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We examine the electroweak gauge sector of the noncommutative standard model and, in particular, obtain
the O(0) Feynman rules for all quadrilinear gauge boson couplings. Surprisingly, an electroweak-
chromodynamics mixing appears in the gauge sector of the noncommutative standard model, where the
photon as well as the neutral weak boson is coupled directly to three gluons. The phenomenological
perspectives of the model in W-W* — ZZ scattering are studied and it is shown that there is a characteristic
oscillatory behavior in azimuthal distribution of scattering cross sections that can be interpreted as a direct

signal of the noncommutative standard model. Assuming the integrated luminosity 100 tb~!, the number of
W-W* — ZZ subprocesses are estimated for some values of noncommutative scale Ay at different center of
mass energies and the results are compared with predictions of the standard model.
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I. INTRODUCTION

Over the last 15 years, there has been increasing interest in
studying the noncommutative standard model as a candidate
for beyond the Glashaw, Weinberg, and Salam model of
particle physics [1-8]. This is partially because of the modern
foundations of string theory, where in its context it was
shown that noncommutative models occur in the description
of low energy excitations of open strings in the presence of a
constant background B-field [9]. On the other hand, non-
commutative theories are of interest on their own as a
nontrivial generalization of ordinary gauge theories on a
deformed background, which is defined by commutation
relations [x#, x*] = i@, where x* denotes the spacetime
4-vector and 6" is a constant, real, and antisymmetric matrix
of dimensions GeV~2 [10]. It is generally believed that
signatures of noncommutative spacetime can be observed at
string scale, typically on the order of Planck distance, where
the quantum effects of gravitational fields become signifi-
cant. Although the Planck scale (10" GeV) is actually far
from our direct access, assuming the possibility of the
existence of large extra dimensions and given that the onset
of string effects is at TeV scale, signatures of the non-
commutative background are expected to be observable at a
few TeV [11,12]. Today, there is a positive attitude, both
experimentally and theoretically, about a new physics at TeV
scale and intense experimental efforts [13,14], phenomeno-
logical studies [15,16], as well as many independent model
buildings [17,18] are currently underway to find signs of the
new physics beyond the standard model. Noncommutative
extension of the standard model appears to be a suitable
candidate for the new physics and it may finally be realized
by nature at the TeV domain of energy. Nevertheless, the
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situation is uncertain and some alternative scenarios with
compatible success, such as supersymmetry models [19,20]
and D-branes [21,22], also have been suggested, all awaiting
experimental confirmation.

Noncommutative field theories can be constructed by the
Moyal-Weyl correspondence, where the usual product of
functions is promoted to an associative star product that is
defined as [23,24]

-

709+ 900) = rex (30 22 ) (1)

There are, however, two serious problems in constructing the
noncommutative standard model based on this approach.
The first and probably the most important difficulty in the
Moyal-Weyl correspondence is the problem of charge
quantization. That is, the possible charges for the matter
fields are automatically restricted to the values —1,0, +1.
Secondly, it turns out that in the non-Abelian case, only
noncommutative models with U(N) gauge symmetry are
allowed in this approach [25,26]. An idea to resolve these
problems was proposed by Chaichian et al. [27]. They built
up a noncommutative U(3) ® U(2) ® U(1) gauge theory
and then reduced it to the noncommutative SU(3) ®
SU(2) ® U(1) model by breaking the original symmetry
of the theory in an appropriate manner. The model, however,
introduces some extra bosons (three vector and one scalar) in
comparison with the standard model. An alternative solution
that cures both the problems and at the same time preserves
the particle content of the standard model is to use Seiberg-
Witten maps for noncommutative gauge field 12\# and the

corresponding gauge transformation parameter A [9]. Under
such a construction noncommutative objects are written as an
infinite series on deformation quantity 6**, which then, up to
an arbitrary order in 6*¥, can be expressed in terms of usual
(commutative) fields and gauge parameters. Contrary to
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ordinary field theories because of the presence of the
*-product the commutation relations of noncommutative
gauge fields as well as the gauge parameters do not close to
the Lie algebra of the symmetry group. This problem can be
circumvented by constructing noncommutative models
based on the enveloping algebra of the gauge group. This
idea was proposed by Jurco et al. [28,29] and used to extend
the Siberg-Witten maps to non-Abelian gauge fields as well
as the gauges coupled to matter fields. Along these lines,
Calmet et al. [30] introduced the minimal noncommutative
standard model (mNCSM) and later developed it in the
nonminimal extension (nmNCSM) (according to the free-
dom in choice of traces in the gauge sector) of the model
[31,32]. The Seiberg-Witten construction by Jur¢o and
collaborators. [28] also has found applications in relation
to gravitation and topology [33,34]. Recently, some of the
geometric and topological implications of noncommutative
Wilson loops have been studied in Ref. [35].

Noncommutative models have a rich phenomenological
content and many interesting features. In particular, the
noncommutative standard model introduces new inter-
actions that are forbidden in the standard model. Such
interactions can be used to test the model through rare
events (see for example [36—38]) and may lead to a distinct
phenomenology. Another remarkable feature of the model
is that there are contributions from the Higgs part of the
noncommutative action that enter directly into the pure
gauge sector of the theory and can affect the electroweak
gauge boson interactions. The Feynman rules for trilinear
gauge boson couplings including contributions from the
Higgs sector for both the minimal and nonminimal models
have already been obtained [31]. Recently, the rules for the
Higgs couplings with gauge bosons have also been com-
pleted [39]. Here, we obtain the O(0) Feynman rules for
quadrilinear gauge boson couplings (QGCs) in both the
minimal and nonminimal noncommutative standard model.

This paper is organized as follows. In Sec. II, we review
briefly the minimum required basis of the noncommutative
standard model. In particular, we emphasize the gauge and
Higgs sectors of the model and identify the relevant
interactions for QGCs. In Sec. III, we obtain the
Feynman rules for all QGCs including the anomalous
couplings of photon and the weak boson Z° to three
gluons. In Sec. IV, we study phenomenological perspec-
tives of the model in W-W™ — ZZ scattering and in Sec. V
summarize the paper and outline the concluding remarks.
We use a notation close to the original paper by Meli¢ et al.
[31] to make the next review section short and the results
readily applicable for phenomenological studies.

II. SEIBERG-WITTEN MAPS AND THE
NONCOMMUTATIVE STANDARD MODEL

To begin, let us recall that the action of the non-
commutative standard model can be easily built up from
the action of the standard model by replacing the normal
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products between fields with x ones, and the fields by their
corresponding Seiberg-Witten maps. For the fermion field
y and an arbitrary gauge field V,, up to the first order of
deformation parameter 0¥ this means [28,30]

. 1 i
| e ‘l/[‘l/v V] =¢ - EGP”VG(?F,(]S + ggpa[vp’ Va]’ (2)

N 1
V,=V,[V]=V, +L—19P"{8pV(, +F. Vet (3)

A hat on letters indicates the noncommutative objects. The
bracket {, } denotes the anticommutator of operators and
F,, is the usual field strength tensor. The noncommutative
field tensor is defined as ﬁ,w = 6#‘% - 8,,\7/, - ig[f/ﬂ, V.,
and x-commutator means Vﬂ *V, =V, % f/ﬂ. In order to
construct the noncommutative standard model one can
choose the gauge potential V, = ¢ A, Y + ¢> 3 | B4T{+
g > 5 GhT?, where A,, B%, and G represent the fields
associated respectively to Uy(1), SUL(2), and SUc(3)
gauge groups with corresponding coupling constants ¢, g,
gs. Also, Y, T, and T’S’ are generators of the relevant
structure groups.

On the other hand, the noncommutative Higgs field & is
given by the hybrid Seiberg-Witten map as
¢e®@Juﬂ—¢+%ww{@®—gw@—¢mﬂ
i

2

1
+§w{@¢—

(w¢—¢mﬂm.
(4)

Observe that the noncommutative Higgs field can be
transformed under two different gauge groups on the left
and the right corresponding respectively to gauge potentials
V, and V;, [31]. The action of the noncommutative standard
model can be formally written as

SNCSM = Sferimion + Sgauge + SHiggs + SYukawa' (5)

The relevant expressions for each part of the above action
have been obtained in [31]. For our purposes, it suffices to
rewrite only the gauge and Higgs parts in detail.

