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We examine a holographic model in which a Uð1Þ symmetry and translational invariance are broken
spontaneously at the same time. Our construction provides an example of a system with pair-density wave
order, in which the superconducting order parameter is spatially modulated but has a zero average. In
addition, the charge density oscillates at twice the frequency of the scalar condensate. Depending on the
choice of parameters, the model also admits a state with coexisting superconducting and charge-density
wave orders, in which the scalar condensate has a uniform component.
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I. INTRODUCTION AND DISCUSSION

Over recent years, holographic techniques originating
from the AdS/CFT duality and first developed in string
theory have been used to analyze models that may be in the
same universality class as many highly correlated systems.
Thanks to such approaches, challenging questions about
dynamics in quantum phases of matter at strong coupling
can be mapped to processes in theories of gravity that are
tractable. Thus, holography provides a window into the
often unconventional physics of these systems.
Inhomogeneities, striped phases and competing orders

are believed to play an important role in the rich phase
structure of high-Tc superconductors [1–3]. In certain
regions of the phase diagram—such as the pseudogap
regime—many of these orders appear to be intertwined and
sometimes have comparable strengths and common origin.
Here we focus on a particular broken-symmetry phase, the
pair-density wave (PDW) [4,5], in which charge-density
wave (CDW) and superconducting (SC) orders are inter-
twined in a very specific way, and in which spin-density
wave (SDW) order can also play a role. PDW phases seem
to be a robust feature of models of strongly correlated
electrons including high-Tc superconductors, and there is
experimental evidence that they appear at least in the
cuprate La2−xBaxCuO4 [6–8].
In this paper, we construct and study a holographic model

which exhibits either PDWor coexisting SCþ CDWorders,
depending on the parameters in the theory. To our knowl-
edge, this is the first holographic setup to realize a PDW.
While both PDWand SCþ CDW break translational invari-
ance and a Uð1Þ symmetry spontaneously, there is a key
difference between them. In a PDW, the superconducting
order parameter varies periodically as a function of position,
but it does so with a zero average, e.g. hOχi ∝ cosðkxÞ.
Moreover, in such a phase, the charge density, which is

also modulated, has a period which is half that of the scalar
condensate, e.g. ρðxÞ ¼ ρ0 þ ρ1 cosð2kxÞ. In contrast, a
SCþ CDW state has a uniform component to the conden-
sate, which oscillates at the same frequency as the charge
density.
In our construction theUð1Þ and translational symmetries

are broken spontaneously at the same time. The set-up we
adopt includes, in addition to gravity, two real scalar fields χ
and θ and two vector fields Aμ and Bμ. The couplings
between the scalars and the gauge fields can be generated via
the Stückelberg mechanism. Indeed, our theory is not of the
form of the standard holographic superconductor [9,10], but
rather falls within the generalized class of models advocated
for in [11]. Themore general structure of the scalar couplings
allows us to break the desired symmetrieswithout the need to
introduce additional fields.
Here the presence of two vector fields (and the inter-

action between them) is crucial for obtaining the symmetry
breaking features we are after. The role of the gauge field
Aμ is transparent, since it provides a finite charge density ρA
whose modulations agree with the behavior of a PDW or
CDW state. What distinguishes whether the system is
described by a PDW or by SCþ CDW is whether the
scalar χ is charged or not under the second vector field Bμ.
The physical interpretation of Bμ depends on details of the
model. In particular, when the field is massless it can be
associated with spin degrees of freedom, and the modu-
lations in its density ρB could characterize SDW order.
Before discussing our model, we should mention that

striped orders in holographic superconductors have been
studied in a variety of setups, starting with Ref. [12], in
which an inhomogeneous phase was sourced by a modu-
lated chemical potential. There have been many general-
izations since then. In particular, a study of backreaction in
the presence of a periodic potential was initiated in
Ref. [13]. However, in these setups, the breaking of
translational invariance was explicit and not spontaneous.
Holographic superconductors with spontaneously gener-
ated helical structure were reported in Refs. [14,15].
The competition between superfluid and striped phases
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has been examined within the context of holography; see
Refs. [16,17] for top-down models. The spontaneous
formation of striped order in a holographic model with a
scalar coupled to two Uð1Þ gauge fields was first studied in
Ref. [18] and more recently in Refs. [19–22] [note that
these models preserve the Uð1Þ symmetry].
Here we have extended such constructions by simulta-

