ ½0; 2NT − 1�g: ð19Þ

The index s is chosen to be the largest at the start of the
template waveforms, decreasing until s ¼ 0 for the last
slice (as seen in Fig. 7). Each slice of the split bank, Hs, is
decomposed via the SVD to provide basis functions u.
These basis functions can be used to reconstruct any ĥi to a
predetermined tolerance, i.e.,

ĥsi ðtÞ ≈
XN−1

ν¼0

vsiνσ
s
νusνðtÞ; ð20Þ

where us ¼ fusνðtÞg is a matrix composed of N basis
vectors, vs ¼ fvsiνg is a reconstruction matrix, and ~σ ¼
fσsνg is a vector of singular values whose magnitudes are
directly proportional to how important a corresponding
basis vector is to the reconstruction process [46]. Now
instead of evaluating Eq. (3b) 2NT times for each slice of
2NT templates, we can evaluate

Us
νðtÞ ¼ 2

Z
∞

−∞
dτusνðtÞd̂sðtþ τÞ ð21Þ

N < 2NT times for each slice, where d̂sðtÞ is sampled at the
same rate as usνðtÞ. The matched filter output time series
is calculated for each time slice Hs, then upsampled via
sinc interpolation and added to the output of other time
slices (in order of decreasing s) to obtain the output of
Eq. (3b). The matched filter output accumulated up through
slice s is defined recursively for each template in a given
split bank as

xsi ðtÞ ¼ ðH↑xsþ1
i ÞðtÞ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Previousxi

þ
XN−1

ν¼0

vsiνσ
s
νUs

νðtÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Currentxi

; ð22Þ

where H↑ acts on a time series sampled at fsþ1 and
upsamples it to fs. Recall that the GstLAL-based inspiral
pipeline uses two real-valued templates in place of one
complex-valued template (Sec. II), and thus the computed
SNR is the quadrature sum of matched filter outputs from
waveforms which differ only in coalescence phase by π=4,

FIG. 7. An example of the LLOID decomposition [24]. In this
example,NT ¼ 195 binary inspiral waveforms (390 including the
two possible phases) with a chirp mass between 0.87 and 0.88 are
first “whitened” by dividing them by a realistic noise amplitude
spectral density from advanced LIGO (aLIGO). The line features
in the spectrum are responsible for the amplitude modulation of
the waveforms. The waveforms, which are prepended with zeros
when necessary so that all of the templates in a given decom-
position have the same number of sample points, were decom-
posed into 30 time slices at sample rates ranging between 128 Hz
and 2048 Hz (only the last 10 slices are shown). A basis filter set
from the waveforms in each time slice was constructed using the
SVD [46]. Only 6–10 basis waveforms per slice were needed to
reconstruct both phases of the 195 input waveforms to an
accuracy of better than 99.9%.

CODY MESSICK et al. PHYSICAL REVIEW D 95, 042001 (2017)

042001-8



ρjðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2jðtÞ2 þ x2jþ1ðtÞ2

q
; j ∈ ½0; NT − 1�: ð23Þ

Note that there are half as many SNRs as there are
templates, which is a result of using real-valued templates
in place of complex-valued templates (Sec. II). Evaluating
Eq. (22) saves a factor of 104 in computational cost over a
direct time domain convolution of the template waveforms
for typical aLIGO search parameters [24].

B. Triggers

The raw SNR time series, typically sampled at 2 KHz,
is discretized into triggers before being stored. The dis-
cretization is done by maximizing the SNR over time in
one-second windows and recording the peak if it crosses a
predetermined threshold. With the typical threshold of
SNR ¼ 4, it is probable to have at least one trigger in
every one-second interval for every template for every
detector data set analyzed. Although the number of triggers
can easily be hundreds of thousands per second (due to
modern template banks containing hundreds of thousands
of templates [17]), storing them is a marked improvement
over storing the raw SNR time series, which is over 3 orders
of magnitude more voluminous. However, we do not
discard the raw SNR time series information immediately,
because it is needed for the next stage of the pipeline
(Sec. III C). For each trigger, we record the parameters of
the template, the trigger time, the SNR, and the coalescence
phase. The trigger time is computed via subsample inter-
polation to nanosecond precision; while low SNR triggers
suffer from poor timing resolution, high SNR triggers can
be resolved to better resolution than that of the sample rate
[9,49,50]. Triggers are identified in parallel across each
template in a given θ̄ bin.

