
Stabilization of semilocal strings by dark scalar condensates

Péter Forgács1,2 and Árpád Lukács1
1Wigner RCP RMI, H1525 Budapest, POB 49, Hungary

2LMPT CNRS UMR7350, Université de Tours, Parc de Grandmont, 37200 Tours, France
(Received 9 December 2016; published 6 February 2017)

Semilocal and electroweak strings are well known to be unstable against unwinding by the condensation
of the second Higgs component in their cores. A large class of current models of dark matter contains dark
scalar fields coupled to the Higgs sector of the Standard Model (Higgs portal) and/or dark U(1) gauge
fields. It is shown that Higgs-portal-type couplings and a gauge kinetic mixing term of the dark U(1) gauge
field have a significant stabilizing effect on semilocal strings in the “visible” sector.

DOI: 10.1103/PhysRevD.95.035003

I. INTRODUCTION

Cosmic strings and their observational signatures have
been studied for a long time as they are expected to form in
the early Universe [1–5]. Even if by now it seems unlikely
that cosmic strings could have significantly contributed to
structure formation in the Universe, string-like excitations
in the Standard Model (SM) continue to be of great interest
not only from a theoretical point of view, but also because
such objects may eventually leave observable signatures,
e.g., in the Large Hadron Collider [6–8]. Remarkable string
solutions have been uncovered in the bosonic sector of the
Glashow-Salam-Weinberg (GSW) theory (in this paper we
shall refer to a generalization of the electroweak sector of
the SM, that allows its parameters to take on nonphysical
values, as the GSW theory); for a review see Ref. [6]. A
rather interesting class of models emerges by taking the
θW → π=2 limit of the GSW theory, where θW denotes the
electroweak mixing angle. In this way, one obtains an
Abelian Higgs model with an extended scalar sector having
an SUð2Þglobal symmetry acting on the Higgs doublet; this
is a prototype of semilocal models. Its string solutions are
referred to as semilocal strings [6,9–11] and these are quite
instructive to study as they are potentially important objects
in the GSW theory. An important criterion for the physical
relevance of string-type objects is their classical stability.
Semilocal strings turned out to be stable only when the
mass of the scalar particle is smaller than that of the (single)
gauge boson, as shown in Refs. [10,11]. The stability of
electroweak strings (whose progenitors are the semilocal
ones) has been considered in Refs. [6,12–15]; it was found
that for physically realistic values of θW, electroweak
strings are unstable.
Moreover, there are good reasons to consider extended

versions of the GSW theory with a dark sector (DS),
motivated by the mystery of dark matter. In such extended
models the question of the possible role of strings appears
naturally. A minimalistic extension of the GSW theory is to
couple a (dark) scalar field to the by now firmly established
Higgs sector of the GSW theory (Higgs portal) [16,17], but

there are also well-motivated extensions of the GSW theory
containing U(1) gauge fields in the DS [18,19]. In
Refs. [20–25] physical properties and possible observa-
tional signatures of cosmic strings in the DS (dark strings)
have been considered. A more detailed investigation of
string solutions in Abelian Higgs theories modeling a
“visible” and a “dark” U(1) gauge sector was presented
in Ref. [26]. In subsequent works [27,28] semilocal-type
models with a “visible” and a “dark” U(1) gauge field
spontaneously broken in both sectors have been inves-
tigated. It has been observed that the stability region of
semilocal string solutions with a nonzero winding number
in the DS can be extended as a function of the couplings
between the visible and the DS. Higher winding vortices in
the Uð1Þ × Uð1Þ model and its supersymmetric generali-
zation have been considered in Refs. [29,30]. An earlier
work on string solutions in a portal-type theory is Ref. [31].
In all these works only strings with nonzero winding in the
DS have been considered, because of the known instabil-
ities of “visible” semilocal strings.
The main goal of the present paper is to complement

