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The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted
by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the
minimal standard model extension on the Casimir force between two parallel conducting plates in the
vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering
amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the
relevant Green’s function which satisfies given boundary conditions. The standard point-splitting technique
allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green’s
function. We discuss its structure in the region between the plates. We compute the renormalized vacuum
stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that
of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating
the renormalized global energy density and by computing the normal-normal component of the
renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as
approaching the plates, and we demonstrate that it does not contribute to the observable force.
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I. INTRODUCTION

Symmetry principles play a fundamental role in theo-
retical physics. As an outstanding example, Lorentz invari-
ance is one of the cornerstones of general relativity (GR)
and the standard model (SM) of particle physics. Although
both theories have been successful in explaining and
predicting the observed physical phenomena with a high
degree of accuracy, they come with their own set of
deficiencies: ultraviolet divergences in quantum field the-
ories and singularities in general relativity. It is generally
believed that an unified quantum theory of gravity will
solve these notable problems; and thus its search has
become one of the most important challenges of theoretical
physicists.
Interest in Lorentz violation [1–6] has grown rapidly in

the last decades since many candidate theories of quantum
gravity [7,8], such as string theory [9] and loop quantum
gravity [10], possess scenarios involving deviations from
Lorentz symmetry. Nowadays, investigations concerning
Lorentz violation are mostly conducted under the frame-
work of the standard model extension (SME), initiated by
Kostelecký and Colladay [11,12]. The SME is an effective
field theory that contains the standard model, general
relativity, and all possible operators that break Lorentz
invariance. The Lorentz-violating (LV) coefficients arise

as vacuum expectation values of some basic fields belong-
ing to a more fundamental theory, such as string theory
[13]. Some important features of the minimal SME
comprise invariance under observer Lorentz transforma-
tions, energy-momentum conservation, gauge invariance,
power-counting renormalizability [14–16], causality, sta-
bility, and Hermiticity [17].
A Lorentz-violating vacuum acts in many respects like a

nontrivial optical medium. Therefore, one expects the
photon sector of the SME to possess features similar to
those of ordinary electrodynamics in macroscopic media.
The electrodynamics limit of the SME has been widely
studied in the literature [18]. Indeed, changes in the
propagation of light, such as polarization, birefringence
[18–20], and Čerenkov effect [21–23], have been predicted
and used to place tight bounds on Lorentz violation. The
main goal of this work is to provide additional contribu-
tions regarding the local effects of the quantum vacuum in a
particular sector of the electrodynamics limit of the SME,
namely, the CPT-odd Maxwell-Chern-Simons term [24].
Concretely, we study the Casimir effect (CE) between two
parallel conducting plates using a local approach based on
the calculation of the vacuum expectation value of the
stress-energy tensor via Green’s functions satisfying the
suitable boundary conditions.
In its simple manifestation, the CE is a quantum force of

attraction between two parallel uncharged conducting
plates [25]. More generally, it refers to the stress on
bounding surfaces when a quantum field is confined to a
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finite volume of space. The boundaries can be material
media, interfaces between two phases of the vacuum, or
topologies of space. In any case, the modes of the quantum
fields are restricted, giving rise to a macroscopically
measurable force [26]. The CE has been studied in different
scenarios, including the standard model, the gravitational
sector [27], the AdS-CFT correspondence [28], theories
with minimal length [29] and extra dimensions [30],
condensed matter systems [31], and chiral metamaterials
[32], to name a few.
The CE has also been considered within the SME

framework [33–35]. The authors in Ref. [35] used the zeta
function regularization technique to compute the Casimir
force between two parallel conducting plates within the
ð3þ 1ÞD Maxwell-Chern-Simons theory. As a consistency
check, they also evaluated the renormalized vacuum energy
by a series summation (via the residue theorem) of one-
particle energy eigenstates. The first attempt to tackle this
problem was due to Frank and Turan [34]; however, as
pointed out by Kharlanov and Zhukovsky [35], they used
misinterpreted equations which led to an oversimplified
treatment of the problem. More precisely, they considered
that the photon dispersion relation corresponds to that
for a massive photon; however, unlike the ð2þ 1ÞD case, in
ð3þ 1ÞD the effect of the Maxwell-Chern-Simons term is a
more complicated dispersion relation for the photon. Due to
this wrong equation, Frank and Turan constructed also
incorrectly the relevant Green’s function (GF). One of the
specific aims of this work is the construction of the correct
Green’s function within the ð3þ 1ÞD Maxwell-Chern-
Simons theory and the calculation of the Casimir energy
density and stress between two parallel conducting plates.
Furthermore, the method can be further generalized to
diverse geometries. The basics for the construction of the
GF is that the Lorentz-violating field equations can be
treated perturbatively due to the smallness of the LV
coefficients [36]. Our Green’s functions also provide
information about the divergence of the local energy
density near the plates.
The outline of this paper is as follows. Section II reviews

some basics of the particular sector of the minimal SME to
be considered in this work, namely, the ð3þ 1ÞDMaxwell-
Chern-Simons model. Using a perturbative method similar
to that used for obtaining the Born series for the scattering
amplitudes in quantum mechanics, in Sec. III we compute
the leading-order Green’s function which satisfies given
Dirichlet, Neumann, or Robin boundary conditions, pro-
vided the smallness of the LV coefficients. In Sec. IV we
use the standard point-splitting technique to express the
vacuum expectation value of the stress-energy tensor in
terms of the Green’s function. The concrete calculation of
the renormalized vacuum stress (and the Casimir force)
between two parallel conducting plates is performed in
Sec. V. We also discuss the local energy density, which is
found to diverge as approaching the plates. We demonstrate

that the divergent term does not contribute to the observable
force. The conclusions are contained in Sec. VI. Details of
technical computations are left to the Appendix. Here,
Lorentz-Heaviside units are assumed (ℏ ¼ c ¼ 1), the
metric signature will be taken as ðþ;−;−;−Þ, and the
convention ϵ0123 ¼ þ1 is adopted.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

The renormalizable gauge-invariant photon sector of the
SME consists of the usual Maxwell Lagrangian plus the
additional terms 1

2
ðkAFÞκϵκλμνAλFμν and− 1

4
ðkFÞαβμνFαβFμν.

The LV tensor coefficients ðkAFÞκ and ðkFÞαβμν areCPT odd
and CPT even, respectively. Many components of these
coefficients are strongly constrained by astrophysical spec-
tropolarimetry [24]. Despite this, further investigations
remain to be of great interest both for a better understanding
of massless Lorentz-violating fields and for the potential
complementary tighter bounds.
In this paper we are concerned with the CPT-odd sector.

