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We study the longitudinal, transverse, and normal polarization components of the tau lepton in the
decays B0 → Dð�Þτ−ντ and discuss their role in searching for new physics (NP) beyond the standard model
(SM). Starting with a model-independent effective Hamiltonian including non-SM four-Fermi operators,
we obtain experimental constraints on different NP scenarios and investigate their effects on the
polarization observables. In the SM the longitudinal and transverse polarizations of the tau lepton differ
substantially from the corresponding zero lepton mass values of PL ¼ −1 and PT ¼ 0. In addition, PL and
PT are very sensitive to NP effects. For the transverse polarization this holds true, in particular, for the
effective tensor operator in the case of B0 → D� and for the scalar operator in the case of B0 → D. The
T-odd normal polarization PN , which is predicted to be negligibly small in the SM, can be very sizable
assuming NP complex Wilson coefficients. We also discuss in some detail how the three polarization
components of the tau lepton can be measured with the help of its subsequent leptonic and semihadronic
decays.
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I. INTRODUCTION

The exclusive semileptonic decays B0 → Dð�Þτ−ντ have
been measured by the BABAR [1], Belle [2,3], and LHCb
[4] collaborations in an effort to unravel the well-known
RDð�Þ puzzle which has persisted for several years [5–34].
Recently, the Belle collaboration reported a new measure-
ment of the decay B0 → D�τ−ντ using the hadronic τ−

decay modes τ− → π−ντ and τ− → ρ−ντ, in which they
found RD� ¼ 0.270� 0.035ðstatÞþ0.028

−0.025ðsystÞ [35]. Taking
this new result into account, the current world averages of
the ratios are RD ¼ 0.406� 0.050 and RD� ¼ 0.311�
0.016, which exceed the SM predictions of RD ¼ 0.300�
0.008 [36–38] and RD� ¼ 0.252� 0.003 [39] by 2.1σ and
3.6σ, respectively.
In Ref. [35] the Belle collaboration also reported on the

first measurement of the longitudinal polarization of the
tau lepton in the decay B0 → D�τ−ντ with the result
Pτ
L ¼ −0.38� 0.51ðstatÞþ0.21

−0.16ðsystÞ. The errors of this
measurement are quite large but this pioneering measure-
ment has opened a completely new window on the analysis
of the dynamics of the semileptonic B → D and B → D�
transitions. The hope is that, with the Belle II super-B
factory nearing completion, more precise values of the

polarization can be achieved in the future, which would
shed more light on the search for possible NP in these
decays.
In this paper we shall study the longitudinal, transverse,

and normal polarization components of the τ− in the
semileptonic decays B0 → Dð�Þτ−ντ. In order to set up
our notation we define three orthogonal unit vectors as
follows:

~eL ¼ ~pτ

j~pτj
; ~eN ¼ ~pτ × ~pDð�Þ

j~pτ × ~pDð�Þ j ; ~eT ¼ ~eN × ~eL; ð1Þ

where ~pτ and ~pDð�Þ are the three-momenta of the τ− and the
Dð�Þ meson in the W−

off-shell rest frame. In the following we
shall loosely refer to this frame as the W− rest frame. The
three unit vectors ~eT , ~eN , and ~eL form a right-handed
coordinate system. The longitudinal (L), normal (N), and
transverse (T) polarization four-vectors of the τ− in its rest
frame are given by

sμL ¼ ð0; ~eLÞ; sμN ¼ ð0; ~eNÞ; sμT ¼ ð0; ~eTÞ: ð2Þ

A Lorentz boost from the τ− rest frame to theW− rest frame
transforms only the longitudinal polarization four-vector
according to
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sμL ¼
�j~pτj
mτ

;
Eτ

mτ

~pτ

j~pτj
�
; ð3Þ

leaving the normal ðsμNÞ and transverse ðsμTÞ polarization
four-vectors unchanged. The longitudinal, normal, and
transverse polarization components of the tau are given by

Piðq2Þ¼
dΓðsμi Þ=dq2−dΓð−sμi Þ=dq2
dΓðsμi Þ=dq2þdΓð−sμi Þ=dq2

; i¼L;N;T; ð4Þ

where qμ ¼ pμ
B − pμ

Dð�Þ is the momentum transfer. We note
that the terms longitudinal polarization and longitudinal
polarization component are often used interchangeably, as
in this paper. The same convention is used for the normal
and transverse polarizations.
The normal polarization component PN is a T-odd

observable and is predicted to be zero in the SM in the
absence of final state interactions which are known to be
negligibly small. However, in some extended versions of
the SM such as the two-Higgs-doublet models, the minimal
supersymmetric standard model, and the leptoquark model,
large values of PN are possible through the introduction of
CP-violating phases [40–43].
The longitudinal polarization PL has also been used

as a promising observable in order to probe NP in
B0 → Dð�Þτ−ντ [39,44–48]. PL has been found to be very
sensitive to the scalar and tensor operators. It has been
shown in Ref. [44,46] that some correlations between PL
and the decay rate are very useful for NP prediction. In
addition, the NP couplings can be extracted from PL with
much less uncertainties as compared to those from other
observables [47].
In Ref. [49] we have calculated the SM values of the

longitudinal and transverse polarization of the charged
lepton in the decays B0 → Dð�Þl−νl. The polarization
components have been calculated in the so-called helicity
basis where the polarization components are given in terms
of bilinear forms of the helicity amplitudes of the current-
induced B → Dð�Þ transitions. Depending on the phase
space region the transverse tau polarization can become
quite large. On average one has hPτ

Ti ¼ 0.84 (B → D) and
hPτ

Ti ¼ 0.46 (B → D�) [49] compared to hPl
Ti ¼ 0 for

ml ¼ 0 in both cases. For the longitudinal polarization one
has hPτ

Li ¼ 0.33 (B → D) and hPτ
Li ¼ −0.50 (B → D�)

[49] which one has to compare with the zero lepton mass
result hPl

Li ¼ −1, again in both cases [50]. For the averages
of the total polarization j~Pτj one obtains hj~Pτji ¼ 0.91

(B → D) and hj~Pτji ¼ 0.71 (B → D�). In this paper we also
consider the transverse polarization in the presence of NP
and compare its NP sensitivity with that of hPτ

Li and hPτ
Ni.

