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We study the relation between the continuum threshold s0 within finite energy sum rules and the trace of
the Polyakov loop Φ in the framework of a nonlocal SU(2) chiral quark model, establishing a contact
between both deconfinement order parameters at finite temperature T and chemical potential μ. In our
analysis, we also include the order parameter for the chiral symmetry restoration, the chiral quark
condensate. We found that s0 and Φ provide us with the same information for the deconfinement transition,
both for the zero and finite chemical potential cases. At zero density, the critical temperatures for both
quantities coincide exactly and, at finite μ both order parameters provide evidence for the appearance of a
quarkyonic phase.
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I. INTRODUCTION

In QCD the strong interaction among quarks depends on
their color charge. When quarks are placed in a medium,
this color charge is screened due to density and temperature
effects [1]. If the density and/or the temperature increases
beyond a certain critical value, one expects that the
interactions between quarks no longer confine them inside
a hadron, so that they are free to travel longer distances and
deconfine. This transition from a confined to a deconfined
phase is usually referred to as the deconfinement phase
transition.
A separate phase transition takes place when the reali-

zation of chiral symmetry shifts from a Nambu-Goldstone
phase to a Wigner-Weyl phase. Based on lattice QCD
evidence [2] one expects these two phase transitions to take
place at approximately the same temperature at zero
chemical potential. At finite density these two transitions
can arise at different critical temperatures. The result will be
a quarkyonic phase, where the chiral symmetry is restored
but the quarks and gluons remain confined.
In order to characterize the properties of these phase

transitions it has been customary to study the behavior of
corresponding order parameters as functions of the temper-
ature T and the baryon chemical potential μ, namely the
trace of the Polyakov loop (PL) ΦðT; μÞ (deconfinement
phase transition) and quark antiquark chiral condensate
hψ̄ψiðT; μÞ (chiral symmetry restoration), respectively.
Another important parameter in the discussion of these

phase transitions is the role that an external magnetic field
may play, inducing changes in the critical temperature, in
the location of the critical endpoint, etc [3]. However, in

this work we will not refer to magnetic field effects, since
the goal of our discussion is to compare the Polyakov loop
order parameter with another QCD deconfinement param-
eter that has been introduced in the literature [4] in the form
of the squared energy threshold, s0ðT; μÞ, for the onset of
perturbative QCD (PQCD) in hadronic spectral functions.
For an actual general review see Ref. [5]. Around this
energy, and at zero temperature, the resonance peaks in the
spectrum are either no longer present or become very
broad. The smooth hadronic spectral function thus
approaches the PQCD regime. With increasing temperature
approaching the critical temperature for deconfinement,
one would expect hadrons to disappear from the spectral
function which should then be described entirely by PQCD.
When both T and μ are nonzero, lattice QCD simulations

cannot be used, because of the sign problem in the
fermionic determinant. Therefore, one needs to resort either
to mathematical constructions to overcome the above
limitation, or to model calculations.
The two deconfinement order parameters mentioned

before: ΦðT; μÞ and s0ðT; μÞ can be used to realize a
phenomenological description of the deconfinement tran-
sition at finite temperature and density.
The natural framework to determine s0 has been that of

QCD sum rules [6]. This quantum field theory framework
is based on the operator product expansion (OPE) of
current correlators at short distances, extended beyond
perturbation theory, and on Cauchy’s theorem in the
complex s-plane. The latter is usually referred to as
quark-hadron duality. Vacuum expectation values of quark
and gluon field operators effectively parametrize the effects
of confinement. An extension of this method to finite
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temperature was first outlined in [4]. Further evidence
supporting the validity of this program was provided in [7],
followed by a large number of applications [8,9].
To analyze the role of the PL, we will concentrate on

nonlocal Polyakov-Nambu-Jona-Lasinio (nlPNJL) models
[10–15], in which quarks move in a background color field
and interact through covariant nonlocal chirally symmetric
four point couplings. These approaches, which can be
considered as an improvement over the (local) PNJL model
[16–22], offer a common framework to study both the
chiral restoration and deconfinement transitions. In fact,
the nonlocal character of the interactions arises naturally in
the context of several successful approaches to low-energy
quark dynamics [23–25], and leads to a momentum
dependence in the quark propagator that can be made
consistent [26] with lattice results [27–29].
In view of the above mentioned points, the aim of the

present work is to study the relation between both order
parameters for the deconfinement transition at finite tem-
perature and chemical potential,Φ and s0, using the thermal
finite energy sum rules (FESR) with inputs obtained from
nlPNJL models.