The relevant Lagrangian is

L ¼ −
1

4
FμνFμν þ ðkAFÞμAν

~Fμν − jμAμ: ð1Þ

Here, jμ ¼ ðρ; JÞ is the 4-current source that couples to the
electromagnetic 4-potential Aμ, Fμν ¼ ∂μAν − ∂νAμ is the
electromagnetic field strength and ~Fμν ¼ 1

2
ϵμναβFαβ its

dual. Since we take ðkFÞμναβ ¼ 0, we can omit the subscript
AF of the Lorentz- and CPT-violating ðkAFÞμ coefficients
and set ðkAFÞμ ≡ kμ ¼ ðk0;kÞ. A nondynamical fixed kμ

determines a special direction in spacetime. For example,
certain features of plane wave propagating along k might
differ from those of waves perpendicular to k. Thus,
particle Lorentz transformations are violated.
Varying the action S ¼ R

Ld4x with respect to Aμ yields
the equations of motion:

ð□ημν − ∂μ∂ν − 2kβϵμβαν∂αÞAν ¼ jμ; ð2Þ

which extend the usual covariant Maxwell equations
to incorporate Lorentz violation. Of course, the homo-
geneous Maxwell equations that express the field-potential
relationship

∂μ
~Fμν ¼ 0 ð3Þ

are not modified due to the Uð1Þ gauge invariance of the
action. As in conventional electrodynamics, current con-
servation ∂μjμ ¼ 0 can be verified directly by taking the
divergence at both sides of Eq. (2).
In noncovariant notation, the inhomogeneous equations

of motion (2) read
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∇ ·E − 2k ·B ¼ ρ;

∇ ×B − _E − 2k0Bþ 2k ×E ¼ J; ð4Þ

while the homogeneous equations (3) are ∇ ·B ¼ 0 and
∇ ×Eþ _B ¼ 0. Gauge invariance of physics is evident
from Eqs. (4), and any of the usual conditions on Aμ, like
Lorentz or Coulomb gauge, can be imposed. Interestingly,
the microscopic equations (4) can be cast in the form of
Maxwell equations for macroscopic media:

∇ ·D ¼ ρ; ∇ ×H − _D ¼ J; ð5Þ
with the modified constitutive relations

D ¼ Eþ θðx; tÞB; H ¼ B − θðx; tÞE; ð6Þ

where θðx; tÞ ¼ 2kμxμ ¼ 2k0t − 2k · x is a spacetime de-
pendent axion field. These equations reveal a remarkable
feature of this theory, the magnetoelectric effect, which also
occurs in the CPT-even photon sector of the SME [33].
Furthermore, Eqs. (5) together with the constitutive rela-
tions of Eq. (6) resemble those describing the electromag-
netic response of condensed matter systems, in which case,
the spatial and temporal dependence of the axion field
defines a specific realization of a topologically nontrivial
phase of matter. For example, θ ¼ π in the case of 3D
topological insulators [37], and θðx; tÞ ¼ 2b0t − 2b · x for
Weyl semimetals [38], where the parameter 2b0 is inter-
preted as the separation between the nodes in energy, and
2b denotes the separation between the Weyl nodes in
momentum space. However, note that for condensed matter
systems, θ is defined inside the material, while in the SME
framework kμ permeates the whole spacetime.
The stress-energy tensor for this theory is given by

Θμν ¼ −FμαFν
α þ

1

4
ημνFαβFαβ − kν ~FμαAα: ð7Þ

Here ημν ¼ diagð1;−1;−1;−1Þ denotes the usual
Minkowski flat space-time metric. Unlike the conventional
case, Θμν cannot be symmetrized because its antisymmetric
part is no longer a total derivative. By virtue of the
equations of motion (2) and (3), the energy-momentum
tensor obeys

∂μΘμν ¼ jμFμν; ð8Þ
which implies that it is conserved in the absence of sources.
Although the energy-momentum tensor is gauge depen-
dent, it only changes by a total derivative under the gauge
transformation Aμ → Aμ þ ∂μΛ, i.e.

~FμαAα → ~FμαAα − ∂αð ~FμαΛÞ: ð9Þ
Consequently, the integrals over all space are gauge
invariant. Note that the energy

E ¼
Z

Θ00d3x ¼
Z

1

2
ðE2 þ B2 − k0B ·AÞd3x ð10Þ

is not positive definite due to the term k0B ·A, which may
be negative. The appearance of this term in the energy
density can introduce instability in the theory [39], and it
can be resolved by requiring that only spacelike compo-
nents of kμ are nonzero. However, this condition depends
on the observer frame, so even an infinitesimal boost to
another observer frame would reintroduce instability.
Despite arising from a hitherto unobserved spontaneous
breaking of the electromagnetic Uð1Þ gauge symmetry, the
photon mass can be introduced in this theory to eliminate
the linear instability. Although this idea might be physically
acceptable, in this work we restrict ourselves to the minimal
extension with a purely spacelike background kμ ¼ ð0;kÞ,
which is fundamentally different from the theory with the
purely timelike case kμ ¼ ðk0; 0Þ, as reviewed extensively
in Refs. [40].

III. GREEN’S FUNCTION METHOD

Knowledge of Green’s function (GF) allows one to
compute the electromagnetic fields for an arbitrary distri-
bution of sources, as well as to solve problems with given
Dirichlet, Neumann, or Robin boundary conditions on
arbitrary surfaces. To derive the GF for the previously
discussed LV electrodynamics one can employ standard
Fourier methods. As in conventional electrodynamics, the
modified Maxwell operator appearing in parentheses in
Eq. (2) is singular, as one can verify in Fourier space. To
circumvent the noninvertibility of the corresponding
Minkowski matrix one can further work in Lorentz gauge.
The free-space GF (satisfying the standard boundary
conditions at infinity) in momentum [23] and coordinate
[40] representations can be obtained in a simple fashion. In
this paper we are concerned with the effects of this Lorentz-
violating electrodynamics on the Casimir force between
two parallel conducting plates in the vacuum. To this end
we employ a local approach consisting in the evaluation of
the vacuum expectation value of the stress-energy tensor of
the system, which can be expressed in terms of the
appropriate Green’s function. The presence of boundaries
(e.g. the plates) makes the GF derived in Refs. [23,40] not
suitable for our purposes. Thus the aim of this section is the
construction of the Green’s functions which incorporates
the presence of boundaries.
In the Lorentz gauge ∂μAμ ¼ 0, the field equations (2)

take the form

ð□ημν − 2kβϵμβαν∂αÞAν ¼ jμ; ð11Þ

where □ ¼ ∂μ∂μ ¼ ∂2
t −∇2 is the D’Alambert operator.

