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In this work, we present an analysis of the nonleptonic charmonium modes B0
s → J=ψf02ð1525Þ and

B0
s → J=ψKþK−. Within the framework of the factorization approach and using the perturbative QCD for

the evaluation of the relevant form factors, we find a branching fraction for the two-body channel of
BRðB0

s → J=ψf02ð1525ÞÞ ¼ ð1.6þ0.9
−0.7 Þ × 10−4 which is in agreement with the experimental values reported

by the LHCb and Belle Collaborations. The associated polarization fractions to this vector-tensor mode
are also presented. On the other hand, nonresonant and resonant contributions to the three-body decay
B0
s → J=ψKþK− are carefully investigated. The dominant contributions of the resonances ϕð1020Þ and

f02ð1525Þ are properly taken into account. A detailed analysis of the KþK− invariant mass distributions and
Dalitz plot are also performed. The overall result BRðB0

s → J=ψKþK−Þ ¼ ð9.3þ1.3
−1.1Þ × 10−4 is also in

satisfactory agreement with the experimental information reported by LHCb and Belle.
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I. INTRODUCTION

The study of exclusive semileptonic and nonleptonic
decays of heavy mesons B and Bs has provided a precise
and consistent picture of the flavor sector of the Standard
Model (SM) over the past decade [1]. Some of these
channels offer methods for the analysis of CP violation and
determination of the angles of the unitarity triangle, test
some QCD-motivated models, and the study of possible
effects of physics beyond SM [1]. Among the possibilities
of nonleptonic B and Bs decay modes, the color-suppressed
(but CKM favored) modes induced by quark level tran-
sitions b → cc̄s that involve a charmonium meson in final
state are of particular interest. Specially, the charmonium
vector meson J=ψ is of great experimental interest because
of its clean signal reconstruction (J=ψ → μþμ−) [1]. This is
the case of the vector-vector mode B → J=ψK�ð892Þ
where the phase β, B0 − B̄0 mixing parameter, can be
extracted [1]. On the other hand, the counterpart in the Bs

meson system, the B0
s → J=ψϕð1020Þ decay, it is the most

sensitive probe to measure the complex phase βs associated
with the B0

s − B̄0
s mixing process, which is extracted from

the angular analysis of the time-dependent differential
decay width [2]. Very recently, the charmonium resonance
ψð2SÞ has been studied in the time-dependent angular
analysis of the B0

s → ψð2SÞϕð1020Þ decay reported by the
LHCb Collaboration [3].

Another interesting charmonium mode that has been
studied lately by different experiments is the three-body
mode B0

s → J=ψKþK−. It is well known that the large
contribution to the KþK− invariant mass spectrum of
this channel is given by the vector resonance ϕð1020Þ;
i.e., the B0

s → J=ψKþK− decay proceeds predominantly
via B0

s → J=ψϕð1020Þ [2]. Recently, for higher KþK−

mass range, the significant signal of the tensor
meson f02ð1525Þ in the decay sequence B0

s →
J=ψf02ð1525Þ½→KþK−� observed by the D0 experiment
[4] has confirmed the earlier LHCb observation [5].
The absolute branching fractions of the mode B0

s →
J=ψf02ð1525Þ and the entire mode B0

s → J=ψKþK−

(including resonant and nonresonant contributions)
were first measured by the LHCb [6] and later con-
firmed by Belle [7] (see Table I). Both measurements
are in agreement with each other. Moreover, the B0

s →
J=ψKþK− mode has been used to measure the CP
violation parameter of the Bs mixing in the KþK− mass
region of ϕð1020Þ resonance [8]. It is possible that the
presence of additional resonances [with a different spin
structure such as resonance f02ð1525Þ] to ϕð1020Þ might

TABLE I. Branching fractions (×10−4) of B0
s → J=ψf02ð1525Þ

and B0
s → J=ψKþK−. For simplicity, the systematic, statistical

and additional uncertainties have been combined in quadrature.

Mode LHCb [6] Belle [7]

B0
s → J=ψf02ð1525Þ 2.61þ0.60

−0.54 2.60� 0.81
B0
s → J=ψKþK− 7.70� 0.72 10.1� 2.25
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affect the CP measurements [9]. This could open new
opportunities for complementary information on the
parameters of CP violation [9].
Motivated by the phenomenological importance of

nonleptonic charmonium Bs decays, in this work we
will carry out an analysis of the modes B0

s →
J=ψf02ð1525Þ and B0

s → J=ψKþK−. We first study
the branching ratio and polarization fractions of the
two-body vector-tensor mode B0

s → J=ψf02ð1525Þ, and
for the sake of completeness the vector-vector mode
B0
s → J=ψϕð1020Þ is also discussed. After that, a

reanalysis of the nonresonant and resonant contribu-
tions to the B0

s → J=ψKþK− decay is presented, where
the contributions of the resonances ϕð1020Þ and
f02ð1525Þ are properly taken into account by means
of the Breit-Wigner resonance formalism. Although this
mode has been previously considered in Ref. [10],
there are some important points that have been over-
looked and a more detailed analysis of the KþK−

invariant mass distributions and Dalitz plot will be
provided in the present study. So far, it is known that
there is no satisfactory treatment of nonleptonic Bs to
charmonium decays at present [11]. Keeping this in
mind, the factorization approach is used for the
description of the nonleptonic charmonium Bs decays
under study. We will show that our results reproduce
fairly well the experimental data.
This work is organized as follows: in Sec. II, the B0

s →
J=ψϕð1020Þmode is briefly reviewed. In Sec. III, we study
the branching ratio and polarization fractions of the B0

s →
J=ψf02ð1525Þ mode. The nonresonant and resonant con-
tributions to the three-body decay B0

s → J=ψKþK− are
carefully investigated in Sec. IV. Our conclusions are left
for Sec. V.