A. Gauge sector
The gauge action is [31,32]

1 1 . A
_ 4 v
S ———/d xTr—5 F,, * F",

£T 73 G

| ]

S Tr— 79T, (6)
g G

where, g;’s are usual (commutative) coupling constants ¢,
g, g,. Here, the trace is over all the unitary and irreducible
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representations of the symmetry group and G is an operator
that commutes with generators of the gauge group and
determines the coupling constants of the model. It is in
general a function of ¥ and Casimir operators of SUy (2)
and SU¢(3). Because the noncommutative fields are valued
in the enveloping algebra of the gauge group, the trace in
Eq. (6) is not unique and depends strongly on the choice of
a representation for gauge fields [30,31]. All the repre-
sentations that appear in the standard model are important
and must be considered. Using the Seiberg-Witten map (3)
and the x-product prescription in (1) up to the first order in
0" we can rewrite the gauge action as

1

1
_ 4 v
Sy =— 5/ T 3 Fy P

1 (1
+or / AT <Z FooF,, — F/,,,FW> o (7)

1. Minimal noncommutative standard model

The simplest choice for the representation of gauge fields
is the adjoint representation. In this case the trace is taken
independently over generators of the symmetry groups, i.e.,
respectively over Y, T}, and Tg. In this case the resulting
(gauge) action remains as close as possible to that of the
standard model. By substitution of the gauge potential V,
in (7) and rearranging the fields we get

1 1
Sp=-5 / d'x <§A,M4ﬂ + BY, B4 + G4, G )

1 abc ppo 1 a a v.c
+ngd bege /d4x (Z G,,(,G,'j,, - GWG{bH,) GHe,

(8)
where
A, =0,A -0,A, (9a)
B4, = 0,B¢ — 0,B4 + ge"* B4 B, (9b)
G4, = 9,G¢ — 9,G4 + g, f***GLGe. (9¢)

The A, and By fields can be expressed in terms of physical
fields as usual using

Wi+ W Wi —-w;
B;:M, B=i— "% (10a)
V2 V2
A, = cos6,A, —sinb,,Z,, (10b)
B; =sinf,A, + cos0,B,. (10c)

Here, A” is the photon field, Z, and Wf are weak boson
fields, and 6,, stands for the weak mixing angle. From Eq. (8)
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it follows that in the minimal noncommutative model and at
leading order of 6", the electroweak part of the gauge action
is the same as that of the standard model. The QCD sector,
however, differs from its corresponding action in the standard
model and has already been discussed in [32].

By substitution of field tensors (9b) and (9¢) in (8) we
can isolate the relevant parts of the gauge action to
(electroweak) QGCs as

1 ! A / /
_592 / d4x€abc€achll;BgB/4,b B¢ , (11)

which then using (10b) and (10c) can be written as
~gz/d4x(W,jw-ﬂij-” e

+ 5260, W WHA,AY + -
+ cos’0, Wi WHZ,7" 4 - - -
+ sin@,, cos 0, W WA, Z" 4 - - ), (12)

where each line represents a typical number of interaction
terms that differ from each other in indices and up to a
numerical factor. From these interactions we obtain the
gauge part of Feynman rules for W-WtW-W+, W~ Wyy,
W-W+ZZ, and W-WTZy couplings in the context of the
minimal model. Notice that because the minimal extension
of the standard model leaves the electroweak gauge action
invariant, these expressions are the same as the rules in the
standard model. The rules are given in Sec. III.

2. Nonminimal noncommutative standard model

In the nonminimal model, the trace in (6) is chosen over all
particles existent in the model (with different quantum
numbers), which have covariant derivatives acting on them.
In the standard model, there are five multiples of fermions for
each generation and one Higgs multiplet (see Table I in
[30,31]). The nonminimal gauge action up to the linear order
in G* is

1
st = 51+ Pl [ (A = A, A ) 40
1
+ ¢ G k0 / d*x {(Z ApeBli — ‘AHPB;/ZG> B
+ cyclic permutation of fields]
1
+ g G2k30°° / d*x {(Z A,xGly — AWGS,,) GHa
+ cyclic permutation of fields] . (13)

The constants k;, i = 1, 2, 3 are model parameters that by
using a set of constraints can be determined in terms of
coupling constants of the model [36,37,40].
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The pure electroweak QGCs arise from the following
interactions:

g/g2k2 / d4x€abcap0 [ApaaﬂBgBu,bBu,c

1
+ A,,0,BiB*P B*C 4 5 Aw (BﬁB;aﬂBM

2 4
- 0,B¢B*PBY¢ + BYBLOM BV
— BYBSO0¥B+) — A*(,B3BLBS
- 0,B4BYBS + BB50,BS — BLBSO,BL)

1
- —BngavBﬂ~a> — A,,(0,BiB"" B

n=p n=p
o a pu.b pu.c a b pu.c
— Av(8,BLBM BY — O, BaB"b B
+ BLBSOM B — BLBLOVBAA) . (14)

By inserting (10b) and (10c) in (14) we find

~ ¢ Pky / d*x0° (c0520,,0,A,0,W; WHZ¥ + ...

+ sin#,, cos 0,,0,A,0,W, W HAY + ...
+ sin?6,,0,Z,0, W WHZ" + - - . (15)

An important point to be noted here is that the
W-WTW~WT coupling is not affected by interactions in
the gauge sector of the nonminimal noncommutative model
because there is no interaction term containing four charged
boson fields in (15).

On the other hand, in addition to pure elctroweak gauge
couplings, because of the interactions involved in (13) there
is also an electroweak-chromodynamics mixing in the
gauge sector of the nonminimal model that arises from
interactions in the last two lines of (13). They are

gRf / d*x07°[A,,0,GL GG

+ A, (0,G4GH G — 0,GLGrb G«

+ 9"G**GEGS — GG GE)

+ A, (0" G5G*P G — 0,GH G G,

+ &GLGMP G - 0,67 G GY)

+ A,,(0,G4GH G — 0,GaGHP G

+ 'GYGLGS — 0V G GhGS)). (16)

Here a, b, ¢ run from 1 to 8 for gluon fields Gu' Proceeding
as before, the relevant interactions for the coupling of
photon to gluons are

~ g gl fabe / d*x0°[cos 0,,0,A,0,GEGH G

+ cos 0,,(9,4,0,GLGHPG¥< + - - )]. (17)
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Also, for Z° coupling to gluons we obtain
~ g gl faebe / d*x6/°[cos HW(‘)/)AG@”GZG”*"G”’C

+ c0s6,,(0,4,0,GLGHPGH¢ + - - )], (18)

B. Higgs sector

The Higgs part of the noncommutative action is

A

Sttiges = / d((D,®) « (D) — 126" b
— 10"« & » T x §]. (19)
Here, x4 and A are respectively the mass parameter and
coupling constant. Also, Dﬂ denotes the covariant deriva-
tive, which is defined for the noncommutative Higgs field
as D, =0,&—iV, » ®+id « V',. The expansion of
(19) using (1) and (4) yields
Stiges = /d“x[(DﬂCD)T(D”d)) — 0D — A(DTD)?]
Lo 4t 1
+§0ﬂ d*x® U”D+Uﬂy+§,u Fy
- 2M<I>(DﬂCD)TD,,CD] D, (20)

where D, = 9, — iV, and the operator U, is

U, = [0° + iV [—agvﬂay ~V,8,0, +9,V,,

i i
+iV,V,0, + EV,,VD(’)Q + Eag(VﬂV,,)
1 i
+§VQV”VU +§{Vﬂ,8,,VQ +FDQ}} (21)
Here, V, is a 2x2 matrix that is defined as

"
V, =g A Yol + gB;T{. The explicit form of V, is [31]

