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We study the longitudinal, transverse, and normal polarization components of the tau lepton in the
decays B — D*)z~7, and discuss their role in searching for new physics (NP) beyond the standard model
(SM). Starting with a model-independent effective Hamiltonian including non-SM four-Fermi operators,
we obtain experimental constraints on different NP scenarios and investigate their effects on the
polarization observables. In the SM the longitudinal and transverse polarizations of the tau lepton differ
substantially from the corresponding zero lepton mass values of P; = —1 and Py = 0. In addition, P; and
Py are very sensitive to NP effects. For the transverse polarization this holds true, in particular, for the
effective tensor operator in the case of B — D* and for the scalar operator in the case of B® — D. The
T-odd normal polarization Py, which is predicted to be negligibly small in the SM, can be very sizable
assuming NP complex Wilson coefficients. We also discuss in some detail how the three polarization
components of the tau lepton can be measured with the help of its subsequent leptonic and semihadronic

decays.
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I. INTRODUCTION

The exclusive semileptonic decays B — D*)z~7, have
been measured by the BABAR [1], Belle [2,3], and LHCb
[4] collaborations in an effort to unravel the well-known
R, puzzle which has persisted for several years [5-34].
Recently, the Belle collaboration reported a new measure-
ment of the decay B — D*r~7, using the hadronic 7~
decay modes 7~ — n7 v, and 77 = p~v,, in which they
found Rp. = 0.270 & 0.035(stat) *0-035 (syst) [35]. Taking
this new result into account, the current world averages of
the ratios are Rp = 0.406 +0.050 and Rp- = 0.311+
0.016, which exceed the SM predictions of Ry = 0.300 &
0.008 [36-38] and Rp- = 0.252 4+ 0.003 [39] by 2.1 and
3.60, respectively.

In Ref. [35] the Belle collaboration also reported on the
first measurement of the longitudinal polarization of the
tau lepton in the decay B® — D*r 7, with the result
P; = —0.38 £ 0.51(stat) "0 (syst). The errors of this
measurement are quite large but this pioneering measure-
ment has opened a completely new window on the analysis
of the dynamics of the semileptonic B — D and B — D*
transitions. The hope is that, with the Belle II super-B
factory nearing completion, more precise values of the
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polarization can be achieved in the future, which would
shed more light on the search for possible NP in these
decays.

In this paper we shall study the longitudinal, transverse,
and normal polarization components of the 7~ in the
semileptonic decays B — D"z z,. In order to set up
our notation we define three orthogonal unit vectors as
follows:

. p . D X Ppi- L
eL:IjT, eN:M, éer=c¢eyxep, (1)
|p‘r| |pr X Ppt

where p, and p . are the three-momenta of the 7~ and the
D™ meson in the W, rest frame. In the following we
shall loosely refer to this frame as the W~ rest frame. The
three unit vectors é;, ey, and ¢; form a right-handed
coordinate system. The longitudinal (L), normal (N), and
transverse (7') polarization four-vectors of the 7~ in its rest
frame are given by

sp=000.¢r).  sy=(0.éy).  s7=(0.¢1). (2

A Lorentz boost from the 7~ rest frame to the W™ rest frame
transforms only the longitudinal polarization four-vector
according to
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Bl E. b,
g ( , (3)

s >
mT mT |pT|

leaving the normal (s%) and transverse (s7) polarization
four-vectors unchanged. The longitudinal, normal, and
transverse polarization components of the tau are given by

p ()~ LG/ dg? —dT (=) /dg?
M (s Jdg +dr(=s!) g

i=L.N.T, (4)

where ¢ = pjy — p/ ., is the momentum transfer. We note

that the terms longitudinal polarization and longitudinal
polarization component are often used interchangeably, as
in this paper. The same convention is used for the normal
and transverse polarizations.

The normal polarization component Py is a 7T-odd
observable and is predicted to be zero in the SM in the
absence of final state interactions which are known to be
negligibly small. However, in some extended versions of
the SM such as the two-Higgs-doublet models, the minimal
supersymmetric standard model, and the leptoquark model,
large values of Py are possible through the introduction of
CP-violating phases [40—43].

The longitudinal polarization P; has also been used
as a promising observable in order to probe NP in
B — D™r~p, [39,44-48]. P, has been found to be very
sensitive to the scalar and tensor operators. It has been
shown in Ref. [44,46] that some correlations between P
and the decay rate are very useful for NP prediction. In
addition, the NP couplings can be extracted from P; with
much less uncertainties as compared to those from other
observables [47].

In Ref. [49] we have calculated the SM values of the
longitudinal and transverse polarization of the charged
lepton in the decays B’ — D*)#~7,. The polarization
components have been calculated in the so-called helicity
basis where the polarization components are given in terms
of bilinear forms of the helicity amplitudes of the current-
induced B — D™ transitions. Depending on the phase
space region the transverse tau polarization can become
quite large. On average one has (P%) = 0.84 (B — D) and
(P%) = 0.46 (B — D*) [49] compared to (P7) =0 for
m, = 0 in both cases. For the longitudinal polarization one
has (P}) =0.33 (B — D) and (P}) =-0.50 (B — D*)
[49] which one has to compare with the zero lepton mass
result (P}) = —1, again in both cases [50]. For the averages

of the total polarization |P°| one obtains (|P°|) = 0.91

(B — D)and (|P*|) = 0.71 (B — D*). In this paper we also
consider the transverse polarization in the presence of NP
and compare its NP sensitivity with that of (P7) and (P},).
The discussion of NP contributions to the transverse and
normal polarization components of the 7~ are new.