C. Signal-based vetoes

Detector data often contain glitches that are not removed
during the data conditioning stage (Sec. II C). Therefore,
ranking triggers solely by SNR is not sufficient to separate
noise from transient signals. Fortunately, we can exploit
consistency checks to improve our ability to discriminate
spurious glitches from true gravitational-wave events.
Requiring multiple-detector coincidence (Sec. III D) is
one powerful check, but here we discuss a separate check
on waveform consistency for a single detector’s matched-
filter output. This waveform consistency check determines
how similar the SNR time series of the data is to the SNR
time series expected from a real signal.
Under the assumption that the signal in the data exactly

matches the matched-filter template up to a constant, it is
possible to predict the local matched-filter SNR by com-
puting the template autocorrelation function and scaling it
to the known SNR. However, the known SNR is a result of
the matched-filter response from two identical but out of
phase templates; thus instead of scaling the autocorrelation

function to the SNR, a complex SNR series is constructed
from the two matched-filter outputs,

zjðtÞ ¼ x2jðtÞ þ ix2jþ1ðtÞ; j ∈ ½0; NT − 1�: ð24Þ

These are compared to the complex autocorrelation
function,

RjðtÞ ¼
Z

∞

−∞
df

j ~h2jðfÞj2 þ j ~h2jþ1ðfÞj2
SnðjfjÞ

e2πift; ð25Þ

where t ¼ 0 is chosen to be the peak time, tp. By
convention, each real template is normalized such that
its autocorrelation is 1

2
at the peak time, and thus Rjð0Þ ¼ 1.

We compute a signal consistency test value, ξ2, as a
function of time given the complex SNR time series
zjðtÞ, a trigger’s peak complex SNR zjð0Þ, and the
autocorrelation function time series RjðtÞ as

ξ2jðtÞ ¼ jzjðtÞ − zjð0ÞRjðtÞj2: ð26Þ

If the gravitational wave strain data contain only noise
[i.e., ~dðfÞ ¼ ~nðfÞ], then (see Appendix A for derivation)

hξ2jðtÞi ¼ 2 − 2jRjðtÞj2: ð27Þ

In practice, a value of ξ2 is computed for each trigger
by integrating ξ2ðtÞ in a window of time around the trigger
and normalizing it using Eq. (27). The integral takes
the form

ξ2j ¼
R
δt
−δt dtjzjðtÞ − zjð0ÞRjðtÞj2R

δt
−δt dtð2 − 2jRjðtÞj2Þ

; ð28Þ

where δt is a tunable parameter that defines the size of the
window around the peak time over which to perform the
integration. Typically, δt is calculated in terms of an odd-
valued autocorrelation length (ACL), specified as a number
of samples such that δt ¼ ðACL − 1ÞΔts=2, where Δts ¼
f−1s is the sampling time step. A suitable value for ACL was
found to be 351 samples when filtering is conducted at a
2048 Hz sample rate, resulting in δt ∼ 85.4 ms; this value
was found by using Monte Carlo simulations in real data.
Figure 8 plots the SNR and scaled autocorrelation for a

template that recovered a simulated signal in initial LIGO
data. Subtracting the measured SNR time series from the
predicted series shown in this figure is what is done in (28)
on a trigger-by-trigger basis.
We note that ξ2 differs from the traditional time-

frequency χ2 test in [26], and it is not, in fact, a χ2-
distributed number in Gaussian noise. However, the
statistics of the ξ2 test are recorded for both noise and
simulated signals and can therefore be used in the like-
lihood-ratio test described in Sec. III E.
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D. Coincidence

Demanding that two triggers are found in temporal
coincidence between the LIGO sites is a powerful tech-
nique to suppress the background of the search. For a single
detector trigger, we define the time of an event to coincide
with the peak of its SNR time series. Given a trigger in one
detector, we check for corresponding triggers in the other
detector within an appropriate time window, which takes
into account the maximum gravitational-wave travel time
between detectors and statistical fluctuations in the mea-
sured event time due to detector noise. For the two LIGO
detectors, the time window is typically �15 ms. We further
require that the mass and spin template parameters are the
same for the two triggers. This exact match requirement
potentially results in a small loss of SNR for real signals,
since the loudest trigger in each detector will in general not
have the exact same template parameters due to indepen-
dent noise in the detectors. However, taking into account
such fluctuations requires detailed knowledge of the metric
on the signal manifold [51], which may not be easily

available. Furthermore, the exact match restriction sup-
presses the noise and drastically simplifies the pipeline.

