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Electromagnetic current-current correlators in pionic and nucleonic medium have been evaluated in the
static limit to obtain electrical conductivities for pion and nucleon components, respectively, where the
former decreases and the latter increases with the variation of temperature T and baryon chemical potential
μN . Therefore, total electrical conductivity of pion and nucleon system exhibits a valley structure in the
T-μN plane. To get nondivergent and finite values of correlators, and finite thermal widths of medium
constituents, the pion and nucleon have been considered, where the thermal widths have been determined
from the in-medium scattering probabilities of the pion and nucleon with other mesonic and baryonic
resonances, based on the effective hadronic model. At μN ¼ 0, the results of the present work more or less
agree with the results of earlier works and their finite μN extension shows a decreasing nature of electrical
conductivity for the hadronic medium.
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I. INTRODUCTION

The electromagnetic current-current correlator at finite
temperature is one of the very important quantities to
characterize the medium, produced in high energy heavy
ion collisions. The explicit dynamical structure of this
quantity for hadronic matter (HM) is directly linked with
the in-medium spectral functions of neutral vector mesons
and also with the thermal dilepton and photon yields from
HM, whereas its static limit provides the estimation of an
important transport coefficient like electrical conductivity
(σ) of the HM. According to recent reviews [1,2], the
effective field theoretical calculations of hadrons at finite
temperature are very successful in describing the low mass
dimuon enhancement measured by the NA60 Collaboration
[3]. This low mass enhancement also gets a boost from
the quark matter sources, which have been calculated by
using the hard thermal loop technique in Ref. [4] (see also
Ref. [5] for effective QCD model calculation). Therefore, it
is very interesting and phenomenologically important to
know the static limit estimation of the dynamical structure
of the current-current correlator by calculating σ of the
hadronic medium in the framework of the effective
hadronic model. This is basically attempted by this present
work.
The event by event analysis [6] in relativistic heavy ion

collisions indicates the possibility of generation of high
strength electric (E) and magnetic (B) fields in the medium.
For example, in the relativistic heavy ion collider (RHIC)
experiment, their approximate values are eB ≈m2

π ≈ 1018G
and eE ≈m2

π ≈ 1021V=cm [7], although a particular mag-
netic field component only becomes nonzero in the average

scenario [6,7]. The time evolution of this average magnetic
field [7] depends on the σ of the expanding medium,
produced in heavy ion collisions, which demands that we
have some good idea of the numerical value of this σ.
In Ref. [8], the electrical conductivity or the electric

charge diffusion coefficient of the evolving medium is used
as input to explain the low mass dilepton enhancement,
observed experimentally by the PHENIX Collaboration at
the RHIC; whereas, Yin [9] has shown that the electrical
conductivity of quark-gluon plasma (QGP) plays an
important role to regulate the soft photon production via
realistic hydrodynamics simulation. Besides these indirect
estimations of electrical conductivity of QGP, it can directly
be extracted from charge dependent direct flow parameters
in asymmetric heavy ion (Auþ Cu) collisions [10]. Along
with these phenomenological studies, different microscopic
calculations for σ of the quark [11–17] and hadronic phase
[18–21] have been done, although the results of Cassing
et al. [11] in the model of parton hadron string dynamics
(PHSD) and the Nambu-Jona-Lasino (NJL) model results
of Marty et al. [12] have covered σ estimation for the
temperature domain of both quark and hadronic matter. On
this problem, a large number of lattice QCD calculations
have been done [22–28], where their estimations cover a
large numerical band (see Table I, addressed in the results
section). Now, from the calculations [18–21] in the had-
ronic temperature domain, we see that the results of
Refs. [18] and [19–21] show a completely opposite nature
of temperature (T) dependence of σ. If we considered the
results of Lee et al. [18] as an exception, almost all of the
earlier works [11–17,19–21,28] indicate that σ=T decreases
in the hadronic temperature domain [11,12,19–21] and
increases in the temperature domain of the quark phase
[11–17,28]. Their numerical values are located within the*sabyaphy@gmail.com
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order σ=T ≈ 10−3 to 10−2 for the hadronic phase and
σ=T ≈ 10−3 to 10−1 for the quark phase. This information
from earlier studies indicates that the numerical strength
as well as the nature of σðTÞ has not been a a very settled
issue until now.
In this context, the present investigation is a similar kind

of microscopic calculation for σ of hadronic matter, which
is expected to update our understanding of σðTÞ and
converge towards a settled direction. Considering the pion
and nucleon as abundant constituents of hadronic matter,
we have calculated their electromagnetic current-current
correlators at finite temperature, whose static limits give the
estimation of σ for the respective components. As an
interaction part, the effective hadronic Lagrangian densities
have been used to calculate the in-medium scattering
probabilities of the pion and nucleon with other mesonic
and baryonic resonances present in the hadronic medium.
Extending our investigations for finite nucleon or baryon

chemical potential μN , the present results provide the
estimation of σ in the T-μN domain of hadronic matter.
The basic formalism of σ is addressed in Sec. II, where

we see that the nondivergent values of respective current-
current correlators are mainly regulated by the thermal
widths of medium components, which are calculated and
briefly described in Sec. III. Calculations of different loop
diagrams are classified in three subsections. After it, the
numerical discussions have been addressed in Sec. IV,
which is followed by a discussion of higher order issues in
Sec. V and at last, the studies are summarized in Sec. VI.