Since the 7~ lepton decays weakly, its polarization is
revealed through its ensuing decay distributions, i.e. it is
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self-analyzing. As analyzing modes for the 7~ polarization
we will consider the four dominant 7z~ decay modes

7 - 77v,(10.83%),
7 = p1,.(25.52%),

T = u v, (17.41%),
T - e v, (17.83%), (5)

where we have added the respective branching fractions in
brackets. In the next section, we will show how the three
polarization components of the tau can be measured by
using its decays as polarization analyzers and how well
each mode can serve as polarization analyzer. The remain-
ing parts of the paper are organized as follows: in Sec. III
we introduce some formalism concerning the semileptonic
transitions, including the derivation of the polarization
formulae in the presence of NP. An analysis of NP effects
on the polarizations is given in Sec. IV. Finally, we
summarize the main results in Sec. V.

II. ANALYZING THE POLARIZATION OF THE
TAU THROUGH ITS DECAYS

The polarization components of the 7~ in B — D"z ~7,
can be measured by using the decay products of the 7~
as polarization analyzers. The kinematics of the decay
B - D™¢p, followed by a 7~ decay is depicted in Fig. 1,
where d~ =77,p7,e", . In the W~ rest frame, 6, is the
angle between the 7~ three-momentum and the direction
opposite to the direction of the D*) meson. In the 7~ rest
frame, 6, is the angle between the three-momentum of the
final tau daughter d~ and the longitudinal polarization axis
which is chosen to coincide with the direction of the 7~ in
the W~ rest frame (helicity basis). The production plane
defined by the decay B — D")z~7, is spanned by the
three-momenta of the 7z~ and the D) while the 7~ —
d~ + X decay plane is spanned by the three-momentum of

FIG. 1. Kinematics of the decay B® — D™ ¢~p, followed by a
7~ decay. See text for more details.
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the d~ and the longitudinal polarization axis. The angle y is
the azimuthal angle between the two planes. We choose a
right-handed xyz coordinate system in the W~ rest frame
such that the z axis is opposite to the direction of the
mesons B° and D™, and the three-momentum of the 7~ lies
in the (xz) plane. In this system the 7~ momentum is

given by
pi = E.(1,p,sin0,,0,p,cos0,), (6)
where = (> + m?)/2\/¢* energy and

T
B. = |P:|/E. = \/1 —m?/E? the velocity of the 7~ in
the W~ rest frame.

Let us discuss the spin-momentum correlations in the 7~
rest frame. Since we are dealing with two-body decays
(z= =7 (p~)+v,) or quasi-two-body decays (1~ =>¢~ +X)
there is only one independent spin- momentum scalar

product which can be taken to be (pd ) where p, is

the three-momentum of the d~ and P is the polarization
vector of the 7. Note that in a three-body decay as e.g. in
t = b+ ¢ + v, there are two possible spin-momentum
scalars which provide for a richer spin-momentum
correlation structure (see e.g. [51,52]). Returning to the
two-body decays treated here the differential polar angle
distribution is given by

ar . drl

= _(1+A,-|P
ddq22(+d|(

S )| cosb,p), 7
dq2d cos Op q°)| ar) (7)
where 6,p is the polar angle between the momentum p,; and

the polarization vector P of the 77, and B, and A, are the
branching fraction and the analyzing power of the decay
7~ — d~ + X, respectively. Note that the magnitude of the
analyzing power has to satisfy |A,;| < 1 to guarantee the
positivity of rates for |P| = 1.

The polar angle 6,p appearing in Eq. (7) is experimen-
tally not accessible since the direction of the polarization

vector P of the 7~ is a priori unknown. However, one can
define experimentally accessible angles 6, and y through
the representation of the momentum vector p, in the
production plane (see Fig. 1) via

DPa = |Pal(sin@ycos y, sin O, siny, cos 0). (8)
In terms of the angles 8, and y, the decay distribution reads

dar _B dFl[
dg*dcosO,dy/2n “dg*2
2)sin@,siny + Py (g*) cos,))].
9)

Through an analysis of the decay distribution (9) one
can determine the three components of the g>-dependent

(PT(qz)vPN(qz)vPL(qz))'

1+ Ay(Pr(g?)sin@,cosy

+ Py(q

polarization vector ﬁ(qz) =
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Upon y integration, one obtains

dr dr' 1

— — B, —(1+A,P
dg*d cos 6, ddq22( +AdPL

q*)costy)  (10)

such that the forward-backward polarization asymmetry is
given by

dI'(F) — dI'(B)
dr(F) + dT'(B)

AI;B = :AdPL(qz)' (11)

Upon cos 8, integration one has

dar dar
S 1+A 2
dg*dy/2n Ba d 2( + d4( r(q7) cosy
+ Py(q?) Sin)()) (12)

with an effective azimuthal analyzing power of A /4.

A. The semihadronic modes 7~ — z7v, and 7~ — p7v,

The differential decay rate of B — D¢
reads

- (_) ﬂ:_I/T)IjT

dr dr 1
i B, < n+p
dfdeost.dy2n Cragall Thrla

+PN( 2)sin@, siny + Py (¢*) cosb,),
(13)

where B, is the branching fraction of 7~ — z7v, and I' is
the decay rate of B — D*)z"7,. Note that the analyzing
power of the decay v~ — 77 v, is 100%. In the following we
shall drop explicit reference to the component Py in the
angular decay distribution. After cos @, integration, one
obtains

2)sin@,cosy

dr, dr
4

——— =B, 1+ 2P () cosy ). (14
s = e (145 Prl@)cosy). (1)
The effective azimuthal analyzing power is quite large
with /4 = 78.54%.

For the decay B — D"z~ (= p~v,)7, one has

dr,
dq*d cos 0,dy/2n
dari m2 — 2m .
= de—qzi |: W(PT(QZ) Sin Hp Cos y
+ P, (g*) cos Gp)}, (15)

where B, is the branching fraction of 7~ — p7v,. It is
apparent that one looses analyzing power compared
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to the case = — z7v, since (mf —2m3)/(m? +2m?) =
0.4485 < 1.

