
In-medium spectral functions of vector- and axial-vector mesons
from the functional renormalization group

Christopher Jung,1,2 Fabian Rennecke,1,3 Ralf-Arno Tripolt,4 Lorenz von Smekal,1 and Jochen Wambach2,4
1Institut für Theoretische Physik, Justus-Liebig-Universität Giessen,

Heinrich-Buff-Ring 16, 35392 Giessen, Germany
2Theoriezentrum, Institut für Kernphysik, Technische Universität Darmstadt,

Schlossgartenstrasse 2, 64289 Darmstadt, Germany
3Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,

Philosophenweg 16, 69120 Heidelberg, Germany
4European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*)

and Fondazione Bruno Kessler, Villa Tambosi, Strade delle Tabarelle 286, I-38123 Villazzano (TN), Italy
(Received 31 October 2016; published 23 February 2017)

In this work, we present the first results on vector- and axial-vector meson spectral functions as obtained
by applying the nonperturbative functional renormalization group approach to an effective low-energy
theory motivated by the gauged linear sigma model. By using a recently proposed analytic continuation
method, we study the in-medium behavior of the spectral functions of the ρ and a1 mesons in different
regimes of the phase diagram. In particular, we demonstrate explicitly how these spectral functions
degenerate at high temperatures as well as at large chemical potentials, as a consequence of the restoration
of chiral symmetry. In addition, we also compute the momentum dependence of the ρ and a1 spectral
functions and discuss the various timelike and spacelike processes that can occur.
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I. INTRODUCTION

A major challenge in quantum chromodynamics (QCD)
is to explore the phase structure of strong-interaction
matter, including possible phase transitions and the exist-
ence and location of a critical endpoint (CEP) [1,2]. In
experiments one performs heavy-ion collisions to produce
extremely high-energy densities leading to new phases such
as the quark-gluon plasma (QGP). To get insights into the
entire space-time history of the collision process, real
photons and dileptons are particularly useful probes since
they have negligible interactions with the hadronic fireball
[3–5]. In this context the decay of vector mesons (located in
the low invariant-mass regime), and here especially the ρ
meson, is interesting since the quantum numbers of vector
mesons allow them to directly decay into dileptons [6]. For
this reason the in-medium properties of the ρ meson have
received considerable attention [7–9]. By analyzing dilep-
ton spectra at low invariant masses, one tries to find
evidence for chiral symmetry restoration or the existence
of a CEP [10,11].
The basis for calculating vector-meson spectral functions

is a physically reasonable description of vector mesons
within effective models for QCD. The first model including
vector mesons was introduced by Sakurai in the 1960s [12]
who generalized the known gauge principle from QED to
local SUð2ÞV isospin symmetry present in QCD. This
concept was in accordance with experimental observations
and is referred to as the vector-meson dominance model
(VMD) [13]. To study chiral symmetry and its breaking
pattern in more detail, the gauge concept of Sakurai was

extended to the chiral symmetry group SUð2ÞL × SUð2ÞR
as a local gauge symmetry, where the a1 meson as a chiral
partner of the ρ meson also appears as a gauge boson [14],
thus leading to the “gauged linear sigma model.” Another
possibility is to impose a global chiral symmetry rather than
a local one [15–17].
The feasibility of calculating in-medium spectral func-

tions from the functional renormalization group (FRG)
[18–26] has been demonstrated in [27–29]. Apart from
the absence of a fermion sign problem at finite chemical
potential, one of the main advantages of the method
proposed is that the analytic continuation from
Euclidean to Minkowski space-time can be performed in
a well-defined and simple way. Moreover, since thermal
and quantum fluctuations are taken into account properly
within the FRG approach, the method is also well suited to
treat critical phenomena like phase transitions [30–37].
Aside from the nonperturbative method presented here,
there are also intriguing phenomenological approaches to
address the degeneracy of vector- and axial-vector spectral
functions based on sum rules and loop expansions of
gauged chiral Lagrangians [38,39].
In this paper we present first results for the ρ and a1

meson spectral functions from the FRG based on the
gauged linear sigma model, inspired by [16]. We derive
flow equations for the real-time two-point functions of ρ
and a1 mesons which are obtained from their Euclidean
counterparts via an analytic continuation on the level of the
flow equations [27,40–42]. This allows access to real-time
quantities such as pole masses and decay widths which we
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calculate in various regions of the phase diagram predicted
by the model, especially along the axis of vanishing
chemical potential and the μ-axis across the CEP. Since
our FRG treatment is thermodynamically consistent and
symmetry preserving, the in-medium modifications of the
spectral functions can be stringently connected to the
restoration of chiral symmetry because the order parameter
for chiral symmetry breaking and the spectral functions are
obtained self-consistently.
The paper is organized as follows. We first motivate the

model used and our ansatz for the quantum effective action
in Sec. II A. We then discuss the salient features of the FRG
as a nonperturbative method, as well as the resulting flow
equations in Sec. II B. After going through some details
concerning the numerical implementation in Sec. III A, we
discuss the phase structure of the model as well as the
T- and μ-dependent Euclidean and pole masses of the
particles in Sec. III B. We then present ρ and a1 spectral
functions at finite temperature and chemical potential, first
for vanishing external spatial momentum in Sec. III C and
then for finite external spatial momentum in Sec. III D. We
conclude by giving a summary in Sec. IVand present more
details concerning the derivation of the flow equations, the
analytic continuation procedure, the available processes
and explicit expressions in Appendixes A–F.

II. THEORETICAL SETUP

A. Extended linear sigma model with quarks

In this section we present a simple low-energy model of
two-flavor QCD that captures the main features relevant for
the description of the ρ and a1 mesons which is based on a
previous work concerning the description of vector mesons
in QCD [16]. In that work the connection of the effective
action with QCD is given by successively integrating out
quantum fluctuations starting from QCD at high energies.
We focus on the dynamical generation of mesons but note
that a similar reasoning can be applied to the formation of
baryons.
The increasing strength of the strong coupling αs with

decreasing energy scale leads to strong two-quark-two-
antiquark correlations. This naturally gives rise to effective
quark-antiquark scattering channels λiðψ̄TiψÞ2 with the
effective couplings λi ∝ α2s and the tensor structures Ti.
Hence, the QCD effective action naturally assumes the
form of a gauged Nambu-Jona-Lasinio (NJL) model. With
increasing αs, the λi also increase until they eventually
diverge. These divergences signal the formation of bound
states and resonances in the quark-antiquark scattering
channels. Since this applies, in particular, to the scalar-
isoscalar channel, chiral symmetry breaking is dynamically
generated.
We compute spectral functions from FRG flows which,

in essence, are based on the fluctuations of off-shell degrees
of freedom (see Sec. II B). Hence, the lightest particles give

the most relevant contributions in the low-energy regime.
For two quark flavors the dynamically most relevant
mesons are pions as they are the pseudo-Goldstone bosons
of spontaneous chiral symmetry breaking. Their chiral
partner, the scalar σ meson, has to be included into our
effective description as well. For two flavors, chiral
SUð2ÞL × SUð2ÞR symmetry is locally isomorphic to
Oð4Þ and we need both the isotriplet of pions, ~π, and
the isoscalar σ for the construction of chiral invariants.
Furthermore, the σ mode is the critical mode at the
CEP; i.e., it becomes exactly massless there. To capture
chiral symmetry restoration in the spectral functions of the
phenomenologically relevant ρ meson, we also include its
chiral partner, the a1 meson. The corresponding four-quark
channels of the effective NJL-type action are given by

Lð4qÞ ¼
λS
2
½ðψ̄ψÞ2 − ðψ̄γ5~τψÞ2�

−
λV
2
½ðψ̄γμ~τψÞ2 − ðψ̄γμγ5~τψÞ2�; ð1Þ

where ~τ are the Pauli matrices. The first term of Eq. (1) has
the quantum numbers of σ and π mesons, and the second
term has those of ρ and a1 mesons, respectively. The
formation of mesons at the scale of chiral symmetry
breaking will be reflected by poles in the corresponding
quark-antiquark scattering channel. Their properties at low
energies can, in principle, be studied by computing the full
momentum dependence of λS and λV . We resort to a simpler
treatment by explicitly introducing mesons, as they are the
dominant low-energy degrees of freedom. This is done by
partially bosonizing the four-quark interaction Eq. (1) by
means of a Hubbard-Stratonovich transformation. This
yields the following mixed fermionic-bosonic contribution
to the effective action,