II. FORMALISM OF ELECTRICAL
CONDUCTIVITY

Owing to the famous Kubo formula [29,30], the elec-
trical conductivity in momentum space can be expressed in
terms of spectral density of the current-current correlator
as [20]

σ ¼ 1

6
lim

q0;~q→0

Aσðq0; ~qÞ
q0

; ð1Þ

where Aσðq0; ~qÞ ¼
R
d4xeiq·xh½JEMi ðxÞ; JiEMð0Þ�iβ, h::iβ

denotes the thermodynamical ensemble average and
JEMμ ðxÞ) is the electromagnetic current.
In real-time thermal field theory (RTF), any two point

function at finite temperature always has a 2 × 2 matrix
structure. Hence, the thermal correlator of the electromag-
netic current can be expressed as

ΠabðqÞ ¼ i
Z

d4xeiqxhTcJEMμ ðxÞJμEMð0Þiabβ ; ð2Þ

where Tc denotes the time ordering with respect to a
symmetric contour in the complex time plane. For this
contour, we get four possible sets of two points and
therefore, we get 2 × 2 matrix structure of the two point
function. The superscripts a; bð¼ 1; 2Þ in Eq. (2) represent
the (thermal) indices of the matrix. The retarded part of
the correlator ΠRðqÞ and its corresponding spectral density
AσðqÞ can be extracted from 11-component Π11ðqÞ by
using the relation

AσðqÞ ¼ 2ImΠRðqÞ ¼ 2 tanh

�
βq0
2

�
ImΠ11ðqÞ: ð3Þ

Using this relation (3), Eq. (1) can alternatively be
expressed as

σ ¼ 1

3
lim

q0;~q→0

ImΠRðq0; ~qÞ
q0

¼ 1

3
lim

q0;~q→0

tanhðβq0
2
ÞImΠ11ðq0; ~qÞ
q0

: ð4Þ

Since pion and nucleon constituents are our matter of
interest, we should focus on their electromagnetic currents,

TABLE I. At μN ¼ 0, the σðTÞ=T in the approximated temper-
ature domain of hadronic (T ≈ 0.120 GeV to 0.175 GeV) and
quark (T ≈ 0.175 GeV to 0.350 GeV) phases are presented in the
second and third columns, whereas in the first column, the
references (with their methodologies) are addressed.

σ=T at
T ¼ ð0.120–
0.175Þ GeV

σ=T at
T ¼ ð0.175–
350Þ GeV

LQCD Results:
Gupta [26] � � � ≈0.375
Ding et al. [22] � � � ≈0.033ðþ0.018;−0.016Þ
Arts et al. [23] � � � ≈0.020ð�0.005Þ
Brandt et al. [27] � � � ≈0.020ð�0.006Þ
Burnier et al. [25] � � � ≈0.0064
Amato et al. [28] � � � ≈0.003ð�0.001Þ

-0.015ð�0.003Þ
Buividovich et al. [24] � � � ≈0.0021ð�0.0003Þ
Yin [9] � � � ≈0.06ðþ0.04;−0.02Þ
Puglisi et al. [13]
(PQCD in RTA)

� � � ≈0.09 − 0.13

Puglisi et al. [13]
(QP in RTA)

� � � ≈0.01 − 0.07

Greif et al. [14]
(BAMPS)

� � � ≈0.04 − 0.06

Marty et al. [12]
(DQPM)

� � � ≈0.06 − 0.16

Marty et al. [12]
(NJL)

≈0.06 − 0.05 ≈0.05 − 0.5

Cassing et al. [11]
(PHSD)

≈0.088 − 0.025 ≈0.025 − 0.2

Finazzo et al. [16] ≈0.004 − 0.010 ≈0.010 − 0.015
Lee et al. [18] ≈0.001 − 0.011 ≈0.36 − 0.015
Fraile et al. [20]
(unitarization)

≈0.013 − 0.010 � � �

Fraile et al. [20]
(ChPT)

≈0.008 − 0.002 � � �

Present results ≈0.004 − 0.001 � � �
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Jμπ ¼ eϕπð∂μϕπÞ and JμN ¼ eψNγ
μψN; ð5Þ

which are electromagnetically coupled with the photon via
interaction (QED) Lagrangian density

L ¼ −ðJμπ þ JμNÞAμ: ð6Þ
Since (ϕπþ , ϕπ−) from the pion triplet (ϕπþ , ϕπ− , ϕπ0) and
the proton (ψp) from the nucleon doublet (ψp, ψn) have
nonzero electric charges, we have to keep in mind the
relevant isospin factors Ieπ ¼ 2 and IeN ¼ 1, which should
be multiplied during our calculations.
To calculate electrical conductivity of the pionic (σπ) and

nucleonic (σN) medium from their corresponding spectral
densities or the retarded part of the correlator via Eq. (4), let
us start from the 11 component of theΠab matrix. TheWick
contraction (see the Appendix) of the pion (ϕπ) and nucleon
(ψN) fields gives one-loop diagrams of photon self-energy,
which are shown in Figs. 1(a) and 2(a), respectively. A
general mathematical expression of these diagrams is

Π11ðqÞ ¼ ie2
Z

d4k
ð2πÞ4ND11ðkÞD11ðpÞ; ð7Þ

where D11ðkÞ and D11ðpÞ are the scalar parts of propa-
gators, appearing in RTF for the 11 component: p ¼ q − k
for the ππ loop in Fig. 1(a), and p ¼ qþ k for the NN loop
in Fig. 2(a). Multiplication of the vertex part and numerator
part of two propagators builds the term N.
In RTF, a general form of D11ðkÞ for the boson or

fermion is

D11ðkÞ ¼ −1
k20 − ω2

k þ iϵ
þ2πiϵkFkðk0Þδðk20 − ω2

kÞ;

with Fkðk0Þ ¼ nþk θðk0Þ þ n−k θð−k0Þ; ð8Þ

where n�k ðωkÞ ¼ 1
eβðωk∓μÞ−ϵk

are the thermal distribution

functions and the � sign in the superscript of nk stands
for particle and antiparticle, respectively. Now, when we
proceed for special cases, pion (boson) or nucleon
(fermion) field, we have to put

ϵk ¼ þ1; μ ¼ μπ ¼ 0i:e:nþk ¼ n−k ;