II. FINITE ENERGY SUM RULES

We begin by considering the (charged) axial-vector
current correlator at T ¼ 0

Πμνðq2Þ ¼ i
Z

d4xeiq·xh0jTðAμðxÞAνð0ÞÞj0i;

¼ −gμνΠ1ðq2Þ þ qμqνΠ0ðq2Þ; ð1Þ

where AμðxÞ ≕ ūðxÞγμγ5dðxÞ: is the axial-vector current,
qμ ¼ ðω; ~qÞ is the four-momentum transfer, and the func-
tions Π0;1ðq2Þ are free of kinematical singularities.
Concentrating on the function Π0ðq2Þ and writing the
OPE beyond perturbation theory in QCD [6], one of the
two pillars of the sum rule method, one has

Π0ðq2ÞjQCD ¼ C0Î þ
X
N¼1

C2Nðq2; μ2ÞhÔ2Nðμ2Þi; ð2Þ

where μ2 is a renormalization scale. The Wilson coeffi-
cients CN depend on the Lorentz indices and quantum
numbers of the currents. Finally, the local gauge invariant
operators ÔN , are built from the quark and gluon fields in
the QCD Lagrangian. The vacuum expectation values of
those operators (Ô2Nðμ2Þ), dubbed as condensates, para-
metrize nonperturbative effects and have to be extracted
from experimental data or model calculations. These
operators are ordered by increasing dimensionality and
the Wilson coefficients, calculable in PQCD, fall off by
corresponding powers of −q2. The unit operator above has
dimension d ¼ 0 and C0Î stands for the purely perturbative
contribution. Hence, this OPE factorizes short distance

physics, encapsulated in the Wilson coefficients, and long
distance effects parametrized by the vacuum condensates.
The second pillar of the QCD sum rules technique is

Cauchy’s theorem in the complex squared energy s-plane

1

π

Z
s0

0

dsfðsÞImΠ0ðsÞjHAD

¼ −
1

2πi

I
Cðjs0jÞ

dsfðsÞΠ0ðsÞjQCD; ð3Þ

where fðsÞ is an arbitrary analytic function, and the radius
of the circle s0 is large enough for QCD and the OPE to be
used on the circle. The integral along the real s-axis
involves the hadronic spectral function. This equation is
the mathematical statement of what is usually referred to as
quark-hadron duality. Using the OPE, Eq. (2), and an
integration kernel fðsÞ ¼ sNðN ¼ 1; 2;…Þ one obtains the
FESR

ð−ÞN−1C2NhÔ2Ni ¼ 4π2
Z

s0

0

dssN−1 1

π
ImΠ0ðsÞjHAD

−
sN0
N

½1þOðαsÞ�ðN ¼ 1; 2;…Þ: ð4Þ

For N ¼ 1, the dimension d ¼ 2 term in the OPE does
not involve any condensate, as it is not possible to construct
a gauge invariant operator of such a dimension from the
quark and gluon fields. There is no evidence for such a term
(at T ¼ 0) from FESR analyses of experimental data on
eþe− annihilation and τ decays into hadrons [30,31]. At
high temperatures, though, there seems to be evidence for
some d ¼ 2 term [32]. However, the analysis to be reported
here is performed at lower values of T, so that we can safely
ignore this contribution in the sequel.
The dimension d ¼ 4 term, a renormalization group

invariant quantity, is given by

C4hÔ4i ¼
π

6
hαsG2i þ 2π2ðmu þmdÞhq̄qi: ð5Þ

The leading power correction of dimension d ¼ 6 is the
four-quark condensate, which in the vacuum saturation
approximation [6] becomes

C6hÔ6i ¼
896

81
π3αsjhq̄qij2; ð6Þ

which has a very mild dependence on the renormalization
scale. This approximation has no solid theoretical justifi-
cation, other than its simplicity. Hence, there is no reliable
way of estimating corrections, which in fact appear to be
rather large from comparisons between Eq. (6) and direct
determinations from data [31].
The extension of this program to finite temperature is

fairly straightforward [4,7,33], with the Wilson coefficients
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in the OPE, Eq. (2), remaining independent of T at leading
order in αs, and the condensates developing a temperature
dependence. Radiative corrections in QCD involve now an
additional scale, i.e. the temperature, so that αs≡αsðμ2;TÞ.
This problem has not yet been solved successfully.
Nevertheless, from the size of radiative corrections at
T ¼ 0 one does not expect any major loss of accuracy
in results from thermal FESR to leading order in PQCD, as
long as the temperature is not too high, say T ≲ 200 MeV.
Essentially all applications of FESR at T ≠ 0 have been
done at leading order in PQCD, thus implying a systematic
uncertainty at the level of 10%.
In the static limit (~q → 0), to leading order in PQCD, and

for T ≠ 0 and μ ≠ 0 the function Π0ðq2ÞjQCD in Eq. (1)
becomes Π0ðω2; T; μÞjQCD; to simplify the notation we
shall omit the T and μ dependence in the sequel. A
straightforward calculation of the spectral function in
perturbative QCD, at finite temperature and finite density
gives