neously breaking both symmetries spontaneously and
focusing on the differences between a scalar condensate
with PDW versus CDWorder. Moreover, we have recently
seen in a number of holographic models of strongly
correlated electrons the advantage of using multiple vector
fields, as they typically lead to richer physics, e.g.
Refs. [22–25]. In particular, such a picture was used to
construct phase diagrams that are similar to those of high-
Tc superconductors as well as other strange metal materials
in Ref. [22]. Our construction provides a further example of
this idea. Note that while in our analysis the mass of the
vector Bμ does not affect any of the physics in a qualitative
way, it is expected to play a role for applications to
transport. It would be interesting to study the effects of
disorder on the PDW state, as well as the consequences of
stripe order on the conductive properties of the system
and on fermion spectral functions. We leave these questions
to future work. A more detailed analysis for this model will
appear in Ref. [26].

II. HOLOGRAPHIC SETUP

We choose our theory S ¼ R
d4x

ffiffiffiffiffiffi−gp
L to describe

gravity coupled to two real scalar fields χ and θ, and
two vector fields Aμ and Bμ:

L ¼ Rþ 6

L2
−
1

2
ð∂χÞ2 − ZA

4
F2 −

ZB

4
~F2 −

ZAB

2
F ~F

−KðχÞð∂μθ − qAAμ − qBBμÞ2 −
m2

v

2
B2 −

m2

2
χ2; ð1Þ

with Fμν ¼ ∂μAν − ∂νAμ and ~Fμν ¼ ∂μBν − ∂νBμ denoting
the field strengths of the two vectors, and F ~F ¼ Fμν

~Fμν for
short. We take the gauge field couplings ZA; ZB; ZAB to
depend on χ, and in particular choose them so that in the
limit χ → 0 they take the form

ZA ¼ 1þ a
2
χ2 þOðχ3Þ; ZB ¼ 1þOðχ2Þ;

ZAB ¼ cχ þOðχ2Þ; K ¼ 1

2
χ2 þOðχ3Þ; ð2Þ

with ða; cÞ constants. We note that the c parameter which
controls the interaction ∼ZAB between the two fluxes will
play a crucial role in the breaking of translational
invariance.
While in general we will assume that χ is charged under

both Uð1Þ fields, we will see that the qB ¼ 0 case plays a

special role, as it is associated with a PDW condensate.
On the other hand, qB ≠ 0 will describe a state with
SCþ CDW order. Finally, note that while the current dual
to Aμ is conserved, the same is not always true for the
current dual to Bμ, because of the mass term m2

v. Although
in this paper we consider both massless and massive cases
for the sake of completeness, they lead to the same
qualitative results. On the other hand, the mass parameter
m2

v is expected to affect e.g. the transport properties of the
system, which we plan to study in future work.
We are interested in considering two classes of back-

ground solutions to this system. The first one is the
electrically charged AdS Reissner-Nordström (AdS-RN)
black brane only supported by Aμ,

ds2 ¼ 1

fðrÞ dr
2 − fðrÞdt2 þ r2

L2
ðdx2 þ dy2Þ;

fðrÞ ¼ r2

L2

�
1 −

r3h
r3

�
þ μ2r2h

4r2

�
1 −

r
rh

�
;

At ¼ μ

�
1 −

rh
r

�
; ð3Þ

where rh is the horizon, μ is the chemical potential, and
other fields are trivial. This background will describe the
high-temperature phase in which the dual theory possesses
a global Uð1Þ symmetry, associated with the gauge field

Aμ. The black brane temperature reads T ¼ 12r2h−μ
2L2

16πL2rh
, and in

the extremal limit T ¼ 0, the near-horizon geometry
becomes that of AdS2 × R2:

ds2 ¼ L2

6~r2
d~r2 −

6~r2

L2
dt2 þ r2h

L2
d~x2; At ¼

2
ffiffiffi
3

p

L
~r; ð4Þ

with ~r ¼ r − rh and the AdS2 radius Lð2Þ ¼ L=
ffiffiffi
6

p
.

We will then examine solutions with a nontrivial profile
for χ and Bμ. These will describe the formation of a scalar
condensate in the low-temperature regime of the dual field
theory, and provide holographic probes of phases with a
broken Uð1Þ symmetry. Moreover, by allowing for modes
which source spatial modulations, we will trigger insta-
bilities to striped superconducting phases. The detailed
structure of the modulations of the condensate and charge
densities will be sensitive to qB as well as the parameters in
the theory, as we will see shortly.