ωk ¼ ωπ
k ¼ ð~k2 þm2

πÞ1=2 for pion; ð9Þ

ϵk ¼ −1; μ ¼ μNðnucleon chemical potentialÞ;
ωk ¼ ωN

k ¼ ð~k2 þm2
NÞ1=2 for nucleon: ð10Þ

However, for the time being we continue our calculation
with the general form of D11 from Eq. (8) and at a latter
stage, we put these conditions (9) and (10) in the general
expression.
After using (8) in Eq. (7), if we do its k0 integration and

put it in Eq. (3), then we get spectral density of the
electromagnetic current-current correlator [31],

AσðqÞ ¼ e2
Z

d3k
ð2πÞ3

ð−πÞN
4ωkωp

½C1δðq0 − ωk − ωpÞ

þ C2δðq0 − ωk þ ωpÞ þ C3δðq0 þ ωk − ωpÞ
þ C4δðq0 þ ωk þ ωpÞ�; ð11Þ

where ωp ¼ ωπ
p ¼ fð~q − ~kÞ2 þm2

πg1=2 for the pion field,

and ωp ¼ ωN
p ¼ fð~qþ ~kÞ2 þm2

Ng1=2 for the nucleon field.
Here N are space components of Nðq; k0 ¼ �ωk; ~kÞ (see
the Appendix),

N ¼ ð−4Þf−~k · ~qþ ~k2g for ππloop; ð12Þ

and

N ¼ ð−8Þf~k · ~qþ ~k2g þ 4~k · ~q for NNloop: ð13Þ

The statistical probabilities, attached with four different
delta functions, are

(a) (b)

(c) (d)

FIG. 1. The diagram (a) is a schematic one-loop representation
of the electromagnetic current-current correlator for the medium
with pionic constituents. The external photon lines are coupled
with double dashed internal lines of pions, which have some
finite thermal width. The thermal width of the pion can be derived
from its self-energy diagrams (b)–(d), where (b) represents pion
self-energy for mesonic (πM) loops, whereas diagrams (c) and (d)
are direct cross diagrams of pion self-energy for NB loops.

(a) (b)

FIG. 2. The diagram (a) is a schematic one-loop representation
of the electromagnetic current-current correlator for the medium
with nucleonic constituents. Similar to the double dashed lines of
pions in Fig. (1), here double solid lines of the nucleon indicate
that they have finite thermal width, which can be obtained from
the nucleon self-energy diagram (b) for πB loops.
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C1 ¼ 1þ nþk ðωkÞ þ nþp ðq0 − ωkÞ;
C2 ¼ −nþk ðωkÞ þ n−pð−q0 þ ωkÞ;
C3 ¼ n−k ðωkÞ − nþp ðq0 þ ωkÞ;
C4 ¼ −1 − n−k ðωkÞ − n−pð−q0 − ωkÞ; for ππloop; ð14Þ

and

C1 ¼ −1þ n−k ðωkÞ þ nþp ðq0 þ ωkÞ;
C2 ¼ −n−k ðωkÞ þ n−pð−q0 þ ωkÞ;
C3 ¼ nþk ðωkÞ − nþp ðq0 þ ωkÞ;
C4 ¼ 1 − nþk ðωkÞ − n−pð−q0 − ωkÞ; for NNloop: ð15Þ

Four different delta functions are responsible for creating
four different regions of branch cuts in the q0-axis, where
Aσðq0; ~qÞ or ImΠRðq0; ~qÞ becomes nonzero. These regions
are

q0 ¼ −∞to − f~q2 þ 4m2
π;Ng1=2∶ unitary cut;

¼ −j~qj to 0

0 to j~qj

�
∶ Landau cut;

¼ f~q2 þ 4m2
π;Ng1=2to∞∶unitary cut: ð16Þ

Since electrical conductivity σ is the limiting value of
Aσðq0; ~qÞ or ImΠRðq0; ~qÞ at q0; ~q → 0, we should focus on
Landau cuts only. Hence, using the Landau part of Eq. (11)
in Eq. (1), we have

σ ¼ e2

3
lim

q0;~q→0

1

q0

Z
d3k
ð2πÞ3

ð−πÞN
4ωkωp

fC2δðq0 − ωk þ ωpÞ

þ C3δðq0 þ ωk − ωpÞg

¼ e2

3
lim

q0;~q→0
Im

�Z
d3k
ð2πÞ3

N
4ωkωp

lim
Γ→0

×

�
C2=q0

ðq0 − ωk þ ωpÞ þ iΓ
þ C3=q0
ðq0 þ ωk − ωpÞ þ iΓ

��
:

ð17Þ

We take the finite value of Γ in our further calculations to
get nondivergent values of σ. In the Kubo approach, this
traditional technique is widely used to calculate different
transport coefficients like shear viscosity [20,31] and
electrical conductivity [19]. In this respect, this formalism
is very much close to quasiparticle approximation. The Γ is
basically thermal widths of medium constituents, which is
physically related with the probabilities of different in-
medium scattering. Inverse of Γ measures the relaxation
time τ, which is the average time of the medium constituent
to reach its equilibrium conditions.
Next, applying the L’Hospital’s rule in Eq. (17) (see the

Appendix), we get a generalized expression of electrical

conductivity for the bosonic (ϕπ) or fermionic (ψN)
field,

σ ¼ βe2

3

Z
d3k
ð2πÞ3

ð−N0Þ
4ω2

kΓ
½n−k ð1þ ϵkn−k Þ þ nþk ð1þ ϵkn

þ
k Þ�;

ð18Þ

where

N0 ¼ lim
q0;~q→0

Nðk0 ¼ �ωk; ~k; qÞ: ð19Þ

Depending upon the sign of ϵk, the statistical probability
becomes a Bose enhanced (ϵk ¼ þ1 for bosonic field) or
Pauli blocked (ϵk ¼ −1 for fermionic field) probability.
Following the definition of N0 in Eq. (19), Eqs. (12) and
(13) can be simplified as