II. B0
s → J=ψV DECAY

The nonleptonic decay mode B0
s → J=ψV, with

V ¼ ϕð1020Þ, has been widely considered in previous
works (see for instance [11]). We briefly discuss its
amplitude, which is written in a form that is convenient
to compare with the B0

s → J=ψf02ð1525Þ channel, in
Sec. III. This notation will be also helpful for discussion
in Sec. IV where these amplitudes will be required. For the
sake of completeness, the numerical result for the branch-
ing fraction is also obtained.
The effective weak Hamiltonian (Heff ) for nonleptonic

charmonium Bs decays induced by the b → cc̄s transition
is [12]

Heff ¼
GFffiffiffi
2

p
�
VcbV�

csðC1O1 þ C2O2Þ − VtbV�
ts

�X10
i¼3

CiOi

��

þ H:c:; ð1Þ

where GF is the Fermi constant, Ci are the Wilson
coefficients evaluated at the renormalization scale
μ ¼ mb, and Vij is the respective Cabibbo-Kobayashi-
Maskawa (CKM) matrix element. The four-quark local
operators Oi are defined as: O1−2 current-current (tree),
O3−6 QCD penguin, and O7−10 electroweak penguin [12].
In Table II we list the next to leading order (NLO) Wilson
coefficients evaluated at μ ¼ mb [13].
Under the scheme of factorization, the decay amplitude

of B0
s → J=ψV is given by [11]

MðB0
s → J=ψVÞ ¼ GFffiffiffi

2
p VcbV�

cs ~aeffXðBsV;J=ψÞ; ð2Þ

where using the approximation VtbV�
ts ≈ −VcbV�

cs (i.e.
ignoring the small productVubV�

us), the effective coefficient
~aeffðμÞ ¼ a2ðμÞ þ a3ðμÞ þ a5ðμÞ þ a7ðμÞ þ a9ðμÞ sums
the contributions from both the tree a2 ¼ C2 þ C1=3 and
penguin a2i−1 ¼ C2i−1 þ C2i=3 (i ¼ 2, 3, 4, 5) operators.
The factorized term XðBsV;J=ψÞ is given by the expression

XðBsV;J=ψÞ ≡ hJ=ψ jc̄γμcj0ihVjðs̄bÞV−AjBsi; ð3Þ

where the hadronic matrix element hJ=ψ jc̄γμcj0i ¼
mJ=ψfJ=ψϵ

μ
J=ψ , with ϵJ=ψ and fJ=ψ (mJ=ψ ) the vector polari-

zation and decay constant (mass) of the J=ψ meson,
respectively.Theparametrizationof theBs → V formfactors
can be written as [11]

hVðpV; ϵVÞjs̄γμbjBsðPÞi ¼ −i
2VBsVðq2Þ
ðmBs

þmVÞ
εμνρσϵ

�ν
V Pρpσ

V;

ð4Þ

hVðpV; ϵVÞjs̄γμγ5bjBsðPÞi

¼ 2mVA
BsV
0 ðq2Þ ðϵ

�
V:PÞ
q2

qμ

þ ðmBs
þmVÞABsV

1 ðq2Þ
�
ϵ�Vμ −

ðϵ�V:PÞ
q2

qμ

�

− ABsV
2 ðq2Þ ðϵ�V:PÞ

ðmBs
þmVÞ

�
ðPþ pVÞμ −

ðm2
Bs
−m2

VÞ
q2

qμ

�
;

ð5Þ

TABLE II. Next-to-leading Wilson coefficients evaluated at μ ¼ mb [13], where α is the fine-structure constant.

C1 C2 C3 C4 C5 C6 C7=α C8=α C9=α C10=α

1.082 −0.185 0.014 −0.035 0.009 −0.041 −0.002 0.054 −1.292 0.263
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with qμ ¼ ðP − pVÞμ and VBsV , ABsV
0;1;2 the form factors

associated with the Bs → V transition evaluated at
q2 ¼ m2

J=ψ .

Taking the expression of the decay width ΓðB0
s → J=ψVÞ

from [11] and using the following input values: form
factors obtained in the light-cone sume rules (LCSR)
model [14], fJ=ψ ¼ð416.3�5.3ÞMeV [11], NLO Wilson
coefficients evaluated at μ ¼ mb (Table II), CKM matrix
elements jVcbj¼ð41.1�1.3Þ×10−3, jVcsj¼0.986�0.016,
τBs

¼ 1.510 × 10−12s and masses of the mesons [2]; we get
a value of

BRðB0
s → J=ψϕð1020ÞÞ ¼ ð10.4� 0.3Þ × 10−4; ð6Þ

which is consistent with the experimental value
ð10.8� 0.9Þ × 10−4 [2].

