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We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections
to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different
patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations.
By construction our results encompass several interesting limits, ranging from the dilaton to the linear
sigma model.
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I. INTRODUCTION

There has been a growing interest in realizing and
studying possible strongly coupled theories featuring an
isosinglet scalar as the first massive state appearing after
the (pseudo) Goldstone bosons. At energy scales much
below the isosinglet mass, chiral perturbation theory holds
true for massless Goldstone bosons, and the scalar field can
safely be integrated out. However, if one is interested in the
dynamics involving energy scales near or around the
isosinglet state, or if its mass is close to the pion mass,
its quantum effects cannot be neglected, and the isosinglet
state must be integrated back in.
For this reason we consider the chiral Lagrangian

augmented by an isosinglet scalar and show how this leads
to new radiative corrections for the pion mass, the pion
decay constant, and the scalar mass. As we will argue, these
corrections depend on the number of Goldstone bosons, but
are otherwise universal in form for all patterns of chiral
symmetry breaking. We focus on two patterns of chiral
symmetry breaking, i.e., SUð2ÞL × SUð2ÞR → SUð2ÞV and
SUð4Þ → Spð4Þ. The first breaking pattern has direct
relevance for the interpretation of the f0ð500Þ in QCD
[1–10] as well as the emergence of a potentially light scalar
state in near conformal theories with two Dirac fermions in
a complex representation of the gauge group, such as the
two-index symmetric representation of SUð3Þ [11–13]. The
second breaking pattern emerges when two Dirac fermions
belong to the fundamental representation of Spð2NÞ which
for N ¼ 1 corresponds to SUð2Þ. This theory became the
ideal template for numerous relevant extensions of the
standard model, ranging from ultraminimal technicolor
[14–16] to composite (Goldstone) Higgs [17,18], as well
as strongly interacting massive particles (SIMPs) for dark
matter [19,20].
Lattice simulations are currently investigating these

models [21–26] and they can therefore directly compare

their results with our findings once the spectrum is known
precisely enough. It is furthermore straightforward to
generalize our results to the SUðNfÞ × SUðNfÞ →
SUðNfÞ chiral symmetry breaking pattern.
To organize perturbation theory we adopt the power

counting scheme OðpÞ ∼OðmπÞ ∼OðmσÞ ≪ Λχ where
Λχ is the scale of chiral symmetry breaking, expected to
be of the order 4πfπ. The chosen counting scheme is tailored
toproperly account for a light scalar state, henceforth limiting
the applicability for heavier scalar states. According to this
scheme the leading order (LO) corresponds toOðp2Þ and the
next-to-leadingorder (NLO) corresponds toOðp4Þ. Previous
investigations have already appeared in the literature, e.g.,
[27]. We will generalize this analysis by extending the set of
operators present at the tree-level Lagrangian and by con-
sidering different patterns of chiral symmetry breaking.
Having introduced a holistic approach for the scalar

field, we then consider different realizations, such as the
dilaton, the Goldstone boson, and linear sigma model.
The paper is structured as follows: In Sec. II we

introduce the Lagrangian and the renormalization pro-
cedure used to subtract divergences. In Sec. III we present
the one-loop corrections to the pion mass, the pion decay
constant, and the scalar mass. We also perform several
consistency checks to ensure that we can reproduce known
results in different limits. In Sec. IV we consider different
realizations of the scalar field and show how this leads to
constraints on the low-energy constants.

II. THE LAGRANGIAN

In this section we introduce the nonlinearly realized
chiral Lagrangian augmented with an isosinglet scalar.
We follow the notation of [28] and let G be the global
flavor symmetry of the vectorlike fermions and H the
stability group after spontaneous symmetry breaking. The
Goldstone boson manifold G=H is then parametrized by

u ¼ exp

�
iffiffiffi
2

p
fπ

Xaϕa

�
; ð1Þ
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where Xa are the broken generators. In our convention the
generators are normalized as hXaXbi ¼ δab where h·i
denotes trace in flavor space. The quantity u transforms as

u → guh† ¼ hug†; ð2Þ

with g ∈ G being space-time independent and h ∈ H being
space-time dependent in such a way that the above
constraint equation is satisfied. The linear realization
[29,30] of the chiral Lagrangian is parametrized in terms
of the field U ¼ u2 which transforms under the global
symmetryG instead of the stability groupH. The quantities
that transform homogeneously under the stability group H
are

uμ ¼ iðu†ð∂μ − irμÞu − uð∂μ − ilμÞu†Þ; ð3Þ

χ� ¼ u†χu† � uχ†u: ð4Þ

In the first expression rμ and lμ are external currents, which
are needed, e.g., when calculating the corrections to the
pion decay constant. In the second expression χ is a spurion
field that ensures chiral invariance at every step of the
computation. The precise definition of rμ, lμ, and χ as a
function of the external fields are given for each of the
breaking patterns in [28]. In the end, the field χ is replaced
by its expectation value χ ¼ m2