1

π
ImΠ0ðsÞjPQCD ¼ 1

4π2

�
1 − ~nþ

� ffiffiffi
s

p
2

�
− ~n−

� ffiffiffi
s

p
2

��

−
2

π2
T2δðsÞ½Li2ð−eμ=TÞ þ Li2ð−e−μ=TÞ�;

ð7Þ

where Li2ðxÞ is the dilogarithm function, s ¼ ω2, and

~n�ðxÞ ¼
1

eðx∓μÞ=T þ 1
ð8Þ

are the Fermi-Dirac thermal distributions for particles and
antiparticles, respectively.
In the hadronic sector we assume pion-pole dominance

of the hadronic spectral function, i.e. the continuum
threshold s0 to lie below the first radial excitation with
massMπ1 ≃ 1300 MeV. This is a very good approximation
at finite T, as we expect s0 to be monotonically decreasing
with increasing temperature. In this case,

1

π
ImΠ0ðsÞjHAD ¼ 2f2πðT; μBÞδðs −m2

πÞ; ð9Þ

where fπðT; μBÞ is the pion decay constant at finite T and μ,
with fπð0; 0Þ ¼ 92.21� 0.14 MeV [34]. Notice we will
not include in our spectral function the first part of a1
resonance obtained from the τ-decay data [35], since still
there is no counterpart in the SU(2) nlPNJL model for the
description of the hadronic vector resonance. A zero
temperature analysis has been done for the vector case
in Ref. [36].
Turning to the FESR, Eq. (4), with N ¼ 1 and no

dimension d ¼ 2 condensate, and using Eqs. (7) and (9)
one finds

Z
s0ðT;μÞ

0

ds

�
1 − ~nþ

� ffiffiffi
s

p
2

�
− ~n−

� ffiffiffi
s

p
2

��

¼ 8π2f2πðT; μÞ þ 8T2½Li2ð−eμ=TÞ þ Li2ð−e−μ=TÞ�:
ð10Þ

This is a transcendental equation determining s0ðT; μÞ in
terms of fπðT; μÞ.
For completeness, the other two thermal FESR at zero

chemical potential are given by [35],

−C4hÔ4iðTÞ ¼ 4π2
Z

s0ðTÞ

0

dss
1

π
ImΠ0ðsÞjHAD

−
Z

s0ðTÞ

0

dss

�
1 − 2nF

� ffiffiffi
s

p
2T

��
; ð11Þ

C6hÔ6iðTÞ ¼ 4π2
Z

s0ðTÞ

0

dss2
1

π
ImΠ0ðsÞjHAD

−
Z

s0ðTÞ

0

dss2½1 − 2nF

� ffiffiffi
s

p
2T

�
�; ð12Þ

where nFðxÞ ¼ 1=ð1þ exÞ is the Fermi thermal function.

III. THERMODYNAMICS AT FINITE DENSITY
IN THE PNJL MODEL

We consider a nonlocal SU(2) chiral quark model that
includes quark couplings to the color gauge fields. The
corresponding Euclidean effective action is given by
[37,38]

SE ¼
Z

d4xfψ̄ðxÞð−iγμDμ þ m̂ÞψðxÞ

−
GS

2
½jaðxÞjaðxÞ − jPðxÞjPðxÞ� þ UðΦ½AðxÞ�Þg;