III. B0
s → J=ψT DECAY

Sharing the same CKM mixing elements and penguin
contributions of the B0

s → J=ψV mode, the decay ampli-
tude of B0

s → J=ψT [with T ¼ f02ð1525Þ] is written as

AðB0
s → J=ψTÞ ¼ GFffiffiffi

2
p VcbV�

cs ~aeffXðBsT;J=ψÞ; ð7Þ

where the factorized term XðBsT;J=ψÞ has the expression

XðBT;J=ψÞ ≡ hJ=ψ jc̄γμcj0ihTjðs̄bÞV−AjBsi: ð8Þ

In analogy to the hadronic matrix element that describes
Bs → V transition, the structure of the Bs → T form factors
is the same by adequately replacing the ϵμV polarization
vector by a new polarization vector ϵμT ¼ ~ϵμνPν=mBs

in
Eqs. (4) and (5) [15,16], with ~ϵμν being the polarization of
the spin-2 tensor meson and P the Bs meson momentum
(see appendix A for details). In this case VBsT and ABsT

0;1;2 are
the form factors associated with the Bs → T transition. In
ensuing calculations we will use the theoretical predictions
provided by the perturbative QCD (pQCD) approach [16].
Within the pQCD approach the q2-dependence of the form
factors VBsT and ABsT

0;1 can be represented by the three-
parameter formula [16]

FBsTðq2Þ ¼ FBsTð0Þ
ð1 − q2=m2

Bs
Þð1 − aq2=m2

Bs
þ bðq2=m2

Bs
Þ2Þ ;

ð9Þ

where the parameters a, b and FBsTð0Þ (value at the zero
momentum transfer) for Bs → f02ð1525Þ transition are
displayed in Table III (taken from Table II of Ref. [16]).
While the form factor ABsT

2 can be expressed as a linear
combination of ABsT

0 and ABsT
1 [16]

ABsT
2 ðq2Þ ¼ ðmBs

þmTÞ
m2

Bs
− q2

½ðmBs
þmTÞABsT

1 ðq2Þ

− 2mTA
BsT
0 ðq2Þ�: ð10Þ

We will assume the f02ð1525Þ meson as a ss̄ state (since
mainly f02ð1525Þ → KþK− [2]) and we will neglect the
small mixing angle (∼9° [2]) between the two isosinglet
mesons f2ð1270Þ − f02ð1525Þ.
The explicit expression for the decay width of

B0
s → J=ψT has the form

ΓðB0
s → J=ψTÞ ¼ G2

F

48πm3
Bs

jVcbV�
csj2 ~a2efff2J=ψ

16m2
Bs
m4

T

× ½αTλ7=2T þ βTλ
5=2
T þ γTλ

3=2
T �; ð11Þ

where λT ≡ λðm2
Bs
; m2

T; m
2
J=ψ Þ, with λðx; y; xÞ ¼ x2 þ y2 þ

z2 − 2ðxyþ xzþ yzÞ the usual kinematic Källen function,
and

αT ¼ ½ABsT
2 ðq2Þ�2

ðmBs
þmTÞ2

; ð12Þ

βT ¼ 6q2m2
T

ðmBs
þmTÞ2

½VBsTðq2Þ�2

− 2ðm2
Bs
−m2

T − q2ÞABsT
1 ðq2ÞABsT

2 ðq2Þ; ð13Þ

γT ¼ðmBs
þmTÞ2ðλT þ 10q2m2

TÞ½ABsT
1 ðq2Þ�2: ð14Þ

As it was pointed out in [17], it is worth to notice that the
λLþ1=2
T ∝ j~pT j2Lþ1 (with j~pT j being the three-momentum
magnitude of the tensor meson in the Bs rest frame)
dependence in Eq. (11) indicates that in vector-tensor
modes the orbital angular momentum of the wave
L ¼ 1, 2, and 3 are simultaneously allowed, as expected.
Taking the same numerical input values as in Sec. II and

the form factors from the pQCD approach [16] (Table III),
the branching ratio is found to be1

TABLE III. Form factors for B0
s → f02ð1525Þ transitions

obtained in the pQCD approach [16] (uncertanties added in
quadrature) are fitted to the three-parameter form Eq. (9).

FBsT FBsTð0Þ a b

VBsf02ð1525Þ 0.20þ0.06
−0.04 1.75þ0.05

−0.03 0.69þ0.09
−0.01

A
Bsf02ð1525Þ
0

0.16þ0.04
−0.03 1.69þ0.04

−0.03 0.64þ0.01
−0.04

A
Bsf02ð1525Þ
1

0.12þ0.04
−0.03 0.80þ0.07

−0.03 −0.11þ0.10
−0.00

1Using the predictions of the form factors derived from LCSR
[18], we have obtained a value BRðB0

s → ×J=ψf02ð1525ÞÞ ¼ð1.1� 0.3Þ × 10−4, which is smaller than (15) and the exper-
imental measurements (see Table I).
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BRðB0
s → J=ψf02ð1525ÞÞ ¼ ð1.6þ0.9

−0.7Þ × 10−4; ð15Þ

where the theoretical error corresponds to the uncertainties
due to the CKM elements, decay constant and form factors
(mainly dominated by the latter). Within the error bars, our
result is in agreement with the experimental values reported
by LHCb [6] and Belle [7] (see Table I). In comparison
to previous theoretical estimation of ð3.3� 0.5Þ × 10−4

obtained in [10], our result turns out to be lower than this.
In addition, based on the chiral unitary approach for
mesons, the authors of Ref. [19] have been estimated the
ratio of branching fractions

BRðB0
s → J=ψf2ð1270ÞÞ

BRðB0
s → J=ψf02ð1525ÞÞ

¼ ð8.4� 4.6Þ × 10−2; ð16Þ

that is compatible within errors with the experiment [19].
Finally, as a by-product, using Eqs. (15) and (6) we also

estimate the ratio between the vector-tensor mode B0
s →

J=ψf02ð1525Þ and vector-vector mode B0
s → J=ψϕð1020Þ

Rf0
2
=ϕ ≡ BRðB0

s → J=ψf02ð1525ÞÞ
BRðB0

s → J=ψϕð1020ÞÞ ¼ ð15.4þ9.0
−7.0Þ%; ð17Þ

that is consistent with different experimental measurements
ð25.0� 6.0Þ% LHCb [6], ð19.0� 6.0Þ% D0 [4] and
ð21.5� 5.5Þ% Belle [7].