π which explicitly breaks the
chiral symmetry. In the isospin limit, the leading-order pion
mass can be written as m2

π ¼ 2B0mq where B0 is related to
the underlying chiral condensate and mq is the quark mass.
In this notation the LO Lagrangian is given by

L2 ¼
f2π
4
huμuμ þ ~χþi; ð5Þ

where ~χþ ¼ χþ − ðχ þ χ†Þ. In the definition of ~χþ we
subtract a constant term to avoid mixing between the
vacuum and the scalar field later on. The NLO
Lagrangian reads

L4 ¼ L0huμuνuμuνi þ L1huμuμihuνuνi þ L2huμuνihuμuνi
þ L3huμuμuνuνi þ L4huμuμihχþi þ L5huμuμχþi

þ L6hχþi2 þ L7hχ−i2 þ
1

2
L8hχ2þ þ χ2−i: ð6Þ

This parametrization differs from the one of [29,30] and for
this reason the low-energy constants (LECs) cannot be
directly compared. However, they can be related though a
careful mapping between the two parametrizations.
Depending on the specific pattern of chiral symmetry
breaking, some of the operators in the Lagrangian can
become linearly dependent, and this is the case for the two
specific patterns studied here. We choose not to reduce the
number of operators in the Lagrangian because our results

can be applied to a wider class of theories. We finally note
that the L7 term does not contribute at NLO in the isospin
preserving limit. Because the NLO Lagrangian represents
the most general Lagrangian at Oðp4Þ it is possible to
absorb the one-loop divergences by an appropriate renorm-
alization of the LECs. We use the modified minimal-
subtraction scheme (MS) where

Li ¼ Lr
i −

Γi

32π2
R; ð7Þ

with

R ¼ 2

ϵ
þ logð4πÞ − γE þ 1: ð8Þ

Here ϵ ¼ 4 − d and γE ¼ −Γ0ð1Þ is the Euler-Mascheroni
constant. It should be noted that the renormalized coef-
ficients Lr

i will depend on the energy scale μ introduced by
dimensional regularization.
Wewill now introduce the isosinglet scalar σ in the chiral

Lagrangian as a nontrivial background field [17,31]. In
practice this is done by expanding each coefficient in the
Lagrangian in powers of σ=fπ . Because we are interested in
calculating the radiative corrections to the two-point
functions at next-to-leading order, the expansion is only
needed for the leading-order Lagrangian and we can stop
the series expansion at second order.

L2 ¼
f2π
4

�
1þ S1

�
σ

fπ

�
þ S2

�
σ

fπ

�
2
�
huμuμi

þ f2π
4

�
1þ S3

�
σ

fπ

�
þ S4

�
σ

fπ

�
2
�
h~χþi: ð9Þ

The associated Lagrangian for the scalar field can be
written as

Lσ ¼
1

2
∂μσ∂μσ −

1

2
m2

σσ
2

�
1þ S5

�
σ

fπ

�
þ S6

�
σ

fπ

�
2
�
:

ð10Þ

In the Lagrangian for the scalar field we could perform a
similar expansion in front of the kinetic term. However, in
the present analysis these additional terms would corre-
spond to a shift of S5 and S6 because we only consider on-
shell quantities. In our approach we assume that the scalar
field has vanishing expectation value, hσi ¼ 0, and this
leads to certain constraints on the two parameters S5 and S6
controlling the potential.

S5 ≥ −2
ffiffiffiffiffi
S6

p
; S6 ≥ 0: ð11Þ

We are now ready to move to the renormalization
procedure which follows the standard route of quantum
correcting the theory when enforcing the counting
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OðpÞ ∼OðmπÞ ∼OðmσÞ. To cancel the one-loop diver-
gences we need to introduce a set of counterterms. Aside
from using the NLO low-energy constants Li to cancel
divergences, when introducing the scalar it will be neces-
sary to introduce additional counterterms. In the equation
below, the first two terms correspond to renormalizing fπ
and B0 and they are needed to cancel divergences in the
pion mass and the pion decay constant. The remaining
counterterms are needed to cancel divergent contributions
to the scalar mass.

LCT ¼ K1m2
σhuμuμi þ K2m2

σhχþi þ
1

f2π
ðK3ð∂2σÞ2

þ K4m2
πð∂μσÞ2 þ K5m4

πσ
2Þ: ð12Þ

For convenience we write the counterterms with appro-
priate factors of either the scalar or pion mass, because it
allows us to keep the convention used in Eq. (7).