(1-2sin%0,,)
_ ( eAﬂ + g 2cos 6, Zﬂ \/ii W;’_ ) (22)
Zy

\/ g -
WAL

-9
2cos6,,

Analysis of Eq. (20) reveals that the Higgs sector induces
contributions into the pure gauge sector of the noncom-
mutative standard model. Proceeding similarly as in [31]
the interactions yielding to QGCs are those terms in (20)
that contain multiplication of four V, matrices, i.e.,

1 . .
-5 0" / d*x®T(iV, VeV, V, + iV, VAV, Ve

— iV,VEVeV, + iV,V,V, V¢ — iV,V,V,Ve
+ Hermitian conjugate)®. (23)
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Using the explicit form of V, and choosing the Higgs field
to be in unitary gauge

cp(x):i< 0

NG h(x)—l—u)’ v=n/—p*/A  (24)

after symmetry breaking, the Higgs-induced interactions
into the pure gauge sector are found to be

2M3
—i—Lom / d*xX(Z,WPWSZ, + - -
g

+ W;A/’A”Wj 4+ .-
+ W, APZ W+ -
+ W;W*”W‘”W*” + 1), (25)

oM .
where we have used v = TW for later convenience. These

interactions are of dimension 4 and hence momentum
independent. Notice that the electroweak gauge action of
the minimal noncommutative model is exactly the same as
that of the standard model. In this case, only the Higgs-
induced interactions can contribute to O(@) Feynman rules
for electroweak QGCs.

III. FEYNMAN RULES FOR QGCS

The Feynman rule associated to a coupling diagram can
be obtained straightforwardly by variation of the corre-
sponding interactions. We used Eq. (12) to obtain the
standard rules for W-WtW-W*, W-Wtyy, W-W+tZZ,
and W-W*Zy. In the minimal model the effective inter-
actions that contribute to O(@) Feynman rules arise from
the Higgs-induced interactions, i.e., (25). In the nonmini-
mal model, contrary to the minimal case, the effective
interactions arise from the (@) extension of the pure
gauge action. We used Eq. (15) to get the rules of the
nonminimal model for pure electroweak QGCs and
Egs. (17) and (18) to derive the associated vertex functions
for yggg and Zggg couplings. All momenta are assumed to
be incoming into vertices. Here are the O-expanded
Feynman rules for all QGCs in the electroweak gauge
sector of the noncommutative standard model.

(a) W-WHtW-WT coupling,

Wi pt W.o.p'~

D O
> N

+ o+
I Wyp

PHYSICAL REVIEW D 95, 035034 (2017)
(i) Standard model

i (29,09 — 9uxGiy — Guiz)s  (26)

(il) minimal/nonminimal model

3
Eq (26) - ZM%V92<9K29;41/ + gkvg/d

+ a;ulgwc + e/wgkll)' (27)

Equation (26) is the standard Feynman rule for the
W-W+TW~WT coupling. It is derived from the gauge
action of the standard model and is symmetric under
substitutions ¢ 2 « and independently under v 2 A. It
is also symmetric under simultaneous substitutions of
u 2k and v 2 4. These symmetries can be inferred
from the above coupling diagram because exchanging
two W~ bosons with each other does not change the
physical situation. A similar argument can be made also
forexchange of W bosons. The §-dependent part of the
rule (27) results from the Higgs-induced interactions
(25) in the minimal case. It satisfies explicitly the
symmetries of Eq. (26). As we mentioned earlier, the
gauge sector of the nonminimal model does not
contribute to the W=W+TW~W™ coupling and expres-
sion (27) is the #-expanded Feynman rule for both the
minimal and nonminimal models.
(b) W-Wyy coupling,

Au.q Wi pt

N AT
S ZAN

Py Ay, ¢

(i) Standard model

_iez(zgyﬂg;u( = 9o — g,uygkﬂ)’ (28)

(il)) minimal model

Eq (28) - ZM%‘/EZ (eldgpw - ewcgy/l)v (29)
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(ii1)) nonminimal model

—~

q. (29) + ¢ g%k, sin 0, c08 0,,({ (=204, 991 + 200p 919 ) )

[(=80aPs + O0al5) 9 + 26,0 + 20004 — 0oy — Ouil)t

(=Pd =246 = P2)0ulguc + 0saPd G — 2009y — 20,0, + O )i + Oap ™,
(296 = P&)0wl g + [=0saPs 9ui + 200 q; — 2004, + 0miDy — Ou D]

(=P"a *+240)0,4]9uc + [=O0ucPy + Ou P + OucPs = O P

(Pa = P&)OuclGus + 20y + Oalx = OucPyi — Ol

(P& + Pa +242)0,uclgui + [-200cqs = 0iD ™ + 0T + Ol

+ (Pd + Pa +240)0ul9u a0 + {(=06,P5 + 00,0592 — 0,07 — 01aP;

+ 20,4, = 0puli — 0Py + 20,30,)90 + (00pp™y + 0,07 + 0 ) — 04,0
=20,,4, + 0P, = OopP59u) i + 06pP5 902 + 0uapy + 0P, + 26,4,

= 0,,p; + (=py + P5)0ul G + [0P) = Oup™, + (P — PO,

+ (=p5 + P2)0u) g + (Oper) = Oy + 0,08 — 20,0, —20,q,)9,s

+ (=0pcP7 + 0,105 + 20,4 — 20,19, = 02D )G ) + (04005 + 0,0

+ 0,04, + 0,4,y + (=00,05 = 00,0345 + (0,0, + 0,04 ) Py + (—05,05
=00 P30 Gk + 1009y — 0,000 +0,,0,) 0", + 0,0, @ + (=05, P57

=003 )0 = 0P 5G4y + O0uP™ 5 + 06u05)4 )90 + (=009, — 0,pd2) Py

+ (=007 ) + 0P5 + 05,05 )05 + (—0,pq1 = 0,04".) Py + 00 P™ 6 43) Gy

+ (=009 + 0,cq,) P) + O0uPa + 00pPy = 0605 )dx = Ol )91

+ [(=04p8x = Oty = 0pcd) Py + (00uP5 + 00,05 )dx — 0P ™ p 44 9a

+ Opds = 0,09 9Py + @Dy dy = 010y A + Opcly 01) 9 + (0,30

+ 0,07 + 0,07, + 0Py — 20,4, — 20,9, +20,,9,)q, + (—0,,P%
= 0P = 0Py +20,q, — 0,uP™y + 0Pl )4 + (=0, Px — 26,kqy, + 0,, P
= 0Py = O0uP™ )+ 0P —20,q,)q1 + (=0p) — 0,4p« + 0,7 + Oapy
= 0,0 ) + (—0,p; + 0,05 = 0upy —200q'v — 0upf —0,,p5)q,
+ (0upE + Oapi + 0Py +0,urc)q ) (30)

+ + 4+ + +

Equation (28) for W~W*yy coupling is familiar from the standard model. The exchange of two photons leads to a
topologically equivalent diagram. The associated rules are therefore required to be symmetric under substitutions
2 A. Equations (28) and (29) obviously satisfy this requirement. The O(6) contribution of the rule (29) is derived
from the Higgs sector induced interactions. Equation (30) represents the Feynman rule for the nonminimal extended
model and contains a lengthy momentum dependent part. These terms are derived from (15). In this case, momenta
must be simultaneously replaced with each other as v, A indices are substituted.
(¢) W-W*ZZ coupling,

Zl/7k W/-; ap

DN
> N

W;,p_ Z/\7k/
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(1) Standard model

(i) minimal model

Eq. (31) - —cos29

+ SiIl ew(_3aklg;w + 39u,<g,u - eﬂlgwc - e;wglc/l + 49/41(91/2) + Sin49w (491019/41/

(ii1)) nonminimal model

PHYSICAL REVIEW D 95, 035034 (2017)

_l-92 0082 ew(z.gv/lg/m - gw(g/lﬂ - g;wgld)’ (31)