N0 ¼ −Ieπð4~k2Þ for ππloop; ð20Þ

and

N0 ¼ −IeNð8~k2Þ for NNloop: ð21Þ
Using the above Eqs. (20) and (21) in Eq. (18) as well as
their relevant parameters from Eqs. (9) and (10), we get the
electrical conductivity of the pionic and nucleonic medium,

σπ ¼
βe2

3

Z
∞

0

d3~k
ð2πÞ3

~k2

ωπ
k
2Γπ

nkðωπ
kÞf1þ nkðωπ

kÞg ð22Þ

and

σN ¼ 2βe2

3

Z
∞

0

d3~k
ð2πÞ3

~k2

ωN
k
2ΓN

½nþk ðωN
k Þf1 − nþk ðωN

k Þg

þ n−k ðωN
k Þf1 − n−k ðωN

k Þg�: ð23Þ

Hence, adding the pionic and nucleonic components, we
get the total electrical conductivity

σT ¼ σπ þ σN: ð24Þ

This is basically one-loop anatomy of electrical conduc-
tivity of hadronic matter, whose higher order issue [32] is
addressed in Sec V.

III. THERMAL WIDTH

Let us come to the thermal widths of pion (Γπ) and
nucleon (ΓN). Pion thermal width can be obtained from the
imaginary part of pion self-energy for different mesonic
and baryonic loops. Figure 1(b) represents the pion self-
energy diagram for πM (mesonic) loops, ΠR

πðπMÞ, where
M ¼ σ, ρ mesons, or resonances. Here the subscript in
ΠR

πðπMÞ stands for the external (outside the bracket) and
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internal (inside the bracket) particles for diagram 1(b). This
notation is followed by latter diagrams also. Now, pion self-
energy for different baryonic loops (ΠR

πðNBÞ) can have two

possible diagrams as shown in Figs. 1(c) and 1(d). Here
internal lines NB stand for nucleon (N) and baryon (B),
respectively, where different four-star spin 1=2 and 3=2
baryons are taken in our calculations. Adding all those
mesonic and baryonic loops, we get the total thermal width
of pion Γπ, which can be expressed as

Γπ ¼
X
M

ΓπðπMÞ þ
X
B

ΓπðNBÞ

¼ −
X
M

ImΠR
πðπMÞðk0 ¼ ωπ

k; ~kÞ=mπ

−
X
B

ImΠR
πðNBÞðk0 ¼ ωπ

k; ~kÞ=mπ: ð25Þ

Similarly, nucleon self-energy is shown in Fig. 2(b) and it
has been denoted as ΣR

NðπBÞ, where in the internal lines, we

have taken all those spin 1=2 and 3=2 baryons (B) as taken
in pion self-energy for baryonic loops. Hence, summing
all these πB loops, we can express our nucleon thermal
width as

ΓN ¼
X
B

ΓNðπBÞ ¼ −
X
B

ImΣR
NðπBÞðk0 ¼ ωN

k ; ~kÞ: ð26Þ

Next we discuss briefly the calculations of thermal
widths from different one-loop self-energy graphs as shown
in Figs. 1 and 2.

A. Pion thermal width for different
mesonic loops

To calculate the mesonic loop contribution of pionic
thermal width ΓπðπMÞ, the pion self-energy for πM loops has
been evaluated and it is expressed as [33]

ΓπðπMÞ ¼ ImΠR
πðπMÞðk0 ¼ ωπ

k; ~kÞ=mπ

¼ 1

mπ

Z
d3~l

32π2ωπ
lω

M
u

× Lðl0 ¼ −ωπ
l ; ~l; k0 ¼ ωπ

k; ~kÞfnðωπ
l Þ

− nðωM
u Þgδðωπ

k þ ωπ
l − ωM

u Þ; ð27Þ

where nðωπ
l Þ, nðωM

u Þ are Bose-Einstein (BE) distribution

functions of π,M mesons with energies ωπ
l ¼ ð~l2 þm2

πÞ1=2
and ωM

u ¼ ðj~k − ~lj2 þm2
MÞ1=2, respectively. The vertex

factors Lðk; lÞ [33] have been obtained from the effective
Lagrangian density,

L ¼ gρ~ρμ · ~π × ∂μ~π þ gσ
2
mσ~π · ~πσ: ð28Þ

B. Pion thermal width for different baryonic loops

Alongwith themesonic loops, different baryon loopsmay
provide some contributions in pion thermal width. This
component can be derived frompion self-energy for different
NB loops, where B ¼ Nð940Þ, Δð1232Þ, N�ð1440Þ,
N�ð1520Þ, N�ð1535Þ, Δ�ð1600Þ, Δ�ð1620Þ, N�ð1650Þ,
Δ�ð1700Þ, N�ð1700Þ, N�ð1710Þ, N�ð1720Þ are taken
[34,35]. The masses of all the four-star baryon resonances
(in MeV) are presented inside the brackets. The direct and
cross diagrams of pion self-energy forNB loops are shown in
Figs. 1(c) and 1(d). Adding the relevant Landau cut con-
tributions of bothdiagrams (c) and (d), the total thermalwidth
of the pion for any NB loop is given by [34,35]