The discussion of NP contributions to the transverse and
normal polarization components of the τ− are new.
Since the τ− lepton decays weakly, its polarization is

revealed through its ensuing decay distributions, i.e. it is

self-analyzing. As analyzing modes for the τ− polarization
we will consider the four dominant τ− decay modes

τ− → π−ντð10.83%Þ; τ− → μ−νμντð17.41%Þ;
τ− → ρ−ντð25.52%Þ; τ− → e−νeντð17.83%Þ; ð5Þ

where we have added the respective branching fractions in
brackets. In the next section, we will show how the three
polarization components of the tau can be measured by
using its decays as polarization analyzers and how well
each mode can serve as polarization analyzer. The remain-
ing parts of the paper are organized as follows: in Sec. III
we introduce some formalism concerning the semileptonic
transitions, including the derivation of the polarization
formulae in the presence of NP. An analysis of NP effects
on the polarizations is given in Sec. IV. Finally, we
summarize the main results in Sec. V.

II. ANALYZING THE POLARIZATION OF THE
TAU THROUGH ITS DECAYS

The polarization components of the τ− in B0 → Dð�Þτ−ντ
can be measured by using the decay products of the τ−

as polarization analyzers. The kinematics of the decay
B0 → Dð�Þτ−ντ followed by a τ− decay is depicted in Fig. 1,
where d− ¼ π−; ρ−; e−; μ−. In the W− rest frame, θτ is the
angle between the τ− three-momentum and the direction
opposite to the direction of the Dð�Þ meson. In the τ− rest
frame, θd is the angle between the three-momentum of the
final tau daughter d− and the longitudinal polarization axis
which is chosen to coincide with the direction of the τ− in
the W− rest frame (helicity basis). The production plane
defined by the decay B0 → Dð�Þτ−ντ is spanned by the
three-momenta of the τ− and the Dð�Þ while the τ− →
d− þ X decay plane is spanned by the three-momentum of

FIG. 1. Kinematics of the decay B̄0 → Dð�Þτ−ν̄τ followed by a
τ− decay. See text for more details.
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the d− and the longitudinal polarization axis. The angle χ is
the azimuthal angle between the two planes. We choose a
right-handed xyz coordinate system in the W− rest frame
such that the z axis is opposite to the direction of the
mesons B0 andDð�Þ, and the three-momentum of the τ− lies
in the ðxzÞ plane. In this system the τ− momentum is
given by

pμ
τ ¼ Eτð1; βτ sin θτ; 0; βτ cos θτÞ; ð6Þ

where Eτ ¼ ðq2 þm2
τÞ=2

ffiffiffiffiffi
q2

p
is the energy and

βτ ¼ j~pτj=Eτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

τ=E2
τ

p
the velocity of the τ− in

the W− rest frame.
Let us discuss the spin-momentum correlations in the τ−

rest frame. Since we are dealing with two-body decays
(τ−→π−ðρ−Þþντ) or quasi-two-body decays (τ−→l−þX)
there is only one independent spin-momentum scalar
product which can be taken to be ð~pd · ~PÞ, where ~pd is

the three-momentum of the d− and ~P is the polarization
vector of the τ−. Note that in a three-body decay as e.g. in
t → bþ lþ þ νl there are two possible spin-momentum
scalars which provide for a richer spin-momentum
correlation structure (see e.g. [51,52]). Returning to the
two-body decays treated here the differential polar angle
distribution is given by

dΓ
dq2d cos θdP

¼ Bd
dΓ
dq2

1

2
ð1þ Ad · j~Pðq2Þj cos θdPÞ; ð7Þ

where θdP is the polar angle between the momentum ~pd and

the polarization vector ~P of the τ−, and Bd and Ad are the
branching fraction and the analyzing power of the decay
τ− → d− þ X, respectively. Note that the magnitude of the
analyzing power has to satisfy jAdj ≤ 1 to guarantee the

positivity of rates for j~Pj ¼ 1.
The polar angle θdP appearing in Eq. (7) is experimen-

tally not accessible since the direction of the polarization

vector ~P of the τ− is a priori unknown. However, one can
define experimentally accessible angles θd and χ through
the representation of the momentum vector ~pd in the
production plane (see Fig. 1) via

~pd ¼ j~pdjðsin θd cos χ; sin θd sin χ; cos θdÞ: ð8Þ
In terms of the angles θd and χ, the decay distribution reads

dΓ
dq2dcosθddχ=2π

¼Bd
dΓ
dq2

1

2
½1þAdðPTðq2Þ sinθd cosχ

þPNðq2Þ sinθd sinχþPLðq2ÞcosθdÞ�:
ð9Þ

Through an analysis of the decay distribution (9) one
can determine the three components of the q2-dependent

polarization vector ~Pðq2Þ ¼ ðPTðq2Þ; PNðq2Þ; PLðq2ÞÞ.

Upon χ integration, one obtains

dΓ
dq2d cos θd

¼ Bd
dΓ
dq2

1

2
ð1þ AdPLðq2Þ cos θdÞ ð10Þ

such that the forward-backward polarization asymmetry is
given by

AP
FB ¼ dΓðFÞ − dΓðBÞ

dΓðFÞ þ dΓðBÞ ¼ AdPLðq2Þ: ð11Þ

Upon cos θd integration one has

dΓ
dq2dχ=2π

¼ Bd
dΓ
dq2

�
1þ Ad

π

4
ðPTðq2Þ cos χ

þ PNðq2Þ sin χÞ
�

ð12Þ

with an effective azimuthal analyzing power of Adπ=4.

A. The semihadronic modes τ− → π−ντ and τ− → ρ−ντ
The differential decay rate of B0 → Dð�Þτ−ð→ π−ντÞντ

reads

dΓπ

dq2dcosθπdχ=2π
¼Bπ

dΓ
dq2

1

2
½1þPTðq2Þsinθπ cosχ

þPNðq2Þsinθπ sinχþPLðq2Þcosθπ�;
ð13Þ

where Bπ is the branching fraction of τ− → π−ντ and Γ is
the decay rate of B0 → Dð�Þτ−ντ. Note that the analyzing
power of the decay τ− → π−ντ is 100%. In the following we
shall drop explicit reference to the component PN in the
angular decay distribution. After cos θπ integration, one
obtains

dΓπ

dq2dχ=2π
¼ Bπ

dΓ
dq2

�
1þ π

4
PTðq2Þ cos χ

�
: ð14Þ

The effective azimuthal analyzing power is quite large
with π=4 ¼ 78.54%.
For the decay B0 → Dð�Þτ−ð→ ρ−ντÞντ one has

dΓρ

dq2d cos θρdχ=2π

¼ Bρ
dΓ
dq2

1

2

�
1þ m2

τ − 2m2
ρ

m2
τ þ 2m2

ρ
ðPTðq2Þ sin θρ cos χ

þ PLðq2Þ cos θρÞ
�
; ð15Þ

where Bρ is the branching fraction of τ− → ρ−ντ. It is
apparent that one looses analyzing power compared
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to the case τ− → π−ντ since ðm2
τ − 2m2