2

[ =76 ucJua — ng/lglw + Zewcgy/l + zgpigw( =+ Zeyvgk/l

- 491«9/41)}’ (32)

Eq 32) + g,g2k2 sin 9 cos 6. ({(_ze(tf)gukgpl + 26{1/)9)(/1.9/41/)](;)

(
+1(=
+(=
+(
+(=
+(
+(

2k,

Pa —

rmp(r =+ H(mpo' )g/M + zeﬂakl + 20{1)](;, - eﬂ(lp,'{_, - Haﬂp;

Zk/ _)eﬂﬂ]gpk + [gaapa Guv — 29ayk;/4
) ;w]gld + [ gaap;gvﬂ + 29(11/]{;»

- Ze;mkl// =+ Howpy+ + e/mp+u
- zgaﬂk;/ + 90,/1]7; - 90,,/[7;

a1 2k0)0,] G + [=0ucPy + Ouy D + OucD — Oy i
Pa)0uclgus + [20acky + 0jaPi — OucDi — Oualid

Pa + Pa + 2ke) 0] 90 + [-200ck)
+ (Pa + Pa + 2ki)0) G Yoo + {[(=0

- galp_lc + gakp; + aa/lp?:
(rpp;r + eoppt;)gﬂ/l - 6/4/}17; - ey/lp;

+ 29 k/l - ep/lp; - 9/4/117;r + 26p/1ku]gw< + (el/per/l + eypp; + 9,“,[7;; - euppj
—20,,k, + Hﬂup; - eapp;g/w)gkl + {anp:gwl + lep;f + (9,,/1[7; + 26upki - euppz

+ (_pu + Dy )epll]gﬂk + [Hmcp;

- ewcp_p + (p; - pj{)gup + (_p;r + P;)‘g/)x]g;ul

+ (a/mp;r - e;ucp;r + Hyppx 26;4/)k 29[)Kk )gwl + (_e/mp; + 9/)/117; + 26/)Kki
-20 /1k ekﬂp_/))g/w}k;) + [(Gﬂ/)k/ + ey/)kl + g)lk + 9,/1]( )p;
+ (_e(mp; - eﬁﬂpi)k/ + (gf)ﬂk + 9)/1](/ )pp + (_e(fﬂp{f - Uﬂp:)kﬂ]gwc

+1(

+ Oyl ¢ + 0ouP3 )K g + [(=0,2K, = 0,,K' 1) py
+ O3 ), +
+ (OuPd +0,pp,
+ Ogurd + 00u17 )i =
Pk + 05Dy k)9 + (0up) + 0,07 + 0,07, + 0,0y — 20,k
=20,k + 20,k )k + (0,5 — 0P
+ 6Py )k, + (=0 P
+ (=0upy
—20,k,

-0

.

O5,P3 )k — 060" 5k,
+ (=0,,p™p + Os,P5
(=0upk; = 03K )Py + 00y D™ kil G + [(=0,kic + 0,k D)y

= 00,05 )k = 0,cD5 k)G + (=0, ki — O,cky, — 0,k ) Py
OpeD ™ pkulGur + Opcks = 0,3k ) Py + (00D K,

eu/)k/ + ezxpk )p P + gvpp/)k + (_Ho'yp; -

- gwcp; + Zgwckﬂ - gﬂkp_l/
- 29/4ka/ + Qﬂyp;f - gﬂkp; - 9/4KP+11 + kap;r - 291/Kk;4)kl
- Qy/lp_K + gwcp; + Hk/lp; - 9u1p+K)k//4 + (_QI/KP}T + guip; - gldp;

- 9K/1Pu+ - ey/lp;r)kﬂ + (eyﬂp;r + Hldp;r + eﬂKpI + eﬂlp;)k/u)' (33)

The symmetry properties of (31)—~(33) are exactly the same as Eqs. (28)—(30). The exchange of Z° bosons leaves the
physical content of the diagram unchanged. The rules to be consistent with this requirement must be symmetric under
substitutions v 2 A. Notice that in (30) momenta must be replaced with each other simultaneously as the indices are

exchanged.
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(d) W-W*Zy coupling,

Auyq W:ﬂp-i_
W;: Y Z)m k
(1) Standard model
_iez cot ew(z.gvlg/m ~ GG — g;wgtc/l)v (34)

(i) minimal model

1 .
Eq (34) + EM%Veg[_6€Klgb/4 - 29}(/191/& - 391/}(9/1/1 + 29/4/19K;¢ + guﬂglc/l + (4€Kﬁgu;4 - 49L/Kg/1y)81n29w]7 (35)

(ii1)) nonminimal model

Eq. (35) + ¢ ¢*ka[c0s?0,, (0119 = OuiFux = Qi + O + O’
+ {(=Oax 91 + 0ui9u) 9y + [20acqs + (=0ap Py — Oupk,) gei = 20014 + Oucks
+ (Px = k)0 + (kg + P2)0i] G + 0ap D™ pGs + (=Py + k)00
+ (=Pa = k)0 + 0uakil guc + [OapkyGuc + (= = P )0 + (ko + P™a)Ouc
= Ouakc = 040D 1900 + (OaD ™y + Ok + 0,4apy = 0,05 + 0jka) G
+ Our G = Oaxc9u2) 4w + (Ouika = Ouki) G + (—0ucPa = O P + Ol ™ 1) 92}
+ [=0uds + 0k, + 0,005)Guc + (=200 + Opck,y) Gus + (000 + O,pk,) G
=004, + 0,,q — Ok + (=ke = 2p)0,, — 0Py ]a, + [(0,kp, — 0,ck,)a;
= 0,09cP5 )9 + [Opky + 0,505 ) 9 — Oy — Opk G — Oucly + (ky + Py )0,
+ 0P = Oukildy = 0,,q:P; 9o — 26,,4,Kkp s + (=Oucks + 0,5k — 0,1k, 9
= 0k, +0,19)9, — 0,,4cP™ 91 + (0,u07 + 0,207 4,)
+ 5in%0,,({{(=0oy 5 + 00yd6) s + (=PF + 43)0pc + (P = P2)Oy
+ (k)O0ilgu + (=06 P35 + OoyP5)9us + (Pi = 4,)0
+ Py = 400w + (=5)0,) 9 + [0y P™ 6 = Ooys) G + (P = )0
+ (P = 7 )0uy + (k)0ul g + (P = 42)00 + (90 — POy
+ (P = 400l 9 + [(Pc = PE)Ow + (P = P7)Opc + (=3 + Py)0uil 9
+ [(=pi + 4,000 + (=P7 + 4.)0u + (=ay + P7)0u)90ky + (0605 + 05245
+ 05105 ke + Ok o) kil G + [(Ooiko) Ky = Ok sk G
+ [(=Oucko )y + Qo) 9oz + (O P7 = O0u40) 92 + (P} — 42)0uc + (Pk = P01
— (k)0 + (=00 P57 + 05 Pd )Gz + (=P) + 42)0, + (k)01 + (=P + 44)0,lkc
+ [(=00Pd + 05040) G + (P = P70 — (k)0 + (—=Pj + 4,)0u k)] (36)
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The rule (34) is the standard model vertex function for the W=W™Zy coupling. In the present case there is no
explicit exchange symmetry. Equation (35) represents the 9-expanded rule for the minimal noncommutative model. Its
6-dependent part is obtained from the Higgs-induced interactions. Equation (36) is the Feynman rule for the
nonminimal extended model. The momentum dependent part of (36) is derived from the gauge action (15).