Ki ¼ Kr
i −

ΓK
i

32π2
R: ð13Þ

Setting the finite part Kr
i to zero is allowed because it

corresponds to a redefinition of the remaining coefficients
and bare quantities in the Lagrangian. However, we keep
them as unspecified constants in the calculations because
they are needed when discussing renormalization scale
dependence.
As stated in the Introduction, the structure of the scalar

contributions to the pion mass and decay constant have a
universal structure at next-to-leading order. The origin of
this universality resides in the fact that, at the lowest
relevant order, the interactions of the scalar field involve
either the pion kinetic term or the pion mass term as shown
below.

L2 ¼
1

2

�
1þ S1

�
σ

fπ

�
þ S2

�
σ

fπ

�
2
�
ð∂μϕ · ∂μϕÞ

−
1

2

�
1þ S3

�
σ

fπ

�
þ S4

�
σ

fπ

�
2
�
m2

πðϕ · ϕÞ: ð14Þ

For the pion decay constant one can use the operators
associated to the external left transforming current,1 which
again is universal at lowest order.

L2 ¼
fπffiffiffi
2

p
�
1þ S1

�
σ

fπ

�
þ S2

�
σ

fπ

�
2
�
ð∂μϕ · lμÞ: ð15Þ

Let us now pause and summarize the three sets of low-
energy constants present in the outlined set-up. The first set
Lr
i parametrizes the pion interactions in the original chiral

Lagrangian, and their values are known in QCD [32]. The
LECs can in general be divided in contributions from
the heavier resonances R that have been integrated out in
the effective theory, plus a remaining piece.

Lr
i ¼ L̂i þ

X
R

LR
i ; ð16Þ

In QCD [29,33,34] it was argued that heavy spin one
resonances saturate the right-hand side of Eq. (16), meaning
that the remainder L̂i is subleading compared to Lr

i , for
certain processes. In these papers the lightest QCD scalar
resonance was assumed to be heavy and therefore integrated
out. In our approach the scalar resonance is assumed to be
light and for this reason it cannot be integrated out. As a
result, the sum in Eq. (16) will no longer include the
isosinglet scalar contribution, and the theorywill furthermore
be affected by the presence loops with a light propagating
scalar. For this reason the Lr

i coefficients will in general be
different. When increasing the mass of the scalar resonance,
the present framework recovers the results of [29,33,34] in
terms ofS1 andS3.Operatorswith higher powers of the scalar
field, explicitly the operators proportional to the couplingsS2
and S4, are subleading in this limit.
The second set Si parametrizes the scalar interactions,

and the last set Kr
i is associated to the counterterms needed

to cancel divergences. From naive dimensional analysis, it
is natural to expect that NLO operators should be sup-
pressed by a loop factor 1=ð4πÞ2 ∼ 10−3 and this allows us
to estimate the size of the low-energy constants.

Lr
i ∼Oð10−3Þ; Si ∼Oð1Þ; Kr

i ∼Oð10−3Þ: ð17Þ

For QCD, this naive estimate for Lr
i is in agreement with

the results from lattice simulations and experiments. For
this reason, we believe that similar estimates should hold
true for Si and Kr

i .

III. NLO CORRECTIONS

A. Pion mass and decay constant

Since the physical pion mass is defined as the pole in the
propagator, we now determine the contributions to the pion
self-energy and solve for the pole-mass via the equation

m̂2
π −m2

π − Σðm̂2
πÞ ¼ 0; ð18Þ

where m̂2
π is the physical pion mass, m2

π is the bare pion
mass in the Lagrangian, and Σðp2Þ is the pion self-energy.
When including the scalar field there are two new dia-
grams, as shown in Fig. 1 (left), contributing to the self-
energy. Similarly there are two new diagrams contributing
to the pion decay constant, as shown in Fig. 1 (right), where
the outgoing legs have been replaced by an external current.

1In the pseudo-real case, the external field coupling to left-
handed quarks enter in both rμ and lμ at the effective level.
However, since the interactions with the isosinglet scalar factor-
ize, this distinction will not make a difference at NLO.
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Before we write down the results for m̂2
π and f̂π we

introduce some short-hand notation to make the results
more readable. We write the chiral logs as

Lx ¼
1

16π2
log

�
m2

x

μ2

�
; ð19Þ

with x ¼ fπ; σg denoting one of the two masses. From the
loop diagrams we obtain unitarity corrections written in
terms of the functions Jðm2

1; m
2
2; p

2Þ and Hðm2
1; m

2
2; p

2Þ
defined in Appendix. For the on-shell results we use the
auxiliary functions

Jxyz ¼
1

16π2
½Jðm2

x; m2
y; m2

zÞ þ 1�;