ρÞ=ðm2
τ þ 2m2

ρÞ ¼
0.4485 < 1.
However, one can retain the full analyzing power if one

projects out the longitudinal and transverse components of
the ρ−, which can be achieved by an angular analysis of the
decay ρ− → π− þ π0 in the rest frame of the ρ−. The polar
angle distribution of the decay ρ− → π− þ π0 reads

dΓρ

d cos θ
¼ 3

8
ð1þ cos2θÞΓT þ 3

4
sin2θΓL; ð16Þ

where θ is the polar angle of the π− with respect to the
original flight direction of the ρ−. Technically, one can
project out the longitudinal piece of the ρ− with the help of

the normalized longitudinal polarization four-vector of the
ρ− which reads

εαð0Þ ¼ 1

mρmτp
ðm2

ρpα
τ − pρpτpα

ρÞ: ð17Þ

One can check that pρ · εð0Þ ¼ 0 and that the polarization
four-vector is correctly normalized: ε�ð0Þ · εð0Þ ¼ −1. In
the rest frame of the ρ− one has εαð0Þ ¼ ð0; 0; 0; 1Þ.
The transverse contribution can be obtained from the
difference ΓT ¼ Γ − ΓL.
The longitudinal and transverse differential decay dis-

tributions of the ρ− are finally given by

dΓL
ρ

dq2d cos θρdχ=2π
¼ Bρ

dΓ
dq2

m2
τ=2

m2
τ þ 2m2

ρ
½1þ ðPTðq2Þ sin θρ cos χ þ PLðq2Þ cos θρÞ�;

dΓT
ρ

dq2d cos θρdχ=2π
¼ Bρ

dΓ
dq2

m2
ρ

m2
τ þ 2m2

ρ
½1 − ðPTðq2Þ sin θρ cos χ þ PLðq2Þ cos θρÞ�: ð18Þ

By separating the two distributions on has regained the full
analyzing power of 100% in both cases. This can e.g. be
done by projection: PL ¼ 2ð1 − 5=2 cos2 θÞ will project
out the longitudinal and PT ¼ −ð1 − 5 cos2 θÞ the trans-
verse component. It is evident that the sum of the two
distributions (18) gives the result Eq. (15).

B. The leptonic modes τ− → l−νlντ ðl= e;μÞ
Using the results of e.g. Ref. [53], one finds

dΓl

dq2dxd cos θldχ=2π

¼ dΓ
dq2

Γ0

Γτ
βx½G1ðxÞ þ G2ðxÞðPTðq2Þ sin θl cos χ

þ PLðq2Þ cos θlÞ�; ð19Þ

where, as usual, we have defined a scaled energy variable
x ¼ 2E=mτ where E ¼ ðj ~plj2 þm2

lÞ1=2 is the energy of the
final charged lepton l− in the τ− rest frame. Here, Γ0 ¼
G2

Fm
5
τ=192π3 is the reference rate for the leptonic decay of

final-state massless leptons ml ¼ 0, and Γτ is the total
decay width of the τ−. Note that the expression to the right
of Γ0=Γτ integrates to 1 for ml ¼ 0 as it should be. For
later purposes we define a reference branching ratio
B0
l ¼ Γ0=Γτ.
The coefficient functions in Eq. (19) are given by [53]

G1 ¼ xð3 − 2xÞ − ð4 − 3xÞy2; G2 ¼ βxð1 − 2xþ 3y2Þ;
ð20Þ

where y¼ml=mτ and β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4y2=x2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2

l=E
2

q
¼

p=E. We mention that the next-to-leading order QED
radiative corrections to the leptonic polarized τ− decays
can also be found in Ref. [53].
The polar and azimuthal analyzing power is determined

by the ratio G2ðxÞ=G1ðxÞ. By averaging over x ð2y ≤ x ≤
1þ y2Þ, one obtains

hβxG2ðxÞi
hβxG1ðxÞi

¼ −
1

12
ð1þ 8y2 − 32y3 þ � � �Þ: ð21Þ

The azimuthal analyzing power is given by

dΓl

dq2dχ=2π
¼ dΓ

dq2
B0
lð1þ PTAχ cos χÞ;

where Aχ ¼ −
π

12
ð1þ 8y2 − 32y3 þ � � �Þ: ð22Þ

For ml ¼ 0 one finds Aχ ¼ −0.262 which increases by
3.2% for ml ¼ mμ [see Eq. (22)].
Another possibility to analyze the polarization of the τ−

is to describe the leptonic decay of the polarized τ− in terms
of the variables ðx; zÞ, where z ¼ El=Eτ is the fractional
energy El of the daughter lepton and the energy Eτ of the
τ− both in the W− rest frame [54]. For the dependence
z ¼ zðx; cos θlÞ, one finds

z ¼ El

Eτ
¼ βτp cos θl þ E

mτ
¼ x

2
ðβτβ cos θl þ 1Þ: ð23Þ

It is important to realize that E (energy of the daughter
lepton in the τ− rest frame) is no longer fixed but becomes a
variable to be integrated over.
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Let us first discuss the so-called collinear approximation
βτ ¼ 1 and the zero lepton mass limit β ¼ 1 introduced in
Ref. [54] to analyze the longitudinal polarization of the τ−.
The approximation βτ ¼ 1 is good for the small recoil (i.e.
large q2) region. The approximation β ¼ 1 holds for the
limiting case when one can neglect the lepton mass in the
final state. With these approximations the twice differential
rate reads

dΓl

dq2dxdzdχ=2π
¼ B0

l
dΓ
dq2

2ðG1ðxÞ þ G2ðxÞðPL cos θl

þ PT sin θl cos χÞÞ: ð24Þ

By integrating Eq. (24) over x in the region z ≤ x ≤ 1, one
obtains

dΓl

dq2dzdχ=2π
¼B0

l
dΓ
dq2

1

3
ð1− zÞ½ð5þ 5z− 4z2Þ

þPLðq2Þð1þ z− 8z2Þ

−
8

5
PTðq2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1− zÞ

p
ð1þ 4zÞcosχ�: ð25Þ

The differential rate and the contribution proportional to PL
agree with Eq. (2.8) of Ref. [54]. Upon z integration
ð0 ≤ z ≤ 1Þ, one obtains the azimuthal distribution

dΓl

dq2dχ=2π
¼ B0

l
dΓ
dq2

�
1 −

π

12
PTðq2Þ cos χ

�
: ð26Þ

The analyzing power is π=12 ¼ 26.18%, which is in
agreement with the corresponding result in Eq. (22).
The calculation for βτ ≠ 1 and β ¼ 1 is slightly more