However, one can retain the full analyzing power if one
projects out the longitudinal and transverse components of
the p~, which can be achieved by an angular analysis of the
decay p~ — 7~ + #° in the rest frame of the p~. The polar
angle distribution of the decay p~ — 7~ + 7° reads

ar, 3 3
2 — (1 2T + Zsi ZQFL, 16
ToosO 8( + cos?0) +4s1n (16)

where @ is the polar angle of the z~ with respect to the
original flight direction of the p~. Technically, one can
project out the longitudinal piece of the p~ with the help of
|
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the normalized longitudinal polarization four-vector of the
p~ which reads

1
ea(O)zmmp
pltz

(m2p% — p,p.p%). (17)

One can check that p, - £(0) = 0 and that the polarization
four-vector is correctly normalized: ¢*(0) - £(0) = —1. In
the rest frame of the p~ one has &*(0) = (0;0,0,1).
The transverse contribution can be obtained from the
difference I'" =T —T'%.

The longitudinal and transverse differential decay dis-
tributions of the p~ are finally given by

drt dl’ m2/2
2 =B,———=—[1 + (Pr(¢*) sin6 PL(q*)cos8,)],
dq?dcos 0,dy/2n " dg? m3+2m§[ + (Prlg7)sinf, cosy + Pr(q7) cost,)
dry dr ,
/ ~B "1 = (Pr(g?)sin@, cosy + P, (¢*) cosB,)]. (18)

dq*dcosO,dy/2n " dg* m? + 2m?

By separating the two distributions on has regained the full
analyzing power of 100% in both cases. This can e.g. be
done by projection: PL = 2(1 —5/2cos? ) will project
out the longitudinal and P” = —(1 — 5cos® ) the trans-
verse component. It is evident that the sum of the two
distributions (18) gives the result Eq. (15).

B. The leptonic modes 7~ — £ Dpv, (€=epu)
Using the results of e.g. Ref. [53], one finds

drf
dq*dxd cos 0,dy/2n
arr '
B d—q2F_0 (G (x) + Ga(x)(Pr(q?) sin 6 cos y

+ Pr(q?) cos0,)], (19)

where, as usual, we have defined a scaled energy variable
x = 2E/m, where E = (|p;|> + m2)"/? is the energy of the
final charged lepton £~ in the 7z~ rest frame. Here, [j =
G2m3 /19273 is the reference rate for the leptonic decay of
final-state massless leptons m, = 0, and I, is the total
decay width of the z~. Note that the expression to the right
of I'y/T", integrates to 1 for m, = 0 as it should be. For
later purposes we define a reference branching ratio
BY =Ty/T..

The coefficient functions in Eq. (19) are given by [53]

G, =x(3-2x) — (4 =3x)y*, G, = px(1 —2x+3y?),

(20)

|
where y=m,/m, and f=+/1-4y*/x*=/1-m2/E*=
p/E. We mention that the next-to-leading order QED
radiative corrections to the leptonic polarized z~ decays
can also be found in Ref. [53].

The polar and azimuthal analyzing power is determined
by the ratio G,(x)/G,(x). By averaging over x (2y < x <
1 + y?), one obtains

(BxG,(x)) 1 2 3
= —— (1 +8y" =32y’ +---). 21
BxGi(x) 12! e
The azimuthal analyzing power is given by
dry, dr

———=—=BY%1 + PsA ,

dg’dy/2rn  dg* P14 Pra, cosy)

where A, :—i(l +8y2 =32y + 1), (22)

12

For m, =0 one finds A, = —0.262 which increases by
3.2% for m, = m, [see Eq. (22)].

Another possibility to analyze the polarization of the 7~
is to describe the leptonic decay of the polarized 7~ in terms
of the variables (x, z), where z = E,/E, is the fractional
energy E, of the daughter lepton and the energy E, of the
7~ both in the W~ rest frame [54]. For the dependence
z = z(x,cos 6,), one finds

Ef_ﬂfpcos9g+E_x(
E, m, )

= BhcosO, +1). (23)
It is important to realize that E (energy of the daughter
lepton in the 7~ rest frame) is no longer fixed but becomes a
variable to be integrated over.

036021-4



PROBING NEW PHYSICS IN ...

Let us first discuss the so-called collinear approximation
p. =1 and the zero lepton mass limit f = 1 introduced in
Ref. [54] to analyze the longitudinal polarization of the 7~.
The approximation £, = 1 is good for the small recoil (i.e.
large ¢°) region. The approximation 8 = 1 holds for the
limiting case when one can neglect the lepton mass in the
final state. With these approximations the twice differential
rate reads

dr'y dr
——————=B)—2(G G, (x)(Py cos 6
+ Prsin6,cosy)). (24)

By integrating Eq. (24) over x in the region z < x < 1, one
obtains

ar, . dr'1

Il S—
dg?dzdy/2x "~ *dq*3
+PL(q*)(1+2—-82%)

_ng(qZ) Vz(1—2)(1+4z)cosy].  (25)

(1-2)[(5+5z-47%)

The differential rate and the contribution proportional to P
agree with Eq. (2.8) of Ref. [54]. Upon z integration
(0 <z <1), one obtains the azimuthal distribution

dr, , dr T,
_ e g2 (1-Zp e
dq’dy | 2n decf( 12 T(Q)COS”> (26)
|
1+p. -2z
2 ) — T
NS =550y
1+p, -2z
9(q*.2) P

T3 1B
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The analyzing power is z/12 =26.18%, which is in
agreement with the corresponding result in Eq. (22).

The calculation for #, # 1 and f =1 is slightly more
difficult and has been done by Tanaka and Watanabe [44]
for the differential rate and the longitudinal contribution
proportional to P; . The decay distribution in terms of dz is
written as

dry, dar
—— =B, [f(4". 2 )P (g
dg?dzdy/2n~ C dg? [f(q*.2) + 9(q*, 2)PL(q?)
+ h(g*.2)Pr(q?) cos ). (27)
where B, is the branching fraction of 7~ — £ v,v,.