LðFBÞ ¼
1

2
m2

Sðσ2 þ ~π2Þ þ hSψ̄ðσ þ iγ5~τ ~πÞψ

þ 1

2
m2

V ½ð~ρμÞ2 þ ð~aμ1Þ2�
þ ihV ψ̄ðγμ~τ~ρμ þ γμγ5~τ~a

μ
1Þψ ; ð2Þ

which directly reflects the fermionic pairing through the
scalar and vector Yukawa couplings hS and hV . In
the present case, the scale of bosonization is chosen to
be the UV cutoff Λ of our effective description. There,
Eq. (1) is equivalent to Eq. (2) also on the quantum level if

λS ¼
h2S
m2

S
and λV ¼ h2V

m2
V
: ð3Þ

Note that chiral symmetry breaking, i.e., a diverging
λS, is signaled by a sign change of the mass parameters
m2

S in analogy to Ginzburg-Landau theory. In QCD the
scale of meson formation emerges dynamically and is not
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introduced by hand. To capture this transition within a
unified framework, one can use dynamical hadronization as
put forward for QCD in [43,44] and applied to vector
mesons in the vacuum in [16]. Since we are only interested
in the low-energy effective theory here, we postpone a
treatment within full QCD to future work.
If we further integrate out fluctuations, the mesons which

were formally introduced as auxiliary fields in Eq. (2)
become dynamical, and higher-order effective meson
interactions are generated. Furthermore, the gauge sector
of QCD develops a mass gap and eventually decouples
from the system at low energies. Here we assume that the
gluons are fully integrated out at the UV cutoff Λ of the
low-energy effective theory.
While, in principle, all meson interactions consistent

with the global and local symmetries of the system are
present in the mesonic part of the effective action, we
restrict ourselves to the convenient case of a gauged linear
sigma model [14]. To this end, we assume that the meson
sector has a local chiral SUð2ÞL × SUð2ÞR symmetry. This
assumption is particularly powerful since the interactions
involving vector mesons are completely fixed by gauge
symmetry. This reduces the potentially large number of
effective couplings to one gauge coupling g. Putting all this
together finally leads us to the following effective action:

Γk ¼
Z

d4x½ψ̄ð∂ − μγ0 þ hSðσþ i~τ ~π γ5Þ

þ ihVðγμ~τ~ρμ þ γμγ5~τ~a
μ
1ÞÞψ þUkðϕ2Þ− cσþ 1

2
ð∂μϕÞ2

þ 1

8
Trð∂μVν − ∂νVμÞ2 − igVμϕ∂μϕ

−
1

2
g2ðVμϕÞ2 þ

1

4
m2

k;VTrðVμVμÞ� þΔΓπa1 ; ð4Þ

whereUkðϕ2Þ is theOð4Þ symmetric effective potential and
a function of the chiral invariant ϕ2 with ϕ ¼ ð~π; σÞT . This
constitutes the lowest order in a gradient expansion of the
effective action and implies, in particular, that wave-
function renormalizations are not taken into account.
The source term −cσ stems from the bosonization of the
current-quark mass term of the QCD action. It therefore
accounts for the explicit chiral symmetry breaking through
explicit quark masses. Hence, the pions are pseudo-
Goldstone bosons with finite mass, and the chiral phase
transition is a crossover at small chemical potentials.
The vector mesons are given in the adjoint representation

of Oð4Þ with

Vμ ¼ ~ρμ ~T þ ~aμ1 ~T
5: ð5Þ

We define the soð4Þ matrices,

ðTiÞjk ¼
�−iϵijk ~0

~0T 0

�
; ðT5

i Þ ¼
�
03×3 −i~ei
i~eTi 0

�
; ð6Þ

with i; j; k ∈ f1; 2; 3g and ~eTi ¼ ðδ1i; δ2i; δ3iÞ. They obey
the following commutation relations:

½Ti;Tj� ¼ iϵijkTk; ½T5
i ;T

5
j � ¼ iϵijkTk; ½Ti;T5

j � ¼ iϵijkT5
k;

ð7Þ

and therefore TL
i ¼ 1

2
ðTi − T5

i Þ and TR
i ¼ 1

2
ðTi þ T5

i Þ form
representations of SUð2ÞL and SUð2ÞR. The mesons trans-
form under these flavor rotations as

ϕ → Uϕ; Vμ → UVμU†; ð8Þ

with U ¼ ei~α ~Tþi~β~T5

and parameters ~α and ~β.
As already mentioned, we construct the vector-meson

part of the effective action by gauging chiral symmetry. The
vector field Vμ then naturally arises as a gauge field. Its
interactions with the scalar and pseudoscalar mesons result
from minimal coupling ðDμϕÞ2=2 with the covariant
derivative Dμ ¼ ∂μ − igVμ. The kinetic term of the vector
mesons as well as their self-interactions arise from the field-
strength term trVμνVμν=8 with the field-strength tensor
Vμν ¼ i½Dμ; Dν�=g. Since the dominant contributions to the
vector-meson spectral functions stem from the decay
channels that involve scalar and pseudoscalar mesons,
we have neglect the vector-meson self-interactions here.
Furthermore, it has been shown in [16] that the vector
mesons are always decoupled from the dynamics of the
system in Euclidean space-time. Our computation of the
spectral functions uses the solution of the Euclidean system
as input, and therefore vector-meson self-interactions do
not play a role for this input. However, they are important
for a quantitative description of vector-meson spectral
functions. As the focus of the present work is on the
qualitative connection between chiral symmetry restoration
and vector-meson spectral functions, we postpone a more
realistic description to future work.
A soft breaking of the chiral gauge symmetry is induced

by the explicit vector-meson mass term in Eq. (4).
However, the Yukawa interaction terms also explicitly
break this symmetry. Hence, Γk only possesses global
chiral symmetry and, as opposed to a pure gauged linear
sigma model, the ρ meson does not couple to a conserved
local current. An immediate consequence is that the vector-
meson self-energies are not purely transversal.
Lastly, we discuss the term ΔΓπa1 in Eq. (4). If the

mesons acquire a nonvanishing vacuum expectation value

ϕ0 ¼ ðσ0; ~0Þ due to spontaneous chiral symmetry breaking,
a contribution of the form
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−
Z
x
gσ0~a

μ
1 · ∂μ~π ⊂ Γk ð9Þ

yields an off-diagonal meson propagator. This is referred to
as π − a1 mixing. We eliminate this mixing, i.e., diago-
nalize the meson propagator, by a redefinition of the a1
field:

~aμ1 → ~aμ1 þ
gσ0

m2
k;V þ g2σ20

∂μ~π: ð10Þ

If we insert this replacement into Γk, various new terms are
generated, which we subsume in ΔΓπa1 . Among the
numerous new terms in the effective action, only three
are potentially relevant in the present work. This is rooted
in the approximations we employ here. First of all, we only
take the fluctuations of scalar and pseudoscalar mesons and
quarks into account. Hence, all vertices that would lead to
vector mesons in the loops can be ignored. Furthermore,
our construction of the effective action is based on a low-
momentum expansion; i.e., we use the lowest-order deriva-
tive expansion, and hence only contributions up to second
order in the derivatives have to be retained. Lastly, the
scalar and pseudoscalar meson self-interactions are defined
from the effective potential Ukðϕ2Þ and are therefore
momentum independent by construction. Thus, every
modification of the corresponding vertices that involves
space-time derivatives can also be ignored. The remaining
terms yield

ΔΓπa1 ¼
Z
x

�
gσ0~a

μ
1 · ∂μ~π −

1

2

g2σ20
m2

k;V þ g2σ20
ð∂μ~πÞ2

−
g2σ20

m2
k;V þ g2σ20

~ρμ × ~π · ∂μ~π
�
: ð11Þ

The first term in the first line of this equation cancels the
mixing term Eq. (9) and thus leads to a diagonal meson
propagator in the broken phase. The second term generates
a nontrivial wave-function renormalization for the pions.
The effects of wave-function renormalizations are not the
subject of the present analysis and are therefore postponed
to future work. Hence, we drop this contribution. The term
in the second line of Eq. (11) modifies the ππρ vertex

Γð3Þ
k;ππρ. This has to be taken into account when we compute

loop diagrams, e.g., for the two-point function of the pion.
The corresponding modified Feynman rule for this vertex
can be found in Eq. (A20). We note that the redefinition of
the a1 field in Eq. (10) involves running couplings. Thus,
strictly speaking, the new a1 field is explicitly renormal-
ization-group scale dependent. A self-consistent way to
treat this scale-dependent field has been put forward in
[16]. However, this only gives minor quantitative correc-
tions. Since our focus is on qualitative effects, we can
readily ignore this here.