ΓπðNBÞ ¼ ImΠR
πðNBÞðk0 ¼ ωπ

k; ~kÞ=mπ

¼ 1

mπ

Z
d3~l

32π2ωN
l ω

B
u

× ½Lðl0 ¼ ωN
l ;~l; k0 ¼ ωπ

k; ~kÞfnþl ðωN
l Þ

− nþu ðωB
u Þgδðωπ

k − ωN
l þ ωB

u Þ
þ Lðl0 ¼ −ωN

l ;~l; k0 ¼ ωπ
k; ~kÞf−n−l ðωN

l Þ
þ n−u ðωB

u Þgδðωπ
k þ ωN

l − ωB
u Þ�; ð29Þ

where n�ðωN
l Þ, n�ðωB

u Þ are Fermi-Dirac (FD) distribution
functions of N, B (� for particle and antiparticle) with

energies ωN
l ¼ ð~l2 þm2

NÞ1=2 and ωB
u ¼ ðj � ~kþ ~lj2 þ

m2
BÞ1=2 (� for two different diagrams), respectively. With

the help of the effective Lagrangian densities [36],

L ¼ f
mπ

ψBγ
μ

�
iγ5

1

�
ψN∂μπ þ H:c: for JPB ¼ 1

2

�
;

L ¼ f
mπ

ψμ
B

�
1

iγ5

�
ψN∂μπ þ H:c: for JPB ¼ 3

2

�
; ð30Þ

the vertex factors Lðk; lÞ [34,35] have been found.

C. Nucleon thermal width

The nucleonic thermal width has been calculated from
nucleon self-energy for different possible πB loops, where
B stands for all the baryons as taken in pion self-energy for
baryonic loops. Evaluating the loop diagram, shown in
Fig. 2(b), we get [37,38]

ΓNðπBÞ ¼ −ImΣR
NðπBÞðk0 ¼ ωN

k ; ~kÞ

¼
Z

d3~l
32π2ωπ

lω
B
u

× Lðl0 ¼ −ωπ
l ;~l; k0 ¼ ωN

k ; ~kÞfnðωπ
l Þ

þ nþðωB
u ÞgδðωN

k þ ωπ
l − ωB

u Þ; ð31Þ
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where nðωπ
l Þ and nþðωB

u Þ are BE and FD distribution

functions for π and B with energies ωπ
l ¼ ð~l2 þm2

πÞ1=2 and
ωB
u ¼ ðj~k − ~lj2 þm2

BÞ1=2, respectively.
The vertex factors Lðk; lÞ [37,38] have been deduced by

using the πNB interaction Lagrangian densities from
Eq. (30).

IV. RESULTS AND DISCUSSION

Equations (25), (27), and (29) are able to estimate the
thermal width of the pion, whose off-shell and on-shell
values are elaborately discussed in Refs. [33–35]. Similarly,
the off-shell and on-shell properties of the nucleon thermal
width are addressed in Refs. [37–39]. The results of the
pion in Ref. [34] and nucleon in Ref. [39] are compared
with some of the earlier estimations and they are more
or less compatible with each other. Although, some
differences in their numerical strengths are noticed because
of their pictorial and methodological differences.
Using the ΓπðπσÞð~k; TÞ, ΓπðπρÞð~k; TÞ and their total in the

integrand of Eq. (22), the dotted, dashed, and solid lines of
Fig. 3 are generated, where folding [33] by vacuum spectral
functions of resonances σ and ρ is considered in panel (a) but
not in panel (b). Like the results of shear viscosity in the
earlier work [33], σ and ρ resonances play a dominant role in
the electrical conductivity for being nondivergent and finite
at low (T < 0.100 GeV) and high (T > 0.100 GeV) temper-
ature domain, respectively. This is because the thermal
widths of πσ and πρ loops have dominant values in the
low and high T domain, respectively. We get σπðTÞ as a
decreasing function in low and high temperature both,
although a mild increasing function of shear viscosity
ηπðTÞ has been observed in Ref. [33] at the high temperature
domain of hadronicmatter (0.100 GeV < T < 0.175 GeV).

The mathematical origin for these differences in the nature
of σπðTÞ and ηπðTÞ is the different power of momentum

(~k4 for σπ but ~k
6 for ηπ) in the numerator of their respective

integrands.
Adding baryonic loop contributions with the mesonic

loops of pion self-energy, we get the total thermal width
of the pion as described explicitly in Eq. (25). Figures 4(a)
and 4(b) for μN ¼ 0 and 0.300 GeV reveal that σπðTÞ
reduces after adding baryonic loop contribution in pion
self-energy and its reduction strength becomes larger
for larger values of μN as baryonic loop contribution,

ΓπðNBÞð~k; T; μNÞ, depends sensitively on μN . To display the
dominant contribution of the NΔ loop [ΓπðNΔÞ], Fig. 4
shows individual contributions of meson loops, meson
loopsþ NΔ loop, and mesonþ baryon loops by dotted,
dashed, and solid lines, respectively.
Next, Figs. 5(a) and 5(b) for T ¼ 0.120 and 0.150 GeV

show μN dependence of electrical conductivity of the pionic
component for meson loops (dotted line), meson loopsþ
NΔ loop (dashed line), and mesonþ baryon loops (solid

line). As ΓπðπMÞð~k; TÞ is independent of μN , the correspond-
ing σπ (dotted line) remain constant with the variation of μN .
After adding the NΔ loop (dashed line) and other baryon
loops (solid line), a decreasing nature of σπðμNÞ is clearly
noticed. A sensitive dependence of μN in ΓπðNBÞ for the NΔ
loop (dominant) and other baryon loops is the main reason
behind the decreasing nature of σπðμNÞ. The reader should
keep in mind that addition of different loops in Figs. 3–5
occurred in pion thermalwidth, guided byEq. (25), but not in
conductivity.
In Figs. 6(a) and 6(b) for μN ¼ 0.500 and 0.300 GeV, the

T dependence of pionic (σπ) and nucleonic (σN) compo-
nents of electrical conductivities and their total (σT) are
shown by dotted, dashed, and solid lines, respectively.

FIG. 3. Temperature dependence of electrical conductivity for
the pionic medium due to its different mesonic loops, πσ (dotted
line), πρ (dashed line) loops and their total (solid line). With and
without the folding effect of resonancesM ¼ σ, ρ are taken in the
upper (a) and lower (b) panels, respectively.