Neglecting the lepton mass my,, i.e. setting =1, the
functions f, g, and h are given by

2\ 162° 2 2
flg*.2) = mp(l = p7) =43 + )z,
9(¢* 2) = —3(115}2)3 L[3(1 = p2) — 162],
4n7?
h(g?.2) = ﬁ\/l P21 - 2 - 42), (28)

for 0 <z<(1-p,)/2, and

[5(1+p.)* 4+ 10(1 + p,)z — 162%],

[(145.)* +2(1 4 B.)z = 8(1 + 36,)2%].

42 Lopim2
= g A0 e )

VP 1+4z-42
3p2(1 - p2)°

for (1 —p.)/2 <z < (1+ p,)/2. Equations (28) and (29)
are obtained by integrating Eq. (24) over x in the regions
22/(1+f,) <x<2z/(1—4,) and 22/(1 +f,) Sx < 1,
respectively.

In the collinear approximation f, = 1, the first region
0 <z < (1 = f,)/2 shrinks to zero, while the second region
(1=p,)/2 <z<(1+4p,)/2 simplifies to 0 < z < 1. The
collinear forms of the functions f(¢?,z) and g(¢?,z) in
Eq. (25) can be obtained by simply substituting #, = 1 in
Eq. (29). However, it is quite subtle to recover the collinear
form of h(g? z) in Eq. (25) from Eq. (29) since the

[(1=p2)? +2(1 = B7)z = 8(1 + 257)2%]. (29)

treatments of the integral in two cases are different,
depending on whether f, =1 or ., # 1.

Yet another method to analyze the longitudinal polari-
zation of the 7~ has been suggested in Ref. [55] where a
forward-backward asymmetry is defined with respect to
cos 0", where 0" is the angle between the final charged
lepton and the recoiling D) in the W~ rest system. At
the end of this section we shall also discuss a different
basis, the so-called off-diagonal basis, where the z axis is
chosen to point in the direction of the polarization vector of
the 77.
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C. The off-diagonal basis

In their papers [56-58] Mahlon, Parke, and Shadmi
introduced the so-called off-diagonal (OD) basis to maxi-
mize spin-spin correlation effects in top quark pair pro-
duction in ete~ and hadronic interactions. As shown in
Ref. [59,60] the off-diagonal basis amounts to choosing the
Z axis to point in the direction of the polarization vector of
the top quark, or, in this application, of the polarization
vector of the 7~. For the sake of simplicity, we shall
only discuss the off-diagonal basis for the SM case
where Py = 0.

The relevant rotation to the off-diagonal basis is achieved
by a rotation in the (¢;,é7) plane by an angle 8, where
Bop 1s the polar angle of the tau polarization relative to the
tau three-momentum, measured anticlockwise from the
direction of the tau. One has

sin HOD PT

=_, 30
cosOpp P; (30)

In the off-diagonal basis (denoted by a prime), the trans-
verse component of the polarization vector is zero P =0
and the azimuthal contribution proportional to cos y in the
angular decay distributions vanishes. Therefore, the sensi-
tivity of the polar angle measurement proportional to cos &,
is enhanced since |P| = \/P% + P? > |P,|. Here, 0, is the
polar angle between the three-momentum of the d~ and the
z direction in the off-diagonal basis.

This discussion suggests a possible search strategy to
experimentally determine the polarization vector of the 7~
from a set of polar measurements alone. Take a set of
directions z in the (é,,é;) plane and maximize the
forward-backward  polarization = asymmetry
AyP;(g?) for this set. The z direction corresponding to
this maximal value gives the direction of the z~ polarization

P _
AFB_

vector P, and the corresponding value of P, (¢?) obtained
from AL, = A,P; (q*) determines its magnitude \I3|

In Fig. 2 we display the ¢g> dependence of the angle 6,
for the B — D and B — D* transitions. In the case of the
B — D transition the angle 6,p slightly changes in the
range (50°, 70°) for almost the whole g region and quickly
decreases from 50° to 0° for g> = 10 GeV>. In the case of
the B — D* transition the angle 0,p monotonically
increases with ¢ from about 80° to 180°.

The ¢ dependence of the angle ), is obviously related
to the correlation between the longitudinal and transverse
polarization components, or in other words, the orientation
and the length of the polarization vector. In Fig. 3 we show
how the apex of the polarization vector moves in the
(P., Pr) plane when g? increases from threshold ¢> = m?
to the zero-recoil points g> = (mz — my.)?. The apexes
move within the unit circle since |P| < 1. Both trajectories
start off at threshold and end up at the zero-recoil points. As
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T T T — -
P
- ]
150+ —‘,—" 1
a”—'—
&0 -~ ]
< 100+ ,&’ -
‘é -7 1
S —_— ]
50r ]
(112 L L L L -
4 6 8 10

¢* (GeV?)

FIG. 2. The angle 6,p for the B — D* (dashed line) and
B — D (solid line) transitions.

g* increases, the polarization vector of the = turns into the
direction of its three-momentum (for the B — D transition)
or opposite to it (for the B — D* transition). Both trans-
verse polarization components vanish at zero recoil as
follows from the helicity analysis in Sec. III. It is interesting
to note that, in the case of the B — D™ transition, the dots
are approximately equally spaced on the trajectory, which
indicates a moderate rotation of the polarization vector
when ¢? increases. In contrast, the polarization vector in the
case of the B — D transition rotates quite fast for
g*> > 10 GeV?2. These behaviors are also reflected in the
g*> dependence of the angle 0, shown in Fig. 2. The
average values of the polar angle 6,p read (8,p) = 130°
for B — D* and (0yp) = 64° for B — D.