E. Event ranking

Each trigger from each detector has independently
computed ρ, ξ2, and tp values. After coincidences are
formed, it is necessary to rank the coincident events from
least likely to be a signal to most likely to be a signal and to
assign a significance to each. The GstLAL-based inspiral
pipeline uses the likelihood-ratio statistic described in [27]
to rank coincident events by their SNR, ξ2, the instanta-
neous sensitivity of each detector (expressed as the horizon
distance, fDH1; DL1g), and the detectors involved in the
coincidence (expressed as the set fH1;L1g). For the case
where only the aLIGO observatories H1 and L1 are
participating, the likelihood ratio of an event found in
coincidence is defined as

LðfDH1;DL1g;fH1;L1g;ρH1;ξ2H1;ρL1;ξ2L1;θ̄Þ
¼LðfDH1;DL1g;fH1;L1g;ρH1;ξ2H1;ρL1;ξ2L1jθ̄ÞLðθ̄Þ

¼PðfDH1;DL1g;fH1;L1g;ρH1;ξ2H1;ρL1;ξ2L1jθ̄;signalÞ
PðfDH1;DL1g;fH1;L1g;ρH1;ξ2H1;ρL1;ξ2L1jθ̄;noiseÞ

Lðθ̄Þ;

ð29Þ

where θ̄ is a label corresponding to the template bank bin
being matched-filtered (Sec. II D). The numerator and
denominator are factored into products of several terms
in [27], assuming that the noise distributions for each
interferometer are independent of each other. The com-
putation of each term in the factored numerator and
denominator is discussed in detail in [27]; in this paper,
we will give only a short summary of the denominator.
The denominator is factored such that

PðfDH1; DL1g; fH1;L1g; ρH1; ξ2H1; ρL1; ξ2L1jθ̄; noiseÞ
∝

Y
inst∈fH1;L1g

Pðρinst; ξ2instjθ̄; noiseÞ: ð30Þ

The detection statistics ρ and ξ2 from noncoincident
triggers are used to populate histograms for each detector,
which are then normalized and smoothed by a Gaussian
smoothing kernel to approximate Pðρinst; ξ2instjθ̄; noiseÞ.
Running in the low-latency operation mode requires a
burn-in period until the analysis collects enough non-
coincident triggers to construct an accurate estimate of
the ðρ; ξ2Þ PDFs. Neither operation mode tracks time
dependence of these PDFs; instead the PDFs are con-
structed from cumulative histograms. Future work may add
time dependence.
Rather than collecting noncoincident ðρ; ξ2Þ statistics

from individual templates, we group linearly dependent
templates together to avoid the computational cost and

FIG. 8. Ingredients in the autocorrelation-based least-squares
test as described in (26). The two panels show the SNR time
series near a simulated signal in initial LIGO data (black lines)
along with the predicted SNR computed from the template
autocorrelation. Subtracting these two time series and integrating
their squared magnitude provides a signal consistency test, ξ2, at
the time of a given trigger that can be used to reject nonstationary
noise transients.
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complexity of tracking each template separately.
Furthermore, it has been observed that groups of linearly
dependent templates produce similar PDFs, and thus coarse
graining the parameter space allows one to approximate
these PDFs for collections of templates. Therefore, the θ̄ in
the likelihood ratio is a label that identifies a specific
template bank bin. Exactly how templates are grouped
together into background bins is left as a tuning decision for
the user, but typically Oð1000Þ templates from each
detector are grouped together.
Examples of the ρ and ξ2 distributions, estimated from an

analysis of one week of S6 data, are shown in Fig. 9. The
analysis considered data recorded between September 14,
2010, 23∶58:48 UTC and September 21, 2010, 23∶58:48

UTC. These boundaries were chosen to include the blind
injection performed on September 16, 2010, at 06∶42:23
UTC, often referred to as the “Big Dog.” The warm
colormap corresponds to the natural logarithm of the
estimated noise probability density function. The cool
colormap corresponds to a PDF generated by adding the
coincident triggers to the single detector triggers before
smoothing and normalizing. The cool-colormap distribu-
tion was then masked to show only regions which deviate
from the background estimate. The location of the Big Dog
parameters is marked with a black X.
Examples of two other likelihood-ratio components from

the Big Dog analysis are shown in Fig. 10. The top plot
shows the joint SNR PDF, which is used in the numerator