A. Polarization fractions

In this subsection we study the polarizaton fractions of
the decay mode B0

s → J=ψT. Taking advantage to the fact
that this vector-tensor mode can be treated as the vector-
vector mode Bs → J=ψV, by just replacing ϵμV by ϵμT
previously introduced, the factorizable transition amplitude
(7) can be generically decomposed in terms of the invariant
amplitudes a, b and c [20]

MðB0
s → J=ψTÞ¼ aðϵ�J=ψ · ϵ�TÞþ

b
mJ=ψmT

ðϵ�J=ψ ·PÞðϵ�T ·PÞ

þ i
c

mJ=ψmT
εμναβϵ

�μ
T ϵ�νJ=ψp

α
TP

β; ð18Þ

where

a ¼ −ξðmBs
þmTÞABsT

1 ðm2
J=ψÞ; ð19Þ

b ¼ ξmJ=ψmT

2ABsT
2 ðm2

J=ψÞ
ðmBs

þmTÞ
; ð20Þ

c ¼ ξmJ=ψmT

2VBsTðm2
J=ψ Þ

ðmBs
þmTÞ

; ð21Þ

are expressed in terms of VBsT , ABsT
1;2 and the global factor

ξ ¼ iGFVcbV�
cs ~aefffJ=ψmJ=ψ=

ffiffiffi
2

p
. The longitudinal (H0)

and transverse (H�) helicity amplitudes can be expressed
in terms of a, b and c as [15,21]

H0 ¼ −
ffiffiffi
2

3

r
j~pT j
mT

½axþ bðx2 − 1Þ�; ð22Þ

H� ¼ 1ffiffiffi
2

p j~pT j
mT

½a� c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
�; ð23Þ

with x ¼ ðm2
Bs
−m2

J=ψ −m2
TÞ=2mJ=ψmT and j~pT j ¼ffiffiffiffiffi

λT
p

=2mBs
. In addition, the transverse amplitudes (parallel

and perpendicular) defined in the transversity basis (also
refer as linear polarization basis) are related to the helicity
ones via [20]

A0 ¼ H0;

A∥ ¼
1ffiffiffi
2

p ðHþ þH−Þ ¼
j~pT j
mT

a;

A⊥ ¼ 1ffiffiffi
2

p ðHþ −H−Þ ¼
j~pT j
mT

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
: ð24Þ

The decay rate can be expressed in terms of these
amplitudes as [15,21]

ΓðB0
s → J=ψf02ð1525ÞÞ ¼

ffiffiffiffiffi
λT

p
16πm3

Bs

X
i¼0;�

jHij2; ð25Þ

¼
ffiffiffiffiffi
λT

p
16πm3

Bs

X
i¼0;∥;⊥

jAij2: ð26Þ

In terms of the transversity basis, the longitudinal and
parallel (perpendicular) polarization fractions are defined
as [15]

fL ¼ jA0j2
jA0j2 þ jA∥j2 þ jA⊥j2

; ð27Þ

f∥ð⊥Þ ¼
jA∥ð⊥Þj2

jA0j2 þ jA∥j2 þ jA⊥j2
; ð28Þ

respectively. The transverse polarization fraction is
fT ¼ ð1 − fLÞ. By definition the fractions (27) and (28)
satisfy the relation fL þ f∥ þ f⊥ ¼ 1. The numerical
results for the polarization fractions fL, f∥, and f⊥ are

fLðB0
s → J=ψf02ð1525ÞÞ ¼ ð53.3� 18.0Þ%;

f∥ðB0
s → J=ψf02ð1525ÞÞ ¼ ð30.8� 12.0Þ%;

f⊥ðB0
s → J=ψf02ð1525ÞÞ ¼ ð15.8� 0.60Þ%; ð29Þ

respectively. Although it is expected that vector-tensor
modes will be dominated by the longitudinal polarization
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[15], we get within the errors the ratio fT=fLðJ=ψf02Þ ∼ 1

implying that the two fractions fT and fL are roughly
equal. A similar theoretical result is obtained in the
B0
s → J=ψϕð1020Þ mode, i.e. fT=fLðJ=ψϕÞ ∼ 1 [11,22],

which is in agreement with the measurement of the
longitudinal polarization fraction fLðB0

s → J=ψϕð1020ÞÞ¼
ð49.7�3.3Þ% reported by LHCb [23]. In addition, our
results for the polarization fractions are in accordance
with the fit fractions in the helicity basis obtained by
LHCb in the amplitude analysis of the B0

s → J=ψKþK−

decay for the resonance f02ð1525Þ [6]. Nevertheless,
with the integrated luminosity collected by the LHCb
detector during LHC Run 1 (3 fb−1 at

ffiffiffi
s

p ¼ 7 and
8 TeV) and that expected during LHC Run 2 (additional
5 fb−1 at

ffiffiffi
s

p ¼ 14 TeV), it will be an interesting indepen-
dent measurement of the helicity componentsþ and − (or ∥
and ⊥ components) to test our results.