(e) rggg coupling,

Ge,p Gy
N
S )

Auq P

(i) Nonminimal model

9 5 €08 0,,f"* ({[205,0' 69x2 = 2005 P" 692 + (21"1 = 2P1)0 e
+ (—2p”,< +2P0)0pil9uu + (205, PoGus + 205,0" 6901 + (=2P"1 + 2p1)0,,
+ (20", = 2P")0)il 9k + 2606, P09k — 2055 D' 69ux + (21"« = 2P1)0,
(2p", =2P")0,) g3 + ((=2P"4 4 2P2)0,p + (=2Pu +2P"4)0,) G
[( =2p)0 + (=20", 4+ 2p,)0pcl 900 + [(=2P", +21",)0,,
(2p', - 2p”y)9,),4]g,d}qp +1[-20519,9« + 2004595 + 200095969 + 2052959,
- 29{;”%61@ =20,,9590) 9 + [=205x459) + 205,95 + 20,60596) 93 + [=2054P 590
+20,,0" 59+ (20" = 2P;3)0x — 2,00 + (=2P" +2p,)0,]4q,
+ 120,,00901 — 205,0" 5901 + (20"; = 2p;)0,, + 24,0, + (2p", —2p',)0,,] 4,
+ (20,0090 + 205,06 9uc + (20"« +2p,) 0, — 20,0, + (2P", = 27',)0];
+ (2004901 = 260349u0) P + (203490 = 2600,9) P& = (26,4901 — 260,,9)P" 514)- (37)

+
+
+

The yggg coupling is forbidden in the standard model. The rule (37) is derived from (17) and is allowed only in the
nonminimal noncommutative model. Because the exchange of gluons leaves the diagram topologically invariant, the
rule must be symmetric under simultaneous substitutions of v 2 k, @ 2 b, p 2 p’ and independently under v 2 4,
azc, pap’aswellasunderk 2 4, b 2 ¢, p' 2 p”. Also, the cyclic symmetry v2 k2l a2b2c¢,p2
p' 2 p” must be satisfied.

(f) Zggg coupling,
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(i) Nonminimal model

g/gg sin waabc({ [266/71)/09101

- zgapp//ﬁgld + (zp//l

PHYSICAL REVIEW D 95, 035034 (2017)

- 2pl)9pk

+ (_Zp/,l(' + 2p1<)9/)/1]gv,u [_2€6ppﬂgul + 290’/)1’”0’-91/}. + (—2[7/,1 + 2p/1)6up

y - 2p/y)9/)/1]gk;4 [260'/)po'gl/l< -

+
+ ( -2p)0,, +
+

- zeovkak/l - zeblkaka]gw +
+ 296/4p//agld + (2p//1 - 2p/1>9/</4
+ [Zeo‘ﬂpagyl - Zeaﬂp//agwl + (2[7//1

+ [_290;4p5.gw< + 296}417/0'91/]( +
[(29K Gua — 29/1/491/K)p6

The Zggg coupling is also forbidden in the standard
model at tree level. This vertex function is derived
from (18) and is allowed only in the nonminimal
model. The symmetry properties of (38) are the same
as that of the rule (37).

IV. DISCUSSION ON PHENOMENOLOGICAL
PERSPECTIVES OF THE MODEL

To give an intuitive understanding of the model and, in
particular, the Feynman rules developed in the previous
section, let us consider the W-W+ — ZZ scattering. In the
context of the standard model and at tree level, the
scattering amplitude of the process is the sum over
amplitudes of diagrams 14, in Appendix A. Using the
analysis of relevant diagrams the scattering cross section is
estimated approximately to be around 68 pb (10~'? barn).
The amplitude for the contact interaction grows rapidly as
the center of mass (c.m.) energy +/s increases. The
amplitudes of the #-channel and the exchange diagrams
give rise respectively to forward and backward scattering.
On the other hand, the Higgs mediated diagram effectively
tames the amplitude of the contact interaction and there is a
strong cancellation in the high energy behavior of indi-
vidual amplitudes. The total cross section ultimately
reaches a nearly constant value at large c.m. energies. It
is well known that only the scattering of longitudinally
polarized bosons is responsible for the leading behavior of
scattering amplitudes at the high energy limit. Then, let us
define the kinematics of scattering as

£ = (E,0,0, £p), (39a)

k* = (E,0,+psind, £pcosb), (39b)

(=2p",+2p,)
- Zp/,u)epﬂ]gkﬂ}kp + [=203k ki + 205k k) + 20,0k 5k5) G, +
(<26 ik gk, + 20,5,k oh 4 20,k k] g3 +
=2k, 0, + (=2p" +2p,) 0]k,

= 2p1)0y +2k,0,, + (2p", = 2p',)0,, ] ke
(=2p"c +2pc)0,,
+ (203,90 —

+(2p 20,0 s9uc + (29"« = 2p,)0,,
(2P", = 2P")0p 92 ((=2D"; + 2P1) 0, + (=2p, + 2P",)0,1) Gux
[
(2p

gpk]gul + [(_217//;4 =+ 2p/;t)9up
[zealkakv
[_Zeaﬂp/agld

- 2k/49w< + (217//,, - 2p/l/)9K/l]k/1

291//49101)17/0 - (29K/49M - 29L//49K/1)p//6]k0)' (38)
|
et (p) = (2= 0,0,+ -2, (39)
MW My)’
Esind  Ecosé
e (k) = (L0, £ 2007 L Z8T)  (39q)
Mz Mz Mz

Here, 0 and ¢ are respectively the polar and azimuthal
angle. The momenta of incoming W* and outgoing Z°
bosons in the c.m. reference frame are respectively denoted
by p* and k*. Also, ¢*(p) and e*(k) are used for
polarization vectors of corresponding bosons. The general
features of the scattering can be understood from Figs. 1-3.
In the standard model, the azimuthal distribution of differ—
ential cross section, i.e., 4 ¢, is expected to be flat. The

distributions at & =7 have been shown in Fig. 1, for
Vs =10, 1.5, and 20 TeV. Figure 2 displays the 6-

1ntegrated < distributions at the same c.m. energies. On the
other hand, because of the ¢ and u-channel diagrams the ¢-

. . do-
integrated cross sections <% are expected to be very

forward-backward distributions. The m distributions
have been shown in Fig. 3. For numerical evaluations
some approximations were made. We neglected the decay
width of intermediate bosons and assumed they were nearly
stable particles. Also, the integrations on @ and ¢ were
performed approximately because the subsequent similar
integrations on (dQ = sin 0dOd¢) could not be evalu-
ated exactly in a reasonable computation time. We pre-
ferred to use the same level of accuracy for all of the
numerical evaluations from the beginning. The masses of
weak bosons are My, = 80.38, M, = 91.18 and the Higgs
mass is My = 125.0 GeV based on last issue of the Particle
Data Group [41]. Furthermore, the parameter k, [see the
rule (33)] is assumed to be 0.4 [40]. In our evaluations the

dﬁNC
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total cross section approaches 28 pb at /s = 1.5 TeV. This
is about 12.5% smaller than the exact value 32 pb [42].

Now, we consider the process in the context of the
noncommutative standard model. The usual parametriza-
tion for the deformation quantity is 0¥ = c** /A% where
c* is a dimensionless matrix of order unity and Ayc is the
overall scale that characterizes the threshold at which
noncommutative effects become relevant [43-45]. The
c* matrix is analogous to the (electromagnetic) field tensor
in structure. However, it is not at all a tensor because its
elements are assumed to be constant in all reference frames.
Before proceeding to numerical analysis let us make
some general remarks regarding calculation of scattering
amplitudes.

First, two distinct cases should be discussed separately:
The space-space or B-field-type noncommutativity that
means the elements ¢/ (i, j run from 1 to 3) are non-
vanishing and space-time or E-field-type noncommutativ-
ity that means ¢% elements are nonzero. Two types may
have some features in common. The later type has been
known to have some problems concerning the unitary and
causality considerations [46—48]. Here, we consider only
the case of space-space noncommutativity.

Secondly, because the vertex functions for minimal and
nonminimal extended models are different, their phenom-
enological perspectives should be discussed separately. In
evaluation of amplitudes we used (32) and (33) (based on
the model under consideration) and also the relevant 6-
expanded rules developed in [31,39]. Notice that the
amplitude of diagram 4 is equal in the minimal and
nonminimal models because the Higgs couplings remain
the same in both model extensions. This diagram may
cause a distinction between two cases through interference
contributions.