difficult and has been done by Tanaka and Watanabe [44]
for the differential rate and the longitudinal contribution
proportional to PL. The decay distribution in terms of dz is
written as

dΓl

dq2dzdχ=2π
¼ Bl

dΓ
dq2

½fðq2; zÞ þ gðq2; zÞPLðq2Þ

þ hðq2; zÞPTðq2Þ cos χ�; ð27Þ

where Bl is the branching fraction of τ− → l−νlντ.
Neglecting the lepton mass ml, i.e. setting β ¼ 1, the
functions f, g, and h are given by

fðq2; zÞ ¼ 16z2

3ð1 − β2τÞ3
½9ð1 − β2τÞ − 4ð3þ β2τÞz�;

gðq2; zÞ ¼ −
16z2

3ð1 − β2τÞ3
βτ½3ð1 − β2τÞ − 16z�;

hðq2; zÞ ¼ 4πz2

ð1 − β2τÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2τ

q
ð1 − β2τ − 4zÞ; ð28Þ

for 0 ≤ z ≤ ð1 − βτÞ=2, and

fðq2; zÞ ¼ 1þ βτ − 2z
3βτð1þ βτÞ3

½5ð1þ βτÞ2 þ 10ð1þ βτÞz − 16z2�;

gðq2; zÞ ¼ 1þ βτ − 2z
3β2τð1þ βτÞ3

½ð1þ βτÞ2 þ 2ð1þ βτÞz − 8ð1þ 3βτÞz2�;

hðq2; zÞ ¼ 4z2

ð1 − β2τÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2τ

q
ð1 − β2τ − 4zÞ

�
π

2
þ arcsin

1 − β2τ − 2z
2zβτ

�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2τ − 1þ 4z − 4z2

p
3β2τð1 − β2τÞ2

½ð1 − β2τÞ2 þ 2ð1 − β2τÞz − 8ð1þ 2β2τÞz2�; ð29Þ

for ð1 − βτÞ=2 ≤ z ≤ ð1þ βτÞ=2. Equations (28) and (29)
are obtained by integrating Eq. (24) over x in the regions
2z=ð1þ βτÞ ≤ x ≤ 2z=ð1 − βτÞ and 2z=ð1þ βτÞ ≤ x ≤ 1,
respectively.
In the collinear approximation βτ ¼ 1, the first region

0 ≤ z ≤ ð1 − βτÞ=2 shrinks to zero, while the second region
ð1 − βτÞ=2 ≤ z ≤ ð1þ βτÞ=2 simplifies to 0 ≤ z ≤ 1. The
collinear forms of the functions fðq2; zÞ and gðq2; zÞ in
Eq. (25) can be obtained by simply substituting βτ ¼ 1 in
Eq. (29). However, it is quite subtle to recover the collinear
form of hðq2; zÞ in Eq. (25) from Eq. (29) since the

treatments of the integral in two cases are different,
depending on whether βτ ¼ 1 or βτ ≠ 1.
Yet another method to analyze the longitudinal polari-

zation of the τ− has been suggested in Ref. [55] where a
forward-backward asymmetry is defined with respect to
cos θ�, where θ� is the angle between the final charged
lepton and the recoiling Dð�Þ in the W− rest system. At
the end of this section we shall also discuss a different
basis, the so-called off-diagonal basis, where the z axis is
chosen to point in the direction of the polarization vector of
the τ−.
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C. The off-diagonal basis

In their papers [56–58] Mahlon, Parke, and Shadmi
introduced the so-called off-diagonal (OD) basis to maxi-
mize spin-spin correlation effects in top quark pair pro-
duction in eþe− and hadronic interactions. As shown in
Ref. [59,60] the off-diagonal basis amounts to choosing the
z axis to point in the direction of the polarization vector of
the top quark, or, in this application, of the polarization
vector of the τ−. For the sake of simplicity, we shall
only discuss the off-diagonal basis for the SM case
where PN ¼ 0.
The relevant rotation to the off-diagonal basis is achieved

by a rotation in the ð~eL; ~eTÞ plane by an angle θOD where
θOD is the polar angle of the tau polarization relative to the
tau three-momentum, measured anticlockwise from the
direction of the tau. One has

sin θOD

cos θOD
¼ PT

PL
: ð30Þ

In the off-diagonal basis (denoted by a prime), the trans-
verse component of the polarization vector is zero P0

T ¼ 0
and the azimuthal contribution proportional to cos χ in the
angular decay distributions vanishes. Therefore, the sensi-
tivity of the polar angle measurement proportional to cos θ0d
is enhanced since j~Pj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þ P2

L

p
≥ jPLj. Here, θ0d is the

polar angle between the three-momentum of the d− and the
z direction in the off-diagonal basis.
This discussion suggests a possible search strategy to

experimentally determine the polarization vector of the τ−

from a set of polar measurements alone. Take a set of
directions z in the ð~eL; ~eTÞ plane and maximize the
forward-backward polarization asymmetry AP

FB¼
AdPLðq2Þ for this set. The z direction corresponding to
this maximal value gives the direction of the τ− polarization

vector ~P, and the corresponding value of PLðq2Þ obtained
from AP

FB ¼ AdPLðq2Þ determines its magnitude j~Pj.
In Fig. 2 we display the q2 dependence of the angle θOD

for the B → D and B → D� transitions. In the case of the
B → D transition the angle θOD slightly changes in the
range (50°, 70°) for almost the whole q2 region and quickly
decreases from 50° to 0° for q2 ≳ 10 GeV2. In the case of
the B → D� transition the angle θOD monotonically
increases with q2 from about 80° to 180°.
The q2 dependence of the angle θOD is obviously related

to the correlation between the longitudinal and transverse
polarization components, or in other words, the orientation
and the length of the polarization vector. In Fig. 3 we show
how the apex of the polarization vector moves in the
ðPL; PTÞ plane when q2 increases from threshold q2 ¼ m2

τ

to the zero-recoil points q2 ¼ ðmB0 −mDð�Þ Þ2. The apexes

move within the unit circle since j~Pj ≤ 1. Both trajectories
start off at threshold and end up at the zero-recoil points. As

q2 increases, the polarization vector of the τ− turns into the
direction of its three-momentum (for the B → D transition)
or opposite to it (for the B → D� transition). Both trans-
verse polarization components vanish at zero recoil as
follows from the helicity analysis in Sec. III. It is interesting
to note that, in the case of the B → D� transition, the dots
are approximately equally spaced on the trajectory, which
indicates a moderate rotation of the polarization vector
when q2 increases. In contrast, the polarization vector in the
case of the B → D transition rotates quite fast for
q2 ≳ 10 GeV2. These behaviors are also reflected in the
q2 dependence of the angle θOD shown in Fig. 2. The
average values of the polar angle θOD read hθODi ¼ 130°
for B → D� and hθODi ¼ 64° for B → D.