In the described model we have no mechanism included
which describes the phenomenon of confinement. The
Polyakov loop within the Polyakov-quark-meson model,
usually used to describe confinement in terms of thermody-
namics [32,45–47], is not able to suppress unphysical quark-
antiquark decays in the confined phase, cf. Appendix D. A
physically reasonable way to include confinement in such
low-energy models is also left to future work.

B. Functional renormalization group
and flow equations

The FRG provides a powerful, nonperturbative tool to
investigate the transition from microscopic to macroscopic
scales and is widely used in statistical physics and quantum
field theory. The central object in this framework is the so-
called effective average action Γk. It interpolates between
the microscopic action Γk¼Λ at some chosen UV cutoff Λ
and the full quantum effective action Γ ¼ Γk→0 where all
quantum fluctuations are included and macroscopic proper-
ties of the system can be extracted. The scale-dependent
effective average action Γk only includes fluctuations with
momenta larger than the RG scale k which, on a technical
level, is achieved by introducing a regulator function Rk.
Starting at k ¼ Λ one then successively lowers k until
arriving at the full quantum effective action Γ in the
infrared. The change of the effective average action Γk
with the RG scale k is thereby governed by the Wetterich
equation [48]

∂kΓk ¼
1

2
Tr½∂kR

ϕ
k ðΓð2Þ

k ½ϕ� þ Rϕ
k Þ−1�: ð12Þ

Here we apply this concept to the low-energy model
introduced in Sec. II A (see Fig. 1 for a diagrammatic
representation of the resulting flow equation). The
Wetterich equation then turns into a flow equation for
the effective mesonic potential Uk [see also Eq. (A1) for its
explicit form]. We note that for isospin symmetric matter
with an equal number of up and down quarks, the isovector
ρ and a1 mesons do not contribute to the effective potential.
Flow equations for n-point functions are, in general,

obtained by taking n functional derivatives of the Wetterich
equation with respect to certain fields. The flow equations
then naturally contain up to nþ 2-point functions, which

FIG. 1. Flow equation for the effective action of the model
defined by Eq. (4) in diagrammatic form. The dashed blue line is
associated with propagators of the σ and π mesons, the solid black
line is associated with the quark propagator, and the crossed
circles represent the regulator insertions ∂kRk.
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leads to an infinite set of coupled equations. In order to
solve this system, one has to introduce truncations. In the
present work we extract three- and four-point functions
appearing on the rhs of the flow equations from the ansatz
of the effective average action, Eq. (4), as done, for
example, in [27,28]. An improved truncation taking into
account full momentum-dependent vertices and solving the
flow equations for two-point functions iteratively is left to
future studies.
Following this strategy, we obtain flow equations for the

ρ and a1 two-point functions as a closed system of
equations

∂kΓ
ð2Þ
k;ρðpÞ ¼ Jππk;ρðpÞ −

1

2
Iπk;ρ − 2Jψψ̄k;ρðpÞ; ð13Þ

∂kΓ
ð2Þ
k;a1

ðpÞ ¼ Jσπk;a1ðpÞ þ Jπσk;a1ðpÞ −
1

2
Iπk;a1

−
1

2
Iσk;a1 − 2Jψψ̄k;a1ðpÞ; ð14Þ

where momentum-dependent and momentum-independent
loop functions appear (see Appendixes A and F for the
projected flow equations and explicit expressions, includ-
ing the vertices). The diagrammatic form of these equations
is illustrated in Fig. 2.
The flow equations are then solved by starting with the

microscopic theory at a UV cutoff and then integrating out
momentum shells down to the scale k. The effective
average action Γk as well as the mesonic two-point

functions Γð2Þ
k then incorporate fluctuations with momenta

larger than the RG scale k. For technical details we refer to
Sec. III A and Appendix A.

III. RESULTS AND DISCUSSION

A. Numerical implementation

In order to solve the flow equations for the retarded
two-point functions of the ρ and a1 mesons, we first solve
the flow equation for the effective potential Uk,
cf. Appendix A. This is done by discretizing the effective
potential in σ-field direction, which yields a set of coupled

ordinary differential equations that can then be solved with
common methods. The parameters for the effective poten-
tial at the UV scale Λ ¼ 1500 MeV,

UΛ ¼ b1ϕ2 þ b2ϕ4; ð15Þ

the explicit symmetry-breaking constant c, as well as the
scalar and vector Yukawa couplings are given in Table I.
They are chosen such that in the vacuum we have, with a
constituent quark mass of mψ ¼ 300 MeV at the IR scale
kIR ¼ 40 MeV, phenomenologically reasonable values for
the masses of the pion and σ meson [corresponding to the
f0ð500Þ resonance] and the pion decay constant (here
identified with the global minimum of the σ field at σ0):
mπ ¼ 140 MeV, mσ ¼ 557 MeV, fπ ≡ σ0 ¼ 93.0 MeV.
Note that the meson masses here are Euclidean curvature

masses, i.e., the mass parameters that determine the
curvatures of the mesonic effective potential which agree
with the zero-momentum limits of the corresponding
Euclidean mesonic two-point functions. They can differ
from the physical masses which are the so-called pole
masses, i.e., the zeros of the analytically continued two-
point functions at timelike momenta. Apart from potential
wave-function renormalization factors, beyond the leading-
order derivative expansion employed here, the differences
will be small for the pion, for example, because its zero-
momentum correlator is of course dominated by the well-
isolated pion pole. For heavier and not so well-isolated
bound states and resonances such as the ρ and a1 mesons,
these differences will be important, however.
The Euclidean curvature mass of the ρmeson is given by

the vector-meson mass parameter, i.e., the quadratic cou-
plingm2

k;V in the effective action in Eq. (4), cf. Appendix A.
By using the RG flow of the effective potential and its
derivatives as input, the flow equation for m2

k;V, Eq. (A27),
can be solved. The initial condition form2

Λ;V at the UV scale

FIG. 2. Flow equations for the ρ and a1 two-point functions in diagrammatic form. Vertices are indicated by black filled dots, regulator
insertions by crossed circles. The color of the lines and regulators represents the type of field: blue for scalar and pseudoscalar mesons,
black for fermions, and purple for vector mesons.

TABLE I. Parameter set used in this work.

b1½MeV2� b2 c½MeV3� hS ¼ hV g mΛ;V [MeV]

857300 0.2 1.8228 × 106 3.226 11.4 1450
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Λ ¼ 1500 MeV, as well as the scale-independent gauge
coupling g as chosen in Table I, then results in the vacuum
pole masses mp

ρ and mp
a1 : m

p
ρ ¼ 789.3 MeV and mp

a1 ¼
1274.7 MeV. They thus reproduce the physical masses of ρ
and a1 reasonably well. Since fine-tuning the UV param-
eters to adjust these pole masses to the physical ones more
precisely is a rather tedious task, we are content with this
level of agreement for our qualitative study here. We also
note that we use the zero crossing of the real part of the
retarded two-point function, cf. Appendix D, as an estimate
of the real part of the complex pole of the corresponding
propagator on the unphysical Riemann sheet in the com-
plex energy plane for a resonance. This is justified, as long
as the width of the resonance, i.e., the imaginary part of
Γð2;RÞ, is reasonably small. A more precise determination of
the pole masses is possible by studying the analytic
structure of Γð2;RÞ or the spectral function on the second
Riemann sheet of the complex energy plane. A promising
method to perform such a study was recently proposed in
[49] and will be used to obtain in-medium pole masses for
broad resonances more accurately in the future.
For comparison, the corresponding Euclidean curvature

masses with the same UV parameters result as mρ ¼
1298.3 MeV and ma1 ¼ 1676.3 MeV. Parts of the discrep-
ancy between curvature and pole masses should be
compensated by the inclusion of wave-function renormal-
ization factors, i.e., by going to higher orders in the gradient
expansion. We reiterate, however, that there is no a priori
reason for the two to agree. In particular, the Euclidean
curvature masses do not have a direct physical meaning and
should rather be seen as parameters that determine the
physical pole masses.
In a last step the flow equations for the real and the

imaginary parts of the retarded two-point functions are
solved at the grid point of the IR minimum σ0, from which
the spectral functions can be obtained as described in
Appendix B.