FIG. 9. PDFs used in the likelihood ratio calculation, generated
by histogramming, then smoothing, and normalizing the triggers.
The plots shown are from an analysis of S6 data beginning at
September 14, 2010, at 23∶58:48 UTC and ending at September 21,
2010, at 23∶58:48UTC,which includes the blind injection knownas
the Big Dog. The warm colormap corresponds to the natural
logarithm of marginalized probability density function estimated
from noncoincident triggers only; the cool-colormap region was
computed by adding coincident triggers to the histograms before
smoothing and normalizing. Regions of the cool-colormap model
consistent with the warm-colormap model were then masked. The
locationof theBigDog in the ðρ; ξ2Þ plane ismarkedwith a blackX.

FIG. 10. Instances of two of the distributions included in the
calculation of the likelihood-ratio numerator, generated from an
analysis of S6 data beginning at September 14, 2010, at 23∶58:48
UTC and ending at September 21, 2010, at 23∶58:48 UTC. Top:
The joint SNR PDF used to enforce amplitude consistency across
observatories. The location of the measured Big Dog parameters
is marked with a black X. Bottom: The ðρ; ξ2Þ signal distribution
used in the numerator of the likelihood ratio. The locations of the
measured Big Dog parameters are marked with a black X for
Hanford and a blackþ for Livingston.
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of the likelihood ratio to enforce amplitude consistency
[27]; the bottom plot shows the signal hypothesis model of
the ðρ; ξ2Þ plane. The semianalytic models used to generate
these plots are described in [27].

F. Event clustering

Signals can produce several high-likelihood events at the
same time in different templates; we wish to ensure that we
consider only the most likely event associated with a signal.
In the offline analysis, we use a clustering algorithm that
picks out the maximum likelihood-ratio event globally
across the input template bank within a �4 s window. The
online analysis does not cluster events globally to reduce
latency. Instead, the online analysis keeps the maximum
likelihood-ratio event in each θ̄ bin within a �1 s window.

IV. EVENT PROCESSING AND
SENSITIVITY ESTIMATION

The result of the pipeline components described in
Sec. III is a list of events ranked from most to least likely
to be a gravitational-wave signal. In this section, we discuss
how the significance is estimated, what the procedure is in
the case that a sufficiently significant candidate is identi-
fied, and how simulated waveforms are used to characterize
the sensitivity of the analysis to gravitational waves.

A. Event significance estimation

Most coincident events are noise, and thus the p-value,
the probability that noise would produce an event with a
ranking statistic at least as large as the one under consid-
eration, is the standard tool used to identify candidate
gravitational-wave events. The p-value has conventionally
been evaluated by performing time slides, where a set of
time shifts that are much larger than the gravitational-wave
travel time (tens of milliseconds) between gravitational-
wave detectors is introduced into one or more data sets and
the coincidence and event-ranking procedure is repeated in
the same way as it is done without the time shifts [52].
Instead of performing time slides, the GstLAL-based
inspiral pipeline uses triggers not found in coincidence
to compute a kernel density estimate of the probability
density of noiselike events in each background bin,
PðlnLjθ̄; noiseÞ [27,28]. The background bins are then
marginalized over to obtain PðlnLjnoiseÞ and the com-
plementary cumulative distribution,

CðlnL�jnoiseÞ ¼
Z

∞

lnL�
d lnLPðlnLjnoiseÞ: ð31Þ

The p-value we seek describes the probability that a
population of M independent coincident noiselike events
contains at least one event with a log likelihood ratio
greater than or equal to some threshold lnL�. This can be
written as the complement of the binomial distribution [28],

PðlnL ≥ lnL�jnoise1;…; noiseMÞ

¼ 1 −
�
M

0

�
ð1 − e−CðlnL�jnoiseÞÞ0ðe−CðlnL�jnoiseÞÞM

¼ 1 − e−MCðlnL�jnoiseÞ; ð32Þ

where e−CðlnL�jnoiseÞ is the probability that a Poisson
process with mean rate CðlnL�jnoiseÞ will yield an event
with the log likelihood ratio less than lnL�. The binomial
coefficient and the term that follows are both clearly
unity and were only explicitly written for pedagogical
reasons.
When calculating an event’s significance during an

experiment of undetermined length, such as the low-latency
processing of data during a science run, it is convenient to
express the significance in terms of how often the noise is
expected to yield an event with a log likelihood ratio
≥ lnL�. This is referred to as the false-alarm rate (FAR)
[28]; for an experiment of length T, we define this as