ð13Þ

where ψ is the Nf ¼ 2 fermion doublet ψ ≡ ðu; dÞT , GS is
the coupling parameter for the interaction terms and m̂ ¼
diagðmu;mdÞ is the current quark mass matrix. In what
follows we consider isospin symmetry,mu ¼ md ¼ m. The
fermion kinetic term in Eq. (13) includes a covariant
derivative Dμ ≡ ∂μ − iAμ, where Aμ are color gauge fields.
The nonlocal currents jaðxÞ; jPðxÞ are given by

jaðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
Γaψ

�
x −

z
2

�
;

jPðxÞ ¼
Z

d4zF ðzÞψ̄
�
xþ z

2

�
i=∂↔
2κp

ψ

�
x −

z
2

�
; ð14Þ

where, Γa ¼ ð1; iγ5~τÞ and uðx0Þ∂↔vðxÞ ¼ uðx0Þ∂xvðxÞ−∂x0uðx0ÞvðxÞ. The functions GðzÞ and F ðzÞ in Eq. (14)
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are nonlocal covariant form factors characterizing the
corresponding interactions.
Notice that the four currents jaðxÞ require a common

form factor GðzÞ in order to guarantee chiral invariance,
while the coupling jPðxÞjPðxÞ is self-invariant under
chiral transformations. The relative weight of the
interaction driven by jPðxÞ is controlled by the param-
eter κp. The scalar-isoscalar component of the jaðxÞ
current will generate a momentum dependent quark
mass in the quark propagator, while the “momentum”
current jPðxÞ will be responsible for a momentum
dependent quark wave function renormalization
(WFR) [26,37,38]. If is not included, the mass param-
eter in the quark propagator cannot be compare with
lattice results.
Now we perform a bosonization of the theory, introduc-

ing bosonic fields σ1;2ðxÞ and πaðxÞ, and integrating out the
quark fields. Details of this procedure can be found e.g.
in Ref. [26].
In order to analyze the properties of meson fields it is

necessary to consider the quadratic fluctuations in the
Euclidean action:

SquadE ¼ 1

2

Z
d4p
ð2πÞ4

X
M

rMGMðp2ÞϕMðpÞϕ̄Mð−pÞ; ð15Þ

where meson fluctuations δσa, δπa have been translated to a
charged basis ϕM, being M the scalar and pseudoscalar
mesons (σ; π0, π�) plus the σ2 field, and GM are the inverse
dressed propagators. The coefficient rM is 1 for charge
eigenstates M ¼ σi; π0, and 2 for M ¼ πþ. Meson masses
are then given by the equations

GMð−m2
MÞ ¼ 0; ð16Þ

where the full expressions for the one-loop functions
GMðqÞ can be found in Ref. [15,26]. In addition, physical
states have to be normalized through

~ϕMðpÞ ¼ Z−1=2
M ϕMðpÞ; ð17Þ

where

Z−1
M ¼ dGMðpÞ

dp2

����
p2¼−m2

M

: ð18Þ

At finite temperature, the meson masses are obtained by

solving GMð−m2
M; ~0Þ ¼ 0. The mass values determined by

these equations are the spatial “screening-masses” corre-
sponding to the zeroth Matsubara mode, and their inverses
describe the persistence lengths of these modes at equi-
librium with the heat bath [12].
At zero temperature, one can also calculate the weak

decay constants of pseudoscalar mesons. These are given

by the matrix elements of the axial currents Aa
μ between the

vacuum and the physical meson states,

{fabðp2Þpμ ¼ h0jAa
μð0ÞjδπbðpÞi: ð19Þ

The matrix elements can be calculated from the expansion
of the Euclidean effective action in the presence of external
axial currents,

h0jAa
μð0ÞjδπbðpÞi ¼

δ2SE
δAa

μδπbðpÞ
����
Aa
μ¼δπb¼0

; ð20Þ

Performing the derivative of the resulting expressions with
respect to the renormalized meson fields, we can finally
identify the corresponding pion weak decay constant
[15,26]

fπ ¼
mZ−1=2

π

m2
π

F0ð−m2
πÞ ð21Þ

with

F0ðp2Þ ¼ 8Nc

Z
d4q
ð2πÞ4 gðqÞ

ZðqþÞZðq−Þ
DðqþÞDðq−Þ

× ½qþ · q− þMðqþÞMðq−Þ� ð22Þ

where q� ¼ q� p=2 and DðqÞ ¼ q2 þM2ðqÞ, withMðpÞ
and ZðpÞ defined as

MðpÞ ¼ ZðpÞ½mþ σ̄1gðpÞ�;
ZðpÞ ¼ ½1 − σ̄2fðpÞ�−1: ð23Þ

Here gðpÞ and fðpÞ are the Fourier transforms of the form
factors in Eq. (14).
Since we are interested in the deconfinement and chiral

restoration critical temperatures, we extend the bosonized
effective action to finite temperature T and chemical
potential μ. This will be done using the standard imaginary
time formalism. Concerning the gauge fields Aμ, we
assume that quarks move on a constant background field
ϕ ¼ A4 ¼ iA0 ¼ igδμ0G