III. EFFECTIVE OPERATORS AND HELICITY
AMPLITUDES

Assuming that all neutrinos are left-handed and that NP
effects only influence leptons of the third generation,
the effective Hamiltonian for the quark-level transition
b — ¢t U, is given by

Py
0.8}
o7 06
Vs
R 0.4}
U
14
K 0.2}
1
1]
! s s P
-0.5 0.5 1.0

FIG. 3. The ¢ dependence of the orientation and the length of
the polarization vector for the B — D* (dashed line) and B — D
(solid line) transitions. The arrows show the direction of
increasing ¢>. The dots on the dashed line stand for ¢> = 4, 6,
8, and 10 GeV2. The dots on the solid line stand for q2 =4,8, 10,
and 11.5 GeV?2.
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4Gp

Hett = —7= Ve |:OVL +

i xox}, (31)

X=5..8g.V..Vr.T,.

where the four-Fermi operators Oy are defined as

Oy, = (ey*P.b)(Ty,PLv,),

Oy, = (cy"Pgb)(7y,PLv.),

Os, = (CPb)(TPv,),

Os, = (cPrb)(7PLV,),

Oy, = (¢o* P, b)(70,,PLV,), (32)

and X’s are the NP complex Wilson coefficients which are equal to zero in the SM.
The invariant form factors describing the hadronic transitions B — D and B — D* are defined as follows:

(D(p)cr"b|B°(py)) = Fi.(¢*)P* + F_(q*)q",
(D(p2)[eb[B°(p1)) = (my + my) F5(q?).

(D(py)|ce™ (1 = y*)b|B°(p,)) = M(Pﬂqv — PYg" + ie"Pa)
’ 1 my + my '
T
C B €2 a a
(D (p2) e (1 % PIBIB () = 2 [ P gAg(?) + PHPOAL ()
my + my

+ " P*A_(q*) + ie"*"1V (%)),
(D*(py)[er’b|B(p1)) = €, P*GS(¢?),
(D*(p,)[ce™ (1 = y>)b|B°(py)) = —ieb, | (PF¢* — P*¢"* + ie"™)GT (¢?) + (g ¢ — ¢* ¢"* + ie9 )G} (¢?)

Gy (q*)

+ (Ptg" — Pt + iePt) P* ——— ||
7 K ) (my +m;y)?

(33)

where P = p; + p2, ¢ = p1 — pa, and ¢, is the polarization vector of the D* meson which satisfies the condition
€} - p = 0. The particles are on their mass shells: p? = m? = m%, and p} = m} = m? .

Using the helicity technique first described in Refs. [61-63] and further discussed in our recent papers [5,49] one obtains
the ratio of branching fractions R (g?) as follows:

2 _ mg 2 'HDO(*)
Rpo(q?) = <q2 2) p) STTRE 2y (34)
g —my) >, |H, "+ 8,5, [H,|* + 3|H,|*)
where
3
Hie = 1+ gy P[|Hol* + 8:(|Hol* + 3|H,[*)] + 5 \gsI*|H3|?
+3/26,RegsHSH, + 8|T; |*(1 + 48,)|Hy|* + 121/25,ReT HyHy, (35)
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= (|14 Vi + |ViP) [Zw +5T(Z|Hn|2 +3|Ht|2)] 3 \gn ISP
n n

—2ReVg[(1 +6,)(|Ho|> + 2H H_) + 35.|H,|*| — 31/25,RegpH} H,
+8|T.2(1 +45,) Z|H';\2 —124/26 ReTLZH HY. (36)

Here, 5, = m%/2q” is the helicity flip factor, gy = V; + Vg, gs = S; + Sg, gp = S — Sg, and the index n runs through
(0,4, —). The definition of the hadronic helicity amplitudes in terms of the invariant form factors are presented in the
Appendix. The expressions for Hmt in Egs. (35) and (36) agree with the results of Ref. [14]. Note that in this paper we do
not consider interference terms between different NP operators since we assume the dominance of only one NP operator
besides the SM contribution.

In the remaining part of this section, we provide the formulae for the polarization components of the z~ including NP
contributions. Starting from the definition given in Eq. (4) one easily obtains the differential decay rate for a given spin
projection in a given direction by using the Dirac projection operators, which results in the replacement of

in the relevant traces. The W~ rest frame polarization vectors s are given by [64-66]

1, .
sh = m—(|p,|,ET sin@,,0, E, cos 0,),

T

s = (0,c0s0,,0,—sind,),
s = (0,0,1,0). (38)

The longitudinal polarization reads

PR = HD {11+ gy PIHOP = 6.((HoP + 31,2 + 325 RegsH3H,
tot
T3 |gs|2|H§|2 + 8|T,[*(1 - 45,)|Hy|> — 41/25,ReT . HoHr},
. 1
PR () = g { (1 ViP 4+ Vi) |- + .l + 310 )|
tot n n

—2ReVg[(1 = 68,)(=|Ho|? + 2H H_) + 35,|H,|?] = 3\/25,RegpH{ H,

3
3 lanPIEP 487, P - 400 S JHIP + 4/ B5ReT, S, Hy | (39)

We emphasize that the longitudinal polarization of the 7~ is defined in the W~ rest frame with p, defining the longitudinal
direction, and not in the rest frame of the parent B meson.
Similarly, the transverse polarization is given by

3n\/6,; Regs
PR (g%) = 1 2H,H, HSH, + 4\/25 ReT, H.H; %,
7(q*) = 2thOt{| + gv|*Hy +\/2—(STP0+ Rel' H,Hy
. 3m\/65,
PP (¢*) = {(Il + Vo P = VP (H-|? = [H. ) + 2|1 + V. | + |V ) H,H,
4V2HE,
2Regp
HyHy—4ReVrH H,+ 16|T,|*(|H7 > — |HF |?
\/ﬁ 0~ RiLLL() | L| (| T| | T| )
1 + 26,
—|—4ReTL[ :/Lﬁ (H Hi - _2,/2 HHOH (40)
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TABLE 1.
also listed for comparison with the HQET.