III. STRIPED INSTABILITIES

To determine whether in this model we can spontane-
ously break translational invariance at the same time as the
Uð1Þ symmetry, we need to examine the spatially modu-
lated static mode in the spectrum of fluctuations around the
unbroken phase. Our strategy will be to first consider
instabilities arising from the IR AdS2 × R2 geometry, and
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to construct analytically momentum-dependent modes
which violate the IR AdS2 BF bound. The presence of
such modes is a strong indication that there should be a
region in which one has superconducting order that is
spatially modulated—a striped superconductor. We will
then move on to studying numerically the behavior of the
perturbations and of the condensate at finite temperature.

A. Instabilities of the IR AdS2 × R2 geometry

We are now ready to examine instabilities of the electri-
cally charged AdS-RN black blane (3). We start from the
AdS2 × R2 background (4) which arises as the IR limit of
the zero temperature AdS-RN geometry, and we turn on the
following two spatially modulated perturbations;

δχ ¼ εwðrÞ cosðkxÞ; δBt ¼ εbtðrÞ cosðkxÞ; ð5Þ

where we have relabeled ~r → r for convenience, and ε is a
formal perturbative expansion parameter. By substituting
into the equations of motion and working at linear level in
ε, we obtain the two coupled equations

6

L2
ðr2w0Þ0 − 2

ffiffiffi
3

p
c

L
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�
M2

ð2Þ þ
k2L2
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12
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bt ¼ 0; ð7Þ

withM2
ð2Þ ¼ m2 − 6a

L2 − 2q2A and ða; cÞ as defined in Eq. (2).
We make the further ansatz

wðrÞ ¼ v1rλ; btðrÞ ¼ v2rλþ1; ð8Þ

where v1, v2 are constants and λ denotes the scaling
dimension of an IR operator in the one-dimensional
CFT dual to the AdS2 geometry. The linearized equations
can then be written in matrix form, which upon solving we
find

λ�þ ¼ −
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þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with

m2
� ¼ L2
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where we have fixed the chemical potential to be μ ¼ 1.
The onset of the instability associated with the violation

of the AdS2 BF bound is linked to λ becoming imaginary,
i.e. when m2

− < − 1
4
. For striped instabilities, one needs a

nonzero wave number k at which the value of λ is imaginary
for a fixed choice of Lagrangian parameters. By inspecting
the form of m2

−, one can check explicitly that this is clearly
possible for various parts of the parameter space. As a
specific example, for the parameters chosen in the finite
temperature analysis below (e.g. m2 ¼ −8, qA ¼ 1,
m2

v ¼ 0, L ¼ 1=2, a ¼ 4, jcj ¼ 2.34), we find a momen-
tum range 0.99 < jkj < 2.62 in which the modes violate the
BF bound and are associated with spatially modulated
phases. We come back to this point in greater detail in the
numerical analysis below.

B. Critical temperature

The instabilities of the IR AdS2 solutions that we have
just discussed occur at zero temperature. Nevertheless, they
suggest that analogous instabilities should appear in the
black brane background (3) at finite temperature. Next, we
shall calculate the critical temperature Tc below which the
AdS-RN geometry becomes unstable, as a function of wave
number k. In particular, if the scalar field instabilities are
associated with a finite value of k, we will have found a
striped condensate. Note that to obtain Tc it is sufficient to
work to linear order in perturbations.

Motivated by the AdS2 analysis, we turn on the same
fluctuations as in (5). By expanding around the AdS-RN
background, one then obtains two coupled linear ODEs,

w00 þ
�
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r
þ f0

f
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r2f
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−
1

f
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f

�
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v þ
k2L2

r2

�
bt ¼ 0; ð10Þ

which can be solved numerically. We demand that the
fluctuations be regular at the horizon at r ¼ rh, with

wðrÞ ¼ wh þOðr − rhÞ;
btðrÞ ¼ bht ðr − rhÞ þOðr − rhÞ2:

On the other hand, their r → ∞ UV expansion is

wðrÞ ¼ ws

r3−Δχ
ð1þ � � �Þ þ wv

rΔχ
ð1þ � � �Þ;

btðrÞ ¼
bs

r2−ΔB
ð1þ � � �Þ þ bv

rΔB−1
ð1þ � � �Þ; ð11Þ

where the quantities Δχ ¼ 1
2
ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2L2

p
Þ and ΔB ¼

1
2
ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

vL2
p

Þ are, respectively, the scaling dimen-
sions of the scalar operator dual to χ and the vector operator
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dual to Bμ. Since we are only interested in breaking both
symmetries spontaneously, we turn off the parameters ws
and bs, which correspond to the sources for the operators in
the dual field theory.
After fixing the theory parameters, for a given wave

number k we expect there to be a normalizable zero mode
appearing at a particular temperature. We choose the χ mass
term to be m2L2 ¼ −2, so that Δχ ¼ 2, and consider two
separate cases for the second vector field Bμ. We first take it
to be massless, m2

v ¼ 0, so that ΔB ¼ 2 and the associated
current is conserved. We then consider the case in which it
is massive, choosing m2

vL2 ¼ 0.11 in our numerics, cor-
responding to ΔB ¼ 2.1. For both scenarios, we see the
onset of a phase transition, as shown by the formation of a
scalar condensate at Tc.
We show the dependence of the temperature on wave

number in Fig. 1. In particular, the curves in the left panel
exhibit clearly the bell curve behavior—the fact that they
are peaked at nonzero values of k shows that the condensate
is driven by the momentum-dependent spatial modulations.
The right panel of Fig. 1 shows the dependence of Tc on the
strength c of the coupling ZAB ∼ cχ between the two gauge
fields. We would like to point out that as this coupling
decreases, the effect of the spatial modulation also
decreases—one may still have a superconducting instabil-
ity, but not striped. Thus, in this model, in order to ensure
that the phase transition indeed occurs at finite values of k,
the coupling must be nonzero and in fact sufficiently large.
However, when jcj becomes too large, the instability once
again disappears—the BF bound can no longer be violated.

IV. PAIR- AND CHARGE-DENSITY WAVES

In our model, at low temperatures the scalar operator Oχ

dual to χ acquires a spatially modulated expectation value
spontaneously, breaking the Uð1Þ symmetry. Thus, the
spatially modulated phase is always associated with a
nonvanishing superconducting condensate. Moreover, the
“charge” density ρB associated with Bμ becomes spatially

modulated, and this, in conjunction with hOχi, induces a
modulation in the charge density ρA dual to Aμ. While the
second gauge field Bμ does not determine the type of order
(PDW or SCþ CDW) developed in the system, it can in
principle be associated with spin degrees of freedom, with
its modulated density ρB describing SDW order.
As we have already mentioned, in a system with

PDW order,
(i) The average value of the superconducting order

parameter hOχi vanishes.
(ii) The charge-density oscillations have half the period

of those of the scalar condensate.
Thus, a PDWdiffers from a statewith coexisting SCþ CDW
orders, in which the scalar condensate has a uniform
component. In our holographic model, both of these features
can be reproduced, along with the spontaneous—and simul-
taneous—breaking of the Uð1Þ symmetry and of transla-
tional invariance. In particular, we find that when qB ¼ 0, the
scalar condensate and the charge density ρA associated with
the first vector field Aμ satisfy the conditions required for
PDWorder. On the other hand, when qB ≠ 0, we find a state
with SCþ CDW order.
We have studied backreaction in our system numerically,

focusing on the behavior of the scalar condensate hOχi and
of the two charge densities ρA and ρB. We work in the grand
canonical ensemble by setting μ ¼ 1 and as an example, we
choose the parameters in (2) to be m2 ¼ −8, m2

v ¼ 0,
L ¼ 1=2, c ¼ −2.34, a ¼ 4, qA ¼ 1. We focus on the
branch of solutions with k ¼ 1 and find a second-order
phase transition at Tc ¼ 0.01608. To gain intuition for our
results, one can compare our numerics with a next-to-
leading-order perturbative analysis in ε, which in our case
can be taken to be ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
and measures how close

T is to Tc:

δχ ¼ εwðrÞ cosðkxÞ þ ε2½χð1ÞðrÞ þ χð2ÞðrÞ cosð2kxÞ�;
δBt ¼ εbtðrÞ cosðkxÞ þ ε2½bð1Þt ðrÞ þ bð2Þt ðrÞ cosð2kxÞ�;
δAt ¼ ε2½að1Þt ðrÞ þ að2Þt ðrÞ cosð2kxÞ�; ð12Þ

where we are singling out the perturbations of the scalar
and vector fields for the sake of space.
We find that the order Oðε2Þ components of δχ and δBt

are sourced by OðεÞ terms proportional to qAqB, and
therefore vanish when qB ¼ 0. In particular, note that this
implies that the homogenous perturbations χð1ÞðrÞ and