To obtain the general solution of Eq. (11) for arbitrary
external sources, we introduce the GF matrix Gμ

νðx; x0Þ
solving Eq. (11) for a pointlike source,
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ð□ημν − 2kβϵμβαν∂αÞGν
γðx; x0Þ ¼ ημγδ

4ðx − x0Þ; ð12Þ

in such a way that the general solution for the 4-potential in
the Lorentz gauge is

AμðxÞ ¼
Z

Gμ
νðx; x0Þjνðx0Þd4x: ð13Þ

Since the timelike theory appears to be inconsistent
(that is, the theory violates unitary and causality, or both),
in this work we specialize in the purely spacelike case
kμ ≡ ð0;kÞ≡ ð0; 0; 0; κÞ. However, our subsequent analy-
sis can be further generalized to a more complicated Chern-
Simons background kμ. Note that this condition makes the
propagation of light anisotropic and defines a class of
preferred inertial frames. Without loss of generality, we
consider surfaces Σi which are orthogonal to k in which
Dirichlet, Neumann, or Robin boundary conditions have
been imposed. In this way, the GF we consider has
translational invariance in the directions x and y, while
this invariance is broken in the z direction. Exploiting this
symmetry we further introduce the Fourier transform in the
direction parallel to the surfaces Σi, taking the coordinate
dependence to be R ¼ ðx − x0; y − y0Þ, and define

Gμ
νðx; x0Þ ¼

Z
d2p
ð2πÞ2 e

ip·ðx−x0Þ
Z

dω
2π

e−iωðt−t0Þgμνðz; z0Þ;

ð14Þ

where p ¼ ðpx; pyÞ is the momentum parallel to Σi. In
Eq. (14) we have suppressed the dependence of the reduced
GF gμv on ω and p.
The substitution of Eq. (14) into Eq. (12) yields the

reduced GF equation

ð ~□ημν − 2iκϵ3μβνpβÞgναðz; z0Þ ¼ ημαδðz − z0Þ; ð15Þ

where pα ¼ ðω;p; 0Þ and ~□ ¼ p2 − ω2 − ∂2
z . We now

must solve the reduced GF equation for the various
components. At this point it is worth mentioning that
the authors of Ref. [34] say that they derive the GF for a
Chern-Simons-like theory; however, they used the wrong
equation of motion ½□þ ðkAFÞ2�ϵμναβ∂αAβ ¼ 0, which
leads to a simple analysis in terms of a massive scalar
field. Thus its solution is appropriate for the Proca theory,
rather than for the Chern-Simons theory. Indeed, in
Ref. [41], Milton presents a detailed derivation of the
Casimir force for massive photons using different methods.
In this section we derive the correct Green’s function which
solves the equations of motion for the ð3þ 1ÞD Chern-
Simons theory.
The solution to Eq. (15) is simple but not straightfor-

ward. Since the coefficient κ is assumed to be small, to
solve it we employ a method similar to that used for
obtaining the scattering amplitudes in quantum mechanics,

in which the Schrödinger equation can be written as an
integral equation, the Lippmann-Schwinger equation,
which can be iterated to obtain the Born series. Indeed,
the Lippmann-Schwinger equation for Green’s operator is
called the resolvent identity. In the problem at hand let us
consider that the free (with κ ¼ 0) reduced GF is known,
being the solution of ~□gðz; z0Þ ¼ δðz − z0Þ in the region
D⊆R and satisfying appropriate boundary conditions on
the surfaces Σi⊆R2 ¼ fðx; yÞ∶x; y ∈ Rg.
Now Eq. (15) can be directly integrated using the free

reduced GF. We thus establish the integral equation

gμvðz;z0Þ¼ημνgðz;z0Þþ2iκϵ3μαβpα

Z
D
gðz;z00Þgβνðz00;x0Þdz00:

ð16Þ

Suppose we take this expression for gβν, and plug it under
the integral sign. Iterating this procedure, we obtain a
formal series for gμν. At leading order in the LV coefficient
κ, the reduced GF can be written as the sum of two terms,

gμνðz; z0Þ ¼ ημνgðz; z0Þ þ gμ
νðz; z0Þ: ð17Þ

The first term provides the propagation in the absence of
Lorentz violation, while the second term, which can be
shown to be

gμ
νðz; z0Þ ¼ 2iκϵμνα3pαNðz; z0Þ

− 4κ2½pμpν − ðημν þ nμnνÞp2�Mðz; z0Þ; ð18Þ

encodes the Lorentz symmetry breakdown. In deriving
Eq. (18) we have used the identity ϵ3μβαϵ

3αγ
νpβpγ ¼

pμpν − ðημν þ nμnνÞp2, and

Nðz; z0Þ ¼
Z
D
gðz; z00Þgðz00; z0Þdz00; ð19Þ

Mðz; z0Þ ¼
Z
D
gðz; z00ÞNðz00; z0Þdz00: ð20Þ

Here nμ ¼ ð0; 0; 0; 1Þ is the normal to the surfaces Σi. In the
Appendix we present the evaluation of these functions for
three simple cases which are relevant for the purposes of
this paper: (a) in free-space, (b) for parallel conducting
plates, and (c) for an infinite conducting plate.
Clearly, the full GF matrix Gμ

ν can also be written as the
sum of two terms,

Gμ
νðx; x0Þ ¼ ημνGðx; x0Þ þGμ

νðx; x0Þ; ð21Þ

where G and Gμ
ν are the Fourier transformations of gðz; z0Þ

and gμ
ν, respectively, as defined in Eq. (14). It is worth

mentioning that the second term satisfies the Lorentz gauge
condition, i.e. ∂μGμ

ν ¼ 0. The proof follows from the
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reduced GF: ∂μGμ
ν ∝

R
pμgμ

ν, which vanishes given that
ϵμν

α3pμpα ¼ 0 and pμnμ ¼ 0.
The reciprocity between the position of the unit charge

and the position at which the GF is evaluated, Gμνðx; x0Þ ¼
Gνμðx0; xÞ, is one of its most remarkable properties. From
Eq. (14), this condition requires

gμνðz; z0; pαÞ ¼ gνμðz0; z;−pαÞ; ð22Þ

which we verify directly from Eq. (18).