PHYSICAL REVIEW D 95, 036021 (2017)

Parameters of the dipole approximation in Eq. (42) for B® — D) form factors. Zero-recoil values of the form factors are

B? — D* B> D
Ay A, A_ 4 G’ Gl GT Gl F, F_ FS FT
F(0) 1.62 0.67 -0.77 077 =050 -0.073 073  -0.37 0.79  -0.36 0.80  0.77
a 0.34 0.87 0.89 0.90 0.87 1.23 0.90 0.88 0.75 0.77 022  0.76
b -0.16 0.057 0.070 0.075 0.060 0.33 0.074 0.065 0.039 0.046 —0.098 0.043
F(q%a) 1.91 099 -1.15 1.15 -0.74 -0.13 1.10 —0.55 1.14 —0.53 0.89 1.11
FHQET (52 ) 1.99 .12 -1.12 1.12 -0.62 0 1.12 -0.50 1.14 -0.54 0.88 1.14
As can be seen directly from Eq. (40), the transverse Do o\ 3w s
polarization vanishes in the zero lepton mass limit m, = 0 Px(q) = 2HP, [~ImgsH}pHo + 85, ImT, H, Hr].
due to the overall factor /5, = m,/+/2q>. Physically, this 3z
D (2) _ s +
comes about since the lepton is 100% longitudinally — ©n (¢°) = 4HD: {ImgpHy Ho = 2ImT, [(1 = 26.)(H  Hy
. . 0O
polarized for m, =0 and thus there is no room for a _ 0
— H_H7) +46tH H}}. (41)

transverse polarization. It is the lepton mass that brings in
the transverse polarization which, in fact, is quite large in
the case of the 7~. In the SM the transverse polarization can
be seen to vanish at zero recoil as a result of the zero-recoil
relations H, = 0 and H. = H,) (see the Appendix).

The normal polarization is zero in the SM because we
take the form factors and thereby the helicity amplitudes to
be real. In the presence of NP CP-violating complex
Wilson coefficients, they obtain nonzero contributions from
the imaginary part of the coefficients as can be seen in
Eq. (41). Both Py and Py are sensitive to the tensor and
scalar operators. The normal polarization reads

IV. NUMERICAL ANALYSIS

It is important to note that all the discussions and
expressions that we have provided so far are model
independent. Now, in order to make numerical predictions
we use the form factors calculated in the covariant confined
quark model (CCQM) [5] which has been developed in
several previous papers by our group (see Refs. [67-69]
and references therein). One can also employ the form
factors obtained from the heavy quark effective theory

q* (GeV?)

FIG. 4. Comparison of our form factors (solid lines) with the AKC form factors [55] (dashed lines) for the B — D (upper panels) and
BY — D* (lower panels) transitions. Each CCQM form factor is labeled together with the corresponding AKC one by a box with their

name put on both lines.
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(HQET) with better controlled errors. However, in this
section, we only aim at clarifying the role of the tau
polarization in searching for NP; therefore, the use of our
form factors is well suited. For example, the longitudinal
polarizations calculated in our model assuming only the
SM operator are (PP) = 0.33 and (PP") = —0.50, which
are in very good agreement with other results in the
literature (PP) =0.32540.009 [44] and (PP") = —0.497+
0.013 [35,46].

A. Form factors in the CCQM

As has been discussed in detail in Ref. [5] we calculate
the current-induced B — D) transitions from their one-
loop quark diagrams. As a result the various form factors in
our model are represented by three-fold integrals which are
calculated by using FORTRAN codes in the full kinematical
momentum transfer region 0 < ¢* < g2, = (mp —mp) )%
Our numerical results for the form factors are well
represented by a double-pole parametrization

F(0) &

=T m @

—o

q
m

Vi

0.5

0.0

ImV,

—0.5¢F

-20 -15 -10 -05 00 05

ReVL

ImS;

-20 -15 -10 -05 00 05
ReSL

FIG. 5.

PHYSICAL REVIEW D 95, 036021 (2017)

The parameters of the form factors for the B — D and
B — D* transitions are listed in Table 1. We also list the
zero-recoil values of the form factors for comparison with
the corresponding HQET results which can e.g. be found in
Ref. [5]. The agreement between the two sets of zero-recoil
values is within 10%. It is worth mentioning that we obtain
a nonzero result for the form factor Gg at zero recoil, which
is predicted to vanish in the HQET.

In Fig. 4, we compare our form factors with the Alonso-
Kobach-Camalich (AKC) form factors calculated in
Ref. [55] where they have used theoretical input from
the HQET, lattice calculations, and equation of motion
(EOM) relations. We rewrite the AKC form factors in our
notation using the relations between the two sets of form
factors. The form factor Fy(¢?) in Fig. 4 is given by

2

Folq?) = Fo(q?) + ——F_(q?).  (43)

my —mj

It is seen that our form factors share quite similar shapes
with the corresponding AKC ones. The first plot in Fig. 4
shows that our form factors ', (¢*) and Fy,(g?) (solid lines)
satisfy the relation Fj(0) = F_ (0) while the corresponding

Vg

0.0

—1.0f

ImVR

-20 -15 -1.0 -05 00 05
ReVR

Ty

-20 -15 -1.0 -05 00 05
RCTL

Constraints on the Wilson coefficients V;, Vg, S;, and T within 1o (green, dark) and 2¢ (yellow, light). No value of Sy is

allowed within 2¢. The best-fit value in each case is denoted with the symbol .
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AKC form factors (dashed lines) are slightly different
at ¢> = 0. This is due to the fact that in their paper [55],
the authors used different parametrizations for F, (¢*) and
Fy(q?). More specifically, they used the Caprini-Lellouch-
Neubert parametrization for F,(g*) [46,70], but the
Bourrely-Caprini-Lellouch parametrization for Fy(g?)
[36,71]. However, the difference F(0) — F, (0) =~ 0.03
lies within the uncertainty of F_(g?) at g> =0, which
reads F_ (0) = 0.664(34) [36].

We note that in Ref. [49] the heavy quark limit (HQL) in
our approach was explored in great detail for the heavy-to-
heavy B? — D™ transitions. In Ref. [49] we also calcu-
lated the Isgur-Wise function and considered the near-recoil
behavior of the form factors. A brief discussion of the
subleading corrections to the HQL arising from finite
quark masses can be found in Appendix B of our paper
[5]. Note that our form factors do not satistfy the EOM
relations since the b and ¢ quarks in the relevant propa-
gators in the quark loop are off their mass shells.