Lastly, as we mentioned earlier, the noncommutative
model introduces new interactions that are forbidden in the
standard model. Those that are relevant to our discussion
are ZZZ and yZZ couplings [31]. By using these vertices, it
is possible to add diagrams 5 and 6 into the standard
Feynman graphs. Note that the latter diagram is allowed
only in the nonminimal noncommutative extension of the
standard model. The scattering amplitudes of these dia-
grams are of order (%) and their interference contributions
are much more important than their individual contribu-
tions to the total cross section.

A. B-type noncommutativity
Let us assume Oy = = (7 + j + k) where 0% = e'lke;;
for the case of B-field-type noncommutativity. This is a

constant vector and aligns in a specific direction in space
(in all reference frames). As the Earth rotates and revolves

around the Sun, the direction of #g continuously changes
and observable quantities are expected to show a specific
time dependence. For those instants that our assumption on

PHYSICAL REVIEW D 95, 035034 (2017)
d d B

Z;C and 72X distribu-
tions show a characteristic oscillatory behavior. We have
shown the numerical results of the noncommutative stan-
dard model in Figs. 4-15 in Appendix B. The figures

. d .
correspond respectively to “Z5¢ at 6 = 7, the O-integrated

de
and ¢-integrated jfgscg distributions for different values

d

the direction of éB is satisfied the

donc

do >
of Anc. Figure 4 exhibits the azimuthal distributions Z;C at

0=7%and /s =10 TeV for Ayc =0.6, 0.8, 1.2, 1.5,

1.8 TeV and oo in the context of the minimal noncommu-
donc
d¢

distributions and Fig. 6 is the integrated % distribution
at the same c.m. energy for different scales. The
evolution of differential cross sections by variation of
the noncommutativity scale can be easily understood from

doxe distributions show an

d¢
oscillatory behavior with crests at ¢ =37 % As the

noncommutativity scale increases, the crests smoothly
collapse and disappear at large enough scales. In
particular, in the limit of Ayc = oo, we recover the results

of the standard model (see blue curves in Figs. 1-3). The

donc
dcos6

with two local maxima at @ = %, %” as in Fig. 6. The dashed
curve is for Ayc = 0.6 TeV. Others are, however, hidden
because they are tiny at /s = 1.0 TeV. From the phe-
nomenological point of view the appearance of local
maxima at 6 = %,37” means that particles are scattered
more likely either in forward direction from 8§ =0 to 6 =

tative model. Figure 5 represents the integrated

these graphics. We see that

distributions show a symmetric pattern around 6 = 7

% or in backward direction from 6 = %” to @ = x. Note that

ddfg’scg distributions are forward-backward symmetric as in

the standard model. In Figs. 7-9, we have shown the
same distributions at /s = 1.5 TeV. The general features
of azimuthal distributions are as those in Figs. 4 and 5
except that in the present case crests are much sharper for
Anc = 0.6 while others are hidden. Observe that the local
maxima for Aync = 0.8 are visible in Fig. 7. By
comparing the results we can conclude immediately
that for a given scale Aync as the center of mass energy
increases crests become sharp and much stronger (compare
Figs. 4-6 respectively with Figs. 5-7). Again, by increasing
Anc, the oscillation amplitudes collapse and disappear as
before.

Next, we consider the nonminimal noncommutative
standard model. Figures 10-12 display the numerical
results of the nonminimal model at /s = 1.5 TeV. The
phenomenological implications of the minimal and non-
minimal models can be easily understood and compared
using Figs. 7-12. In the context of the nonminimal model,
azimuthal distributions up to a numerical factor of order
10° are essentially the same as those in the minimal model.

The j:(ice distributions are, however, much different from

similar distributions in the minimal case both in shape and
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TABLE I. Number of signals in the mNCSM, nmNCSM, and
SM at integrated luminosity 100 fb~".

Model Vs (TeV) Anc (TeV) No. of events
0.6 1.130 x 107

mNCSM 1.0 1.2 3.651 x 10°
1.8 3.158 x 10°

0.6 1.921 x 10°

mNCSM L5 1.2 1.080 x 10%
1.8 6.200 x 10%

0.6 5.543 x 1012

nmNCSM 1.5 1.2 1.790 x 10!
1.8 1.036 x 10!

0.6 1.054 x 10'3

nmNCSM 2.0 1.2 3.427 x 10'2
1.8 1.972 x 10!

1.0 o0 2.960 x 10°

SM 1.5 o0 2.862 x 10°
2.0 o0 2.763 x 10°

scale. In this case, d:(icg distributions show a strong peak at

0 = 7 and outgoing 7 bosons are expected to scatter most
likely around 6 =% Let us recall that Z° bosons are
distributed symmetrically in forward and backward direc-
tions. Figures 13-15 exhibit the expected results of the
nonminimal model at /s =2.0 TeV. Again, as Ayc
increases, the characteristic oscillations of distributions
are suppressed and disappear at Ayc = 0.

B. Estimation of the number of events in the
noncommutative model

The number of events, i.e., the number of WTW~ — ZZ
(subprocess) scatterings, can be used to give a direct sense
of the implications of the noncommutative model.
Assuming the integrated luminosity 100 fb~!, we estimated
the number of signals in the context of the SM, mNCSM, as
well as nmNCSM for some values of Ayc at c.m. energies
\/E = 1.0, 1.5, and 2.0 TeV in Table I. The last three lines
(Anc = o) correspond to predictions of the standard
model.

V. SUMMARY AND CONCLUSION

We examined the gauge sector of both the minimal and
nonminimal noncommutative standard model and obtained
the O(@) Feynman rules for all QGCs. It was found that the
Higgs part of the action induces contributions in the
electroweak gauge sector of the noncommutative standard
model. In the minimal case and up to the leading order of
the deformation quantity, the electroweak gauge sector of
the model is the same as that of the standard model and
only the Higgs sector induced interactions contribute to
O(0) Feynman rules for gauge boson couplings. These
contributions are of dimension 4 and momentum

PHYSICAL REVIEW D 95, 035034 (2017)

independent. In contrast, in the nonminimal case the gauge
sector of the model contributes to QGCs through dimen-
sion-6 and momentum dependent interactions. Also, two
anomalous couplings appear in the nonminimal model
where the photon as well as the neutral weak boson are
coupled directly to three gluons. Such an electroweak-
chromodynamics mixing is forbidden in the standard model
at tree level. We studied the phenomenological implications
of the model in W-W™ — ZZ scattering and showed that
noncommutativity of spacetime manifests itself through a
characteristic oscillatory behavior in the azimuthal distri-
bution of differential cross sections. In particular, for the
case of space-space noncommutativity we evaluated scat-
tering cross sections at /s = 1.0, 1.5, 2.0 TeV for Axc

from 0.6 to 1.8 TeV and found that the % distributions at

0 =% as well as the integrated d;(’;c distributions show a
sinusoidal behavior with crests at ¢ = 3%, Z% For a given

c.m. energy as Ayc increases crests smoothly collapse and
disappear at large scales. On the other hand, for a fixed

value of Ayc by increasing the c.m. energy crests become
much stronger and appear as sharp peaks. Also, the jé?scg
distributions show a symmetric pattern around 6 = 7.
However, the patterns for minimal and nonminimal models
are different in shape. In the minimal model, two separate
crests appear at 6 = %,%” while in the nonminimal case
there is a central peak at 6 =7 and curves smoothly
disappear in forward-backward directions. Analysis of
ddfg’;e distributions indicates that in the minimal model
the number of events, in comparison with the standard
model, increases considerably in the backward direction

from 6 =0 to @ =1 and also in forward direction from

0= %” to & = z while from 6 =% to 0 = %” this remains
essentially the same. In contrast, in the nonminimal case the
number of events is expected to increase from 6 =7 to
0= %” with a sharp maximum at 6 = 7. However, in both
the models the scattering is forward-backward symmetric.
Assuming the integrated luminosity 100 fb~!, we estimated
the number of W-W™T — ZZ scatterings in both the
minimal and nonminimal noncommutative models for
some values of Ayc at c.m. energies /s = 1.0, 1.5,
2.0 TeV and compared the results with predictions of the
standard model. The number of events is expected to
increase by a factor of order 10" up to 10° in some cases.