IV. VACUUM STRESS-ENERGY TENSOR

In Sec. II we derived the stress-energy tensor (SET) for
this theory and we showed that it can be written as the sum
of two terms:

Θμν ¼ Tμν þ Ξμν: ð23Þ

The first term,

Tμν ¼ −FμαFν
α þ

1

4
ημνFαβFαβ; ð24Þ

is the standard Maxwell stress-energy tensor, while the
second,

Ξμν ¼ −kν ~FμαAα; ð25Þ

explicitly depends on the LV coefficients kμ. Now we
address the problem of the vacuum expectation value
of the SET, to which we will refer simply as the vacuum
stress (VS).
The local approach to compute the VS was initiated by

Brown and Maclay who calculated the renormalized stress
tensor by means of GF techniques [42]. Therein, the VS can
be obtained from appropriate derivatives of the GF, in virtue
of the formula

Gμνðx; x0Þ ¼ −ih0jT̂ AμðxÞAνðx0Þj0i: ð26Þ

Using the standard point splitting technique and taking the
vacuum expectation value of the SET we find

hΘμνi ¼ hTμνi þ hΞμνi; ð27Þ

where the first term,

hTμνi ¼ i lim
x0→x

�
−∂μ∂ 0νGλ

λ þ ∂μ∂ 0
λG

λν þ ∂λ∂ 0νGμ
λ

− ∂ 0λ∂λGμν þ 1

2
ημνð∂α∂ 0

αGλ
λ − ∂α∂ 0

βG
β
αÞ
�

ð28Þ

is the VS of the standard Maxwell SET, and

hΞμνi ¼ −2ikνϵμαβγ lim
x0→x

∂ 0
βGγα: ð29Þ

Here we have omitted the dependence of Gμν on x and x0.
This result can be further simplified as follows. Since the
GF can be written as the sum of two terms, then Eq. (28)
can also be written in the same way, i.e.

hTμνi ¼ htμνi þ hTμνi: ð30Þ

The first term,

htμνi ¼ −i lim
x0→x

�
2∂μ∂ 0ν −

1

2
ημν∂λ∂ 0

λ

�
Gðx; x0Þ; ð31Þ

is the vacuum stress in the absence of Lorentz violation. In
obtaining Eq. (31) we used the fact that the zeroth-order GF
(with κ ¼ 0) is diagonal, i.e. it is equal to ημνGðx; x0Þ. The
second term can be simplified since the GFGμ

ν satisfies the
Lorentz gauge condition ∂μGμ

ν ¼ 0. In this way,

hTμνi ¼ −i lim
x0→x

�
∂μ∂ 0νGþ ∂ 0λ∂λ

�
Gμν −

1

2
ημνG

��
; ð32Þ

where G ¼ Gμ
μ is the trace of Gμ

ν. Finally the last term in
Eq. (27) can be written as

hΞμνi ¼ −2ikνϵμαβγ lim
x0→x

∂ 0
βGγα; ð33Þ

where we used again that the zeroth-order GF is diagonal.

V. CASIMIR EFFECT

Now let us consider the problem of calculating the
renormalized VS hΘμνiren, which is obtained as the differ-
ence between the VS in the presence of boundaries and that
of the vacuum. For two parallel conducting plates separated
by a distance D in the z direction, one can construct the
renormalized expectation value of the stress-energy tensor,
using conservation, tracelessness, and symmetry argu-
ments. The result is that it is uniform between the plates:

htμνiren ¼ −
π2

720D4
ðημν þ 4nμnνÞ; ð34Þ

where nμ ¼ ð0; 0; 0; 1Þ is the unit normal to the plates [42].
The Casimir stress is obtained by differentiating the
Casimir energy EC ¼ ht00irenD with respect to D,
i.e. FC ¼ −dEC=dD ¼ −π2=240D4.
We turn now with the vacuum stress between two

perfectly, conducting, infinite plates, separated by a dis-
tance D, embedded in the infinite Lorentz-violating vac-
uum. We simplify our configuration by orienting the
coordinate frame so that the plates are perpendicular to
the background LV vector kμ ¼ ð0;kÞ ¼ κnμ; however, the
general case proceeds along the same lines.
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Using the Fourier representation of the GF in Eq. (14),
together with the symmetry of the problem and the
reduced Green’s function given by Eq. (18), Eq. (32)
can be written as

hTμνi ¼ −4iκ2
Z

d2p
ð2πÞ2

Z
dω
2π

ðpμpν þ nμnνp2Þ

lim
z0→z

ðp2 þ ∂z∂ 0
zÞMðz; z0Þ: ð35Þ

From the rotational invariance around the z axis, the
components of the stress perpendicular to nμ, hΘ11i and
hΘ22i, are equal. In addition, from the mathematical struc-
ture of Eq. (33) we find the relation hT00i ¼ −hT11i. These
results, together with the tracelessness of hTμνi, allow us to
write the VS of Eq. (35) in the form

hTμνi ¼ ðημν þ 4nμnνÞfðκ; zÞ; ð36Þ

where

fðκ; zÞ ¼ 4κ2

i

Z
d2p
ð2πÞ2

Z
dω
2π

ω2 lim
z0→z

ðp2 þ ∂z∂ 0
zÞMðz; z0Þ:

ð37Þ

Note that this term exhibits the same tensor structure as
the result obtained by Brown and Maclay, but we obtain a
z-dependent VS due to Lorentz violation. Using similar
arguments, the last contribution to the VS given by Eq. (33)
can be written as

hΞμνi ¼ nμnνgðκ; zÞ; ð38Þ

where

gðκ; zÞ ¼ −8iκ2
Z

d2p
ð2πÞ2

Z
dω
2π

p2 lim
z0→z

Nðz; z0Þ: ð39Þ

Therefore the renormalized vacuum expectation value of the
stress-energy tensor Θμν between the conducting plates can
be written as

hΘμνiren¼htμνirenþðημνþ4nμnνÞfrenðκ;zÞþnμnνgrenðκ;zÞ;
ð40Þ

where htμνiren, which is given by Eq. (34), is the result
obtained by Brown and Maclay in Lorentz symmetric
electrodynamics [42]. Here, the renormalized functions
frenðκ; zÞ and grenðκ; zÞ are defined as the difference between
the functions in the presence of the plates and that of the
vacuum. Note that the vacuum stress is symmetric, even
when the SET is nonsymmetric. Next we derive the Casimir
force between the plates.

A. Global Casimir energy density

The Casimir energy is defined as the energy per unit area
stored in the electromagnetic field between the plates, i.e.

EC ¼
Z

D

0

hΘ00irendz; ð41Þ

where hΘ00iren is the renormalized 00-component of the
stress-energy tensor, which according to the procedure
described above, is obtained as the difference between the
energy density in the presence of the plates and that of the
free vacuum, i.e.

hΘ00iren ¼ hΘ00i‖ − hΘ00i0: ð42Þ

Here, the labels ‖ and 0 mean that the expectation value is
evaluated with the Green’s function in the presence of the
parallel plates and that of the vacuum, respectively. Using
the formula (30), the Casimir energy (41) can be written as

EC ¼ −
π2

720D3
þ ErenðκÞ; ð43Þ

where the first term is the usual Casimir energy density
between two parallel conducting plates in Lorentz sym-
metric electrodynamics, i.e.