FIG. 4. Effect of baryonic loops (NΔ loop, dashed line; NB
loops, solid line) after adding with mesonic loops (πM loops,
dotted line) of the pion on σπðTÞ at μN ¼ 0 (a) and μN ¼
0.300 GeV (b).
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Corresponding results in the μN axis are shown in Figs. 7(a)
and 7(b) for T ¼ 0.120 and 0.150 GeV. Unlike the σπ , the
σN increases with both T and μN . The T, μN dependence in
the expression of conductivity is basically coming from the
phase space factor and thermal width of the medium
constituents. The nucleon phase space factor (statistical
weight factor, built by FD distributions) is more dominating
than its thermal width ΓNðT; μNÞ in controlling T, μN
dependences of σN . Whereas, for the pionic case, ΓπðT; μNÞ
becomes more influential than the pionic phase factor
(statistical Bose enhanced weight factor). This is the
mathematical reason for the opposite nature of σπðT; μNÞ
and σNðT; μNÞ. From a simultaneous observation of Figs. 6
and 7, we can conclude that the decreasing nature of
σTðT; μNÞ becomes inverse beyond certain points of T and
μN , where σT exposes the points of minima. This behavior
can be visualized well from Fig. 8, which exhibits a three-
dimensional plot of σTðT; μNÞ.

Up to now, our results are presented by taking e2 ¼ 1.
After multiplying by e2 ¼ 4π=137, exact values of σT have
been shown in the last two figures 9 and 10. Figure 9(a)
displays a comparison of present results with the earlier
results, obtained by Fraile et al. [20] (stars and triangles),
Lee et al. [18] (open circles), Marty et al. [12] (squares),
and Cassing et al. [11] (solid circles) at hadronic
temperature domain for μN ¼ 0. Within 0.110 GeV <
T < 0.175 GeV, present results more or less agree with
the results of Ref. [18,20] but are substantially smaller than
the results of Ref. [11,12]. Figure 9(b) shows σT vs T at
three different values of μN , where we notice the shifting of
minimum values of σT towards lower T as one increases
μN . Alternatively, these minimum values of σT are also
shifted towards lower μN as T increases, which is explicitly
shown in Fig. 10(a). Next, Fig. 10(b) represents the points
of minima for σT in the T − μN plane. An approximated
freeze-out line (solid line), taken from Ref. [40], is also
added in Fig. 10(b). The points of minima, which are
located outside the freeze-out line, can only be covered by

FIG. 5. The same as Fig. 4 for σπðμNÞ at T ¼ 0.120 (a) and
T ¼ 0.150 GeV (b).

FIG. 6. Temperature dependence of electrical conductivity for
pion (dotted line) and nucleon (dashed line) components and their
total (solid line) at μN ¼ 0.500 (a) and μN ¼ 0.300 GeV.

FIG. 7. μN dependence of electrical conductivity for pion
(dotted line) and nucleon (dashed line) components and their
total (solid line) at T ¼ 0.120 (a) and T ¼ 0.150 GeV.

FIG. 8. Total electrical conductivity σT in the T − μN plane.
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the expanding fireball, produced in different beam energies
of heavy ion collisions. Therefore, the minima or valley
structure can be observed from (Tf ≈ 0.166 GeV, μf ≈ 0)
to (Tf ≈ 0.140 GeV, μf ≈ 0.420 GeV), where subscript f
stands for freeze-out. In other words, this valley structure
may be observed from higher beam energy

ffiffiffi
s

p ¼ 200 GeV
to lower beam energy

ffiffiffi
s

p
≈ 8 GeV. However, this issue

may be confirmed after further research on σ-calculations
at finite baryon density, based on a different effective
QCD model.
We have presented the numerical values of

σðT; μN ¼ 0Þ=T, estimated by earlier works in Table I,
where most of the works display the decreasing σðTÞ=T in
hadronic temperature [11,12,19,20] and increasing σðTÞ=T
in the temperature domain of the quark phase [11–17,28].
Among them, Refs. [11,12], covering both temperature

domains, have found the minimum value of σ=T near the
transition temperature. The exact quantitative comparison
of different values of σðTÞ=T may not be so meaningful as
the methods or models of different studies are very diverse.
In that respect, the reader may have to take a rough view on
the table just for being updated with numerical strength and
nature of σðTÞ=T, obtained from different investigations.
The present methodology for calculation of electrical

conductivity can be applicable to estimate dilepton and
photon production from hadronic matter. The σ is basically
the static limit estimation of the electromagnetic current-
current correlator, whose dynamical structure is directly
related with the dilepton rate. Hence, the future plan of the
present work is to focus on the detail structure of the
correlator in the energy and momentum plane instead of its
limiting value at the origin. In this context, we should keep
in mind that in-medium modification of the ρmeson via the
vector dominance model (VDM) plays the dominating role
in the thermal dilepton rate from hadronic matter [1,2].
However, it does not have any contribution in σ, because
the ρ-spectral function at zero energy and momentum
becomes 0. So, the dynamical structure of σ, based on
the current methodology, may have to be added to the
traditional VDM calculation of the thermal dilepton rate.
Following Refs. [19,20], one can estimate the thermal
photon production rate from hadronic matter at zero
momentum. The present methodology of σ calculation
may have some important phenomenological impact on this
dilepton and photon production, which can be investigated
in future by revisiting the earlier works [2,41,42], related
with these electromagnetic probes.