B. Phase structure and curvature masses

In this section we briefly discuss the flow of the
Euclidean curvature masses as well as the phase structure
and the T and μ dependence of the quark and meson masses
which serve as an important input for the computation of
the spectral functions.
The RG flow of the scale-dependent Euclidean curvature

masses defined in Appendix A is shown in Fig. 3. Starting
the flow in the chirally restored phase at the UV cutoff scale
Λ ¼ 1500 MeV, the masses of the chiral partners start out
to be degenerate as well. Successively lowering the RG
scale k, both the ρ and the a1 meson masses slightly drop
together at first. Eventually, however, the fermionic fluc-
tuations drive the minimum of the k-dependent bosonic
effective potential away from zero and into the chirally
broken phase with a nonvanishing order parameter σ0,
which hence also leads to a mass splitting of the chiral

partners. As seen in Fig. 3, this occurs at a scale of around
kχSB ≈ 700 MeV. Below that scale, the mass of the a1
meson begins to rise, whereas the ρ meson mass remains
approximately constant during the complete flow. We
notice that the vector-meson masses are always larger than
the scale k and are hence always decoupled from the flow,
which also has been observed in [16]. The dynamics in
Euclidean space-time are therefore completely determined
by the pion and the σ meson as well as the quarks. The
overall behavior with the RG scale k qualitatively resem-
bles the temperature dependence of quark and meson
masses at μ ¼ 0 MeV in Fig. 4.
Our findings for the behavior of the ρ and a1 masses in

the hadronic phase are in agreement with the results in [16].
This implies that the masses are insensitive to gluon
fluctuations in this regime. However, in the vicinity and
above the chiral symmetry breaking scale, kχSB, gluon
fluctuations induce a rapid increase of the meson masses
and thus guarantee that they vanish from the physical

FIG. 3. Flow of the scale-dependent Euclidean curvature
masses of mesons and the constituent quark mass with the RG
scale k at T ¼ 0 MeV and μ ¼ 0 MeV.

FIG. 4. Euclidean curvature masses of mesons and constituent
quark mass at the IR scale vs temperature at μ ¼ 0 MeV.
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spectrum in the quark-gluon regime. While we also observe
this behavior here, it is much more pronounced in [16],
where gluon fluctuations were explicitly included. As a
consequence, the scaling of the a1 mass in the vicinity of
kχSB is qualitatively different.
The phase diagram of themodel we use, which is a quark-

meson model on the level of the effective potential, is
depicted in Fig. 5 (see also [27,30] for earlier studies on the
quark-meson model). It is obtained by the location of the
global minimum of the effective potential at the IR scale
σ0 ≡ σ0ðT; μÞ.With the parameters given inTable Iwe find a
critical endpoint at around ðμCEP; TCEPÞ ≈ ð298; 10Þ MeV,
which divides a crossover region from a first-order phase
transition at lower temperatures. We note that the slope
dT=dμ of the first-order line is very different from the one
observed in mean-field studies (see e.g. [50]). In fact, the
regime to the right of the first-order line, i.e., at large
chemical potentials and low temperatures, is likely to be
dominated by an inhomogeneous ground state which leads
to unphysical effects like a negative entropy density in the
present truncation. We therefore avoid this regime in the
following and refer to [51] for further details.
The same Euclidean curvature masses of the mesons,

plotted together with the constituent quark mass over
temperature at μ ¼ 0 MeV in Fig. 4, are shown along
the μ-axis at a constant temperature of T ¼ 10 MeV across
the CEP in Fig. 6. They behave as expected in a model
based on chiral symmetry. For vanishing chemical poten-
tial, the Euclidean curvature masses of the chiral partners
mσ , mπ and mρ, ma1 become degenerate at high temper-
atures, T ≳ 200 MeV. The quark mass mψ decreases,
indicating the gradual restoration of chiral symmetry. For

a fixed temperature of T ¼ 10 MeV the masses do not
really change over a wide range of chemical potential, as
expected from the Silver Blaze property [52]. Near the CEP
at around μCEP ≈ 298 MeV, the sigma mass drops signifi-
cantly as expected at this second-order phase transition. In
addition, the chiral condensate as well as the vector-meson
masses decrease when crossing the CEP. For very high
chemical potentials the masses of the chiral partners
coincide again and the quark mass decreases, similar to
the case of high temperature and vanishing chemical
potential.

C. In-medium spectral functions at j~pj= 0
Before turning to the ρ and a1 spectral functions at finite

temperature and chemical potential, in this subsection for
vanishing external spatial momentum, j~pj ¼ 0, we will
discuss the temperature dependence of the physically
relevant vector-meson pole masses. They are obtained
from the zero crossing of the real part of the two-point
functions and are shown in Fig. 7 vs T at μ ¼ 0.

FIG. 5. Phase diagram of the quark-meson model as a contour
plot of the order parameter for chiral symmetry σ0ðT; μÞ. The
value of σ0ðT; μÞ decreases with increasing temperature and
chemical potential as indicated with a darker color. The CEP is
indicated as a red dot, whereas the first-order phase boundary is
indicated by a black line.

FIG. 6. Euclidean curvature masses of mesons and constituent
quark mass vs chemical potential at T ¼ 10 MeV.

FIG. 7. Pole masses of ρ and a1 mesons vs temperature at
μ ¼ 0 MeV.
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At T ¼ 0 chiral symmetry is broken and the pole masses
assume the vacuum values of mp

ρ ¼ 789.3 MeV and
mp

a1 ¼ 1274.7 MeV for the UV parameters of Table I.
With increasing temperature the difference between the
pole masses decreases until they become degenerate at
T ≈ 200 MeV, i.e., at about the same temperature as the
Euclidean curvature masses. The observed behavior sup-
ports the “melting-ρ scenario,” where the ρ meson mass
remains almost stable and the a1 mass shifts towards the
mass of the ρ meson [11,39].
In order to exhibit the T- and μ-induced modifications

more clearly, Fig. 8 shows logarithmic plots of the ρ and a1
spectral functions for vanishing chemical potential (left
column) and for a fixed temperature of T ¼ 10 MeV along
the μ-axis towards the CEP (right column). At T ¼ 0 MeV,
the ρ� → π þ π threshold gives rise to a nonvanishing value
of the ρ spectral function for ω≳ 280 MeV. For ω≳
600 MeV the decay into quark-antiquark pairs becomes
energetically possible and gives rise to another threshold in
the spectral function. The spectral function of the a1 meson
exhibits the first threshold at ω ≈ 600 MeV, when the
quark-antiquark decay becomes possible and the width then
increases due to the mesonic decay channel a�1 → π þ σ. In
both spectral functions, the quark-antiquark decay strongly
suppresses the pole mass peaks (see also Appendix D).
At finite temperature the a1 meson can capture a pion

from the heat bath to form a sigma meson, a�1 þ π → σ.
This capture process can occur when ω ¼ Ek;σ − Ek;π , i.e.,
for the difference of the effective quasiparticle energies of σ
and π at the momentum scale k, cf. Appendix A. It is
therefore bounded by ω ≤ mσ −mπ. When the slopes of the
quasiparticle branches of σ and π in the scale k get very
close to one another during the FRG flow, i.e., when their
difference Ek;σ − Ek;π flows through a saddle point, or an
approximate one, the spectral density develops a peak
analogous to a van Hove singularity in the density of states
in the electronic band structure of solids. Such a van Hove
peak is seen in the a1 spectral function in the left column of
Fig. 8 for T ¼ 100 MeV and 150MeV, i.e., in the crossover
region, just below the threshold of the capture process at
ω ¼ mσ −mπ . As the difference between the sigma and the
pion mass tends to zero, this threshold moves to smaller and
smaller energies when the temperature is further increased.
For temperatures around the crossover, the quark mass

drops significantly as well, leading to a shift of the
associated threshold to lower energies and a further broad-
ening of the peaks in the spectral functions. For very high
temperatures pole and curvature masses of the chiral
partners degenerate, and the contribution from the capture
process disappears. The former behavior is due to the direct
link between the mass difference of ρ and a1 with the chiral
condensate [see Eq. (A3)]. The capture process disappears
for the same reason, namely, because the π and σ masses
also degenerate upon the melting of the condensate. Hence,
the contributions of the dominant mesonic decay processes

ρ� → π þ π and a�1 → π þ σ to the respective spectral
functions degenerate as chiral symmetry gets restored as
well. The same holds for the π and σ tadpole contributions
shown in Fig. 2. Furthermore, the quarks become the
lightest degrees of freedom and thus give the dominant
contribution to the spectral functions in both channels. All
these effects together result in the complete degeneration of
the spectral functions of ρ and a1 and provide a direct
connection to chiral symmetry restoration.
Turning now to the dependence on the chemical potential

in the right column of Fig. 8, at a temperature of
T ¼ 10 MeV, we observe that both spectral functions
remain essentially unchanged from μ ¼ 0 up to values
close to the critical endpoint, reflecting the Silver Blaze
property as already mentioned in Sec. III B. Near the CEP,
especially the a1 spectral function shows sensitive mod-
ifications which are mainly induced by the dropping sigma
mass. The main effect is that the threshold for the process
a�1 → π þ σ moves to smaller energies with another van
Hove peak from an approximate saddle point forming in
Ek;π þ Ek;σ just above threshold. When hitting the CEP
exactly, which is difficult in a numerical calculation
especially when the mass of the σ meson drops so suddenly
close to the endpoint as in Fig. 6, this threshold should be
located exactly at the pion mass since the sigma mass
vanishes completely there. The ρ spectral function, on the
other hand, shows only small modifications. For very high
chemical potentials and low temperatures we again see a
degeneracy of the ρ and a1 spectral functions. We note that
T ¼ 50 MeV and μ ¼ 600 MeV were chosen for the last
plot in Fig. 8 in order to avoid the potentially problematic
regime at low temperatures and large chemical potentials
(see the discussion in Sec. III B).