R
D
0 ht00irendz, and we define the

function

ErenðκÞ ¼
Z

D

0

hT00irendz: ð44Þ

Here, hT00iren ¼ hT00i‖ − hT00i0 is the renormalized
Lorentz-violating contribution to the energy density. Here
we interpret the labels in the same way as in Eq. (42). Now
we must evaluate the function ErenðκÞ. First we consider the
VS in the presence of the plates and define the function
E‖ðκÞ≡ R

D
0 hT00i‖dz. Using the Green’s function in the

presence of the plates, i.e. Eq. (18)with the functionsN‖ and
M‖ given by Eqs. (A9) and (A10) respectively, we obtain

E‖ðκÞ ¼ −4iκ2
Z

d2p
ð2πÞ2

Z
dω
2π

ω2

8p4
½4 − pD cotðpDÞ

− p2D2½1þ 2pD cotðpDÞ�csc2ðpDÞ�: ð45Þ

Notice that the first term in the integrand corresponds to a
constant energy density, independent of D, so it may be
discarded as irrelevant. The resulting integral can be
evaluated as follows. We first write the momentum element
as d2p ¼ jpjdjpjdθ and integrate θ from 0 to 2π. Next we
perform aWick rotation such thatω → iζ, then replace ζ and
jpj by the plane polar coordinates ζ ¼ ξ

D cosφ, jpj ¼ ξ
D sinφ

and finally integrate φ from 0 to π=2. In this way, Eq. (45)
becomes
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E‖ðκÞ ¼
κ2

24π2D

Z
∞

0

ξ½coth ξþ ξð1þ 2ξ coth ξÞcsch2ξ�dξ:

ð46Þ

We can treat this result as containing two pieces. The first
integral, which involves ξ coth ξ, is divergent, so that wewill
retain such. The remaining part is convergent and it can be
evaluated. The result is

E‖ðκÞ ¼
κ2

24π2D

�
2π2

3
þ
Z

∞

0

ξ coth ξdξ

�
: ð47Þ

Now we must evaluate the analogue function in vacuum.
Using the Green’s function in the free vacuum, i.e. Eq. (18)
with the functions N0 andM0 given by Eqs. (A5) and (A6)
respectively, we obtain

E0ðκÞ ¼ 4κ2
Z

d2p
ð2πÞ2

Z
dω
2π

ω2D
8p3

: ð48Þ

The integral can be treated similarly. Integrating the angle in
momentum space, performing a Wick rotation and intro-
ducing the plane polar coordinates defined before we find:

E0ðκÞ ¼
κ2

24π2D

Z
∞

0

ξdξ; ð49Þ

which clearly is a divergent integral. Subtracting both
contributions to obtain the renormalized function (44),
i.e. ErenðκÞ ¼ E‖ðκÞ − E0ðκÞ, we obtain

ErenðκÞ ¼
κ2

24π2D

�
2π2

3
þ
Z

∞

0

ξðcoth ξ − 1Þdξ
�
; ð50Þ

and the resulting integral is perfectly convergent, with the
result π2=12. Therefore the final expression for the renor-
malized function isErenðκÞ ¼ κ2=32D, and thus the Casimir
energy becomes

EC ¼ −
π2

720D3
þ κ2

32D
: ð51Þ

The Casimir stress is obtained by differentiating the Casimir
energy with respect to D, i.e.

FC ¼ −
dEC

dD
¼ −

π2

240D4
þ κ2

32D2
: ð52Þ

The first term is recognized as the usual Casimir force in
Lorentz-symmetric electrodynamics, while the second rep-
resents the Lorentz-violating contribution. We observe that
unlike the 1=D4 dependence of the usual Casimir force, the
LV part depends on 1=D2. This is so because of the Chern-
Simons background field kμ is dimensionfull, indeed
½kμ� ¼ 1=½length�. As discussed in Sec. I, the authors in

Ref. [35] analyzed the same Casimir configuration within
the ð3þ 1ÞD Chern-Simons extended electrodynamics.

They obtained an attractive correction of the form − 25k2AF
720D2,

while our result (52) is evidently repulsive. The origin of
such disagreement is the Chern-Simons background tensor
we work with; while the authors in Ref. [35] used a timelike
background kμ ¼ ðkAF; 0Þ, we have chosen the spacelike
vector kμ ¼ ð0;kÞ. Here we point out that the difference
between our work and that of Ref. [35] is beyond the
background tensor used. For example, they used standard
techniques in Casimir physics (zeta function regularization
and series summation via the residue theorem), while here
we tackle the problem by means of Green’s function
techniques. The advantage of the local approach over the
standard techniques is quite subtle: the former provides
information about the local behavior of the quantum fields
near a boundary, while the later only allows the calculation
of the Casimir force. In Sec. V Cwe discuss the local effects
in ð3þ 1ÞD Chern-Simons electrodynamics, which is the
main aim of the present work.

B. Stress on the plates

Now let us derive the same result by using the normal-
normal component of the vacuum stress-energy tensor, i.e.
hΘzzi. In the problem at hand, the pressure exerted by the
electromagnetic field will be the difference between
the hΘzzi components outside the plates and that between
the plates, calculated on the surface (at z ¼ D, for instance)

FC ¼ hΘzzi‖ − hΘzzij: ð53Þ

The first term, hΘzzi‖, is the vacuum stress due to the
electromagnetic field confined between the plates. The
second term, hΘzzij, is the vacuum stress due to
the electromagnetic field outside the plates. As before,
the label ‖ means that the vacuum expectation value is
calculated with the Green’s function in the presence of the
plates, which is given by Eqs. (17) and (18) with the
functions N‖ and M‖ given by Eqs. (A9) and (A10),
respectively. In order to calculate the vacuum expectation
value due to the electromagnetic field outside the plates,
hΘzzij, we should use the appropriate Green’s function
which vanishes at z ¼ D and has outgoing boundary
conditions as z → ∞, i.e. g ∼ eipz [41]. Basically, we
should use the Green’s function due to a single conducting
plate at z ¼ D, and this is why we use the label j for this
case. In the Appendix, we compute the corresponding Nj
and Mj functions.
Using the formula (30), the Casimir stress (41) can be

written as

FC ¼ −
π2

240D4
þ FrenðκÞ; ð54Þ
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where the first term in the Casimir stress in the absence
of Lorentz violation, i.e. htzzi‖ − htzzij ¼ −π2=240D4.
The Lorentz-violating contribution is given by FrenðκÞ ¼
hTzz þ Ξzzi‖ − hTzz þ Ξzzij. By virtue of the boundary
conditions upon the plates, Ξzz does not contribute to
the vacuum expectation values. Then we compute the
normal-normal component of the vacuum stress tensor
on the boundaries as

hTzzi ¼ −12iκ2
Z

d2p
ð2πÞ2

Z
dω
2π

ω2 lim
z0→z¼0;D

∂z∂ 0
zMðz; z0Þ;