Hxyz ¼
1

16π2
½Hðm2

x; m2
y; m2

zÞ�; ð20Þ

to shorten the expressions.
In this notation, the pion mass now reads

m̂2
π ¼ m2

π þ
m4

π

f2π
ða1 þ a2Lπ þ a3JπσπÞ

þm4
σ

f2π
ða4Lσ þ a5JπσπÞ

þm2
πm2

σ

f2π
ða6 þ a7Lπ þ a8Lσ þ a9JπσπÞ; ð21Þ

and the pion decay constant is

f̂π ¼ fπ þ
m2

π

fπ
ðb1 þ b2Lπ þ b3JπσπÞ

þm2
σ

fπ
ðb4 þ b5Lσ þ b6JπσπÞ

þHπσπ

fπ
ðb7m4

π þ b8m4
σ þ b9m2

πm2
σÞ: ð22Þ

From the above it is evident that the presence of the scalar
field dramatically increases the complexity of the resulting
corrections when comparing to the usual ChPT case, where
the only nonzero coefficients are a1;2 and b1;2. The
coefficients ai and bi are combinations of the low-energy
constants Si as shown in Table I. In the definition of a1;2
and b1;2 the coefficients aM;F and bM;F encode the standard

results from ChPT, which depend on the symmetry break-
ing pattern. For the two symmetry breaking patterns
considered here, these coefficients can be found in
Table II together with the values of Γi and ΓK

i needed to
cancel the divergences. In the general case, they can be
found in [28].
For the pion decay constant the last term is special and it

arises because we need to take the derivative of
Jðm2

1; m
2
2; p

2Þ when calculating the renormalization con-
stant. One should note thatHπσπ has mass dimension minus
two and this is the reason for the additional powers of mass
multiplying this term.

B. Consistency checks

We now consider several limits and checks to verify our
results and to show that we recover known results from
current-algebra. For example, when setting Si ¼ 0 and
Kr

i ¼ 0 we recover the known ChPT results. This follows
from the algebraic structure of m̂2

π and f̂π together with the
values listed in Table I and Table II.
When the bare pion mass vanishes, i.e., m2

π → 0, we also
recover the chiral limit of the theory that requires m̂2

π ¼ 0

together with a finite value for f̂π. The vanishing of the
renormalized pion mass arises from the fact that Jπσπ
satisfies

Jπσπ ¼ Lσ ¼
1

16π2
log

�
m2

σ

μ2

�
; ð23Þ

in the chiral limit, together with the relation a5 ¼ −a4. The
pion decay constant, in the chiral limit, does not vanish

f̂π ¼ fπ þ
m2

σ

fπ

�
b4 þ ðb5 þ b6ÞLσ −

b8
32π2

�
; ð24Þ

where in this limit we used

Hπσπ ¼ −
1

16π2
1

2m2
σ
: ð25Þ

The result in Eq. (24) clearly shows that f̂π and fπ no
longer coincide in the chiral limit, because of the correc-
tions from the scalar field.
As mentioned in Sec. II, the renormalized coefficients Lr

i
and Kr

i depend on the renormalization scale μ and this

FIG. 1. Loop diagrams contributing (at next-to-leading order) to the pion mass (left) and pion decay constant (right). The solid lines
are pions, the dashed lines are scalars, and the wiggly lines are external currents. Here we only show the new diagrams involving the
scalar field, but in both cases there is an additional tadpole diagram and a contact term.
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dependence can be used to perform another consistency
check. The check consists in changing the scale from μ to ~μ
in our results and show that this translates into shifting the
renormalized coefficients in the following way.

Lr
i ðμÞ → Lr

i ð ~μÞ þ
Γi

32π2
log

�
~μ2

μ2

�
; ð26Þ

Kr
i ðμÞ → Kr

i ð~μÞ þ
ΓK
i

32π2
log

�
~μ2

μ2

�
: ð27Þ

These relations hold in our results and rely on the specific
combinations of Lx and Jxyz because both depend on the
renormalization scale. Given all the above we are confident
that our results are solid.

C. Scalar mass and width

The next-to-leading order corrections to the two-point
function for the scalar field stems from its coupling to the
pions (the first two diagrams in Fig. 2) and its self-
interactions (the last two diagrams in Fig. 2) coming from
the σ4 and σ3 terms in the Lagrangian. Here we again define
the physical scalar mass m̂2

σ as the pole in the propagator.
Using the previously introduced notation, the renormalized
scalar mass reads

m̂2
σ ¼ m2

σ þ
m4

σ

f2π
ðc1Lσ þ c2Jππσ þ c3Jσσσ − 2Kr

3Þ

þm4
π

f2π
ðc4Lπ þ c5Jππσ − 2Kr

5Þ

þm2
πm2

σ

f2π
ðc6Lπ þ c7Jππσ − 2Kr

4Þ; ð28Þ

TABLE I. List of coefficients used in the definition of the pion mass, the pion decay constant, and the scalar mass.
It should be noted that not all coefficients are independent. The coefficients aM;F and bM;F are the standard results
from chiral perturbation theory and they can be found in Table II. In the definition of ci the constant nπ denotes the
number of pions (the number of broken generators).