IV. NONRESONANT AND RESONANT
CONTRIBUTIONS TO
B0
s → J=ψKþK− DECAY

The three-body charmonium mode B0
s → J=ψKþK−

receives both nonresonant and resonant contributions
[6]. Although this channel has been previously consid-
ered in Ref. [10], in this section we provide a detailed
reanalysis of such contributions. We also stress some
important points that were overlooked by the authors
of Ref. [10].
In the framework of the factorization approach, the decay

amplitude associated with the nonresonant (NR) contribu-
tion of the B0

s → J=ψKþK− mode has the form

MðB0
s → J=ψKþK−ÞNR ¼ GFffiffiffi

2
p VcbV�

cs ~aeffhJ=ψ jðc̄cÞV−Aj0i

× hKþK−jðs̄bÞV−AjBsiNR;
ð30Þ

where only the current-induced process with a meson
emission is present [24]. In the heavy meson chiral
perturbation theory [25], the hadronic matrix element
hKþK−jðs̄bÞV−AjBsiNR can be written in terms of four
NR form factors r, w�, and h that are defined
by [25,26]

hKþðp0ÞK−ðpÞjðs̄bÞV−AjBsðPÞiNR
¼ irðP − p − p0Þμ þ iwþðp0 þ pÞμ þ iw−ðp0 − pÞμ
− 2hεμναβPνp0αpβ: ð31Þ

In the present case the NR form factors w� and h
contribute while r vanishes due to the condition
ϵJ=ψ · pJ=ψ ¼ 0. These are explicitly given by the expres-
sions [25,26]

wþ ¼ −
g
f2K

fB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

B�mBs

q
s −m2

B�

�
1 −

�
m2

Bs
−m2

K − s

2m2
B�

��
þ fBs

2f2K
;

ð32Þ

w− ¼ g
f2K

fB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

B�mBs

q
s −m2

B�

�
1þ

�
m2

Bs
−m2

K − s

2m2
B�

��
; ð33Þ

h ¼ 2g2fBs

f2K

m2
Bs

ðm2
Bs
−m2

J=ψ − tÞðsþm2
Bs
−m2

KÞ
; ð34Þ

where s≡m2ðJ=ψKþÞ¼ðpJ=ψþp0Þ2 and t≡m2ðKþK−Þ¼
ðp0þpÞ2 are the kinematical variables that represent the
J=ψKþ and KþK− invariant masses, respectively. The
heavy-flavor independent strong coupling g can be
extracted from the CLEO measurement of the D�þ decay
width, jgj ¼ 0.59� 0.07 [27]. For the pole mass and decay
constants we will take the following numerical inputs:
mB�¼5324.83MeV [2] and fK¼ð155.6�0.4ÞMeV [28],
fBs

¼ð226.0�2.2ÞMeV [28], fB� ¼ð175�6ÞMeV [29].
On the other hand, the resonant (R) contributions are

usually described in terms of the Breit-Wigner (BW)
resonance formalism. The three-body matrix element in
(30) is written as [24,26]

hKþðp0ÞK−ðpÞjðs̄bÞV−AjBsðPÞiR
¼

X
R

BWRðtÞgRKþK−ϵR · ðp0 − pÞ

× hRjðs̄bÞV−AjBsi; ð35Þ

where gRKþK− is the strong coupling constant and

BWRðtÞ ¼
1

m2
R − t − imRΓRðtÞ

; ð36Þ

is the BW function of the intermediate resonant state R,
with mR and ΓRðtÞ being its respective mass and decay
width of R → KþK−. We adopt the t-dependent para-
metrization for the decay width [6]

ΓRðtÞ ¼ Γ0R

�
m2

R

t

��
QðtÞ
Qðm2

RÞ
�
2LRþ1

F2
R ð37Þ

where Γ0R is the resonance width at its peak and QðtÞ ¼
λðt; m2

Kþ ; m2
K−Þ1=2=2 ffiffi

t
p

is the momentum of the Kþ (or the
K−) evaluated in the KþK− rest frame. The orbital angular
momentum is LR ¼ 1ð2Þ for vector (tensor) and the Blatt-
Weisskopf barrier factors FR are taken from [6]. The sum in
(35) is extended over all possible resonant contributions.
Although different resonances can appear (such as f0ð980Þ,
f0ð1370Þ, ϕð1680Þ, f2ð1750Þ and f2ð1950Þ [6]), we will
take the intermediate vector ϕð1020Þ and tensor f02ð1525Þ
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mesons as the most important ones [6]. Furthermore, it was
found by LHCb that the interference contributions between
two different spin resonances and between NR and R
components are zero [6] and therefore, as a good approxi-
mation, the interference between these components will not
be considered here.
The R amplitude of B0

s → J=ψKþK− is then given by

MðB0
s → J=ψKþK−ÞR

¼ i
GFffiffiffi
2

p VcbV�
cs ~aeff

X
R

BWRðtÞgRKþK−

× ϵR · ðp0 − pÞXðBsR;J=ψÞ; ð38Þ

with XðBsR;J=ψÞ the factorized terms coming from R ¼ V
and T, given by (3) and (8), respectively. From the decay
amplitude of the strong decays R → KþK−

MðV → KþK−Þ ¼ gVKþK−ϵμVðp0 − pÞμ; ð39Þ

MðT → KþK−Þ ¼ gTKþK− ~ϵμαp0
μpα; ð40Þ

the strong coupling constants gRKþK− are determined
from the experimental value of decay width of R →
KþK− via the expressions

gVKþK− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48πm5

VΓðV → KþK−Þ
λðm2

V;m
2
Kþ ; m2

K−Þ3=2
s

; ð41Þ

gTKþK− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1920πm7

TΓðT → KþK−Þ
λðm2

T; m
2
Kþ ; m2

K−Þ5=2
s

: ð42Þ

Using the above expressions and the experimental
measurements Γðϕð1020Þ→KþK−Þ¼ ð2.08�0.04ÞMeV
and Γðf02ð1525Þ → KþK−Þ ¼ ð64.75þ7.06