ð55Þ

since Mðz; z0Þ ¼ 0 at z ¼ 0 and z ¼ D. First we consider
the contribution due to the electromagnetic field confined
between the plates, i.e. we want to evaluate Eq. (55) using
the function M‖ðz; z0Þ given by Eq. (A10). The resulting
integral can be treated in the same way as that of Eq. (44).
Integrating the angle in momentum space, performing a
Wick rotation and introducing the plane polar coordinates,
we find

hTzzi‖ ¼ −
κ2

32π2D2

Z
∞

0

ξcsch3ξ½coshð3ξÞ

− ð1þ 8ξ2Þ cosh ξþ 4ξ sinh ξ�dξ: ð56Þ

This integral does not exist. However, it is appropriately
regularized by subtracting the stress due to the electro-
magnetic field outside the plates, as discussed. To do this,
let us evaluate Eq. (55) using the function Mjðz; z0Þ given
by Eq. (A14). In this case, the normal-normal component of
the vacuum stress at z ¼ D becomes

hTzzij ¼ −
κ2

8π2D2

Z
∞

0

ξdξ; ð57Þ

which also diverges. So, from the discontinuity in hTzzi,
that is, the difference Fren ¼ hTzzi‖ − hTzzij, we find the
Lorentz-violating contribution to the force per unit area on
the plate:

FrenðκÞ ¼ −
κ2

32π2D2

Z
∞

0

ξfcsch3ξ½coshð3ξÞ

− ð1þ 8ξ2Þ cosh ξþ 4ξ sinh ξ� − 4gdξ: ð58Þ

The resulting integral is perfectly convergent, with the
result −π2. In this way, the stress on the plate is
FC ¼ − π2

240D4 þ κ2

32D2, which is the same as obtained in
the previous subsection.

C. Local effects

Heretofore, we have considered the global Casimir
effect: the total energy of a field configuration or the force

per unit area on a bounding surface [41]. Local properties
of the quantum vacuum induced by the presence of
boundaries are of broad interest in quantum field theory
[43] and they must be understood if one is to correctly
interpret the inherent divergences in the theory.
The local energy density in Lorentz-symmetric electro-

dynamics has been discussed extensively in the literature
[41,44]; however, the local effects in Lorentz-violating
theories have not been considered. Here we aim to fill in
this gap. We begin the analysis by considering an electro-
magnetic field confined between two parallel conducting
plates at z ¼ 0 and z ¼ D, for which the energy density per
unit volume between the plates is

hΘ00iðzÞ ¼ ht00iðzÞ þ hT00iðzÞ: ð59Þ

A detailed analysis of the local effects due to the first term
(in the absence of Lorentz violation) is presented in
Ref. [41]. Here we concentrate on the Lorentz-violating
contribution,

hT00iðzÞ ¼ 4κ2

i

Z
d2p
ð2πÞ2

Z
dω
2π

ω2 lim
z0→z

ðp2 þ ∂z∂ 0
zÞM‖ðz; z0Þ;

ð60Þ

whereM‖ðz; z0Þ is given by Eq. (A10). This integral can be
performed in an analytical fashion. Integrating the angle in
momentum space, performing a Wick rotation and intro-
ducing the plane polar coordinates, we find

hT00iðzÞ ¼ −
κ2

3π2D2

Z
∞

0

λ4½FðλÞ þ Rðλ; ZÞ�dλ; ð61Þ

where

FðλÞ¼−
csch3λ
32λ3

fð8λ2−1Þcoshλþ coshð3λÞþ4λsinhλg;
ð62Þ

Rðλ;ZÞ¼ csch3λ
16λ3

f2λð1−ZÞsinh½λð1þ2ZÞ�
þ2λð1−2ZÞsinh½λð1−2ZÞ�þ2λZ sinh½λð3−2ZÞ�
þ cosh½λð1þ2ZÞ�−2cosh½λð1−2ZÞ�
þ cosh½λð3−2ZÞ�g; ð63Þ

with Z ¼ z=D. Integrating we obtain

hT00iðzÞ ¼ κ2

32D2
½1 − 2csc2ðπZÞ�: ð64Þ

We observe that the z-independent term, κ2

32D2, corresponds
to the global renormalized energy density ErenðκÞ obtained
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in Sec. VA. The second term encodes the local effects, and
it can be expressed in terms of the generalized or Hurwitz
zeta function as follows:

SðZÞ≡ −
κ2

16D2
csc2ðπZÞ

¼ −
κ2

16π2D2
½ζð2; ZÞ þ ζð2; 1 − ZÞ�: ð65Þ

This function is plotted in Fig. 1, where we observe that it
diverges quadratically as z → 0; D. Its z integral over the
region between the plates diverges linearly. This result
reveals a close analogy with the one obtained from the
Lorentz-symmetric part. In that case, the singular part
depends on ½ζð4; ZÞ þ ζð4; 1 − ZÞ�=D4, thus implying that
it diverges quartically as z → 0; D. The less divergent
Lorentz-violating contribution (65) can be understood as
due to the dimensionfull Chern-Simons coupling κ.
To close this section, we show that the badly behaved

function (65) does not contribute to the force on the plates.
Using the integral representation of the Hurwitz zeta
function in terms of the Mellin transform,

ζðs;qÞ¼ 1

ΓðsÞ
Z

∞

0

ts−1e−qt

1−e−t
dt; ℜ½s�> 1; ℜ½q�> 0;

ð66Þ

Eq. (65) can be expressed as

SðZÞ ¼ −
κ2

16π2
1

Γð2Þ
Z

∞

0

e−zρ þ e−ðD−zÞρ

1 − e−ρD
ρdρ: ð67Þ

If we integrate this term over z,

Z
D

0

SðZÞdz ¼ −
κ2

16π2
2

Γð2Þ
Z

∞

0

dρ; ð68Þ

we obtain a divergent constant term (D independent), so it
does not contribute to the observable force.