ai bi ci

1 bM bF 6S6
2 aM − 1

2
ð2S1S3 − S21Þ aF − 3

8
S21 − 1

4
nπS21

3 −ðS1 − S3Þ2 − 1
2
ðS1S3 − S21Þ −9S25

4 1
4
S21 −2Kr

1 2nπðS1S3 − S21Þ þ nπðS4 − S2Þ
5 −a4 1

8
ð12S2 þ S21Þ −nπðS1 − S3Þ2

6 4ðKr
2 − Kr

1Þ − 1
4
S21

1
2
nπS21

7 −a4 − 1
2
ðS1 − S3Þ2 nπðS21 − S1S3Þ

8 S4 − S2 − S21 þ S1S3 − 1
8
S21 –

9 S21 − S1S3 b3 –

TABLE II. The coefficients Γi and ΓK
i used in Eq. (7) and Eq. (13) to cancel the one-loop divergences in the pion

mass and decay constant. The two coefficients Γ5 and Γ8 are unconstrained for these two symmetry breaking
patterns, and the values are simply chosen to coincide with [28]. The constants aM;F and bM;F encode the standard
results from chiral perturbation theory and, in the general case, they can also be found in [28].

SUð2Þ × SUð2Þ → SUð2Þ SUð4Þ → Spð4Þ
ΓK
1 − 1

8
S21 þ 3

2
S2 − 1

8
S21 þ 3

2
S2

ΓK
2 2S2 − 1

2
S4 2S2 − 1

2
S4

Γ4 − 1
32
S21 þ 1

8
S1S3 − 1

2
Γ5 þ 1

4
− 1

64
S21 þ 1

16
S1S3 − 1

4
Γ5 þ 1

8

Γ5
1
4

1
4

Γ6
1
64
S21 þ 1

16
S23 − 1

2
Γ8 þ 3

32
1

128
S21 þ 1

32
S23 − 1

4
Γ8 þ 5

128

Γ8 0 0

aM 1
2

3
4

bM 16ð2Lr
6 þ Lr

8Þ − 8ð2Lr
4 þ Lr

5Þ 16ð4Lr
6 þ Lr

8Þ − 8ð4Lr
4 þ Lr

5Þ
aF −1 −1
bF 8Lr

4 þ 4Lr
5 16Lr

4 þ 4Lr
5
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with the coefficients ci listed in Table I. To renormalize the
scalar mass we choose the values of ΓK

i listed below and
stress that they only depend on the number of pions nπ but
no other specific detail of the given breaking pattern.

ΓK
3 ¼ c1 þ c2 þ c3;

ΓK
4 ¼ c6 þ c7;

ΓK
5 ¼ c4 þ c5: ð29Þ

We notice that the scalar mass m̂2
σ develops a branch-cut at

mσ ¼ 2mπ because the two pions in the second diagram of
Fig. 2 can go on-shell. Above this value, the decay width of
the scalar can be read off from the imaginary part of the
mass.

Γ ¼ −
c2m4

σ þ c5m4
π þ c7m2

σm2
π

16πmσf2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

m2
σ

s
: ð30Þ

In our approach we have two unknown LECs in the
expression for the decay width. The first coefficient S1
is the coupling between the scalar field and the kinetic term
for the pions, while the second coefficient S3 comes from
the coupling between the scalar field and the pion mass
term operator. For the SUð2ÞL × SUð2ÞR → SUð2ÞV case,
the result for Γ agrees with the expression obtained in [27]
when using the identification S1 ¼ 4c1d and S3 ¼ 0.

IV. THE MANY NATURES OF THE SCALAR

Because the scalar corrections have been introduced in a
generic way, we can consider different origins for the scalar
field, within the limits of the counting scheme. In practice
each given nature corresponds to imposing relations among
the Si couplings parametrizing the scalar interactions.