FAR ¼ CðlnL�jnoiseÞ
T

: ð33Þ

The time used in the calculation of the FAR is the total
elapsed observing time regardless of instrument state for
the low-latency configuration and the total time where at
least two detectors are operating for the offline analysis
operation. The offline configuration definition is histor-
ically what has been used; however, the online definition
leads to intuitive false alarm rates for sharing low-latency
events with external observing partners.
The procedure to estimate the background distribution

described thus far does not account for the clustering
described in Sec. III F. Events with low lnL are more
common than those with high lnL, and thus the clustering
process removes low lnL events preferentially. The nor-
malization of the background model is determined by the
observed events above a log-likelihood ratio threshold
chosen to be safely out of the region affected by clustering.
This is acceptable because low lnL events are, by con-
struction, the least likely to contain a signal. Consequently,
we only consider events well above this threshold as viable
candidates. Work is currently underway to create a back-
ground model that accounts for clustering.
A plot of the significance results from the Big Dog

run discussed in Sec. III E is shown in Fig. 11. The
Big Dog was found with a p-value of 5.4 × 10−9 (5.7σ),
which corresponded to a FAR of 1.1 × 10−14 Hz (1 per ∼
2.7 × 106 yr); Table I lists the recovered parameters of the
Big Dog.

B. Generating alerts

When operating in a low-latency analysis configuration,
one of the primary goals of the GstLAL-based inspiral
pipeline is to identify candidate events and upload them to
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the Gravitational-wave Candidate Event Database
(GraceDB) [29] as quickly as possible in order to issue
alerts to observing partners [12].
Events that pass a given FAR threshold are identified

within ∼1 min of the gravitational-wave signals arriving at
Earth. The basic parameters of the event are transmitted to
GraceDB, including the time of the event, the SNR and ξ2

values for the triggers in each detector, and the parameters
of the best-fit template (for example, mass and spin values,
the significance estimate, etc.). Furthermore, the instanta-
neous estimate of the PSD is uploaded to GraceDB, as well
as the histogram data used in computing the p-value.

An event upload automatically initiates several auto-
mated and human follow-up activities to aid rapid com-
munication with observing partners [53]. First, a rapid sky
localization routine known as BAYESTAR [9,50,54] uses
the event information and the PSD to estimate the event’s
sky position within minutes. At the same time, deeper
parameter estimation analysis begins in order to provide
updated position reconstruction, as well as the full posterior
probability distributions of the binary parameters [55], on a
time scale that ranges from hours to days.
In addition to parameter estimation, data-quality infor-

mation is also mined to provide rapid feedback to analysts.
Time-frequency spectrograms are automatically generated
to indicate the stationarity of noise near an event [56].
Furthermore, low-latency mining of LIGO’s auxiliary
channels provide additional information about the state
of the detector and environment when an alert is first
generated [16,57,58].
The suitability of the low-latency pipeline for generating

data for external alerts has been studied extensively
in [9,54].

C. Software injections

Simulated gravitational waveforms known as “software
injections” are used to assess the pipeline response to real
gravitational-wave signals. The LIGO strain data are
duplicated and simulated compact binary waveforms are
digitally added to the duplicated data streams. In low
latency, the new data with software injections added are
broadcast to the LIGO Data Grid in parallel to the normal
data set so that a simultaneous run can measure the
instantaneous sensitivity of the low-latency analysis to
compact binary sources. In the offline mode, strain data
are read from the disk, software injections are added, and
the new data are written back to disk before the offline
inspiral pipeline processes the data.
Injections are considered “found” if a coincident

event with the correct template parameters is found with
a FAR ≤ 30 d at the time of the injection, and “missed”
otherwise. The volume of space the pipeline is sensitive
to, V, is approximated as a sphere and computed via

V ¼ 4π

Z
∞

0

drϵðrÞr2; ð34Þ

where ϵðrÞ is an efficiency parameter given by the ratio of
found to total injections modeled to be a distance r away.
We define our estimated range, the average furthest dis-
tance a signal can originate from and still be detected, as