D. Momentum dependence of spectral functions

As an instructive example for their momentum depend-
ence, we show the transverse ρ and a1 spectral functions at
a temperature of T ¼ 100 MeV and μ ¼ 0 MeV as a
function of energy and momentum in Fig. 9 (see also
Appendix A).
In the case of the ρ meson the timelike and spacelike

regimes are clearly separated. While the decay thresholds
of the ρ� → π þ π and the ρ� → ψ̄ þ ψ process are
Lorentz-boosted to higher energies as the spatial momen-
tum increases, the spacelike regime, where ω < j~pj, is
homogeneously filled up by the spacelike processes,
cf. Eq. (E7). We note that in the vacuum the spectral
function would be zero in the spacelike regime.
A similar behavior is observed for the a1 spectral

function. The thresholds associated with the timelike
processes are correctly boosted to higher energies, while
the spacelike regime does not show any particular structure
for the a1 either. In contrast to the ρ spectral function,
however, there is no clear separation between the timelike
and spacelike regimes since the process a�1 þ π → σ
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FIG. 8. Spectral functions of ρ (solid blue) and a1 (dashed purple) meson vs external energy ω at j~pj ¼ 0 shown for increasing
temperature at μ ¼ 0 MeV (left column) and for increasing chemical potential at T ¼ 10 MeV, towards the CEP (right column). For the
last plot on the right-hand side we chose T ¼ 50 MeV and μ ¼ 600 MeV in order to avoid a thermodynamically problematic regime in
the phase diagram (see Sec. III B for details).

IN-MEDIUM SPECTRAL FUNCTIONS OF VECTOR- AND … PHYSICAL REVIEW D 95, 036020 (2017)

036020-9



continuously connects both regions (see also [28]). We also
note that, unlike the threshold for this capture process, the
position of the van Hove peak in the a1 spectral function,
which occurs close to this threshold at ω ¼ mσ −mπ ≈
300 MeV for j~pj ¼ 0, remains essentially unaffected at
finite momentum. Rather, this van Hove peak eventually
merges with the structureless spacelike region.
We conclude this section by noting that the momentum-

dependent spectral functions are closely connected to the
real-time propagators and thus also allow access to static
properties of the medium, such as transport coefficients in
the appropriate limits [29].

IV. SUMMARY

Within an effective description for low-energy QCD, we
have computed the in-medium spectral functions of the ρ
and a1 mesons using the FRG method. This allows for a
simultaneous description of the chiral phase structure of
QCD and the behavior of the mesonic spectral functions at
finite temperature and density within a unified framework.
The main question we have addressed here was how the
in-medium modifications of the spectral functions of the
chiral partners ρ and a1 are connected to chiral symmetry
restoration.
To illustrate this, we have used an effective low-energy

model for two-flavor QCD based on a gauged linear sigma
model augmented by dynamical constituent quarks. This
construction was guided by requiring that both the dom-
inant mesonic processes and the phase structure of QCD are
treated on the same footing. Hence, in addition to the chiral
partners, ρ and a1, we have included the lightest pseudo-
scalar and scalar mesons π and σ [the latter being identified
with the f0ð500Þ resonance]. The momentum-independent
self-interactions of the scalar and pseudoscalar mesons
have been fully implemented by computing their effective
potential. The leading-order interactions between the scalar

and the vector sector have been included by invoking a
gauge principle as in the gauged linear sigma model. The
quark-meson interactions were constructed from QCD-
inspired arguments concerning the dynamical generation
of mesons from RG evolved quark-antiquark interactions in
QCD. As we have demonstrated, this model allows for
the simultaneous description of the chiral phase diagram in
the (T − μ) plane and in-medium vector-meson spectral
functions.
We have shown that by crossing the chiral phase

boundary both at large temperature and large chemical
potential, the spectral functions of the ρ and a1 channels
degenerate. The underlying mechanism which drives this
degeneration becomes particularly lucid in the present
approach. The mass splittings of the chiral partners
decrease with the melting of the chiral condensate. As a
result, the decay processes that determine the ρ and a1
spectral functions degenerate, which finally leads to degen-
erate spectral functions. Furthermore, the decreasing con-
stituent quark mass towards chiral symmetry restoration
triggers the melting of the resonance peaks in the spectral
functions. We have demonstrated this behavior along the
temperature and chemical potential directions of the phase
diagram. As it turns out, the ρ meson mass stays essentially
constant, while the a1 shows a significant mass shift
towards the ρ when chiral symmetry restoration is
approached. Chiral symmetry restoration is signaled by
the degeneration of the spectral functions accompanied by a
melting of the resonances rather than, e.g., a dropping of
the mass as suggested by Brown and Rho [7]. Hence, our
findings are in favor of the “melting scenario” concerning
the interpretation of experimental dilepton data. This is in
line with the results from phenomenological models [53] as
well as results on the scaling of the vector-meson masses in
QCD [16].
While our model captures the main qualitative features

of the vector-meson spectral functions, there are various

FIG. 9. The transverse ρ (left) and a1 (right) spectral functions, ρρðω; ~pÞ and ρa1ðω; ~pÞ, are shown versus external energy ω and
external spatial momentum ~p at T ¼ 100 MeV and μ ¼ 0 MeV. The timelike regime, ω > j~pj, is Lorentz-boosted to higher energies as
the momentum increases, while the spacelike regime, ω < j~pj, is homogeneously filled up by the spacelike processes.
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directions left to be explored in future studies in order to
arrive at a complete physical picture of the signatures of
chiral symmetry restoration in vector-meson spectral func-
tions. The most obvious shortcoming of our model is the
lack of confinement. We show in Appendix D that, while
the qualitative features of the spectral functions remain the
same, the decay into on-shell quarks gives large contribu-
tions to the spectral functions deep in the hadronic phase
where confinement should prevent such processes. In the
present context, confinement manifests itself in positivity
violation of the quark spectral functions (see e.g. [54]), and
this should be accounted for in a more realistic description
of chiral symmetry restoration. The incorporation of gluon
fluctuations, which will certainly become relevant in the
vicinity of the phase transition and at large frequencies/
momenta, is also a crucial step in this direction and may be
incorporated along the lines of [16]. This would also make
the necessity of model parameter tuning obsolete. In order
to capture the full momentum dependence of the propa-
gators, we need to go beyond the classical momentum
dependence considered here. This can be done, e.g., by
including nontrivial wave-function renormalizations in the
gradient expansion of the effective action. It has been
shown in [55] that this reduces the difference between
curvature and pole masses, especially for the light mesons.
Phenomenologically viable spectral functions also require
the inclusion of the feedback of the vector mesons
themselves as well as baryonic degrees of freedom, both
of which have been neglected here. In particular, the fact
that our approach also allows for the computation of
spectral functions at arbitrarily large chemical potential
calls for an extension to include the dynamics of baryons
and nuclear-matter effects in a chiral effective theory that
is capable of describing both the liquid-gas transition of
nuclear matter and the chiral transition in a unified
framework [56]. Several of these issues have been
addressed already within the FRG, showing that this
method is flexible enough to tackle these ambitious tasks
in the future.
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APPENDIX A: DERIVATION
OF FLOW EQUATIONS