APPENDIX A: FEYNMAN DIAGRAMS

In the standard model, there are four diagrams that
contribute to W-W* — ZZ scattering. These are contact
coupling, t-channel, u-channel, and Higgs-mediated
s-channel diagrams. In the context of the noncommutative
standard model the scattering amplitude of these diagrams
is evaluated using the 6-expanded vertex functions.
Also, two new diagrams 5 and 6 are allowed in the
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noncommutative extended model. Observe that the last (4) s channel,
diagram contributes only in the nonminimal model.
(1) Contact W,k Zx
W;_ Z)\ o 7]:::[7 <
w, Z,
(5) s channel,
(2) t channel
W, Zx

Z

12

(3) u channel, (6) s channel,

Zx

W- Z

14

APPENDIX B: FIGURES
See Figs. 1-15.

— ] ) TeV — 1.0 TeV
1.5 TeV 1.5 TeV
— ) () TeV — 2.0 TeV

FIG. 1. Differential distributions j—; at 0 =7 in the SM for FIG. 2. The O-integrated j—; distributions in the SM for

Vs =10, 1.5, 2.0 TeV. Vs =10, 1.5, 2.0 TeV.
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do/dcos® [pb/rad]

1000 1000
800 800
600- F600
m— 1.0 TeV
1.5 TeV
4004 F400 | s ) 0 TeV
200 200
0- L -0

n nm 3n ©®m Snm 3n 7n ®w

FIG. 3. The ¢-integrated -4 distributions in the SM for
Vs =1.0, 1.5, 2.0 TeV.

— — 600 GeV
""" 800 GeV
— 1.2 TeV
— 1.5 TeV
— 1.8 TeV
= infinity

FIG. 4. Differential distributions % at @ = z in the mNCSM
for /s = 1.0 TeV.

m— 600 GeV
= 800 GeV
— 1.2 TeV
— 1.5TeV
— — 1.8 TeV
""" infinity

PHYSICAL REVIEW D 95, 035034 (2017)
doy/dcos0 [pb/rad]

250 250
2004 200
1504 F150
— — 600 GeV
""" 800 GeV
— 1.2 TeV
100 F100|— 1.5 TeV
—_— 1.8 TeV
= infinity
50 1 F50
\ — ~ - — ~
0 T— e mp— —— 0
o ono3nom Su3n7now
8 4 8 2 8 4 8
0

FIG. 6. The ¢-integrated -2 distributions in the mNCSM for
Vs = 1.0 TeV.

dcost

600 GeV
800 GeV
1.2 TeV
1.5 TeV
1.8 TeV
infinity

FIG. 7. Differential distributions dg—;;c at @ = % in the mNCSM
for /s = 1.5 TeV.

\ 600 GeV
\ \\ \ 800 GeV
T i (- 3 \l \I \ \ \ \ 0 1'2 Tev
2 4>5040g0 | 1po] tho 1.5 Tev
LT 1.8 Tev
XS] /) infinity

3n 3n

2 2
FIG. 5. The 6-integrated ‘ZZ;’)C distributions in the mNCSM for FIG. 8. The 6-integrated d;;f distributions in the mNCSM for
/s = 1.0 TeV. /s = 1.5 TeV.
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do‘NC/dCOSQ [pb/rad]

5004 500

4004 400
600 GeV

3001 300 800 GeV
1.2 Tev
1.5 TeVv

2004 200 1.8 Tev
infinity

1004 F100

0 0

FIG. 9. The ¢-integrated 4o
Vs =1.5TeV.

distributions in the mNCSM for

dcos@

600 GeV
800 GeV
1.2 TeV
1.5 TeVv
1.8 Tev
infinity

FIG. 10. Differential distributions % atf = %in the nmNCSM
for /s = 1.5 TeV.

600 GeV
800 GeV
1.2 TeV
1.5 TeV
1.8 TeV
infinity

FIG. 11. The #-integrated d;;f distributions in the nmNCSM for
/s = 1.5 TeV.

FIG. 13.
for /s = 2.0 TeV.
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doy/dcosO [pb/rad]

8.x 1004 F8.x 10°
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3.x 10 3.x 10 18 Tev
infinity
2.%10°1 F2.x 10°
1.x 100 F1.x 10°
0 . . 0
m r3nmsSt Tmom
8§ 4 8 2 8 3
0

FIG. 12. The ¢-integrated

for \/s = 1.5 TeV.

donc

distributions in the nmNCSM

dcost

— — 600 GeV
800 GeV
— 1.2 TeV

Vs = 2.0 TeV.

035034-15

— 1.5 TeV
— 1.8 TeV
e nfinity

Differential distributions 25 at § = % in the nmNCSM

dg

m— 600 GeV
= 800 GeV
—— 1.2 TeV
—— 1.5 TeV
— — 1.8 TeV
infinity

FIG. 14. The 6-integrated 92X distributions in the nmNCSM for

dg



SEYED SHAMS SAJADI and G.R. BOROUN

doy/dcosd [pb/rad]
/ -\

1.4 x 1084

1.2x 1084

1.x 1081

8.x 1071

6.%x 107

4.x 107

2.%x 1071

0-

FIG. 15.

dcos@

PHYSICAL REVIEW D 95, 035034 (2017)

F1.4x 108

— — 600 GeV
""" 800 GeV
—— 1.2 TeV
—— 1.5 TeV
— 1.8 TeV
m—infinity

The ¢-integrated 42 distributions in the nmNCSM for /s = 2.0 TeV.

[1] J. Selvaganapathy, P. K. Das, and P. Konar, Phys. Rev. D 93,
116003 (2016).
[2] N. Ahmadiniaz, O. Corradini, D. DAscanio, S. Estrada-
Jiménez, and P. Pisani, J. High Energy Phys. 11 (2015) 069.
[3] M. Moumni and A. Benslama, Int. J. Mod. Phys. A 28,
1350139 (2013).
[4] S. Aghababaei, M. Haghighat, and A. Kheirandish, Phys.
Rev. D 87, 047703 (2013).
[5] M. M. Ettefaghi and M. Haghighat, Phys. Rev. D 77,
056009 (2008).
[6] A. Alboteanu, T. Ohl, and R. Rockel, Phys. Rev. D 74,
096004 (2006).
[7] T. Ohl and J. Reuter, Phys. Rev. D 70, 076007 (2004).
[8] L. Moller, J. High Energy Phys. 10 (2004) 063.
[9] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999)
032.
[10] H.S. Snyder, Phys. Rev. 71, 38 (1947).
[11] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
B 429, 263 (1998).
[12] I. Antoniadis, N. Arkani-Hamed, and G. Dvali, Phys. Lett. B
436, 257 (1998).
[13] S. Chatrchyan et al.,
(2014).
[14] J. Cao, K. Hikasa, L. Wang, L. Wu, and J. M. Yang, Phys.
Rev. D 85, 014025 (2012).
[15] L T. Cakir, O. Cakir, A. Senol, and A. T. Tasci, Acta Phys.
Pol. B 45, 1947 (2014).
[16] Y. Wen, H. Qu, D. Yang, Q. Yan, Q. Li, and Y. Mao, J. High
Energy Phys. 03 (2015) 025.
[17] G. Altarelli and D. Meloni, J. High Energy Phys. 08 (2013)
021.
[18] M. G. Jackson and K. Schalm, Phys. Rev. Lett. 108, 111301
(2012).

Phys. Rev. D 90, 032008

[19] T. Kobayashi and Y. Omura, J. High Energy Phys. 02 (2015)
114.

[20] S. Raby, Eur. Phys. J. C 59, 223 (2009).

[21] G.K. Leontaris, N.D. Tracas, N.D. Vlachos, and O.
Korakianitis, Phys. Rev. D 76, 115009 (2007).

[22] Y. Bu, Phys. Rev. D 86, 106005 (2012).