III. EFFECTIVE OPERATORS AND HELICITY
AMPLITUDES

Assuming that all neutrinos are left-handed and that NP
effects only influence leptons of the third generation,
the effective Hamiltonian for the quark-level transition
b → cτ−ντ is given by

4 6 8 10
0

50

100

150

q2 GeV2

O
D

de
g

FIG. 2. The angle θOD for the B → D� (dashed line) and
B → D (solid line) transitions.

0.5 0.5 1.0
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0.2

0.4

0.6

0.8

PT

FIG. 3. The q2 dependence of the orientation and the length of
the polarization vector for the B → D� (dashed line) and B → D
(solid line) transitions. The arrows show the direction of
increasing q2. The dots on the dashed line stand for q2 ¼ 4, 6,
8, and 10 GeV2. The dots on the solid line stand for q2 ¼ 4, 8, 10,
and 11.5 GeV2.
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Heff ¼
4GFffiffiffi

2
p Vcb

�
OVL

þ
X

X¼SL;SR;VL;VR;TL

XOX

�
; ð31Þ

where the four-Fermi operators OX are defined as

OVL
¼ ðcγμPLbÞðτγμPLντÞ;

OVR
¼ ðcγμPRbÞðτγμPLντÞ;

OSL ¼ ðcPLbÞðτPLντÞ;
OSR ¼ ðcPRbÞðτPLντÞ;
OTL

¼ ðcσμνPLbÞðτσμνPLντÞ; ð32Þ

and X’s are the NP complex Wilson coefficients which are equal to zero in the SM.
The invariant form factors describing the hadronic transitions B0 → D and B0 → D� are defined as follows:

hDðp2ÞjcγμbjB0ðp1Þi ¼ Fþðq2ÞPμ þ F−ðq2Þqμ;
hDðp2ÞjcbjB0ðp1Þi ¼ ðm1 þm2ÞFSðq2Þ;

hDðp2Þjcσμνð1 − γ5ÞbjB0ðp1Þi ¼
iFTðq2Þ
m1 þm2

ðPμqν − Pνqμ þ iεμνPqÞ;

hD�ðp2Þjcγμð1 ∓ γ5ÞbjB0ðp1Þi ¼
ϵ†2α

m1 þm2

½∓ gμαPqA0ðq2Þ � PμPαAþðq2Þ

� qμPαA−ðq2Þ þ iεμαPqVðq2Þ�;
hD�ðp2Þjcγ5bjB0ðp1Þi ¼ ϵ†2αP

αGSðq2Þ;

hD�ðp2Þjcσμνð1 − γ5ÞbjB0ðp1Þi ¼ −iϵ†2α

�
ðPμgνα − Pνgμα þ iεPμναÞGT

1 ðq2Þ þ ðqμgνα − qνgμα þ iεqμναÞGT
2 ðq2Þ

þ ðPμqν − Pνqμ þ iεPqμνÞPα GT
0 ðq2Þ

ðm1 þm2Þ2
�
; ð33Þ

where P ¼ p1 þ p2, q ¼ p1 − p2, and ϵ2 is the polarization vector of the D� meson which satisfies the condition
ϵ†2 · p2 ¼ 0. The particles are on their mass shells: p2

1 ¼ m2
1 ¼ m2

B0 and p2
2 ¼ m2

2 ¼ m2
Dð�Þ .

Using the helicity technique first described in Refs. [61–63] and further discussed in our recent papers [5,49] one obtains
the ratio of branching fractions RDð�Þ ðq2Þ as follows:

RDð�Þ ðq2Þ ¼
�
q2 −m2

τ

q2 −m2
μ

�
2 HDð�Þ

totP
njHnj2 þ δμð

P
njHnj2 þ 3jHtj2Þ

; ð34Þ

where

HD
tot ¼ j1þ gV j2½jH0j2 þ δτðjH0j2 þ 3jHtj2Þ� þ

3

2
jgSj2jHS

Pj2

þ 3
ffiffiffiffiffiffiffi
2δτ

p
RegSHS

PHt þ 8jTLj2ð1þ 4δτÞjHT j2 þ 12
ffiffiffiffiffiffiffi
2δτ

p
ReTLH0HT; ð35Þ
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HD�
tot ¼ ðj1þ VLj2 þ jVRj2Þ

�X
n

jHnj2 þ δτ

�X
n

jHnj2 þ 3jHtj2
��

þ 3

2
jgPj2jHS

V j2

− 2ReVR½ð1þ δτÞðjH0j2 þ 2HþH−Þ þ 3δτjHtj2� − 3
ffiffiffiffiffiffiffi
2δτ

p
RegPHS

VHt

þ 8jTLj2ð1þ 4δτÞ
X
n

jHn
T j2 − 12

ffiffiffiffiffiffiffi
2δτ

p
ReTL

X
n

HnHn
T: ð36Þ

Here, δl ¼ m2
l=2q

2 is the helicity flip factor, gV ≡ VL þ VR, gS ≡ SL þ SR, gP ≡ SL − SR, and the index n runs through
ð0;þ;−Þ. The definition of the hadronic helicity amplitudes in terms of the invariant form factors are presented in the
Appendix. The expressions forHDð�Þ

tot in Eqs. (35) and (36) agree with the results of Ref. [14]. Note that in this paper we do
not consider interference terms between different NP operators since we assume the dominance of only one NP operator
besides the SM contribution.
In the remaining part of this section, we provide the formulae for the polarization components of the τ− including NP

contributions. Starting from the definition given in Eq. (4) one easily obtains the differential decay rate for a given spin
projection in a given direction by using the Dirac projection operators, which results in the replacement of

pτ þmτ →
1

2
ðpτ þmτÞð1þ γ5siÞ ð37Þ

in the relevant traces. The W− rest frame polarization vectors sμi are given by [64–66]

sμL ¼ 1

mτ
ðj~pτj; Eτ sin θτ; 0; Eτ cos θτÞ;

sμT ¼ ð0; cos θτ; 0;− sin θτÞ;
sμN ¼ ð0; 0; 1; 0Þ: ð38Þ

The longitudinal polarization reads

PD
L ðq2Þ ¼

1

HD
tot
f−j1þ gV j2½jH0j2 − δτðjH0j2 þ 3jHtj2Þ� þ 3

ffiffiffiffiffiffiffi
2δτ

p
RegSHS

PHt

þ 3

2
jgSj2jHS

Pj2 þ 8jTLj2ð1 − 4δτÞjHT j2 − 4
ffiffiffiffiffiffiffi
2δτ

p
ReTLH0HTg;