A. Dilaton

An interesting class of theories is the one in which a light
scalar emerges as pseudodilaton [12,15,35–40] for which
the Lagrangian reads:

L2 ¼
f2π
4

�
huμuμi exp

�
2σ

fπ

�
þ hχþi exp

�
yσ
fπ

��
: ð31Þ

Although we chose to use fπ as the compensating scale for
the pseudodilaton in the exponential, de facto, depending
on the microscopic realization it can differ, and our results

still apply. Expanding the exponential to second order we
find that our Si are now related via

S1 ¼ S2 ¼ 2; S3 ¼ y; S4 ¼
y2

2
: ð32Þ

Here y ¼ 3 − γ� with γ� being the anomalous dimension of
the fermion mass in the underlying gauge theory. It is now
evident that γ� is the only new parameter in the expression
for the pion mass (21) and the pion decay constant (22)
when the scalar field is a pseudodilaton.

m̂2
π ¼ m2

π þ
m4

π

f2π
ðbM þ ðaM − 2ÞLπ − ð2 − yÞ2JπσπÞ

þm4
σ

f2π
ðLσ − JπσπÞ þ

m2
πm2

σ

f2π

×

�
a6 − Lπ −

1

2
ðyþ 6Þðy − 2ÞLσ þ ð4 − 2yÞJπσπ

�
ð33Þ

f̂π ¼ fπ þ
m2

π

fπ

�
bF þ

�
aF −

3

2

�
Lπ þ ð2 − yÞJπσπ

�

þm2
σ

fπ

�
b4 þ

7

2
Lσ − Jπσπ

�

−
Hπσπ

fπ

�
1

2
ð2 − yÞ2m4

π þ
1

2
m4

σ − ð2 − yÞm2
πm2

σ

�
:

ð34Þ

Here a6 and b4 contain the unconstrained coefficients Kr
i .

In certain near-conformal theories, perturbation theory
predicts that γ� ≈ 1 is possible [41]. In the limiting case
γ� ¼ 1 (or equivalently y ¼ 2) the expressions for m̂2

π and
f̂π simplifies considerably, because the coefficient in front
of several terms vanishes. We stress that the σ field in this
formulation is the fluctuation around the expectation value.
For a discussion about how the expectation value depends
on the low energy parameters for the dilaton and the pions
we refer to [42].

B. Large-N limit

It is well known that the pion decay constant squared is
proportional to N when the underlying dynamics, yielding
the low energy effective theories, arises from an SUðNÞ

FIG. 2. Loop diagrams contributing (at next-to-leading order) to the scalar mass. The solid lines are pions and the dashed lines are
scalars.
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gauge theory with fermions transforming according to the
fundamental representation of the theory. This means that
in the large-N limit the pion interaction strength vanishes.
This feature is common to any meson that is predominantly
made by a fermion-antifermion pair. Furthermore their
mass is leading in N. Assuming that also the scalar singlet
is a leading N meson one finds

f2π ∼OðNÞ; m2
σ ∼Oð1Þ: ð35Þ

This counting is automatically encoded in our effective
theory since, order-by-order, corrections are suppressed by
factors of fπ . It is possible to generalize the present
formalism to encode different large-N counting schemes
arising when choosing, for example, fermions in different
representations of the underlying gauge group as shown
in [31].
However in the strict large-N limit one has also to take

into account, for fermions in the fundamental representa-
tion, the fact that one more state becomes parametrically
light with N i.e. the pseudoscalar associated to the Uð1Þ
axial anomaly. For a review on how to incorporate this
state, and generalizations to different representations
see [43].

C. Linear sigma model

The Lagrangian presented in Sec. II can be compared to
the linear sigma model by properly matching the low-
energy constants. To this end we consider the linear sigma
model with N pions ϕa and a single scalar field σ. With the

notation Φ ¼ ðσ; ~ϕÞT we can write the Lagrangian of the
linear sigma model manifestly invariant under a global
OðN þ 1Þ symmetry.

L ¼ 1

2
ð∂μΦÞTð∂μΦÞ þ 1

2
μ2ðΦTΦÞ − 1

4
λðΦTΦÞ2; ð36Þ

After the σ field acquires a vacuum expectation value
v2 ¼ μ2=λ the Lagrangian can be written as

L ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μ

~ϕÞ2 − μ2σ2 −
1

2
λσ2 ~ϕ2

− vλðσ~ϕ2 þ σ3Þ − 1

4
λðσ4 þ ~ϕ4Þ: ð37Þ

We observe that the pions are massless and it is understood

that σ and ~ϕ are the fluctuations around the vacuum. After
spontaneous symmetry breaking, the global symmetry of
the Lagrangian has furthermore been reduced to OðNÞ. We
can exploit the following homomorphisms to rewrite the
linear sigma model in such a way that we have the same
global symmetries as we do in the chiral Lagrangian.

Oð4Þ → Oð3Þ ≅ SUð2ÞR × SUð2ÞL → SUð2ÞV
Oð6Þ → Oð5Þ ≅ SUð4Þ → Spð4Þ:

The linear sigma model can be written in terms of a matrix
Σ such that the above symmetries are manifest in the
Lagrangian.