[23] J.E. Moyal, Proc. Cambridge Philos. Soc. 45, 99
(1949).

[24] M.R. Douglas and N. A. Nekrasov, Rev. Mod. Phys. 73,
977 (2001).

[25] M. Chaichian, P. PreSnajdar, M. M. Sheikh-Jabbari, and A.
Tureanu, Phys. Lett. B 526, 132 (2002).

[26] M. Hayakawa, Phys. Lett. B 478, 394 (2000).

[27] M. Chaichian, P. Presnajdar, M. M. Sheikh-Jabbari, and A.
Tureanu, Eur. Phys. J. C 29, 413 (2003).

[28] B.Jurco, L. Méller, S. Schraml, P. Schupp, and J. Wess, Eur.
Phys. J. C 21, 383 (2001).

[29] B. Jurco, L. Moller, S. Schraml, P. Schupp, and J. Wess, Eur.
Phys. J. C 17, 521 (2000).

[30] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M. Wohlge-
nannt, Eur. Phys. J. C 23, 363 (2002).

[31] B. Meli¢, K. Passek-Kumericki, J. Trampeti¢, P. Schupp,
and M. Wohlgenannt, Eur. Phys. J. C 42, 483 (2005).

[32] B. Meli¢, K. Passek-Kumericki, J. Trampeti¢, P. Schupp,
and M. Wohlgenannt, Eur. Phys. J. C 42, 499 (2005).

[33] H. Garcifa-Compedn, O. Obregén, C. Ramirez, and M.
Sabido, Phys. Rev. D 68, 044015 (2003).

[34] P. Aschieri, M. Dimitrijevic, P. Kulish, F. Lizzi, and
J. Wess, Noncommutaive Spacetime: Symmetries in
Noncommutative Geometry and Field Theory (Springer,
Heidelberg, 2009).

[35] H. Garcia-Compedn, O. Obregdn, and R. Santos-Silva, Adv.
Theor. Math. Phys. 15, 845328 (2015).

035034-16


http://dx.doi.org/10.1103/PhysRevD.93.116003
http://dx.doi.org/10.1103/PhysRevD.93.116003
http://dx.doi.org/10.1007/JHEP11(2015)069
http://dx.doi.org/10.1142/S0217751X1350139X
http://dx.doi.org/10.1142/S0217751X1350139X
http://dx.doi.org/10.1103/PhysRevD.87.047703
http://dx.doi.org/10.1103/PhysRevD.87.047703
http://dx.doi.org/10.1103/PhysRevD.77.056009
http://dx.doi.org/10.1103/PhysRevD.77.056009
http://dx.doi.org/10.1103/PhysRevD.74.096004
http://dx.doi.org/10.1103/PhysRevD.74.096004
http://dx.doi.org/10.1103/PhysRevD.70.076007
http://dx.doi.org/10.1088/1126-6708/2004/10/063
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://dx.doi.org/10.1103/PhysRev.71.38
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1103/PhysRevD.90.032008
http://dx.doi.org/10.1103/PhysRevD.90.032008
http://dx.doi.org/10.1103/PhysRevD.85.014025
http://dx.doi.org/10.1103/PhysRevD.85.014025
http://dx.doi.org/10.5506/APhysPolB.45.1947
http://dx.doi.org/10.5506/APhysPolB.45.1947
http://dx.doi.org/10.1007/JHEP03(2015)025
http://dx.doi.org/10.1007/JHEP03(2015)025
http://dx.doi.org/10.1007/JHEP08(2013)021
http://dx.doi.org/10.1007/JHEP08(2013)021
http://dx.doi.org/10.1103/PhysRevLett.108.111301
http://dx.doi.org/10.1103/PhysRevLett.108.111301
http://dx.doi.org/10.1007/JHEP02(2015)114
http://dx.doi.org/10.1007/JHEP02(2015)114
http://dx.doi.org/10.1140/epjc/s10052-008-0736-x
http://dx.doi.org/10.1103/PhysRevD.76.115009
http://dx.doi.org/10.1103/PhysRevD.86.106005
http://dx.doi.org/10.1017/S0305004100000487
http://dx.doi.org/10.1017/S0305004100000487
http://dx.doi.org/10.1103/RevModPhys.73.977
http://dx.doi.org/10.1103/RevModPhys.73.977
http://dx.doi.org/10.1016/S0370-2693(01)01478-2
http://dx.doi.org/10.1016/S0370-2693(00)00242-2
http://dx.doi.org/10.1140/epjc/s2003-01204-7
http://dx.doi.org/10.1007/s100520100731
http://dx.doi.org/10.1007/s100520100731
http://dx.doi.org/10.1007/s100520000487
http://dx.doi.org/10.1007/s100520000487
http://dx.doi.org/10.1007/s100520100873
http://dx.doi.org/10.1140/epjc/s2005-02318-6
http://dx.doi.org/10.1140/epjc/s2005-02301-3
http://dx.doi.org/10.1103/PhysRevD.68.044015

O(0) FEYNMAN RULES FOR ...

[36] W. Behr, N. G. Deshpandeh, G. Duplanci¢, P. Schupp, J.
Trampeti¢, and J. Wess, Eur. Phys. J. C 29, 441 (2003).

[37] M. Buric, D. Latas, V. Radovanovic, and J. Trampeti¢, Phys.
Rev. D 75, 097701 (2007).

[38] I. Mocioiu, M. Pospelov, and R. F. Lebed, Phys. Lett. B 489,
390 (2000).

[39] S. Batebi, M. Haghighat, S. Tizchang, and H. Akafzadeh,
Int. J. Mod. Phys. A 30, 1550108 (2015).

[40] A. Alboteanu, Ph.D. thesis, Wiirzburg University, 2007.

[41] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38,
090001 (2014).

[42] A. Alboteanu, W. Kilian, and J. Reuter, J. High Energy
Phys. 11 (2008) 010.

PHYSICAL REVIEW D 95, 035034 (2017)

[43] P.K. Das, N.G. Deshpandeh, and G. Rajasekaran, Phys.
Rev. D 77, 035010 (2008).

[44] P.K. Das, A. Prakash, and A. Mitra, Phys. Rev. D 83,
056002 (2011).

[45] A. Prakash, A. Mitra, and P.K. Das, Phys. Rev. D 82,
055020 (2010).

[46] N. Seiberg, L. Sussskind, and N. Toumbas, J. High Energy
Phys. 06 (2000) 044.

[47] M. Chaichian, K. Nishijima, and A. Tureanu, Phys. Lett. B
568, 146 (2003).

[48] S. Godfrey and M. A. Doncheski, Phys. Rev. D 65, 015005
(2001).

035034-17


http://dx.doi.org/10.1140/epjc/s2003-01207-4
http://dx.doi.org/10.1103/PhysRevD.75.097701
http://dx.doi.org/10.1103/PhysRevD.75.097701
http://dx.doi.org/10.1016/S0370-2693(00)00928-X
http://dx.doi.org/10.1016/S0370-2693(00)00928-X
http://dx.doi.org/10.1142/S0217751X15501080
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1126-6708/2008/11/010
http://dx.doi.org/10.1088/1126-6708/2008/11/010
http://dx.doi.org/10.1103/PhysRevD.77.035010
http://dx.doi.org/10.1103/PhysRevD.77.035010
http://dx.doi.org/10.1103/PhysRevD.83.056002
http://dx.doi.org/10.1103/PhysRevD.83.056002
http://dx.doi.org/10.1103/PhysRevD.82.055020
http://dx.doi.org/10.1103/PhysRevD.82.055020
http://dx.doi.org/10.1088/1126-6708/2000/06/044
http://dx.doi.org/10.1088/1126-6708/2000/06/044
http://dx.doi.org/10.1016/j.physletb.2003.06.009
http://dx.doi.org/10.1016/j.physletb.2003.06.009
http://dx.doi.org/10.1103/PhysRevD.65.015005
http://dx.doi.org/10.1103/PhysRevD.65.015005