μ
aλa=2, where Gμ

a are SU(3) color
gauge fields. Then the traced Polyakov loop, which in the
infinite quark mass limit can be taken as an order parameter
of confinement, is given by Φ ¼ 1

3
Tr expðiϕ=TÞ. For the

light quark sector the trace of the Polyakov loop turns out
to be an approximate order parameter in the same way
the chiral quark condensate is an approximate order
parameter for the chiral symmetry restoration outside the
chiral limit. We work in the so-called Polyakov gauge [39],
where the matrix ϕ is given a diagonal representation
ϕ ¼ ϕ3λ3 þ ϕ8λ8.
The introduction of the Polyakov loop formally leads

to a complex valued action at nonzero chemical potential.
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Even for a complex Euclidean action, one can still search
for the configuration with the largest weight in the path
integral and refer to this as the mean field configuration.
One way to establish such a lowest order approximation is
to use the real part of the thermodynamic potential in the
mean field equations.
The thermal expectation values hΦi and hΦ�i of the

conjugate Polyakov loop fields must be real quantities
[20,40], this means Φ ¼ Φ� for the mean field configura-
tions. With the constraint of ϕ3 and ϕ8 being real, due to the
connection to the QCD color gauge group, implies ϕ8 ¼ 0,
leaving only ϕ3 as an independent variable, and there-
fore Φ ¼ ½2 cosðϕ3=TÞ þ 1�=3.

With the above definition, the Polyakov loop expectation
values hΦi and hΦ�i turn out to be equal in this limit, given
the reality constraint on the thermodynamical potential in
the mean field approximation ΩMFA. The corrections
beyond mean field for ImΩ, induced by the temporal gauge
fields, cause the splitting between hΦi and hΦ�i [20,41,42].
Following the same prescriptions as in previous works,

see e.g. Refs. [43,44], the real part of ΩMFA at finite
temperature T and chemical potential μ is given by

ΩMFA ¼ Ωreg þ Ωfree þ UðΦ; TÞ þ Ω0; ð24Þ

where

Ωreg ¼ −4T
X

c¼r;g;b

X∞
n¼−∞

Z
d3 ~p
ð2πÞ3 log

�ðρcn;~pÞ2 þM2ðρcn;~pÞ
Z2ðρcn;~pÞ

�
þ σ̄21 þ κ2pσ̄

2
2

2GS
;

Ωfree ¼ −4T
Z

d3 ~p
ð2πÞ3

X
c¼r;g;b

X
s¼�1

Re log

�
1þ exp

�
−
ϵp þ isϕc

T

��
; ð25Þ

here σ̄1;2 are the mean field values of the scalar fields. We
have also defined

ðρcn;~pÞ2 ¼ ½ð2nþ 1ÞπT þ ϕc − {μ�2 þ ~p2; ð26Þ

the sums over color indices run over c ¼ r, g, b, with the
color background fields components being ϕr ¼−ϕg¼ϕ3,

ϕb ¼ 0, and ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
. The term Ωreg is the regu-

larized expression for the thermodynamical potential of a
free fermion gas, and finally the last term in Eq. (24) is just
a constant fixed by the condition that ΩMFA vanishes at
T ¼ μ ¼ 0.
The effective gauge field self-interactions are given by

the Polyakov loop potential UðΦ; TÞ. At finite temperature
T, it is usual to take for this potential a functional form
based on properties of pure gauge QCD. One possible
Ansatz is that based on the logarithmic expression of the
Haar measure associated with the SU(3) color group
integration. The corresponding potential is given by [20]

U logðΦ; TÞ
T4

¼ −
1

2
aðTÞΦ2

þ bðTÞ log ð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ; ð27Þ

where

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

;

bðTÞ ¼ b3

�
T0

T

�
3

: ð28Þ

The parameters can be fitted to pure gauge lattice QCD data
to properly reproduce the corresponding equation of state
and the Polyakov loop behavior [20]. The values of ai and
bi are constrained by the condition of reaching the Stefan-
Boltzmann limit at T → ∞ and by imposing the presence of
a first-order phase transition at T0, which is a further
parameter of the model. At the critical temperature, the
Polyakov loop potential develops a second degenerate
minimum giving raise to a first order phase transition.
In the absence of dynamical quarks, from lattice

calculations one expects a deconfinement temperature
T0 ¼ 270 MeV. However, it has been argued that in the
presence of light dynamical quarks this temperature scale
should be adequately reduced to about 210 and 190 MeV
for the case of two and three flavors, respectively, with an
uncertainty of about 30 MeV [45]. In this work we will
use T0 ¼ 208 MeV.
Besides the logarithmic function in Eq. (27), a widely

used potential is that given by a polynomial function based
on a Ginzburg-Landau Ansatz [19,46]:

UpolyðΦ; TÞ
T4

¼ −
b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð29Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð30Þ

Once again, the parameters can be fitted to pure gauge
lattice QCD results to reproduce the corresponding equa-
tion of state and Polyakov loop behavior (numerical values
can be found in Ref. [19]).
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Given the full form of the thermodynamical potential, the
mean field values σ̄1;2 and ϕ3 can be obtained as solutions
of the coupled set of gap equations

∂ΩMFA
reg

ð∂σ1; ∂σ2; ∂ϕ3Þ
¼ 0: ð31Þ

In order to fully specify the model under consideration,
we proceed to fix the model parameters as well as the
nonlocal form factors gðqÞ and fðqÞ. We consider here
Gaussian functions

gðqÞ ¼ exp ð−q2=Λ2
0Þ;

fðqÞ ¼ exp ð−q2=Λ2
1Þ; ð32Þ

which guarantee a fast ultraviolet convergence of the loop
integrals. The values of the five free parameters are
summarized in Table I and can be found in Ref. [26].
Once the mean field values are obtained, the behavior

of other relevant quantities as functions of the temperature
and chemical potential can be determined. We concentrate,
in particular, on the chiral quark condensate hq̄qi ¼
∂ΩMFA

reg =∂m and the traced Polyakov loop Φ, which will
be taken as order parameters for the chiral restoration and
deconfinement transitions, respectively. The associated
susceptibilities will be defined as χch ¼ ∂hq̄qi=∂m and
χPL ¼ dΦ=dT.
In Ref [2], the deconfinement temperature, defined at the

peak of the entropy of a static quark (which is related to the
Polyakov loop) is located at the same temperature, within
errors, as the chiral susceptibility even at finite lattice
spacing.
In several works (see [2] and references therein), the

deconfinement transition in lattice QCD with light dynami-
cal quarks has been studied in terms of the inflection point
of the renormalized Polyakov loop and fluctuations of
conserved charges. Usually, the critical deconfinement
temperatures are equal or larger than the restoring
chiral transition critical temperature. Nevertheless, these
approaches have the disadvantage of being lattice scheme
dependent and therefore the obtained values may differ
considerably between them.
In this work we define the deconfinement transition

temperature, in the crossover region, with the peak of the

Polyakov susceptibility χPL, which turns out to be equiv-
alent to the susceptibility of the free energy of a static
quark. In the region where the deconfinement is a first order
phase transition we use the same prescription as Ref. [37],
where the critical temperature is defined as the temperature
where Φ ¼ 0.4.

IV. RESULTS

In order to determine the relation between both order
parameters for the deconfinement transition, namely the
perturbative QCD threshold s0 and the trace of the
Polyakov loop Φ as functions of the temperature and
chemical potential we begin our analysis studying the
finite energy sum rules at zero density. In this scenario,
when μ ¼ 0, the Eq. (10) becomes

8π2f2πðTÞ ¼
4

3
π2T2 þ

Z
s0ðTÞ

0

ds

�
1 − 2nF

� ffiffiffi
s

p
2T

��
; ð33Þ

where the pion decay constant at finite temperature
and/or chemical potential is calculated using Eq. (21)
and Eq. (22) as

F0ðp2Þ ¼ 8T
X
c;n

Z
d3~q
ð2πÞ4 gðρ

c
n;~qÞ

Zðρcn;~qþÞZðρcn;~q−Þ
Dðρcn;~qþÞDðρcn;~q−Þ

× ½ρcn;~qþ · ρcn;~q
− þMðρcn;~qþÞMðρcn;~q−Þ� ð34Þ

where ρcn;~q
� ¼ ρcn;~q � p=2.