In the following we provide further details on our
theoretical setup as well as explicit expressions for the
flow equations (see also [27,28]). The effective potential
only contains the scalar meson, as well as quark-antiquark
fluctuations, and is hence given by solving the flow

equation obtained by applying the Wetterich equation,
Eq. (12), to the ansatz for the effective action of the
quark-meson model as done in [27,28,30], which yields

∂kUk ¼
k4

12π2

�
1

Ek;σ
coth

�
Ek;σ

2T

�
þ 3

Ek;π
coth

�
Ek;π

2T

�

−
2NfNc

Ek;ψ

�
tanh

�
Ek;ψ − μ

2T

�

þ tanh

�
Ek;ψ þ μ

2T

���
: ðA1Þ

The effective quasiparticle energies are given by

Ek;α ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

k;α

q
; α ∈ fπ; σ; ρ; a1;ψg; ðA2Þ

with effective masses of the quarks and mesons,

m2
k;π ¼ 2U0

k; ðA3Þ

m2
k;σ ¼ 2U0

k þ 4U00
kϕ

2
0; ðA4Þ

m2
k;ρ ¼ m2

k;V; ðA5Þ

m2
k;a1

¼ m2
k;V þ g2ϕ2

0; ðA6Þ

m2
k;ψ ¼ h2Sϕ

2
0; ðA7Þ

where primes denote derivatives with respect to the chiral
invariant ϕ2 ≡ σ2 þ ~π2 and ϕ2

0 ¼ σ20 is meant to be the
global minimum.
Flow equations for two-point functions of vector mesons

transversal and longitudinal to the heat bath are defined as

∂kΓ
ð2Þ;⊥
k;ρ=a1

ðpÞ ¼ 1

2ðN2
f − 1ÞTr½Π

T;⊥
μν ðpÞ∂kðΓð2Þ

k;ρ=a1
ðpÞÞfg

νσ
�;

∂kΓ
ð2Þ;∥
k;ρ=a1

ðpÞ ¼ 1

ðN2
f − 1ÞTr½Π

T;∥
μν ðpÞ∂kðΓð2Þ

k;ρ=a1
ðpÞÞfg

νσ
�;

ðA8Þ

where f; g ∈ f1; ::; ðN2
f − 1Þg are adjoint flavor indices.

The three dimensionally transverse and four dimensionally
longitudinal projection operators are defined by

ΠT;⊥
μν ðpÞ ¼

�
0 if μ ¼ 0 or ν ¼ 0

δμν −
pμpν

~p2 else;

ΠT;∥
μν ðpÞ ¼ δμν −

pμpν

p2
− ΠT

μνðpÞ; ðA9Þ

with
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ΠT
μνðpÞ ¼ ΠT;⊥

μν ðpÞ þ ΠT;∥
μν ðpÞ ¼ δμν −

pμpν

p2
: ðA10Þ

For vanishing external spatial momentum, ~p ¼ 0, we find
that longitudinal and transverse parts of the flow equations
coincide,

∂kΓ
ð2Þ;⊥
k;ρ=a1

ðp0Þ ¼ ∂kΓ
ð2Þ;∥
k;ρ=a1

ðp0Þ: ðA11Þ

As illustrated diagrammatically in Fig. 2, the flow
equations for the ρ and a1 two-point functions read more
explicitly,

∂kΓ
ð2Þ;⊥
k;ρ ðp0Þ ¼ Jππk;ρðp0Þ −

1

2
Iπk;ρ − 2Jψψ̄k;ρðp0Þ; ðA12Þ

∂kΓ
ð2Þ;⊥
k;a1

ðp0Þ ¼ Jσπk;a1ðp0Þ þ Jπσk;a1ðp0Þ −
1

2
Iπk;a1

−
1

2
Iσk;a1 − 2Jψψ̄k;a1ðp0Þ: ðA13Þ

The loop functions are defined as

Iβk;α ≡ Tr½∂Rβ
kðqÞGk;βðqÞΓð4Þ

k;βαGk;βðqÞ�; ðA14Þ

Jβγk;αðpÞ≡ Tr½∂Rβ
kðqþ pÞGk;βðqþ pÞΓð3Þ

k;βγα

×Gk;γðqÞΓð3Þ
k;γβαGk;βðqþ pÞ�; ðA15Þ

with a scale-dependent regulated propagator

Gk;αðqÞ≡ ðΓð2Þ
k;α þ Rβ

kðqÞÞ−1: ðA16Þ

The trace includes summations over all internal indices as
well as a loop momentum integration which, for finite
temperature, turns into a spatial integration and a summa-
tion over Matsubara modes.
The regulator function has to be chosen appropriately for

the different types of fields [57]. In this work we use the
following three-dimensional regulator functions:

Rσ=π
k ðqÞ ¼ ðk2 − ~q2Þθðk2 − ~q2Þ; ðA17Þ

Rρ=a1
k ðqÞ ¼ ΠT

μνðqÞðk2 − ~q2Þθðk2 − ~q2Þ; ðA18Þ

Rψ
k ðqÞ ¼ i~qð

ffiffiffiffiffiffiffiffiffiffiffiffi
k2=~q2

q
− 1Þθðk2 − ~q2Þ: ðA19Þ

Explicit expressions for the three- and four-point vertices,

Γð3Þ
k and Γð4Þ

k , are given by

Γð3Þ
k;ψ̄ψρμi

¼ ihVγμτi; ðA20Þ

Γð3Þ
k;ψ̄ψaμ

1;i
¼ ihVγμγ5τi; ðA21Þ

Γð3Þ
k;πkπjρ

μ
i
¼ igϵijkðqμπk − qμπjÞ

�
1 −

g2σ20
m2

k;a1

�
; ðA22Þ

Γð3Þ
k;σπja

μ
1;i
¼ igδjlðqμσ − qμπjÞ; ðA23Þ

Γð4Þ
k;πlπkρνjρ

μ
i
¼ g2δμνð2δijδkl − δikδjl − δilδjkÞ; ðA24Þ

Γð4Þ
k;σσaν

1;ja
μ
1;i
¼ 2g2δijδμν; ðA25Þ

Γð4Þ
k;πlπkaν1;ja

μ
1;i
¼ g2δμνðδikδjl þ δilδjkÞ: ðA26Þ

The flow of the scale-dependent couplingm2
k;V is defined

by projecting on the ρ mass in the following way:

∂km2
k;V ¼ 1

2ðN2
f − 1Þ limp→0

Tr

�
ΠT;⊥

μν
δ2∂kΓk

δρμi δρ
ν
j

�				
ϕ¼ϕ0

¼ ∂km2
k;ρ: ðA27Þ

We note that in our approach the Euclidean curvature mass
of the ρmeson is given by the vector-meson couplingmk;V ;
thus, their flow equations coincide.

APPENDIX B: ANALYTIC CONTINUATION
AND SPECTRAL FUNCTIONS

In order to obtain flow equations for real-time (retarded)
two-point functions, an analytic continuation from imagi-
nary to real energies has to be performed. We use the
following two-step analytic continuation procedure which
was developed in [27,28] for the FRG. In a first step the
periodicity of the bosonic and fermionic occupation num-
bers, which result from the Matsubara summation over the
loop energy, w.r.t. the discrete external Euclidean energy
p0, is exploited, i.e.,

nB;FðEþ ip0Þ → nB;FðEÞ: ðB1Þ

In a second step the Euclidean energy p0 is replaced by a
continuous real frequency ω in the following way,

Γð2Þ;Rðω; ~pÞ ¼ −lim
ϵ→0

Γð2Þ;Eðp0 ¼ −iðωþ iϵÞ; ~pÞ; ðB2Þ

where the limit ϵ → 0 can be taken exactly for the imaginary
part of the two-point functions (see Appendix C), while for
the real part we use a small value of ϵ ¼ 0.1 MeV or
ϵ ¼ 1 MeV in our numerical implementation.
The flow equations for the retarded two-point functions

are then solved using the grid method with the initial values
given by

Γð2Þ;R
Λ;ρ ðω; ~pÞ ¼ ðωþ iϵÞ2 − ~p2 −m2

Λ;ρ; ðB3Þ
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Γð2Þ;R
Λ;a1

ðω; ~pÞ ¼ ðωþ iϵÞ2 − ~p2 −m2
Λ;a1

: ðB4Þ

The spectral functions are essentially given by the
imaginary part of the retarded propagator,