L ¼ 1

2DR
h∂μΣ†∂μΣi þ 1

2DR
μ2hΣ†Σi − 1

4D2
R
λhΣ†Σi2:

ð38Þ

We define the Σ matrix as

Σ ¼ ½ðσ þ vÞ þ iXaϕa�V; ð39Þ

where Xa are the broken generators taken to be DR ×DR

square matrices normalized such that hXaXbi ¼ DRδ
ab.

The matrix V encodes the vacuum alignment. For
SUð2ÞL × SUð2ÞR → SUð2ÞV it is the identity matrix,
while for SUð4Þ → Spð4Þ case [44], it is given by

V ¼

0
BBB@

0 0 −1 0

0 0 0 −1
þ1 0 0 0

0 þ1 0 0

1
CCCA: ð40Þ

We are now ready to make the connection to our chiral
Lagrangian by rewriting the Σ matrix as

Σ ¼ ðσ þ vÞUV; ð41Þ

where U ¼ expðiXaϕa=vÞ is a unitary matrix. To leading
order in 1=v this definition coincides with the original
definition in Eq. (39). The Lagrangian in Eq. (38) can now
be written as

L ¼ v2

2DR

�
1þ 2σ

v
þ σ2

v2

�
h∂μU†∂μUi þ 1

2
ð∂μσÞ2

− λv2σ2
�
1þ σ

v
þ σ2

4v2

�
: ð42Þ

By expanding the kinetic term for the pions we can now
match this Lagrangian to our chiral Lagrangian in Eq. (14)
and the scalar Lagrangian in Eq. (10) via the following
identifications.

fπ ¼ v; S1 ¼ 2; S2 ¼ 1; m2
σ ¼ 2λv2;

S5 ¼ 1; S6 ¼
1

4
: ð43Þ

In Eq. (42) the pions are massless and for this reason we
cannot match the two coefficients S3 and S4. This could
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eventually be done by introducing an explicit breaking term
in Eq. (38).
For completeness we notice that, at the classical level,

one can relate the linear sigma model to the dilaton via the
field redefinition

σ → fπ

�
exp

�
σ

fπ

�
− 1

�
: ð44Þ

D. Goldstone boson

If the scalar field is a Goldstone boson, then the effective
theory is invariant under, at least, a shift symmetry
σ → σ þ a. This implies that only derivative couplings are
allowed in the Lagrangian. In our setup this corresponds to
choosing all Si ¼ 0 in which casewe recover standard chiral
perturbation theory results for the quantities computed here.
However, scalar effects will appear at higher orders in the
chiral expansion. One can allow for a controllably small
breaking of the shift symmetry by requiring

Si ≪ Oð1Þ: ð45Þ

This will significantly reduce the effects from the sca-
lar loops.

E. QCD

The present framework is directly applicable to QCD
where different approaches point to the existence of a scalar
state [1–10,45–51] with mass mσ ¼ 457 MeV and width
Γ ¼ 558 MeV, where the values are taken from Ref. [52].
Several earlier and modern interpretations of the under-

lying nature of this state have been put forward in the
literature [1–5,8–10,45–51,53–63]. These investigations
seem to converge toward the presence of a large four-
quark component of this state.
Given an assumed nature of this state one can, using the

present framework, test it against experimental and lattice
results, when available. For example already from the limited
knowledge of the width and mass we can derive the relation

S1 ¼ −0.227S3 þ 2.535; ð46Þ

which is in agreement with the expectation given in Eq. (17).
The contribution from S3 is naturally suppressed by the small
pion mass.
Assuming that the lightest massive scalar behaves as a

pseudodilaton [35,64] we have the further relations
S1 ¼ S2 ¼ 2, S3 ¼ y and S4 ¼ y2=2 that from the previous
constraint permits to determine y ¼ 2.357 and conse-
quently a would be fermion mass anomalous dimension
of γ� ¼ 3 − y ¼ 0.643. One can further test the relation,
and consequently the limit, via its impact on the pion mass
(33) and decay constant (34) at the NLO as well as in
processes such as pion-pion scattering. In the linear sigma
model limit [65,66] we have S1 ¼ 2 and S2 ¼ 1 leading to

the same prediction for S3 but the mass and decay constant
renormalize differently than in the pseudodilatonic limit.
As for the relevant interpretation in terms of a four-quark

state [1–10,45–51] one can envision different underlying
realisations that range from this state emerging prevalently
as bound state of pions to having a more compact wave
function at the quark level. Each of these possibilities will
lead to specific predictions for the LECs that can, in
principle, be obtained within model computations. For
example, the mass of the sigma in a four-quark interpre-
tation increases with the number of colors, see Fig. 5 of [4],
modifying the large N counting in Sec. IV B. It would
therefore be very exciting, in the future, to investigate these
limits within the present framework.