PD�
L ðq2Þ ¼ 1

HD�
tot

�
ðj1þ VLj2 þ jVRj2Þ

�
−
X
n

jHnj2 þ δτ

�X
n

jHnj2 þ 3jHtj2
��

− 2ReVR½ð1 − δτÞð−jH0j2 þ 2HþH−Þ þ 3δτjHtj2� − 3
ffiffiffiffiffiffiffi
2δτ

p
RegPHS

VHt

þ 3

2
jgPj2jHS

V j2 þ 8jTLj2ð1 − 4δτÞ
X
n

jHn
T j2 þ 4

ffiffiffiffiffiffiffi
2δτ

p
ReTL

X
n

HnHn
T

�
: ð39Þ

We emphasize that the longitudinal polarization of the τ− is defined in the W− rest frame with ~pτ defining the longitudinal
direction, and not in the rest frame of the parent B0 meson.
Similarly, the transverse polarization is given by

PD
T ðq2Þ ¼

3π
ffiffiffiffi
δτ

p

2
ffiffiffi
2

p
HD

tot

�
j1þ gV j2H0Ht þ

RegSffiffiffiffiffiffiffi
2δτ

p HS
PH0 þ 4

ffiffiffiffiffiffiffi
2δτ

p
ReTLHtHT

�
;

PD�
T ðq2Þ ¼ 3π

ffiffiffiffi
δτ

p

4
ffiffiffi
2

p
HD�

tot

�
ðj1þ VLj2 − jVRj2ÞðjH−j2 − jHþj2Þ þ 2ðj1þ VLj2 þ jVRj2ÞHtH0

−
2RegPffiffiffiffiffiffiffi

2δτ
p HS

VH0 − 4ReVRHtH0 þ 16jTLj2ðjH−
T j2 − jHþ

T j2Þ

þ 4ReTL

�
1þ 2δτffiffiffiffiffiffiffi

2δτ
p ðHþHþ

T −H−H−
T Þ − 2

ffiffiffiffiffiffiffi
2δτ

p
HtH0

T

��
: ð40Þ
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As can be seen directly from Eq. (40), the transverse
polarization vanishes in the zero lepton mass limit ml ¼ 0

due to the overall factor
ffiffiffiffiffi
δl

p ¼ ml=
ffiffiffiffiffiffiffi
2q2

p
. Physically, this

comes about since the lepton is 100% longitudinally
polarized for ml ¼ 0 and thus there is no room for a
transverse polarization. It is the lepton mass that brings in
the transverse polarization which, in fact, is quite large in
the case of the τ−. In the SM the transverse polarization can
be seen to vanish at zero recoil as a result of the zero-recoil
relations Ht ¼ 0 and H� ¼ H0 (see the Appendix).
The normal polarization is zero in the SM because we

take the form factors and thereby the helicity amplitudes to
be real. In the presence of NP CP-violating complex
Wilson coefficients, they obtain nonzero contributions from
the imaginary part of the coefficients as can be seen in
Eq. (41). Both PD

N and PD�
N are sensitive to the tensor and

scalar operators. The normal polarization reads

PD
Nðq2Þ ¼

3π

2HD
tot
½−ImgSHS

PH0 þ 8δτImTLHtHT �;

PD�
N ðq2Þ ¼ 3π

4HD�
tot

fImgPHS
VH0 − 2ImTL½ð1 − 2δτÞðHþHþ

T

−H−H−
T Þ þ 4δτHtH0

T �g: ð41Þ

IV. NUMERICAL ANALYSIS

It is important to note that all the discussions and
expressions that we have provided so far are model
independent. Now, in order to make numerical predictions
we use the form factors calculated in the covariant confined
quark model (CCQM) [5] which has been developed in
several previous papers by our group (see Refs. [67–69]
and references therein). One can also employ the form
factors obtained from the heavy quark effective theory

TABLE I. Parameters of the dipole approximation in Eq. (42) for B̄0 → Dð�Þ form factors. Zero-recoil values of the form factors are
also listed for comparison with the HQET.

B̄0 → D� B̄0 → D

A0 Aþ A− V GS GT
0 GT

1 GT
2

Fþ F− FS FT

Fð0Þ 1.62 0.67 −0.77 0.77 −0.50 −0.073 0.73 −0.37 0.79 −0.36 0.80 0.77
a 0.34 0.87 0.89 0.90 0.87 1.23 0.90 0.88 0.75 0.77 0.22 0.76
b −0.16 0.057 0.070 0.075 0.060 0.33 0.074 0.065 0.039 0.046 −0.098 0.043
Fðq2maxÞ 1.91 0.99 −1.15 1.15 −0.74 −0.13 1.10 −0.55 1.14 −0.53 0.89 1.11
FHQETðq2maxÞ 1.99 1.12 −1.12 1.12 −0.62 0 1.12 −0.50 1.14 −0.54 0.88 1.14
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FIG. 4. Comparison of our form factors (solid lines) with the AKC form factors [55] (dashed lines) for the B̄0 → D (upper panels) and
B̄0 → D� (lower panels) transitions. Each CCQM form factor is labeled together with the corresponding AKC one by a box with their
name put on both lines.
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(HQET) with better controlled errors. However, in this
section, we only aim at clarifying the role of the tau
polarization in searching for NP; therefore, the use of our
form factors is well suited. For example, the longitudinal
polarizations calculated in our model assuming only the
SM operator are hPD

L i ¼ 0.33 and hPD�
L i ¼ −0.50, which

are in very good agreement with other results in the
literature hPD

L i¼0.325�0.009 [44] and hPD�
L i ¼ −0.497�

0.013 [35,46].