bð1Þt ðrÞ both vanish when qB ¼ 0, causing the scalar
condensate hOχi modulations [which to leading order
are ∝ cosðkxÞ] to average out to zero. Note that by the
same argument, the oscillations of the charge density ρB
also average out to zero. Their period agrees with that of the
scalar condensate, which is consistent with SDWorder in a
PDW. On the other hand, since we are working at finite
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FIG. 1. Critical temperature as a function of wave number for
the onset of striped instabilities. Left panel: The solid blue line
describes the massless case m2

v ¼ 0 with jcj ¼ 2.34, while the
dashed red line describes the massive case m2

v ¼ 0.44 with
jcj ¼ 2.46. Right panel: Dependence on the coupling c. From
top to bottom, jcj ¼ 2.05, 2.15, 2.25, 2.35. In both figures, the
remaining parameters are chosen to be m2 ¼ −8, L ¼ 1=2,
a ¼ 4, qA ¼ μ ¼ 1.
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charge density with respect to Aμ, the charge density ρA
always has a uniform component in our model.
Thus, the perturbative analysis suggests that the system

behaves like a PDW when qB ¼ 0 (no uniform component
to hOχi), while when qB ≠ 0 it describes a SCþ CDW
state [the uniform contribution ∝ χð1ÞðrÞ is sourced]. This
behavior is precisely confirmed by our numerics, as visible
clearly in Fig. 2, which shows the oscillatory pattern of the
scalar condensate hOχi when qB ¼ 0 (solid line) versus
qB ≠ 0 (dashed line). In the former case, the average value
of the order parameter vanishes, but not in the latter.
In order to have PDW order, the period of the charge

densitymust be one half of that of the scalar condensate. This
is precisely what happens in our model when qB ¼ 0, as
shown in Fig. 3, where we clearly see that ρA (dashed line)
oscillates twice as fast as the scalar condensate (solid line).
This result, which we have found numerically, can also

be understood by inspecting the ε2 cosð2kxÞ term in the
perturbation δAt, which is sourced by the product of the two
OðεÞ terms in δχ and δBt. Since the oscillation of ρA is a

next-to-leading-order effect, which is sourced by the
leading-order oscillations of χ and Bt, this particular feature
of the PDW order is in some sense induced. We have also
verified that for qB ¼ 0, the frequency of the oscillations of
the density ρB is one half of that of ρA. We note that a
similar doubling of frequencies was also seen in Ref. [21]
in the behavior of the magnetization densities.
On the other hand, when qB ≠ 0, the frequency of the

oscillations of ρA is the same as that of the condensate, which
now has a uniform component. Thus, what we have is a
coexisting SCþ CDW state, and not a PDW. This is shown
clearly in Fig. 4, in which ρA and hOχi have the same period.
From the next-to-leading-order perturbative analysis, this is
not quite clear. However, a cosðkxÞ mode is expected to

appear at Oðε3Þ from the terms ωðrÞbð1Þt ðrÞ cosðkxÞ or
btðrÞχð1ÞðrÞ cosðkxÞ, which are present when qB ≠ 0.
Indeed, we have confirmed this in our numerics.
A more detailed analysis of this system will appear in

Ref. [26], where we will include the behavior of the
background geometry and the thermodynamics. While in
this paper, the matter content was chosen for its simplicity,
more complicated models with additional fields can in
principle be constructed, in which the superconducting
state is associated with the condensation of a complex
scalar. Moreover, at very low temperatures, the physics
encoded in this model may be richer than what our
preliminary analysis has shown. Avery interesting question
is that of the nature of the ground state once striped
superconducting order develops. Finding the fully back-
reacted geometry at zero temperature remains a challenge.
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FIG. 4. The scalar condensate (solid blue line) and charge
density ρA (dashed purple line) for qB ¼ 1=2 at T ¼ 0.01571.
The two share the same period.

FIG. 3. The charge density ρA (dashed purple line) associated
with the Aμ gauge field, plotted against the scalar condensate
(solid blue line) for qB ¼ 0. The period associated with ρA is
one half of that of the scalar condensate. We have chosen
T ¼ 0.01427.

FIG. 2. The scalar condensate for T ¼ 0.01571. The solid blue
curve corresponds to qB ¼ 0, while the dashed purple line
corresponds to qB ¼ 1=2. The two horizontal lines denote the
average values of the condensate in each case. Note that the
average is zero only for qB ¼ 0.
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