V. CONCLUSION

We added an isosinglet scalar to the chiral Lagrangian
and determined the radiative corrections for the pion mass
and decay constant. We also determined the quantum
corrections for the two-point scalar function and deter-
mined its physical mass and width. The analysis is
performed for two breaking patterns of immediate rel-
evance for phenomenology and lattice simulations. Our
analysis extends previous results and it embraces different
physical realizations for the isosinglet, such as the dilaton,
the (pseudo) Goldstone boson, the σ state in QCD, and the
linear sigma model. The results presented here can also be
used to extrapolate a potentially light isoscalar mass to the
chiral limit in lattice simulations.

ACKNOWLEDGMENTS

The CP3-Origins centre is partially funded by the Danish
National Research Foundation, Grant No. DNRF90. M. H.
is funded by a Lundbeck Foundation Fellowship grant.

APPENDIX: ONE-LOOP INTEGRALS

In this appendix we list the one-loop integrals needed in
our calculations. For the diagrams considered here we need
a total of eight different integrals.

I1 ¼ iμϵ
Z

d4k
ð2πÞ4

1

k2 −m2
¼ A0ðm2Þ ðA1Þ

I2 ¼ iμϵ
Z

d4k
ð2πÞ4

k2

k2 −m2
¼ m2A0ðm2Þ ðA2Þ

I3 ¼ iμϵ
Z

d4k
ð2πÞ4

1

½k2 −m2
1�½ðkþ qÞ2 −m2

2�
¼ B0ðm2

1; m
2
2; q

2Þ ðA3Þ

I4 ¼ iμϵ
Z

d4k
ð2πÞ4

qμkμ

½k2 −m2
1�½ðkþ qÞ2 −m2

2�
¼ B1ðm2

1; m
2
2; q

2Þ ðA4Þ
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I5 ¼ iμϵ
Z

d4k
ð2πÞ4

k2

½k2 −m2
1�½ðkþ qÞ2 −m2

2�
¼ A0ðm2

2Þ þm2
1B0ðm2

1; m
2
2; q

2Þ ðA5Þ

I6 ¼ iμϵ
Z

d4k
ð2πÞ4

qμqνkμkν

½k2 −m2
1�½ðkþ qÞ2 −m2

2�
¼ q2B2ðm2

1; m
2
2; q

2Þ ðA6Þ

I7 ¼ iμϵ
Z

d4k
ð2πÞ4

qμkμk2

½k2 −m2
1�½ðkþ qÞ2 −m2

2�
¼ ½m2

1B1ðm2
1; m

2
2; q

2Þ − q2A0ðm2
2Þ� ðA7Þ

I8 ¼ iμϵ
Z

d4k
ð2πÞ4

k4

½k2 −m2
1�½ðkþ qÞ2 −m2

2�
¼ ðm2

1 þm2
2 þ q2ÞA0ðm2

2Þ þm4
1B0ðm2

1; m
2
2; q

2Þ: ðA8Þ

The solutions to the integrals are written in terms of the four
functions listed below.

A0ðm2Þ ¼ m2

16π2

�
log

�
m2

μ2

�
− R

�
ðA9Þ

B0ðm2
1; m

2
2; q

2Þ ¼ 1

16π2
½1 − Rþ Jðm2

1; m
2
2; q

2Þ� ðA10Þ

B1ðm2
1; m

2
2; q

2Þ ¼ 1

2
½A0ðm2

1Þ − A0ðm2
2Þ

þ ðm2
2 −m2

1 − q2ÞB0ðm2
1; m

2
2; q

2Þ�
ðA11Þ

B2ðm2
1; m

2
2; q

2Þ ¼ 1

2
½A0ðm2

2Þ þ ðm2
2 −m2

1 − q2

×ÞB1ðm2
1; m

2
2; q

2Þ�: ðA12Þ

The unitarity corrections are parametrized by the
function

Jðm2
1; m

2
2; q

2Þ

¼
Z

1

0

dx log

�
xm2

2 þ ð1 − xÞm2
1 − xð1 − xÞq2 þ iϵ
μ2

�
ðA13Þ

¼ 1

m2
1 −m2

2

�
m2

1 log

�
m2

1

μ2

�
−m2

2 log

�
m2

2

μ2

��
− 1

þ
Z

1

0

dx log

�
xm2

2 þ ð1 − xÞm2
1 − xð1 − xÞq2 þ iϵ

xm2
2 þ ð1 − xÞm2

1

�
:

ðA14Þ

In our results we also need the derivative of this function
with respect to q2.

Hðm2
1; m

2
2; q

2Þ ¼ ∂
∂q2 Jðm

2
1; m

2
2; q

2Þ

¼
Z

1

0

dx

�
xðx − 1Þ

xm2
2 þ ð1 − xÞm2

1 þ xðx − 1Þq2
�
:

ðA15Þ
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