V. HIGHER ORDER ISSUE

The diagrammatic calculations of the transport coeffi-
cient via Kubo formalism always suffer from the issue of
higher order contributions [32]. For our present interaction
picture, the issue is as follows. Let us take one-loop
expression of the pionic medium, given in Eq. (22), which
has an order Oð 1

Γπ
Þ ∼Oð 1

g2σππ
Þ, as Γπ ∼ g2σππ , when we

deal with the σππ interaction only. After this one-loop
diagram, as shown in Fig. 1(a), the two point function of
Eq. (1) or (2) can have two-loop-type anatomy, where an
additional internal line of the σ meson is drawn from upper
to lower internal lines of pions in Fig. 1(a). Interestingly,
this two-loop diagram also has the same order as the one-
loop diagram because the extra 1=Γπ from the second loop
of this two-loop diagram is canceled by its additional vertex
factor g2σππ and hence, its net order is Oð 1

Γπ
g2σππ

1
Γπ
Þ∼

Oð 1
Γπ
Þ ∼Oð 1

g2σππ
Þ. Not only this two loop but all of the

higher order ladder diagrams may have this same order.
However, for this present interaction picture, the numerical
strength in transport coefficient for the two-loop diagram
appears to be lower than that for the one-loop diagram.
This has been found for the shear viscosity calculation in

FIG. 9. Our results of σðT; μN ¼ 0Þ=T are compared with the
results of Refs. [11,12,18,19] (a). The valley structure of σðTÞ at
μN ¼ 0.400, 0.500, and 0.600 GeV is shown by solid, dotted, and
dashed lines, respectively, in panel (b).

FIG. 10. (a) Valley structure of σðμNÞ at three different T.
(b) The points of minima (solid circles) and the freeze-out line
[40] (solid line) are shown in the T − μN plane.
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Ref. [31], where some specific ϕϕΦ-type interaction
(with mΦ > mϕ) has been considered. Following a similar
calculation for electrical conductivity like shear viscosity in
Ref. [31], the two-loop contribution σð2Þ has been obtained
and compared with one-loop values, σð1Þ, as shown in
Fig. 11. We notice in Fig. 11 that two-loop contribution
(dash-dotted line) may safely be ignored with respect to the
numerical strength of the one-loop diagram (dotted line)
and one-loop contribution may be considered as a rough (or
maybe leading) estimation instead of the total (solid line).
The thermal distribution function of high mass resonance
like the σ meson may be a major reason for suppressing
σð2Þ, as also observed for shear viscosity in Ref. [31]. On
the basis of this fact, we may also ignore higher order loop
diagrams, which contain a higher number of high mass
resonances in the internal lines.
Again, the thermal width pion or nucleon may also come

from two-loop or higher order loop diagrams besides the
one-loop diagram, shown in Figs. 1(b)–1(d) and 2(b). In this
context, our methodology, based on the phenomenological
hadronic model, may not be treated equivalently with the
perturbative calculations like Chiral perturbation theory.
Since the coupling constants are tuned from the experimental
decay widths of highmass resonances (e.g., σ, ρ,Δ, etc.), the
one-loop contribution gives more phenomenological inter-
action strength than the higher order loop diagrams.
A final remark is in order that the present estimation of

electrical conductivity of the pionic and nucleonicmedium is
based on the one-loop skeleton of its current-current corre-
lator as well as its thermal widths being also calculated from
one-loop self-energies of the pion and nucleon. This present
methodology can be understood as follows. Starting from
electromagnetic current-current correlators of the pion and
nucleon with the help of their free Lagrangian densities, we
get one-loop anatomy of the correlators, which are basically

diverged. Then, the finite thermal widths of internal lines in
the one-loop diagrams have to be considered for getting
nondivergent and finite values of electrical conductivities of
pionic andnucleonic components. In thisway, a quasiparticle
scenario is introduced in the diagrammatic calculation of the
Kubo framework. We may impose the entire interaction
picture in this quantity—thermal width—because this quan-
tity basically makes the picture of free theory transform into
the interaction picture. So thermal width may have to
estimate from interaction Lagrangian density, while the
structure of the transport coefficient like electrical conduc-
tivity may have to estimate from free Lagrangian density.
Being exactly equivalent with the method of relaxation time
approximation, this methodology may be considered a more
acceptable and economic methodology. An alternative first
possible way is to start with the total Lagrangian density and
consider all possible higher order loop diagrams, which will
be diverged individually like one-loop if we do not impose
any thermal width in the internal lines of the diagrams. It
implies that introducing the quasiparticle picture is very
essential to cure divergence in transport coefficient calcu-
lation. Now, the second possible alternative method is to
consider all higher order loop diagrams with finite thermal
width. In this case, though, we can grossly understand that
the higher order loopmay have the same order as one loop as
the additional vertex factor is eventually canceled by the
couplings of the additional thermal width in the higher order
loop diagram.However, in realistic numerical estimation, the
scenario may be different because of additional thermal
structure of the diagram. As an example, in this present
analysis for σππ interaction, we notice that two-loop con-
tribution is suppressed because of the thermal structure of
the σmeson internal line.Hence, higher order loop diagrams,
containing more σ meson internal lines, are more sup-
pressing. The complexity arises during the two-loop calcu-
lations for other interactions like ρππ, BNπ interaction,
whose vertex factors contain momentum dependent struc-
ture. However, owing to the same logic, we may conclude
that they are also suppressed like the σππ interaction because
of the thermal structure of the ρ meson and baryons B.