−5.93Þ MeV [2], we
get gVKþK− ¼ 4.47�0.03 and gTKþK− ¼20.70þ0.89

−0.75 GeV
−1,

respectively. The error reported is due to the experimental
uncertainty in the decay width. Let us notice an important
point that has been overlooked in Ref. [10], since the same
expression has been used to obtain gRKþK− for both V and
T, namely Eq. (30) of [10] [Eq. (41) of this work]. This is a
mistake since (41) only allows us to obtain the strong
coupling for V ¼ ϕð1020Þ, while (42) allows us to obtain
the one for T ¼ f02ð1525Þ. Besides, gVKþK− is dimension-
less, while gTKþK− has dimensions of GeV−1. Indeed, by
employing Eq. (30) of [10] and the experimental meas-
urement for Γðf02ð1525Þ → KþK−Þ, one gets a value for the
strong coupling of 3.80� 0.16 (with the incorrect dimen-
sion) that is around 5 times smaller than ours and therefore
affecting the estimation of the branching fraction obtained
in [10].

Both in the NR and R contributions, the decay
width is parametrized in terms of the three-body phase
space [2]

ΓðB0
s → J=ψKþK−ÞNRðRÞ
¼ 1

32ð2πÞ3m3
Bs

Z
tþ

t−
dt

Z
sþ

s−
dsjM̄NRðRÞj2; ð43Þ

where jM̄NRðRÞj2 is the NR (R) spin-averaged squared
amplitude2 The integration limits are given by t− ¼ 4m2

K,
tþ ¼ ðmBs

−mJ=ψÞ2 and

s�ðtÞ ¼ m2
Bs
þm2

K −
1

2t
½tðtþm2

Bs
−m2

J=ψÞ

∓ λ1=2t ðt2 − 4tm2
KÞ1=2�: ð44Þ

with λt ¼ λðt; m2
Bs
; m2

J=ψÞ. In Fig. 1 [left], we plot the

differential branching ratio of B0
s → J=ψKþK− as func-

tion of the invariant mass m2ðKþK−Þ. The black (solid)
curve denotes the total contribution, while individual
terms are given by the blue (dotted) curve for
V ¼ ϕð1020Þ, red (dashed) curve for T ¼ f02ð1525Þ,
and NR contribution is represented by the green (dot-
dash) curve. As expected, the largest contribution is given
by ϕð1020Þ component, which it is clearly exhibited by
the peak in Fig. 1 [left], followed by the f02ð1525Þ
component. There is also a sizeable contribution from NR
term, which is dominated by the form factors w� with a
negligible contribution from h. Comparing with the
m2ðKþK−Þ distributions obtained by LHCb (Figs. 15
and 17 of Ref. [6]), our distribution for the resonances
agrees fairly well, showing a similar behavior. For the
NR component, our distribution exhibits a different
behavior to the LHCb, this is because a linear function
has been used in the experimental analysis to describe the
KþK− mass [5,6]. As we will show below, this difference
will turn out in a bigger estimation on the NR contri-
bution than one reported by LHCb.
As a complementary analysis, we perform the Dalitz plot

of the process as shown in Fig. 1 [right]. By using a Monte-
Carlo simulation, we generate points (s, t) over the phase
space of B0

s → J=ψKþK− decay, with s ¼ m2ðJ=ψKþÞ
and t ¼ m2ðKþK−Þ the invariant masses. If the generated
point (s, t) fulfills the Cayley condition [30],

Gðt; s;m2
Bs
; m2

Kþ ; m2
K− ; m2

J=ψÞ ≤ 0;

where G is the Gram determinant [30], we plot the point;
otherwise, we reject the point and select a new one until we
get the Dalitz plot. The horizontal blue and red bands result
from the ϕð1020Þ and f02ð1525Þ resonances, respectively.

2Their explicit expressions are provided in appendix B.
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The obtained Dalitz plot is in accordance with the dis-
tribution obtained by LHCb (Fig. 6 of Ref. [6]).
The values of the different contributions to the total

branching fraction of B0
s → J=ψKþK− are summarized in

Table IV. The error ranges are determined by the uncer-
tainties on the above couplings and then summed in
quadrature. We predict a branching fraction of

BRðB0
s → J=ψKþK−Þ ¼ ð9.3þ1.3

−1.1Þ × 10−4; ð45Þ

that is in agreement with experimental measurements
reported by LHCb [6] and Belle [7] (see Table I).
Compared with the previous theoretical estimation of
ð10.3� 0.9Þ × 10−4 [10], our result is consistent as well.
However, in this previous work is unclear how much is the
contribution both the NR and R components [10]. In the
present study a more detailed analysis on these contribu-
tions to the m2ðKþK−Þ distribution and Dalitz plot is
provided, thus extending the previous one [10]. Moreover,
keeping in mind that the value of the strong coupling
constant gTKþK− was badly estimated (as it was above
discussed), the theoretical value of the branching fraction
obtained in [10] can be incorrect.
Finally, let us mention that there are some works where

only the S-wave contribution of the KþK− spectrum of
B0
s → J=ψKþK− was estimated to be around ∼1.7% [31]

and ∼1.1% [32], while the contributions from ϕð1020Þ and

f02ð1525Þ (as well as NR contribution) were not addressed
in [31,32]. Furthermore, the authors of Ref. [31] have
estimated the ratio of branching fractions

BRðB0
s → J=ψKþK−Þ

BRðB0
s → J=ψϕð1020ÞÞ ¼ ð4.4� 0.7Þ × 10−2: ð46Þ

that is compatible within errors with the experiment [31].