A. Form factors in the CCQM

As has been discussed in detail in Ref. [5] we calculate
the current-induced B → Dð�Þ transitions from their one-
loop quark diagrams. As a result the various form factors in
our model are represented by three-fold integrals which are
calculated by using FORTRAN codes in the full kinematical
momentum transfer region 0≤ q2 ≤ q2max ¼ðmB0 −mDð�Þ Þ2.
Our numerical results for the form factors are well
represented by a double-pole parametrization

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

; s ¼ q2

m2
1

: ð42Þ

The parameters of the form factors for the B0 → D and
B0 → D� transitions are listed in Table I. We also list the
zero-recoil values of the form factors for comparison with
the corresponding HQET results which can e.g. be found in
Ref. [5]. The agreement between the two sets of zero-recoil
values is within 10%. It is worth mentioning that we obtain
a nonzero result for the form factor GT

0 at zero recoil, which
is predicted to vanish in the HQET.
In Fig. 4, we compare our form factors with the Alonso-

Kobach-Camalich (AKC) form factors calculated in
Ref. [55] where they have used theoretical input from
the HQET, lattice calculations, and equation of motion
(EOM) relations. We rewrite the AKC form factors in our
notation using the relations between the two sets of form
factors. The form factor F0ðq2Þ in Fig. 4 is given by

F0ðq2Þ ¼ Fþðq2Þ þ
q2

m2
1 −m2

2

F−ðq2Þ: ð43Þ

It is seen that our form factors share quite similar shapes
with the corresponding AKC ones. The first plot in Fig. 4
shows that our form factors Fþðq2Þ and F0ðq2Þ (solid lines)
satisfy the relation F0ð0Þ ¼ Fþð0Þwhile the corresponding
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FIG. 5. Constraints on the Wilson coefficients VL, VR, SL, and TL within 1σ (green, dark) and 2σ (yellow, light). No value of SR is
allowed within 2σ. The best-fit value in each case is denoted with the symbol �.
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AKC form factors (dashed lines) are slightly different
at q2 ¼ 0. This is due to the fact that in their paper [55],
the authors used different parametrizations for Fþðq2Þ and
F0ðq2Þ. More specifically, they used the Caprini-Lellouch-
Neubert parametrization for Fþðq2Þ [46,70], but the
Bourrely-Caprini-Lellouch parametrization for F0ðq2Þ
[36,71]. However, the difference F0ð0Þ − Fþð0Þ ≈ 0.03
lies within the uncertainty of Fþðq2Þ at q2 ¼ 0, which
reads Fþð0Þ ¼ 0.664ð34Þ [36].
We note that in Ref. [49] the heavy quark limit (HQL) in

our approach was explored in great detail for the heavy-to-
heavy B0 → Dð�Þ transitions. In Ref. [49] we also calcu-
lated the Isgur-Wise function and considered the near-recoil
behavior of the form factors. A brief discussion of the
subleading corrections to the HQL arising from finite
quark masses can be found in Appendix B of our paper
[5]. Note that our form factors do not satisfy the EOM
relations since the b and c quarks in the relevant propa-
gators in the quark loop are off their mass shells.
Finally, we briefly discuss some error estimates

within our model. We fix our model parameters (the
constituent quark masses, the infrared cutoff, and the
hadron size parameters) by minimizing the functional

χ2 ¼ P
i
ðyexpti −ytheori Þ2

σ2i
where σi is the experimental uncer-

tainty. If σ is too small then we take its value of 10%.
Moreover, we observed that the errors of the fitted
parameters are of the order of 10%. Thus we estimate
the model uncertainties to lie within 10%.

B. Experimental constraints

Within the SM (without any NP operators) our model
calculation yields RðDÞ ¼ 0.267 and RðD�Þ ¼ 0.238,
which are consistent with other SM predictions given in
Refs. [36–39] within 10%. Assuming the dominance of
only one NP operator in Eq. (31) at a time (besides the SM
contribution), we compare the calculated ratios RDð�Þ with
the current experimental data RD ¼ 0.406� 0.050 and
RD� ¼ 0.311� 0.016 given in Sec. I and obtain the allowed
regions for the NP couplings as shown in Fig. 5. It is
important to note that while determining these regions, we
also take into account a theoretical error of 10% for the
ratios RðDð�ÞÞ. The operator OSR is excluded at 2σ and is
not presented here. The operatorOVL

is not excluded, but it
does not affect the polarizations in general and, therefore,
will not be considered in what follows. In other words, only

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

SL

PL B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

SL

PT B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

SL

PN B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

VR

PL B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

VR

PT B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

VR

PN B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

TL

PL B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

TL

PT B D

3 4 5 6 7 8 9 10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

q2 GeV2

TL

PN B D

FIG. 6. Longitudinal (left), transverse (center), and normal (right) polarization of the τ− in the decay B̄0 → D�τ−ν̄τ. The thick black
dashed lines are the SM prediction; the gray bands include NP effects corresponding to the 2σ allowed regions in Fig. 5; the red dotted
lines represent the best-fit values of the NP couplings given in Eq. (44).
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three NP operators OVR
, OSL , and OTL

can modify the
polarizations. In each allowed region at 2σ we find the best-
fit value for each NP coupling. The best-fit couplings read

VL ¼ −1.33þ i1.11; VR ¼ 0.03 − i0.60;

SL ¼ −1.79 − i0.22; TL ¼ 0.38 − i0.06; ð44Þ

and are marked with an asterisk.

C. Theoretical predictions

The τ− polarization components in B0 → D�τ−ντ are
shown in Fig. 6. In each column we present one component
in the presence of different NP couplings SL, VR, and TL,
one by one. In each row one can see how one NP coupling
affects the three components at the same time. All the plots
are in one scale so that one can quickly compare the
sensitivity of different polarization components to different
NP couplings.
Let us begin with the longitudinal polarization (left

column in Fig. 6). The longitudinal polarization PD�
L is

not affected by VR but is very sensitive to SL and TL. Both
SL and TL tend to increase PD�

L and shift the zero-crossing
point from that in the SM. In the presence of SL, PD�

L starts
at a higher value but converges to its SM value at high q2

and its shape is similar to the SM one. In contrast to SL, TL

changes PD�
L thoroughly: PD�

L now starts at a lower position
but can be positive for the most part of the whole q2 region
and maximally diverts from its SM prediction at high q2.
The transverse polarization PD�

T (center column in Fig. 6)
has the same sensitivity to SL and VR but SL tends to
increase PD�

T while VR tends to decrease PD�
T . The trans-

verse polarization is extremely sensitive to TL and its sign

can be changed in the presence of TL. It is interesting to
note that SL increases bothPD�

L and PD�
T , while TL amplifies

PD�
L but lowers PD�

T . When TL is present, largest deviations
of PD�

T from its SM prediction happen at low q2, which is
opposite to the case of PD�

L .
Regarding the normal polarization PD�

N (right column in
Fig. 6), it is sensitive to both SL and TL but slightly more to
SL. PD�

N can be both positive or negative and its absolute
value can reach about 0.2. It is worth noting that PD�

N is
much less sensitive to TL in comparison with PD�

L
and PD�

T .
Next we turn to the τ− polarizations in B0 → Dτ−ντ,

which are shown in Fig. 7. It is readily seen that all three
polarization components in this case are much more
sensitive to SL than to TL. In the presence of TL, the
polarizations PD

L and PD
T can be positively or negatively

enhanced but their shapes over the whole q2 range are
similar to those in the SM. In contrast, the scalar coupling
SL changes the shapes of PD