VI. SUMMARY AND CONCLUSION

The present work has provided an estimation of electrical
conductivity of hadronic medium at finite temperature and
baryon density. Assuming the pion and nucleon are the
most abundant medium constituents, we have first deduced
thermal correlators of their electromagnetic currents and
then, taking the static limits of these correlators, the
expressions of electrical conductivities for pionic and
nucleonic components are derived. To get the nondivergent
values of these correlators in their static limits, one has
to include the finite thermal widths of the medium
constituents—the pion and nucleon. This is a traditional
quasiparticle technique of the Kubo framework, used
during the calculations of transport coefficients from the
relevant correlators in their static limits. Following the field

FIG. 11. One-loop and two-loop contributions of electrical
conductivity of pionic medium for σππ interaction are shown by
the dotted line (a) and dash-dotted line (b). The solid line (a) is
their total.
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theoretical version of the optical theorem, the thermal
widths of the pion and nucleon are obtained from the
imaginary part of their one-loop self-energy diagrams,
which accommodate different mesonic and baryonic res-
onances in the intermediate states. As a dynamical part, the
interactions of the pion and nucleon with other mesonic and
baryonic resonances are guided by the effective hadronic
Lagrangian densities, where their couplings are tuned by
the decay width of resonances, based on the experimental
data from PDG. The momentum distribution of these
thermal widths are integrated out during evaluation of
electrical conductivities of respective components.
The electrical conductivity for the pionic component is

obtained as a decreasing function T and μN , where mesonic
loops are dominant to fix its numerical strength. The πσ
and πρ loops of pion self-energy control the strength of
electrical conductivity at low and high T regions, respec-
tively, while a further reduction of numerical values in
conductivity at high T domain is noticed after the addition
of different baryonic loops in the pion self-energy.
Electrical conductivity of the pionic component due to
mesonic loops remains constant with μN but it is trans-
formed to a decreasing function when the baryonic loops
are added in the pion self-energy. The nucleonic component
gives the increasing values of electrical conductivity with
the variation of T and μN . After adding these pionic and
nucleonic components, the total electrical conductivity first
decreases at the pion dominating T − μN domain and then
increases at the nucleonic dominating domain. Therefore,
the numerical results show a set of T − μN points, where
total electrical conductivity becomes minimum.
Comparing with earlier estimations of electrical conduc-

tivity at μN ¼ 0, present work more or less agrees with
Refs. [18,20] quantitatively. We are also noticing that the
present work is qualitatively similar with most of the earlier
works [11,12,19–21], which show that electrical conduc-
tivity at μN ¼ 0 decreases with T.
The present work has considered the pion and nucleon as

abundant medium constituents, made of u and d quarks.
However, the K meson and Λ baryon may have to be
considered when we extend our calculation to the strange
sector, which is in under progress and planned to zoom in
on the strange sector effect elaborately in a future article.

ACKNOWLEDGMENTS

This work is financially supported by the UGC Dr. D. S.
Kothari Postdoctoral Fellowship under Grant No. F.4-2/
2006 (BSR)/PH/15-16/0060.

APPENDIX: SOME DETAIL PART OF
CONDUCTIVITY CALCULATION

1. Calculation Nð~q;~kÞ
Let us write the 11 component of the two point function

of the current-current correlator in terms of field operators.
For the ϕπ field it is given by

Π11ðqÞ ¼ i
Z

d4xeiqxhTJEMμ ðxÞJμEMð0Þiβ

¼ ie2
Z

d4xeiqxhTϕπðxÞ∂μϕπðxÞϕπð0Þ∂μϕπð0Þiβ:

ðA1Þ
With the help of the Wick’s contraction technique, we have

Π11ðqÞ ¼ ie2
Z

d4xeiqx½hTϕπðxÞ∂μϕπðxÞϕπ

zfflffl}|fflffl{
ð0Þ∂μϕπ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ð0Þiβ

¼ ie2
Z

d4k
ð2πÞ4Nðq; kÞD11ðkÞD11ðp ¼ q − kÞ;

ðA2Þ
where

Nðq; kÞ ¼ ð−4Þkμðq − kÞμ ðA3Þ

and its space component part is

Nð~q; ~kÞ ¼ ð−4Þf−~k · ~qþ ~k2g: ðA4Þ

Similarly for the ψN field,

Π11ðqÞ ¼ ie2
Z

d4xeiqxhTψNðxÞγμψNðxÞψN

zfflffl}|fflffl{
ð0ÞγμψN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}ð0Þiβ

¼ ie2
Z

d4k
ð2πÞ4Nðq; kÞD11ðkÞD11ðp ¼ qþ kÞ;

ðA5Þ

where

Nðq; kÞ ¼ Tr½γμðq=þ k=þmψÞγμðk=þmψ Þ�
¼ 8kμðqþ kÞμ − 4½k · ðqþ kÞ −m2

ψ �gμμ ðA6Þ

and the space component part of

Nðq; k0 ¼ �ωk; ~kÞ ¼ 8kμðqþ kÞμ − 4½k · q�gμμ ðA7Þ

is

Nð~q; ~kÞ ¼ −8~k · ð~qþ ~kÞ þ 4½~k · ~q�gii: ðA8Þ

2. Application of L’Hospital rule

For finite value of Γ, Eq. (17) becomes

σ ¼ e2

3

Z
d3k
ð2πÞ3

N0

4ω2
kΓ

lim
q0;~q→0

�
C2

q0
þ C3

q0

�
; ðA9Þ

as

lim
~q→0

ωp ¼ ωk: ðA10Þ
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Applying L’Hospital’s rule, we can write

lim
q0→0

C2;3ðq0Þ
q0

¼ lim
q0→0

d
dq0

fC2;3ðq0Þg
d
dq0

fq0g

¼ d
dq0

f�n∓p ðωp ¼∓ q0 þ ωkÞg

¼ β½n∓k ð1þ ϵkn
∓
k Þ�; ðA11Þ

since

ð�Þ d
dq0

n∓p ðωp ¼∓ q0 þ ωkÞ ¼ ð�Þ
−β dωp

dq0
eβðωp�μÞ

feβðωp�μÞ þ ϵkg2

lim
q0→0

ð�Þ d
dq0

n∓p ðωp ¼∓ q0 þ ωkÞ ¼ ð�Þ −βð∓Þeβðωk�μÞ

feβðωk�μÞ þ ϵkg2
¼ β½n∓k ð1þ ϵkn

∓
k Þ�:
ðA12Þ
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