V. CONCLUDING REMARKS

Motivated by the phenomenological importance of non-
leptonic charmonium Bs decays, in this work we have
carried out a reanalysis of the B0

s → J=ψf02ð1525Þ and
B0
s → J=ψKþK− decays. Within the framework of the

factorization approach and using the perturbative QCD
for the evaluation of the relevant form factors, we have
obtained a branching fraction for the two-body channel
of BRðB0

s → J=ψf02ð1525ÞÞ ¼ ð1.6þ0.9
−0.7Þ × 10−4 which is in

agreement with the experimental values reported by LHCb
[6] and Belle [7] Collaborations. In addition, the polariza-
tion fractions associated with this vector-tensor mode have
been studied for the first time. We found that the fractions
fT and fL are roughly equal, implying fT=fLðJ=ψf02Þ ∼ 1.
This result is in agreement with theoretical prediction
[11,22] and experimental measurement of the longitudinal
polarization fraction obtained for the B0

s → J=ψϕð1020Þ
mode [23]. Moreover, this is also in accordance with the fit
fractions in the helicity basis obtained by the LHCb in the
amplitude analysis of the B0

s → J=ψKþK− decay for the
resonance f02ð1525Þ [6].
Concerning the three-body mode B0

s → J=ψKþK−,
we have calculated both nonresonant and resonant con-
tributions, and a detailed analysis of the m2ðKþK−Þ
distributions and Dalitz plot have been performed. The

TABLE IV. Values of the different contributions to the total
branching fraction (×10−4) of B0

s → J=ψKþK−.

Resonant

Nonresonant V ¼ ϕð1020Þ T ¼ f02ð1525Þ Total

1.9� 0.1 5.6� 0.7 0.8þ1.1
−0.8 9.3þ1.3

−1.1

1.0 5.02.0 3.01.5
10 7

10 6

10 5

10 4

0.001

0.01

0.1

t m 2 K K GeV2

dB
R

B
s

J
K

K
dt

G
eV

2

FIG. 1. [Left] Differential branching ratio of B0
s → J=ψKþK− as function of t ¼ m2ðKþK−Þ. The blue (dotted) and red (dashed)

curves denote the contributions of resonances V ¼ ϕð1020Þ and T ¼ f02ð1525Þ, respectively, while the NR contribution is represented
by the green (dot-dash) curve. The black (solid) curve denotes the total contribution. [Right] Dalitz plot of B0

s → J=ψKþK−, where the
horizontal blue and red bands represent the ϕð1020Þ and f02ð1525Þ resonances, respectively.
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nonresonant part has been described by the heavy meson
chiral perturbation theory. For the resonant part, the
contributions of the intermediate vector ϕð1020Þ and tensor
f02ð1525Þmesons have been taken into account by means of
the Breit-Wigner resonance formalism. It is found that the
largest contribution is given by ϕð1020Þ followed by
f02ð1525Þ, with a sizeable nonresonant contribution that
agrees fairly well with the data [6]. The overall result of the
branching fraction BRðB0

s → J=ψKþK−Þ ¼ ð9.3þ1.3
−1.1Þ ×

10−4 is also in satisfactory agreement with the experimental
data reported by LHCb [6] and Belle [7].
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APPENDIX A: Bs → T FORM FACTORS

The polarization of a generic tensor meson (JP ¼ 2þÞ
can be specified by a symmetric and traceless tensor ~ϵμν

which satisfies the following properties [16,21,33],

~ϵμνðpT; σÞ ¼ ~ϵνμðpT; σÞ;
~ϵμνðpT; σÞpTν ¼ ~ϵμνðpT; σÞpTμ ¼ 0;

and ~ϵμνðpT; σÞgμν ¼ 0, with pT and σ the momentum
and helicity of the T meson. The states of a massive
spin-2 particle can be constructed in terms of the spin-1
states as [21]

~ϵμνð�2Þ ¼ eμð�1Þeνð�1Þ;

~ϵμνð�1Þ ¼ 1ffiffiffi
2

p ½eμð�1Þeνð0Þ þ eνð�1Þeμð0Þ�;

~ϵμνð0Þ ¼ 1ffiffiffi
6

p ½eμðþ1Þeνð−1Þ þ eνð−1Þeμðþ1Þ�

þ
ffiffiffi
2

3

r
eμð0Þeνð0Þ; ðA1Þ

with eμð0;�1Þ denoting the polarization vectors of a
massive vector state moving along the z axis with the
explicit structure [21]

eμð0Þ ¼ 1

mT
ðj~pT j; 0; 0; ETÞ; ðA2Þ

eμð�1Þ ¼ 1ffiffiffi
2

p ð0;∓1;−i; 0Þ; ðA3Þ

where mT and j~pT j (ET) are the mass and the three-
momentum magnitude (energy) of the T meson in the Bs
rest frame, respectively. Defining the new polarization
vector [15,16,21,33]

ϵμT ¼ ~ϵμνPν=mBs
; ðA4Þ

which satisfies

ϵμTð�2Þ ¼ 0;

ϵμTð�1Þ ¼ 1ffiffiffi
2

p
�
eð0Þ: P

mBs

�
eμð�1Þ;

ϵμTð0Þ ¼
ffiffiffi
2

3

r �
eð0Þ: P

mBs

�
eμð0Þ; ðA5Þ

with eð0Þ:P=mBs
¼ j~pT j=mT and P the Bs meson momen-

tum. We can see that although the tensor meson contains 5
spin degrees of freedom, only σ ¼ 0 and �1 give nonzero
contributions. As a consequence, the parametrization of the
Bs → T form factors is analogous to the Bs → V case
except that the ϵμV is replaced by ϵμT.
In the Isgur-Scora-Grinstein-Wise (ISGW) model [34],

the general expression for the Bs → T transition is para-
metrized as

hTðpT; ~ϵÞjs̄γμbjBsðPÞi ¼ ihðq2Þεμνρσ ~ϵ�ναPαðPþpTÞρqσ;
hTðpT; ~ϵÞjs̄γμγ5bjBsðPÞi ¼ ~ϵ�αβP