VI. SUMMARY AND CONCLUSIONS

The study of Lorentz violation is actively motivated by
the search of quantum gravity effects. At presently attain-
able energies, such signatures are described by an effective
field theory framework called the standard model extension
(SME), which contains the standard model, general rela-
tivity and all possible operators that break Lorentz sym-
metry. The Lorentz-violating (LV) coefficients in the SME
can arise in various underlying contexts, such as strings,
spacetime-foam approaches, and noncommutative geom-
etries, to name a few. The value of these coefficients can in
principle be measured (or bounded) in experiments. This
has allowed a systematic search for a large range of possible
Lorentz-violating effects. Indeed, since the predictions of
the standard model have been verified experimentally to an
extremely high degree of accuracy, a possible route to test
quantum gravitational effects is through high-sensitivity
measurements of well-known particle physics phenomena,
as any deviation from the standard theory is, at least in
principle, experimentally testable.
The main aim of this paper is to analyze the local effects

of the quantum vacuum in a particular sector of the minimal
SME, namely, the ð3þ 1ÞD Maxwell-Chern-Simons term.
Concretely, we use Green’s function techniques to calculate
the Casimir force between two parallel conducting plates,
focusing on the local properties of the quantum vacuum
induced by the presence of the boundaries. The study of
divergences is a fundamental problem in quantum field
theories, and the present work intends to fill in this gap in a
particular gauge sector of the SME. The first derivation of
the (global) Casimir energy stored between two parallel
conducting plateswithin the SME framework is due to Frank
and Turan [34]. However, as pointed out by Kharlanov and
Zhukovsky [35], in the aforementioned work the authors
used a wrong equation of motion for the electromagnetic
potentials, namely, ð□þ k2AFÞϵμναβ∂αAβ ¼ 0, instead of the
correct equation ð□ημν − 2kβϵμβαν∂αÞAν ¼ 0. This misinter-
preted equation led to an oversimplification of the problem
from both the conceptual and theoretical points of view.
Conceptually we observe that the wrong equation implies
that the photon dispersion relation corresponds to that for a
massive photon, similar to what occurs in the ð2þ 1ÞD
Maxwell-Chern-Simons theory. However, in the ð3þ 1ÞD
theory the photon remains massless and the associated
dispersion relation is more complicated. Mathematically,
the wrong field equation leads to a simple analysis of the
problem in terms of a single Green’s function; however, the
correct field equation suggests that a more subtle indexed
(matrix of) Green’s function(s) is required due to the
magnetoelectric effect.
The authors in Ref. [35] evaluated the Casimir force

within this theory using two methods, namely, the zeta
function regularization technique and the summation and
renormalization of the discrete sum involving the residue
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FIG. 1. The singular part of the Lorentz-violating correction to
the local energy density between two parallel plates.
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theorem. In the present work, we used Green’s function
techniques to analyze the same Casimir configuration.
Mathematically, the difference between our work and that
of Ref. [35] is the Chern-Simons background tensor we
work with; while the authors in Ref. [35] used a timelike
background kμ ¼ ðkAF; 0Þ, we have chosen the spacelike
vector kμ ¼ ð0;kÞ. Our choice is motivated by the fact that
the timelike theory appears to be inconsistent, that is, the
theory violates unitary and causality, or both [39]. We
remark that the difference between our work and that of
Ref. [35] is beyond the Lorentz-violating background tensor
used. From the physical point of view, the techniques used in
Ref. [35] provides information about the global Casimir
energy density, but they fail to describe the behavior of the
quantum fields near the boundary, and this is precisely the
gap we intend to fill with the present work.
Because the Green’s function represents the vacuum

expectation value of the time-ordered product of fields, it is
possible to compute the vacuum expectation value of the
stress-energy tensor, for example, in terms of the Green’s
function at coincident arguments. One of the contributions
of the present work is the construction of the correct
(indexed) Green’s function for the theory we deal with: the
ð3þ 1ÞD Maxwell-Chern-Simons theory with a spacelike
Lorentz-violating background field. Using these results, we
evaluate the renormalized vacuum expectation value of the
stress-energy tensor and we compute the Casimir force
between two parallel conducting plates separated by a
distance D, with the result FC ¼ − π2

240D4 þ κ2

32D2. We
recognize the first term as the Casimir force in the absence
of Lorentz violation, while the κ-dependent term is due to
such LV coefficient, which has a different functional
dependence on the distance between the plates (1=D2).
This result is expected from dimensional analysis for the
second order LV contributions. A remarkable difference
between our result and those of Ref. [35] emerges:
while they found an attractive correction of the form
−25k2AF=720D2, our result (52) is evidently repulsive.
The origin of such disagreement is that the Lorentz-violating
background tensor we deal with is different. Even when we
workwithin the same gauge sector of the SME, the choice of
the LV background makes these theories fundamentally
different. Due to the limited precision of the present
experimental measurements of the Casimir force between
parallel plates (15% precision in the 0.5–3 μm range), no
useful bounds on the LV coefficients can be obtained
from the results in this work. We also analyze the behavior
of the local energy density when approaching the plates,
which is found to be quadratically divergent according to
ζð2; z=DÞ þ ζð2; 1 − z=DÞ, where ζðs; qÞ is the Hurwitz
zeta function. In the standard case a quartically divergent
term is obtained. The less divergent Lorentz-violating
contribution can be understood as due to the dimensionfull
Chern-Simons coupling κ. Using the integral representation
of theHurwitz zeta function in terms of theMellin transform,

we demonstrate that such a term does not contribute to the
measurable macroscopic force.
The present work can be further generalized in a variety

of ways. For example, the Green’s function for different
geometries can also be constructed using the same pertur-
bative procedure. On the other hand, our analysis can also
be applied to ponderable media. More precisely, we can
consider a semi-infinite planar material medium with
dielectric constant ε for which the reduced Green’s function
gεðz; z0Þ is known. Now we can use it to evaluate the
associated Eεðz; z0Þ andMεðz; z0Þ functions, which are what
we require to study the Lorentz-violating effects. This
scenario could be more useful to establish bounds on the
SME coefficients, since in this case first-order LV con-
tributions could appear.
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APPENDIX: EVALUATION OF THE
FUNCTIONS Nðz;z0Þ AND Mðz;z0Þ

Here we shall evaluate the functions Nðz; z0Þ and
Mðz; z0Þ, defined by Eqs. (19) and (20), respectively. To
do this, we use the reciprocity symmetry of the reduced GF,
gðz; z0Þ ¼ gðz0; zÞ, which implies the same property for the
functions Nðz; z0Þ and Mðz; z0Þ, i.e.

Nðz; z0Þ ¼ Nðz0; zÞ; Mðz; z0Þ ¼ Mðz0; zÞ: ðA1Þ

In this way, we can compute the required integrals for a
particular case, for example z < z0, and then generalize the
result by replacing z → z< and z0 → z<, where z> (z<) will
be the greater (lesser) between z and z0.
LetD ¼ ½a; b� be the domain in which the reduced GF is

defined. Assuming that z < z0, the domain of integration
can be expressed as D ¼ ½a; z� þ ½z; z0� þ ½z0; b�. The
function Nðz; z0Þ can thus be written as

Nðz; z0Þ ¼
�Z

z

a
þ
Z

z0

z
þ
Z

b

z0

�
gðz; z00Þgðz00; z0Þdz00; ðA2Þ

and the function Mðz; z0Þ takes the form

Mðz; z0Þ ¼
�Z

z

a
þ
Z

z0

z
þ
Z

b

z0

�
gðz; z00ÞNðz00; z0Þdz00: ðA3Þ

Now we compute these integrals for some cases of
particular interest in this paper.
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1. Free space