ρðω; ~pÞ ¼ −
1

π
ImGRðω; ~pÞ; ðB5Þ

which can be expressed in terms of the retarded two-point
function as

ρðω; ~pÞ ¼ 1

π

ImΓð2Þ;Rðω; ~pÞ
ðReΓð2Þ;Rðω; ~pÞÞ2 þ ðImΓð2Þ;Rðω; ~pÞÞ2 : ðB6Þ

APPENDIX C: ANALYTIC IMAGINARY PARTS

The limit ϵ → 0 in the definition of the retarded two-
point functions, Eq. (B2), can be performed analytically for
the imaginary part of the two-point functions in the
following way. For simplicity, we discuss here the case
of vanishing external spatial momentum. First we note that
the imaginary parts of the retarded two-point functions are
obtained from those of the prefactors of the loop functions
in Appendix F with Dirac-Sokhotsky identities,

lim
ϵ→0

Im

�
1

ωþ iϵ − Eα � Eβ

�
→ −πδðω − Eα � EβÞ;

lim
ϵ→0

Im

�
1

ðωþ iϵ − Eα � EβÞ2
�

→ πδ0ðω − Eα � EβÞ:

Expressing these delta functions in terms of k, the flow
equations for the imaginary parts of the retarded two-point
functions then collapse to the k ¼ k0 values which solve

ω − Ek;α � Ek;β ¼ 0; ðC1Þ

so the integrated flow equations reduce to the following
form,

Z
kIR

kUV

dk∂kImΓð2Þ
k ¼

Z
kIR

kUV

dkðfðkÞδðk − k0Þ

þ gðkÞδ0ðk − k0ÞÞ
¼ −fðk0Þ þ g0ðk0Þ; ðC2Þ

where the generic functions fðkÞ and gðkÞ contain the
derivatives E0

k;α � E0
k;β of the quasiparticle energies w.r.t.

the momentum scale k in the denominator which gives rise
to the van Hove singularities at saddle points.
An analogous procedure is possible at finite external

spatial momentum.

APPENDIX D: REAL AND IMAGINARY PARTS
OF RETARDED TWO-POINT FUNCTIONS

As described above, the real and imaginary parts of the
flow equations for the vector-meson retarded two-point
functions are solved separately. In the following we present
results for these parts and their compositions. The zero
crossings of the real parts are used here to define the mass
of the particle. It agrees with the physical pole mass of a
stable particle, if the imaginary part is zero at this energy as
well. Otherwise it locates, at least approximately, the peak
of a resonance whose width is determined by the imaginary
part of the corresponding zero of the retarded two-point
function on the unphysical Riemann sheet.
In Fig. 10 the real (left) and imaginary parts (right) of the

vacuum ρ and a1 retarded two-point functions are shown.
The real part of the ρ retarded two-point function shows a
zero crossing at ω ¼ 789.3 MeV. The related imaginary

FIG. 10. Real (left) and imaginary (right) parts of the retarded two-point function of the ρ (blue) and a1 (dashed red) meson vs external
energy ω at T ¼ 0 MeV and μ ¼ 0 MeV. The different contributions to the imaginary parts are shown by light dashed lines (right):
ρ�=a�1 → ψ þ ψ̄ (upper dashed lines) and ρ� → π þ π for the ρ meson and a�1 → π þ σ for the a1 meson (lower dashed lines).
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part begins to increase significantly when the quark-anti-
quark decay becomes possible at around ω ≈ 600 MeV; the
ρ peak is hence strongly suppressed. For the a1 meson, this
suppression is even stronger since the real part has a zero
crossing at ω ¼ 1274.7 MeV where the imaginary part
already assumes large values.
In order to see how strong the particular processes

contribute to the imaginary part, these contributions are
plotted separately on the right in Fig. 10. We see that for
the ρ as well as for the a1 imaginary part, the quark-antiquark
decay process dominates clearly over the mesonic decay
processes, even in the vacuum, where physically this decay
should not be possible.However, in our approach this process
is naturally present since we have no mechanism which
describes confinement, and it therefore needs further inves-
tigations about how it can be suppressed or even removed in a
physically reasonable way of modeling confinement.
To isolate the effects of the quark-antiquark decay channel

in the spectral functions, Fig. 11 shows the full ρ and a1
spectral functions (left) in comparison with spectral

functions where the quark-antiquark contributions have
been removed by hand from the imaginary parts of the
two-point functions (right) in the vacuum and at T ¼
150 MeV for vanishing chemical potential, here both
plotted on a linear scale. The increasing temperature
leads to a melting, especially of the ρ meson spectral
function, and a shift of the pole mass peaks towards each
other in both cases. Additionally, due to the thermal capture
process, in the a1 spectral function a small peak arises
for lower energies. Without the quark-antiquark decay
channel, the peaks are less suppressed and concentrated
around the masses defined by the zero crossing of the real
part. As shown in Fig. 10 on the right, the quarks above
threshold give by far dominant contributions to the imagi-
nary parts and therefore shift the positions of the mass
peaks in the spectral functions as well, which can be seen
by comparing both sides in Fig. 11. For a better com-
parison with Fig. 8 in the main text, the vacuum spectral
functions without the quark-antiquark decay channel are
also plotted on logarithmic scales in Fig. 12. Here we see
broad peaks concentrated around the pole masses of the ρ
and a1 mesons.

APPENDIX E: AVAILABLE PROCESSES

In this section we summarize and discuss the different
scattering and absorption or emission processes that can
occur within our framework. We divide these processes
into timelike and spacelike types. Timelike processes
involve off-shell particles with a total energy ω that is
larger than their spatial momentum j~pj, i.e., ω ≥ j~pj, while
spacelike processes involve a particle excitation with
ω < j~pj (see Fig. 13).
The available timelike processes for an external off-shell

ρ meson, denoted as ρ�, are given by

ρ� → π þ π; ω ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mπÞ2 þ ~p2

q
; ðE1Þ

FIG. 11. Spectral functions of the ρ (blue) and a1 (dashed red) meson at T ¼ 0 MeV (normal color) and T ¼ 150 MeV (light color),
both for vanishing chemical potential in linear scales with (left) and without (right) a quark-antiquark decay channel.

FIG. 12. Vacuum spectral functions of the ρ (blue) and a1
(dashed red) meson without a quark-antiquark decay channel.
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ρ� → ψ̄ þ ψ ; ω ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mψ Þ2 þ ~p2

q
; ðE2Þ

where the kinematic constraints follow from energy con-
servation. We note that particles without asterisks represent
on-shell particles and that their masses are given by the
Euclidean masses in our truncation. Moreover, if there are
particles available from the heat bath, the inverse of the
above processes is also possible, giving rise to an equilib-
rium between direct and inverse processes. The correspond-
ing statistical weight factors can be easily read off from the
corresponding loop functions (see the discussion in
Appendix F).
The timelike processes for an a�1 meson are given by

a�1 → σ þ π; ω ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmσ þmπÞ2 þ ~p2

q
; ðE3Þ

a�1 þ π → σ; j~pj ≤ ω ≤ ðmσ −mπÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~p2

Δm2

r
; ðE4Þ

a�1 þ σ → π; j~pj ≤ ω ≤ ðmπ −mσÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~p2

Δm2

r
; ðE5Þ

a�1 → ψ̄ þ ψ ; ω ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mψÞ2 þ ~p2

q
; ðE6Þ

with Δm2 ≡ ðmσ −mπÞ2. The first and last processes
describe standard decay channels, while (E4) and (E5)
describe capture processes which are only possible if there
are particles from the heat bath available and if the
kinematic constraints are fulfilled. In general, only the

capture process a�1 þ π → σ is possible since the pion mass
is usually smaller than the sigma mass.
We now turn to the spacelike processes which, in the

case of the ρ meson, are given by

ρ� þ π → π

ρ� þ ψ → ψ

�
0 ≤ ω ≤ j~pj ðE7Þ

where ψ represents both quarks and antiquarks. These
processes describe the absorption or, when considering the
inverse processes, the emission of a spacelike ρ meson.
Similarly, the spacelike processes for the a1 meson are

given by

a�1 þ σ → π

a�1 þ π → σ

a�1 þ ψ → ψ

9=
;0 ≤ ω ≤ j~pj; ðE8Þ

with ψ again representing both quarks and antiquarks. We
note that all spacelike processes are only possible if there
are particles from the heat bath available.
In addition to the processes discussed so far, particle-

hole excitations of quarks or antiquarks are also possible at
finite chemical potential as soon as a Fermi sphere starts
building up. These processes can be induced by an external
ρ or a1 meson with an energy-momentum configuration
that allows for an excitation of particle-hole pairs in the
vicinity of the Fermi surface (see also Appendix F). These
particle-hole processes lead to interesting phenomena such
as long-wavelength collective excitations such as sound
waves, which will be discussed in future applications of our
approach.