Finally, we briefly discuss some error estimates
within our model. We fix our model parameters (the
constituent quark masses, the infrared cutoff, and the
hadron size parameters) by minimizing the functional

PHYSICAL REVIEW D 95, 036021 (2017)

2=, (y?‘”‘zi-‘““’)z
tainty. If ¢ is too small then we take its value of 10%.
Moreover, we observed that the errors of the fitted
parameters are of the order of 10%. Thus we estimate

the model uncertainties to lie within 10%.

where o; is the experimental uncer-

B. Experimental constraints

Within the SM (without any NP operators) our model
calculation yields R(D) = 0.267 and R(D*) = 0.238,
which are consistent with other SM predictions given in
Refs. [36-39] within 10%. Assuming the dominance of
only one NP operator in Eq. (31) at a time (besides the SM
contribution), we compare the calculated ratios R with
the current experimental data Rp = 0.406 +0.050 and
Rp- =0.311 £0.016 given in Sec. I and obtain the allowed
regions for the NP couplings as shown in Fig. 5. It is
important to note that while determining these regions, we
also take into account a theoretical error of 10% for the
ratios R(D™)). The operator Oy, is excluded at 2o and is
not presented here. The operator Oy, is not excluded, but it
does not affect the polarizations in general and, therefore,
will not be considered in what follows. In other words, only

0.6 0.6 0.6 5]
0.4~ 04f 0.4f Py(B-D*tv) ]
P (B-D*tv)
0.2 0.2 Py(B-D*1v) 0.2
0.0 0.0 e,
—0.2f —0.2f
—04f —04f
~0.6} —0.6f
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
(GeV?) ¢ (GeV?)
0.6 (Y] — 0.6}
0.4 04f 04f ]
0.2 P B-D"1v) 0.2¢ Pr(B-D"tv) 0.2¢ Py(B->D"tv)
0.0 0.0 (1] S ——
-02 —0.2f —0.2f
-0.4 —04f —04f
-0.6 —0.6f —0.6f
3 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
7’ (GeV?) 7’ (GeV?) 7’ (GeV?)
=mmm
0.6 0.6f ~~..~~\. 0.6f —
04 PLB-DTY) 0.4¢ TS~ 0.4¢ PyB-D*v) ]
0.2 0.2f PrBoD ) s 0.2f ]
0.0 - 0.0 0.0 s s L L L
0.2} —0.2} y —0.2}
-04 —04f —04f
-0.6 —0.6f-- —0.6f
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

q* (GeV?)

q* (GeV?)

FIG. 6. Longitudinal (left), transverse (center), and normal (right) polarization of the 7~ in the decay B — D*7~7,. The thick black
dashed lines are the SM prediction; the gray bands include NP effects corresponding to the 2¢ allowed regions in Fig. 5; the red dotted
lines represent the best-fit values of the NP couplings given in Eq. (44).
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three NP operators Oy, Og,, and O7, can modify the

polarizations. In each allowed region at 2¢ we find the best-
fit value for each NP coupling. The best-fit couplings read
Vp =-1334il.11,
S =-1.79-1i0.22,

Vi = 0.03 — i0.60,
T, = 0.38 — i0.06, (44)

and are marked with an asterisk.

C. Theoretical predictions

The 7~ polarization components in B’ — D*771, are
shown in Fig. 6. In each column we present one component
in the presence of different NP couplings S;, Vg, and T,
one by one. In each row one can see how one NP coupling
affects the three components at the same time. All the plots
are in one scale so that one can quickly compare the
sensitivity of different polarization components to different
NP couplings.

Let us begin with the longitudinal polarization (left
column in Fig. 6). The longitudinal polarization P?" is
not affected by V but is very sensitive to S; and 7';. Both
S; and T} tend to increase Pf* and shift the zero-crossing
point from that in the SM. In the presence of S;, PE* starts
at a higher value but converges to its SM value at high g>
and its shape is similar to the SM one. In contrast to S;, T,
changes P?" thoroughly: PP" now starts at a lower position
but can be positive for the most part of the whole g region
and maximally diverts from its SM prediction at high ¢°.

The transverse polarization P2~ (center column in Fig. 6)
has the same sensitivity to S; and Vy but S; tends to
increase P2" while V tends to decrease PR". The trans-
verse polarization is extremely sensitive to 7 and its sign

PHYSICAL REVIEW D 95, 036021 (2017)

can be changed in the presence of 7. It is interesting to
note that S; increases both P?" and P2, while T amplifies
PP but lowers P2". When T/ is present, largest deviations
of P2 from its SM prediction happen at low ¢, which is
opposite to the case of PP".

Regarding the normal polarization PY (right column in
Fig. 6), it is sensitive to both §; and T'; but slightly more to
S;. PY" can be both positive or negative and its absolute
value can reach about 0.2. It is worth noting that P}’ is
much less sensitive to 7, in comparison with PP
and P2’

Next we turn to the 7z~ polarizations in B — D777,
which are shown in Fig. 7. It is readily seen that all three
polarization components in this case are much more
sensitive to §; than to 7. In the presence of T, the
polarizations PP and P2 can be positively or negatively
enhanced but their shapes over the whole ¢ range are
similar to those in the SM. In contrast, the scalar coupling
S, changes the shapes of P? and P2 dramatically and can
even imply a zero-crossing point, which is impossible in the
SM. This distinct effect of S; may give some hints for
experimental study. The normal polarization PY can reach
about 0.2 under the effect of T; while it can even reach
about +£0.8 when §; is present.