First we consider the free space reduced Green’s function

g0ðz; z0Þ ¼
i
2p

eipðz>−z<Þ; ðA4Þ
which is defined on the real line, i.e.D ¼ R. The associated
N0 function can thus be written as

N0ðz; z0Þ ¼ −
1

4p2

�Z
z

−∞
eipðz−z00Þeipðz0−z00Þdz00

þ
Z

z0

z
eipðz00−zÞeipðz0−z00Þdz00

þ
Z

∞

z0
eipðz00−zÞeipðz00−z0Þdz00

�
:

The result for this particular case (z < z0) can be obtained
in a simple fashion. The general result takes the form

N0ðz; z0Þ ¼ −
iþ pðz> − z<Þ

4p3
eipðz>−z<Þ: ðA5Þ

Now, using the reduced GF of Eq. (A4) and the previous
result (A5), we can compute the associated M0-function
according to Eq. (A3). The result is

M0ðz; z0Þ ¼
p2ðz> − z<Þ2 þ 3ipðz> − z<Þ − 3

16ip5
eipðz>−z<Þ:

ðA6Þ

Performing a Wick rotation one can further see that these
functions satisfy the required boundary conditions at
infinity, i.e. N0ðz → ∞; z0Þ;M0ðz → ∞; z0Þ → 0.

2. Parallel conducting plates

Now let us consider the case of two parallel conducting
plates separated by a distance D. The relevant reduced GF
for this configuration is

g‖ðz; z0Þ ¼
sin½pz<� sin½pðD − z>Þ�

p sin½pD� ; ðA7Þ

which is defined on the domain D‖ ¼ ½0; D� and satisfies
the boundary conditions g‖ð0; z0Þ ¼ g‖ðD; z0Þ ¼ 0. The
associated N‖ function can be written as

N‖ðz;z0Þ ¼
1

p2sin2½pD�
�Z

z

0

sin2½pz00�sin½pðD− zÞ�sin½pðD− z0Þ�dz00 þ
Z

z0

z
sin½pz�sin½pðD− z00Þ�sin½pz00�sin½pðD− z0Þ�dz00

þ
Z

D

z0
sin½pz�sin½pz0�sin2½pðD− z00Þ�dz00

�
; ðA8Þ

with the final result

N‖ðz; z0Þ ¼
1

4p3sin2½pD� fsin½pz>� sin½pz<�½2pðD − z>Þ − sin½2pðD − z>Þ��

þ sin½pðD − z>Þ� sin½pz<�½sin½pðD − 2z<Þ� − sin½pðD − 2z>Þ� − 2pðz> − z<Þ cos½pD��
þ sin½pðD − z>Þ� sin½pðD − z<Þ�½2pz< − sin½2pz<��g: ðA9Þ

With the help of this result and the reduced GF (A7) we can compute the M‖ function. We obtain

M‖ðz; z0Þ ¼
csc2½pD�
32p5

f2pz< sin½pz>� cos½pz<�½4pD − 2pz> þ 2pz> cos½2pD� þ 3 sin½2pD��

− csc½pD� sin½pz>� sin½pz<�½ð3þ 8D2p2 − p2ðz2> þ z2<ÞÞ cos½pD� þ ð−3þ p2ðz2> þ z2<ÞÞ cos½3Dp��
− csc½pD� sin½pz>� sin½pz<�ð6pð2D − z> þ z> cos½2pD�Þ sin½pD�Þ
− 4pz< cos½pz>� cos½pz<� sin½pD�ð2pz> cos½pD� þ 3 sin½pD�Þ
− 2 cos½pz>� sin½pz<�½3þ 4Dp2z> − p2z2> − p2z2< þ ð−3þ p2ðz2> þ z2<ÞÞ cos½2pD� þ 3pz> sin½2pD��g:

ðA10Þ

On can further check that this function satisfies the
boundary conditions M‖ð0; z0Þ ¼ M‖ðD; z0Þ ¼ 0, which
are inherited from the standard boundary conditions on
the conducting plates.

3. Infinite conducting plate

Finally we consider the case of a single conducting planar
plate located at z ¼ D > 0. The reduced GF describing the
propagation at the right-hand side (z; z0 > D) is
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gjðz; z0Þ ¼
1

p
sin½pðz< −DÞ�eipðz>−DÞ; ðA11Þ

which is defined in the domain Dj ¼ ½D;∞Þ and satisfies the boundary conditions gjðD; z0Þ ¼ 0 and gjðz → ∞; z0Þ ∼ eikz.
Using Eq. (A2) we can further compute the associated Nj function, i.e.

Njðz; z0Þ ¼
1

p2

�Z
z

D
sin½pðz00 −DÞ�eipðz−DÞ sin½pðz00 −DÞ�eipðz0−DÞdz00

þ
Z

z0

z
sin½pðz −DÞ�eipðz00−DÞ sin½pðz00 −DÞ�eipðz0−DÞdz00

þ
Z

∞

z0
sin½pðz −DÞ�eipðz00−DÞ sin½pðz0 −DÞ�eipðz00−DÞdz00

�
; ðA12Þ

and the final result is

Njðz; z0Þ ¼
1

4p3
fe−ipð3D−z>Þ sin½pðD − z<Þ�½e2ipD½1 − 2ipðz> − z<Þ� − e2ipz< �

þ e−ipð2D−z−z<Þ½2pðz< −DÞ þ sin½2pðD − z<Þ��g: ðA13Þ

We close this section with theMj function, which can be computedwith the help of Eqs. (A3), (A11), and (A13). The result is

Mjðz; z0Þ ¼
1

32p5
fe−ipð4D−z>þz<Þ½e2ipðDþz>Þ½2pðz> − z<Þ þ 3i� þ 2pe4ipDðz> − z<Þ½2 − ipðz> − z<Þ��

þ e−ipð4D−z>þz<Þ½e4ipz<ð−4pDþ 4pz< þ 3iÞ − e2ipðz>þz<Þ½2pð−2Dþ z> þ z<Þ þ 3i��
þ e−ipð4D−z>þz<Þ½ie2ipðDþz<Þ½−3þ 2pðz> − z<Þ½pð−4Dþ z> þ 3z<Þ þ 2i���
− 2e−ipð3D−2z>−z<Þ sin½pðz> −DÞ�½e2ipðD−z<Þ½−3þ 2ipðz> − z<Þ� þ 4ipD − 2ipðz> þ z<Þ þ 3�
þ 4pe−ipð2D−z>−z<ÞðD − z<Þ½2ipðD − z<Þ þ cos½2pðD − z<Þ� þ 2�
þ 2e−ipð2D−z>−z<Þ sin½2pðD − z<Þ�½−3 − 2ipðD − z<Þ�g: ðA14Þ

The boundary conditions NjðD; z0Þ ¼ MjðD; z0Þ ¼ 0 can be directly verified.
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