R ¼
�
3V
4π

�
1=3

: ð35Þ

It is important to note the range depends on parameters of
the compact binary system. For example, the range for a

FIG. 11. Number of observed events as a function of the log
likelihood ratio in an analysis of S6 data beginning on
September 14, 2010, at 23∶58:48 UTC and ending at September
21, 2010, at 23∶58:48 UTC. The Big Dog injection, found with
a false alarm probability of 5.4 × 10−9 (5.7σ), is marked on the
observed distribution (green). The black line represents the
predicted number of events when observed events are included
in the background model, while the blue line is the predicted
number when the observed events are not included in the
background model.

TABLE I. The result of the analysis of S6 data beginning on
September 14, 2010, at 23∶58:48 UTC and ending on September
21, 2010, at 23∶58:48 UTC. Only the parameters found for the
recovered Big Dog injection are shown. The Big Dog was the
most significant event found in this analysis period.

p-value 5.4 × 10−9 (5.7σ)

FAR (Hz) 1.1 × 10−14

logL 39.6
ρH 14.7

ξ2H 1.4
ρL 9.4

ξ2L 1.5

M (M⊙) 4.7
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1.4–1.4M⊙ binary neutron star system will be different
from that of a 10–10M⊙ binary black hole system; thus
different injection sets must be used to determine the
pipeline’s sensitivity to different regions of the compact
binary parameter space. Equation (35) is compared to the
analytically computed SenseMon range, an estimate of
pipeline sensitivity calculated from the PSD [59].
Comparing the sensitivity estimated from the PSD to the
sensitivity estimated from injections provides additional
confidence in the sensitivity estimates.
Typically, injections are added at a much higher rate than

the expected gravitational wave signal rate. However, their
cadence is chosen such that they do not bias the PSD
estimate described in Sec. II B. In practice, injections are
typically added about once per minute so that it is possible
to evaluate the average response to certain signal types over
the entire experiment duration.

V. CONCLUSION

The GstLAL-based inspiral pipeline is a stream-based
pipeline that allows for time-domain compact binary
searches capable of identifying and uploading candidate
gravitational-wave signals within seconds. This provides
rapid feedback to the gravitational-wave detector control
rooms and enables prompt event alerts for electromagnetic
follow-up by observing partners. The analysis techniques
were designed for second- and third-generation gravitational-
wave detectors and have been demonstrated to be applicable
even to the computationally challenging case of the future
Einstein Telescope [60].
GstLAL and all related software is available for public

use and licensed under the GPL [14].
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APPENDIX: EXPECTATION VALUE OF SIGNAL
CONSISTENCY TEST VALUE IN NOISE

Expanding Eq. (26) and taking the ensemble average,
we find

hξ2jðtÞi ¼ hjzjðtÞ − zjð0ÞRjðtÞj2i;
¼ hjzjðtÞj2i − 2Re½hz�jðtÞzjð0ÞiRjðtÞ�
þ hjzjð0Þj2ijRjðtÞj2: ðA1Þ

Starting with Eq. (3a),

hjzjðtÞj2i¼
�				2

Z
∞

−∞
df

~nðfÞð ~h�2jðfÞþ i ~h�2jþ1ðfÞÞ
SnðfÞ

e2πitf
				2


;

¼4

Z
∞

−∞

Z
∞

−∞
df1df2

�
h ~nðf1Þ ~nðf2Þie2πitðf1−f2Þ

×
ð ~h�2jðf1Þþ i ~h�2jþ1ðfÞÞð ~h2jðf2Þ− i ~h2jþ1ðf2ÞÞ

Snðjf1jÞSnðjf2jÞ
�
;

¼2

Z
∞

−∞
df

j ~h2jðfÞj2þj ~h2jþ1ðfÞj2
SnðjfjÞ

;

hjzjðtÞj2i¼hjzjð0Þj2i¼2; ðA2Þ

where Eq. (7) was used in the last step. Computing
hz�jðtÞzjð0Þi follows the same steps, except the zjð0Þ term
does have a complex exponential to cancel the complex
exponential accompanying z�jðtÞ; thus

hz�jðtÞzjð0Þi ¼ 2R�
jðtÞ; ðA3Þ

hξ2jðtÞi ¼ 2 − 2jRjðtÞj2: ðA4Þ
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