αPβ½bþðq2ÞðPþpTÞμ
þ b−ðq2Þqμ� þ kðq2Þ~ϵ�μνPν;

ðA6Þ

where qμ ¼ ðP − pTÞμ and h, k, b� are the form factors
(k is dimensionless and h, b� have dimension of GeV−2)
evaluated at the squared transfer momentum q2. This set of
form factors are related to the set VBsT and ABsT

0;1;2 via [15]

VBsTðq2Þ ¼ mBs
ðmBs

þmTÞhðq2Þ;
ABsT
1 ðq2Þ ¼ mBs

ðmBs
þmTÞ

kðq2Þ;

ABsT
2 ðq2Þ ¼ −mBs

ðmBs
þmTÞbþðq2Þ;

ABsT
0 ðq2Þ ¼ mBs

2mT
½kðq2Þ þ ðm2

Bs
−m2

TÞbþðq2Þ − tb−ðq2Þ�:

ðA7Þ

APPENDIX B: SQUARED AMPLITUDES

We collect in this appendix the nonresonant (NR) and
resonant (R) spin-averaged squared amplitudes of the
B0
s → J=ψKþK− decay discussed in section IV. For the

NR contribution, we have
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jM̄NRj2 ¼ jξj2½k1ðs; tÞ½ωþðsÞ�2 þ k2ðs; tÞ½ω−ðsÞ�2
þ k3ðs; tÞωþðsÞω−ðsÞ þ k4ðs; tÞ½hðs; tÞ�2�;

ðB1Þ

where ξ ¼ iGFVcbV�
cs ~aefffJ=ψmJ=ψ=

ffiffiffi
2

p
and the kinematic

factors kiðs; tÞ (i ¼ 1, 2, 3, 4) are given by

k1ðs; tÞ ¼
λt

4m2
J=ψ

; ðB2Þ

k2ðs; tÞ ¼
1

4m2
J=ψ

½m4
J=ψ þ 2m2

J=ψðm2
Bs
− 6m2

K − 2sþ tÞ

þ ð2sþ t −m2
Bs
− 2m2

KÞ2�; ðB3Þ

k3ðs; tÞ ¼
1

2m2
J=ψ

½m4
J=ψ þ ðm2

Bs
− tÞð2sþ t −m2

Bs
− 2m2

KÞ

− 2m2
J=ψ ðs −m2

KÞ�; ðB4Þ

k4ðs; tÞ ¼ m2
J=ψ ½tðsðm2

Bs
þm2

J=ψ þ 2m2
KÞ

þ ðm2
J=ψ −m2

KÞðm2
K −m2

Bs
Þ − s2Þ

−m2
Kðm2

J=ψ −m2
Bs
Þ2 − st2�; ðB5Þ

with mK ¼ mK� and λt ¼ λðt; m2
Bs
; m2

J=ψÞ. Let us notice
that interference terms between h and w� vanish. These
kinematic factors are function of s ¼ m2ðJ=ψKþÞ, t ¼
m2ðKþK−Þ and the masses of mesons involved.
The R contribution from V ¼ ϕð1020Þ reads as

jM̄V j2 ¼ jξj2g2VKþK−c0VðtÞ½c1VðtÞ½ABsV
1 ðtÞ�2

þ c2VðtÞ½ABsV
2 ðtÞ�2 þ c3VðtÞ½VBsVðtÞ�2

þ c4VðtÞABsV
1 ðtÞABsV

2 ðtÞ�; ðB6Þ

where c0VðtÞ ¼ ðt − 4m2
KÞjBWVðtÞj2 contains the informa-

tion of the BW function [Eq. (36)] and ciVðtÞ (i ¼ 1, 2, 3, 4)
are kinematic factors defined by

c1VðtÞ ¼
ðmBs

þmVÞ2
4tm2

J=ψ

ðλt þ 12m2
J=ψ tÞ; ðB7Þ

c2VðtÞ ¼
λ2t

4tm2
J=ψ ðmBs

þmVÞ2
; ðB8Þ

c3VðtÞ ¼
2λt

ðmBs
þmVÞ2

; ðB9Þ

c4VðtÞ ¼
λt

2tm2
J=ψ

ðt −m2
Bs
þm2

J=ψÞ: ðB10Þ

As for the resonance T ¼ f02ð1525Þ, we have

jM̄T j2 ¼ jξj2g2TKþK−c0TðtÞ½c1TðtÞ½ABsT
1 ðtÞ�2

þ c2TðtÞ½ABsT
2 ðtÞ�2 þ c3TðtÞ½VBsTðtÞ�2

þ c4TðtÞABsT
1 ðtÞABsT

2 ðtÞ�; ðB11Þ
where c0TðtÞ ¼ ðt − 4m2

KÞ2jBWTðtÞj2=24 similarly con-
tains the information of the BW function and the other
ciTðtÞ (i ¼ 1, 2, 3, 4) are given by

c1TðtÞ ¼ λ2t =4t; ðB12Þ

c2TðtÞ ¼
λt

24t2m2
J=ψ

ðλt þ 10m2
J=ψ tÞ; ðB13Þ

c3TðtÞ ¼
λ3t

24t2m2
J=ψ

; ðB14Þ

c4TðtÞ ¼
λ2t

12t2m2
J=ψ

ðm2
Bs
−m2

J=ψ − tÞ: ðB15Þ
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