It is known that in local versions of the PNJL model, at
zero chemical potential, the restoration of the chiral
symmetry and the deconfinement transition take place at
different temperatures (see e.g. Refs. [47,48]), usually
separated by approximate 20 MeV. Therefore, it is inter-
esting to analyze the results obtained in a nonlocal and in a
local PNJL model, the latter one parametrized according to
[19]. In Fig. 1 we plot the continuum threshold, the trace of
the PL and the normalized quark condensate for the
nonlocal (local) PNJL model in thick (thin) line, for the
logarithmic and polynomial effective potentials. As we
expected from previous results, in the local version both
transitions do not occur simultaneously. In this scenario, the
PQCD threshold vanishes at a critical temperature, Ts0

c ,
located between the chiral critical temperature Tχ

c and the
PL deconfinement temperature TΦ

c (obtained through the
corresponding susceptibilities).
In the case of the nonlocal PNJL model, for both

effective potentials, s0 and Φ have a similar critical
temperature for the deconfinement transition of approxi-
mate Tc ∼ 170 MeV. These temperatures are summarized
in Table II.
The value obtained at zero temperature for the con-

tinuum threshold, s0 ∼ 670, MeV is rather small but in a
good agreement with other calculations in sum rules using

TABLE I. Set of model parameters for the form factors in
Eqs. (32), (13), (14).

Set

m [MeV] 5.7
GΛ2

0
32.02

κp [GeV] 4.17
Λ0 [GeV] 0.814
Λ1 [GeV] 1.033
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as input LQCD results. The main reason for this lower
value is the pion pole approximation for the spectral
function. When additional information is incorporated,
for instance the a1 resonance, the value of s0ðT ¼ 0Þ
increases substantially [35].
Just for completeness and, in addition to the main goal of

this article, from the higher order FESR, Eqs. (11) and (12),
we can estimate the gluon condensate and the four-quark
condensate. The former shows the expected behavior with a
finite value at zero temperature. It decreases monotonically
as function of temperature, vanishing at T ∼ 170 MeV. A
recent calculation of this quantity can be found in Ref. [49],

determined from eþe annihilation data in the charm-quark
region. The four quark condensate, plotted in Fig. 2, was
compared, according to the vacuum saturation approxima-
tion (VSA), with the squared of the chiral quark condensate
obtained within the SUð2Þ nlPNJL model. If we assume
that the previous approximation is exact, from Eqs. (6) and
(12), at zero temperature and in the chiral limit, we obtain

that αs ¼ 108π3

7
f6π

jhq̄qij2 ≃ 1.6 (a very similar result is obtained

outside the chiral limit), meaning that the VSA under-
estimate C6hÔ6i. This value is considerably higher than
recent estimations of the strong coupling at low energies,
based on completely different approaches [50,51]. The first
one relies on a recent analysis of the ALEPH data for the τ
decay, whereas the second one corresponds to a general
recent review including different perspectives.
From Fig. 2, we see that for both Polyakov effective

potentials, the VSA is about 40% less than the four-quark
condensate obtained from FESR at zero temperature, in
qualitatively agreement with estimates, based on K0 − K̄0

mixing [52].
From lattice QCD calculations, at zero chemical poten-

tial, the chiral symmetry restoration and the deconfinement
transition take place at the same critical temperature. This
behavior was verified in nlPNJL models [15,37] and also
obtained by finite energy sum rules [33]. The next natural
step is to extend our analysis to a finite density scenario, to
identify the relation between s0ðT; μÞ and ΦðT; μÞ.
In Fig. 3 we plot, for the logarithmic Polyakov effective

potential, the normalized quark condensate hq̄qi=hq̄qi0, the
trace of the PL Φ and the continuum threshold s0 as
functions of the temperature for three different values of
chemical potential. In the middle panel we choose
μ ¼ 139 MeV, which corresponds to the critical endpoint
chemical potential μCEP. For values of μ smaller than μCEP,

TABLE II. Chiral critical temperatures Tχ
c, deconfinement

temperatures TΦ
c and Ts0

c for the local and nonlocal PNJL model
with logarithmic and polynomial effective potentials.

Logarithmic Polynomial

Nonlocal Local Nonlocal Local

Tχ
c [MeV] 171 205 176 201

TΦ
c [MeV] 171 171 174 183

Ts0
c [MeV] 171 189 170 190

T [MeV]

Logarithmic
Polynomial
C6 <O6>
VSA (αs = 1)

 0

0.02

0.04

0.06

0.08

 0.1

        0         50        100        150        200        250

FIG. 2. Four-quark condensate in the vacuum saturation
approximation with αs ¼ 1 [51] (blue line) and C6hÔ6i (red
line) for the logarithmic (polynomial) Polyakov effective poten-
tial in solid (dashed) line, at zero density as a function of the
temperature.