The ¢*> dependence of the polarizations bears powerful
information for discriminating between different NP sce-
narios. One possible approach is to make use of it to
perform a bin-by-bin analysis in order to probe NP in
different g> regions. One can also calculate the average
polarizations over the whole ¢ region. When calculating
the ¢> averages, one has to multiply the numerator and
denominator of (39), (40), and (41) by the g*-dependent

10 =T m————alll 1.0f
0.8 M,
0.5f \
0.6 \ 0.5} Py(B-D1v)
0453 . Pr(B-D1v) ‘| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.0 0.0 e
0.2
0.0 —05f
—osl 0.5
-0.2 )
4 6 8 10 4 6 8 10 4 6 8 10
q* (GeV?) q* (GeV?) q* (GeV?)
1.0 1.0f
0.8
P (B-D1v) [
o6 0.5 Pr(B-D1v) 0.5F Py(B-D1v)
0.4fSso
L 0.0 ) )
0.2 <
) — _0sf
—osl 0.5
-0.2
- 4 6 8 10 4 6 8 10 4 6 8 10
2 2 2 2 2 2
q° (GeV?) q° (GeV?) q° (GeV?)
FIG. 7. Longitudinal (left), transverse (center), and normal (right) polarization of the z~ in the decay B® — Dz~7,. Notations are the

same as in Fig. 6.
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TABLE IL
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q* averages of the polarization components and the total polarization. The two rows labeled by SM

(CCQM) contain our predictions using SM effective operators with transition form factors calculated in the CCQM.
The predicted intervals for the observables in the presence of NP are given in correspondence with the 20 allowed

regions of the NP couplings depicted in Fig. 5.

B> D
(P?) (P?) (PR) el
SM (CCQM) 0.33 0.84 0 091
S, (0.36,0.67) (~0.68,0.33) (~0.76,0.76) (0.89,0.96)
T, (0.13,0.31) (0.78,0.83) (=0.17,0.17) (0.79,0.90)
B® - D*
(P2 (P2) (PY) (1P”"))
SM (CCQM) —0.50 0.46 0 0.71
Sy (=0.40,-0.14) (0.47,0.62) (=0.20,0.20) (0.69,0.70)
T, (-0.36,0.24) (-0.61,0.26) (=0.17,0.17) (0.23,0.69)
Vi -0.50 (0.32,0.43) 0 (0.48,0.67)

piece of the phase-space factor given by C(q?) =
p2l(g? — m2)?/ g%, where |py| = A'2(m3.m3.4%)/2m, is
the momentum of the daughter meson. For example, the
average longitudinal polarization (P?) can then be calcu-
lated according to

o JdPPC(q?) (PR (q*)YHE,)
)= [dq*C(g*)HE, (43)

The predictions for the mean polarizations are summarized
in Table II. Again, one sees that the 7~ polarization
components in B — Dz 7, are extremely sensitive to
S;. When S; is present, (PP) can be as large as 0.67,
(P2) can reach —0.68, and (PR) can even reach 4-0.76. It is
interesting to note that if one measures (P?) and finds any
excess over the SM value, it would be a clear sign of §;.
Meanwhile, the 7~ longitudinal and transverse polarization
components in B® — D*7~7, are more sensitive to 7, . The
coupling T; can enhance (PP") from the SM value of
—0.50 up to 0.24, or lower (P2") from 0.46 down to —0.61.
Notably, the average transverse polarization (PZ) is almost
insensitive to 77 in comparison with S;. When T is
present, one finds 0.78 < (P2) < 0.83, which is almost the
same as the SM value (P?) = 0.84. In contrast, if S, is
present, one has —0.68 < (PR) <0.33, which is much
lower than the SM prediction. This unique property of
(P2) may play a very important role in probing the scalar
coupling S;. It is also interesting to note that the average

total polarization (|P”"|) is almost insensitive to ;.

V. SUMMARY AND CONCLUSIONS

We have studied the longitudinal, transverse, and normal
polarization components of the z~ in the semileptonic

decays B - D(*)T‘DT in the presence of NP scalar, vector,
and tensor interactions based on an SM-extended effective
Hamiltonian. Constraints on the space of NP couplings
have been obtained from experiments at B factories and
LHCb including the most recent result of the Belle
collaboration [35]. We have also briefly discussed how
to extract the polarization of the 7~ from the distribution of
its most prominent subsequent decay modes.

All the polarization components are sensitive to the
scalar coupling S; and the tensor coupling 7, . Besides, the
transverse polarization P2 is also sensitive to the vector
coupling V. The longitudinal and transverse polarizations
are more sensitive to T, in the case of B — D*r"7,, but
more to S; in the case of B - Dz7v,. PY is equally
sensitive to 7, and S;, while P is much more sensitive to
S; than to T;. The normal polarization can reach about
+0.8 in B —» D777, if S, is present, and about £0.2 in
other cases. These observations may provide some insights
to look for NP in the decays B — D)7z 7.
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APPENDIX: HELICITY AMPLITUDES

In this appendix, we express the helicity amplitudes used
in the main text in terms of the invariant form factors
defined in Eq. (33). A detailed derivation of these relations
can be found in our recent paper [5].
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For the B — D transition:

_ 2m|py|

PHYSICAL REVIEW D 95, 036021 (2017)

. 2m, |P2| FT

1
H, = —=(PgF_ + ¢*F_), H F, H} = (m + m,)FS, Hp = (A1)
t \/52' + 0 \/55 + P 1 2 T my + oy
where |p,| = 1'/2(m?, m3, ¢*)/2m, is the momentum of the daughter meson.
For the B — D* transition:
—Pq(m} —m3 — ¢*)Ay + 4mi|p, A
HO = > 5
2my\/q* (my + m;)
g mlpal(Pa(-Ag+ A, ) +¢°A )
r 2
myr/q”(my + my)
H. — —PgAy £ 2m,|p,|V
+= ,
mg + ny
H€/ = ﬂ |p2|GS’
my

1
Hy = ——=[(m} — m3 £ 2m|p|)G{ + ¢°GJ].

/7

1 4m3|p,|*
1y = [ + 303~ )67 + (2 = i - )63 - 2] (a2)

my

(my 4+ my)?

The dependence of the helicity amplitudes and the invariant form factors on g* have been omitted for simplicity.
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