FIG. 13. Collection of the possible timelike, p2 ¼ ω2 − ~p2 > 0, and spacelike, p2 < 0, processes. Asterisks denote off-shell particles
with total energy ω and spatial momentum ~p, while others represent on-shell particles from the heat bath. First column: Timelike decay
channels for the ρ meson. Second column: Timelike decay channels for the a1 meson. Third column: Absorption of a spacelike ρ
excitation. Fourth column: Absorption of a spacelike a1 excitation. In addition, particle-hole excitations on the Fermi surface of (anti)
quarks are possible (see text for details).
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APPENDIX F: EXPLICIT EXPRESSIONS
FOR THE LOOP FUNCTIONS

In this section we provide explicit expressions for the
loop functions appearing in the flow equations for the
retarded two-point functions (cf. Appendix A).
The loop functions are written in a form that allows for

an easy interpretation in terms of physical processes. We
divide these processes into three categories: vacuum
processes, capture processes, and particle-hole processes.
Processes that can occur in the vacuum are associated with
statistical weight factors of the form

ð1þ nBðEαÞÞð1þ nBðEβÞÞ − nBðEαÞnBðEβÞ;
which relates to the process ω → Eα þ Eβ and its inverse
process Eα þ Eβ → ω. Capture processes are only possible
when there are particles from a heat bath available. They
carry weight factors like

nBðEαÞð1þ nBðEβÞÞ − nBðEβÞð1þ nBðEαÞÞ
and correspond to processes like ωþ Eα → Eβ and its
inverse. Particle-hole processes are proportional to the
derivative of the occupation number, e.g., n0BðEαÞ.
The momentum-independent loop functions Ik;ρ=a1 only

contribute to the real part of the retarded two-point
functions. They are given by

Iπk;ρ ¼
k4g2

3E3
k;ππ

2
½1þ 2nBðEk;πÞ − 2Ek;πn0BðEk;πÞ�;

Iαk;a1 ¼
k4g2

6E3
k;απ

2
½1þ 2nBðEk;αÞ − 2Ek;αn0BðEk;αÞ�;

with α ∈ fπ; σg.
The momentum-dependent loop functions Jk;ρ=a1ðωÞ

contribute to both the real and imaginary parts and therefore
encode information about possible decay processes. Split
into contributions related to the different processes, they are

listed in Eqs. (F4)–(F6). For the sake of simplicity we drop
the external spatial momentum dependence here. In this
case the theta function in the regulator functions,
Eqs. (A17)–(A19), has to be evaluated numerically. For
the external energy ω we use the notation ωþ → ωþ iϵ.
The loop function Jππk;ρðωÞ, Eq. (F4), describes the decay

of an off-shell ρmeson into a pion pair, ρ� → π þ π, and its
inverse process π þ π → ρ�. The imaginary part of these
processes is nonvanishing when it becomes energetically
possible, e.g., ω ≥ 2Ek;π for the former process. The
mesonic decay channel for the a1 meson is described by
the loop function Jαβk;a1ðωÞ, Eq. (F5), with α; β ∈ fπ; σg, but
distinguished. Here we also have the vacuum processes
a�1 → αþ β and αþ β → a�1 but also capture processes as
described above. These processes are of the form a�1 þ
α=β → β=α and are described by single occupation num-
bers �nBðEk;α=βÞ. For T → 0 these contributions vanish
completely, in contrast to the vacuum processes. The
mesonic decay in a quark-antiquark pair is described by
the loop function Jψψ̄k;αðωÞ, Eq. (F6). Here we also have the
vacuum process ρ�=a�1 → ψ þ ψ̄ and its inverse
ψ þ ψ̄ → ρ�=a�1. The form ð1 − nFðEk;ψ ÞÞ reflects Pauli
blocking: Available states for the decay products are
suppressed since there are real fermions in the heat bath.

The coefficients ~EðαÞ
1;k ; ~E

ðαÞ
2;k and ~EðαÞ

3;k are defined by

~EðαÞ
1;k ¼ 8k2 þ LðαÞ

k ; ðF1Þ

~EðαÞ
2;k ¼ 8m2

k;ψ − LðαÞ
k ; ðF2Þ

~EðαÞ
3;k ¼ −4E2

k;ψ − 8m2
k;ψ þ LðαÞ

k ; ðF3Þ

with LðρÞ
k ¼ 12m2

k;ψ and Lða1Þ
k ¼ 0.

Additionally, there are terms proportional to a derivative
of an occupation number which are connected to particle-
hole processes.

Jππk;ρðω; j~pj ¼ 0Þ ¼ −
1

ðωþ − 2Ek;πÞ
k6g2m4

k;ρ

15π2E3
k;πm

4
k;a1

½1þ 2nBðEk;πÞ − Ek;πn0BðEk;πÞ�

þ 1

ðωþ − 2Ek;πÞ2
k6g2m4

k;ρ

15π2E3
k;πm

4
k;a1

½1þ 2nBðEk;πÞ�

þ 1

ðωþ þ 2Ek;πÞ
k6g2m4

k;ρ

15π2E3
k;πm

4
k;a1

½1þ 2nBðEk;πÞ − Ek;πn0BðEk;πÞ�

þ 1

ðωþ þ 2Ek;πÞ2
k6g2m4

k;ρ

15π2E3
k;πm

4
k;a1

½1þ 2nBðEk;πÞ�; ðF4Þ
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Jαβk;a1ðω; j~pj ¼ 0Þ ¼ þ 1

ðωþ þ Ek;α þ Ek;βÞ
k6g2

30π2E3
k;αEk;β

½1þ nBðEk;αÞ þ nBðEk;βÞ − Ek;αn0BðEk;αÞ�

þ 1

ðωþ þ Ek;α þ Ek;βÞ2
k6g2

30π2E2
k;αEk;β

½1þ nBðEk;αÞ þ nBðEk;βÞ�

−
1

ðωþ − Ek;α − Ek;βÞ
k6g2

30π2E3
k;αEk;β

½1þ nBðEk;αÞ þ nBðEk;βÞ − Ek;αn0BðEk;αÞ�

þ 1

ðωþ − Ek;α − Ek;βÞ2
k6g2

30π2E2
k;αEk;β

½1þ nBðEk;αÞ þ nBðEk;βÞ�

þ 1

ðωþ − Ek;α þ Ek;βÞ
k6g2

30π2E3
k;αEk;β

½nBðEk;αÞ − nBðEk;βÞ − Ek;αn0BðEk;αÞ�

þ 1

ðωþ − Ek;α þ Ek;βÞ2
k6g2

30π2E2
k;αEk;β

½−nBðEk;αÞ þ nBðEk;βÞ�

þ 1

ðωþ þ Ek;α − Ek;βÞ
k6g2

30π2E3
k;αEk;β

½−nBðEk;αÞ þ nBðEk;βÞ þ Ek;αn0BðEk;αÞ�

þ 1

ðωþ þ Ek;α − Ek;βÞ2
k6g2

30π2E2
k;αEk;β

½−nBðEk;αÞ þ nBðEk;βÞ�; ðF5Þ

Jψψ̄k;αðω; j~pj ¼ 0Þ ¼ −
1

ðωþÞ
k4h2V

6π2E3
k;ψ

½ ~EðαÞ
3;kðn0FðEk;ψ þ μÞ − n0FðEk;ψ − μÞÞ�

−
1

ðωþ − 2Ek;ψ Þ
k4h2V

6π2E4
k;ψ

½ ~EðαÞ
2;kð1 − nFðEk;ψ − μÞ − nFðEk;ψ þ μÞÞ − Ek;ψ

~EðαÞ
1;kn

0
FðEk;ψ þ μÞ�

−
1

ðωþ − 2Ek;ψ Þ2
k4h2V

6π2E3
k;ψ

½ ~EðαÞ
1;kð1 − nFðEk;ψ − μÞ − nFðEk;ψ þ μÞÞ�

þ 1

ðωþ þ 2Ek;ψÞ
k4h2V

6π2E4
k;ψ

½ ~EðαÞ
2;kð1 − nFðEk;ψ − μÞ − nFðEk;ψ þ μÞÞ − Ek;ψ

~EðαÞ
1;kn

0
FðEk;ψ − μÞ�

−
1

ðωþ þ 2Ek;ψÞ2
k4h2V

6π2E3
k;ψ

½ ~EðαÞ
1;kð1 − nFðEk;ψ − μÞ − nFðEk;ψ þ μÞÞ�: ðF6Þ
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