 0

0.2

0.4

0.6

0.8

 1

Logarithmic

T [MeV]

Non local
Local
s0(T) [GeV2]
Φ(T)

<−qq>/<−qq>0

 0

0.2

0.4

0.6

0.8

 1

100        125        150        175        200        225        250

Polynomial

FIG. 1. Continuum threshold (red solid line), trace of the
Polyakov loop (green dashed line) and the normalized quark
condensate (blue dotted line) as a function of the temperature for
nonlocal (thick line) and local PNJL model (thin line) at zero
chemical potential for logarithmic (upper panel) and polynomial
(lower panel) effective potentials.
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the chiral restoration arises via a crossover transition.
Beyond this critical density, a first order phase transition
occurs. This value, together with the critical temperature
TCEP ¼ 161 MeV determines the coordinates of the critical
endpoint.
All the results presented here were obtained by

Gaussian regulators [see Eq. (32)]. For instance, if we
would have chosen a Lorentzian regulator [15] for the
form factors, inspired by lattice results, or if the momen-
tum current would have been neglected, which means that
no WFR effects would be present [12], similar outcomes
would have been found. It turns out that the chiral
and deconfinement critical temperatures get a minor

dependence on the explicit shape used to parametrize
the form factors [38,53].
In the upper panel of Fig. 3, where μ ¼ 100 MeV, we

see that the chiral and deconfinement transitions are
crossovers occurring at the same critical temperature.
The peak of the Polyakov susceptibility and the point
where the continuum threshold vanishes occur at approxi-
mate the same temperature Tc ∼ 166 MeV.
When μ becomes equal or higher than μ ¼ 139 MeV, the

order parameter for the chiral symmetry restoration has a
discontinuity signaling a first order phase transition. This
gap in the quark condensate induces also a jump in the trace
of the PL (see middle and lower panels in Fig. 3). The value
of Φ at the discontinuity indicates that at this temperature
the system remains confined but in a chiral symmetry
restored state. This region is usually referred as the
quarkyonic phase [54–56].
At bigger densities than the critical endpoint chemical

potential, the thermal equation has not solution beyond the
critical temperature. The term proportional to the dilogar-
ithm becomes too negative and therefore Eq. (10) cannot be
satisfied. The continuum threshold stops with a finite value
at the chiral critical temperature (see middle and lower
panels in Fig. 3). We see in this way, that the Polyakov loop
and the continuum threshold provide the same information.
When the chiral symmetry is restored, s0 and Φ show that
we are still in a confined phase. This characterizes the
occurrence of a quarkyonic phase.

V. SUMMARY AND CONCLUSIONS

In this article we discuss if the behavior of two vastly
used order parameters for the deconfinement transition: the
continuum threshold and the trace of the Polyakov loop,
provide us with the same physical insight.
To accomplish this analysis, we use finite energy sum

rules for the axial-vector current correlator. In this frame-
work, one can define the continuum threshold as the energy
where the resonance peaks in the spectrum become
very broad.
On the other side, the Polyakov loop is a thermal Wilson

loop, gauge-invariant under the center of the color group
which is expected to vanish in the confined phase and being
different from zero in the deconfined phase.
The idea was to carry on the FESR program saturating

the spectral function with the pion pole approximation.
The input parameters we used in the spectral function,
namely the pion mass, the pion decay constant and the
chiral quark condensate, were obtained from a nonlocal
SU(2) Polyakov-NJL model with Gaussian form factors. In
this way we establish the connection between both
approaches.
At zero density, we compare the trace of the Polyakov

loop and the continuum threshold for the local and the
nonlocal version of a PNJL model. We determine, for the
nlPNJL model, that the continuum threshold vanishes at

 0

0.2

0.4

0.6

0.8

 1

μ=100 MeV

 0

0.2

0.4

0.6

0.8

μ=139 MeV

T [MeV]

s0(T) [GeV2]
Φ(T)
<−qq>/<−qq>0

 0

0.2

0.4

0.6

0.8

   100        125        150        175        200        225        250

μ=200 MeV

FIG. 3. Continuum threshold (solid red line), trace of the
Polyakov loop (black dashed lined) and the normalized quark
condensate (blue dotted line) as a function of the temperature at a
constant density for the logarithmic effective potential.
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the same temperature where the Polyakov susceptibility has
its maximum value. In the case of the local PNJL, s0
becomes zero between the critical temperature for the
deconfinement transition, according to the Polyakov loop
analysis, and the chiral restoration temperature.
At finite chemical potential, we find that for both

deconfinement parameters, beyond the critical endpoint
chemical potential, the system remains in its confined phase
even when the chiral symmetry is restored. This is an
evidence for the appearance of a quarkyonic phase.
We may conclude saying that our analysis gives

strong support to the idea that both deconfinement

parameters, in fact, provide the same kind of physical
information.
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