L and PD
T dramatically and can

even imply a zero-crossing point, which is impossible in the
SM. This distinct effect of SL may give some hints for
experimental study. The normal polarization PD

N can reach
about �0.2 under the effect of TL while it can even reach
about �0.8 when SL is present.
The q2 dependence of the polarizations bears powerful

information for discriminating between different NP sce-
narios. One possible approach is to make use of it to
perform a bin-by-bin analysis in order to probe NP in
different q2 regions. One can also calculate the average
polarizations over the whole q2 region. When calculating
the q2 averages, one has to multiply the numerator and
denominator of (39), (40), and (41) by the q2-dependent
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FIG. 7. Longitudinal (left), transverse (center), and normal (right) polarization of the τ− in the decay B̄0 → Dτ−ν̄τ. Notations are the
same as in Fig. 6.
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piece of the phase-space factor given by Cðq2Þ ¼
jp2jðq2 −m2

τÞ2=q2, where jp2j ¼ λ1=2ðm2
1; m

2
2; q

2Þ=2m1 is
the momentum of the daughter meson. For example, the
average longitudinal polarization hPD

L i can then be calcu-
lated according to

hPD
L i ¼

R
dq2Cðq2ÞðPD

L ðq2ÞHD
totÞR

dq2Cðq2ÞHD
tot

: ð45Þ

The predictions for the mean polarizations are summarized
in Table II. Again, one sees that the τ− polarization
components in B0 → Dτ−ντ are extremely sensitive to
SL. When SL is present, hPD

L i can be as large as 0.67,
hPD

T i can reach −0.68, and hPD
Ni can even reach�0.76. It is

interesting to note that if one measures hPD
L i and finds any

excess over the SM value, it would be a clear sign of SL.
Meanwhile, the τ− longitudinal and transverse polarization
components in B0 → D�τ−ντ are more sensitive to TL. The
coupling TL can enhance hPD�

L i from the SM value of
−0.50 up to 0.24, or lower hPD�

T i from 0.46 down to −0.61.
Notably, the average transverse polarization hPD

T i is almost
insensitive to TL in comparison with SL. When TL is
present, one finds 0.78 ≤ hPD

T i ≤ 0.83, which is almost the
same as the SM value hPD

T i ¼ 0.84. In contrast, if SL is
present, one has −0.68 ≤ hPD

T i ≤ 0.33, which is much
lower than the SM prediction. This unique property of
hPD

T i may play a very important role in probing the scalar
coupling SL. It is also interesting to note that the average

total polarization hj~PD� ji is almost insensitive to SL.

V. SUMMARY AND CONCLUSIONS

We have studied the longitudinal, transverse, and normal
polarization components of the τ− in the semileptonic

decays B0 → Dð�Þτ−ντ in the presence of NP scalar, vector,
and tensor interactions based on an SM-extended effective
Hamiltonian. Constraints on the space of NP couplings
have been obtained from experiments at B factories and
LHCb including the most recent result of the Belle
collaboration [35]. We have also briefly discussed how
to extract the polarization of the τ− from the distribution of
its most prominent subsequent decay modes.
All the polarization components are sensitive to the

scalar coupling SL and the tensor coupling TL. Besides, the
transverse polarization PD�

T is also sensitive to the vector
coupling VR. The longitudinal and transverse polarizations
are more sensitive to TL in the case of B0 → D�τ−ντ, but
more to SL in the case of B0 → Dτ−ντ. PD�

N is equally
sensitive to TL and SL, while PD

N is much more sensitive to
SL than to TL. The normal polarization can reach about
�0.8 in B0 → Dτ−ντ if SL is present, and about �0.2 in
other cases. These observations may provide some insights
to look for NP in the decays B0 → Dð�Þτ−ντ.
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APPENDIX: HELICITY AMPLITUDES

In this appendix, we express the helicity amplitudes used
in the main text in terms of the invariant form factors
defined in Eq. (33). A detailed derivation of these relations
can be found in our recent paper [5].

TABLE II. q2 averages of the polarization components and the total polarization. The two rows labeled by SM
(CCQM) contain our predictions using SM effective operators with transition form factors calculated in the CCQM.
The predicted intervals for the observables in the presence of NP are given in correspondence with the 2σ allowed
regions of the NP couplings depicted in Fig. 5.

B̄0 → D

hPD
L i hPD

T i hPD
Ni hj~PDji

SM (CCQM) 0.33 0.84 0 0.91
SL (0.36,0.67) ð−0.68; 0.33Þ ð−0.76; 0.76Þ (0.89,0.96)
TL (0.13,0.31) (0.78,0.83) ð−0.17; 0.17Þ (0.79,0.90)

B̄0 → D�

hPD�
L i hPD�

T i hPD�
N i hj~PD� ji

SM (CCQM) −0.50 0.46 0 0.71
SL ð−0.40;−0.14Þ (0.47,0.62) ð−0.20; 0.20Þ (0.69,0.70)
TL ð−0.36; 0.24Þ ð−0.61; 0.26Þ ð−0.17; 0.17Þ (0.23,0.69)
VR −0.50 (0.32,0.43) 0 (0.48,0.67)
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For the B0 → D transition:

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ; H0 ¼
2m1jp2jffiffiffiffiffi

q2
p Fþ; HS

P ¼ ðm1 þm2ÞFS; HT ¼ 2m1jp2j
m1 þm2

FT; ðA1Þ

where jp2j ¼ λ1=2ðm2
1; m

2
2; q

2Þ=2m1 is the momentum of the daughter meson.
For the B0 → D� transition:

H0 ¼
−Pqðm2

1 −m2
2 − q2ÞA0 þ 4m2

1jp2j2Aþ
2m2

ffiffiffiffiffi
q2

p
ðm1 þm2Þ

;

Ht ¼
m1jp2jðPqð−A0 þ AþÞ þ q2A−Þ

m2

ffiffiffiffiffi
q2

p
ðm1 þm2Þ

;

H� ¼ −PqA0 � 2m1jp2jV
m1 þm2

;

HS
V ¼ m1

m2

jp2jGS;

H�
T ¼ −

1ffiffiffiffiffi
q2

p ½ðm2
1 −m2

2 � 2m1jp2jÞGT
1 þ q2GT

2 �;

H0
T ¼ −

1

2m2

�
ðm2

1 þ 3m2
2 − q2ÞGT

1 þ ðm2
1 −m2

2 − q2ÞGT
2 −

4m2
1jp2j2

ðm1 þm2Þ2
GT

0

�
: ðA2Þ

The dependence of the helicity amplitudes and the invariant form factors on q2 have been omitted for simplicity.
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