these studies on dark strings by concentrating on the
influence of the DS on “visible” semilocal-type string
solutions (i.e., with zero winding in the DS). We consider a
Uð1Þ × Uð1Þ Abelian Higgs (AH) model, whose scalar
sector consists of a complex Higgs doublet with (global)
SU(2) symmetry coupled to a dark scalar field with a
Uð1Þ × Uð1Þ-symmetric potential, which is a simple gen-
eralization of the model of Witten [32]. We use this
simplified model to study the effect of the DS on semilocal
strings. It is convenient to distinguish between two sym-
metry-breaking patterns: either both the visible Higgs and
the dark scalar field have nonzero vacuum expectation
values (2VEV), or there is no symmetry breaking in the DS
(1VEV). The 1VEV case is directly relevant to the Higgs
portal (scalar phantom) model of Refs. [16,17], whereas
when the DS contains gauge fields to model the interaction
among the dark matter particles the symmetry must be
broken in both the visible and dark sectors (2VEV case)
[18–20].
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Generically, semilocal strings are unstable with respect
to condensation of the dark scalar field at their core [we
shall refer to such strings as dark core (DC) ones]. In the
absence of the gauge kinetic mixing, the DC strings
investigated in the present paper correspond to embeddings
of the solutions previously found in Refs. [33–35] into the
SUð2Þ × Uð1Þ-symmetric semilocal model coupled to a
DS. When the gauge kinetic mixing is different from zero
the string solutions we consider here differ from those of
Refs. [27,28] in that our strings have nontrivial winding
only in the visible sector. Our main result is the stability of
DC strings with respect to small perturbations for a rather
large parameter domain.
It has to be pointed out that a number of mechanisms

to stabilize semilocal strings have already been inves-
tigated. In Ref. [36], a stabilizing effect due to a bound
state of an additional scalar field on semilocal and
electroweak strings was found. In Ref. [37], it has been
shown that a special (dilatonic-type) coupling between
the gauge and scalar fields also has a stabilizing effect on
semilocal strings.
In the complementary limit of the electroweak theory,

θW → 0, it has been demonstrated that quantum fluctua-
tions of a heavy fermion doublet coupled to the string can
also lead to stabilization in Refs. [38,39]. Stabilization of
electroweak strings due to the interaction with thermal
photons has been demonstrated in Ref. [40].
The plan of the paper is as follows. In Sec. II we

introduce the models considered, followed by the discus-
sion of visible straight string solutions in the 2VEV case
and their stability properties in Sec. III. Next we analyze the
1VEV case in Sec. IV. We conclude in Sec. V. Some details
have been relegated to various appendices: scalar masses in
the 2VEV case to Appendix A, radial equations of vortices
to Appendix B, and the linearization of the field equations
about the vortices to Appendix C.

II. SIMPLE MODELS OF DARK MATTER

In Refs. [18,19], a unified model of dark matter was
presented, which posits a DS with a U(1) gauge symmetry,
spontaneously broken in order to avoid long-range inter-
actions. The DS is modeled by an AHmodel ðCμ; χÞ, where
the dark scalar field, χ, couples to the GSW theory through
a Higgs portal coupling [16,17] and the dark gauge field Cμ

through a gauge kinetic mixing term [41].
We consider a semilocal model coupled to a DS defined

by the Lagrangian1

L ¼ −
1

4
FμνFμν −

1

4
HμνHμν þ ϵ

2
HμνFμν þDμΦ†DμΦ

þ ð ~DμχÞ� ~Dμχ − VðΦ; χÞ; ð1Þ

whereΦ¼ðϕ1;ϕ2Þ,DμΦ¼ð∂μ−iAμÞΦ, ~Dμχ¼ð∂μ−iqCμÞχ,
Fμν ¼ ∂μAν − ∂νAμ, and Hμν ¼ ∂μCν − ∂νCμ. The poten-
tial VðΦ; χÞ is a slight generalization of that in the Witten
model [32],

VðΦ; χÞ ¼ β1
2
ðjΦj2 − 1Þ2 þ β2

2
jχj4 þ β0jΦj2jχj2 − αjχj2:

ð2Þ

The parameters β1, β2, β0, α are restricted by demanding that
VðΦ; χÞ > 0 for jΦj2, jχj2 → ∞, resulting in β1 > 0, β2 > 0,
and β0 > −

ffiffiffiffiffiffiffiffiffi
β1β2

p
. For a description of the vacua of VðΦ; χÞ

we refer to Refs. [34,35]. The parameters β0 and ϵ corre-
spond to the Higgs portal and gauge kinetic mixing [41],
respectively.
The above model (1) can be viewed as the θW → π=2

limit of the GSW theory coupled to a DS; therefore,
we shall refer to the fields Φ and Aμ as the “visible sector,”
and χ andCμ as the DS. Apart from the local Uð1Þ × Uð1Þ it
has a global SU(2) symmetry acting on the (complex)
Higgs doublet, Φ, and we shall refer to Eq. (1) as the
“semilocal-DS” model.
In the 2VEV case, for ϵ ¼ 0, the gauge boson masses are

given as m2
A ¼ 2η21 and m2

C ¼ 2q2η22, where the VEVs η1
and η2 expressed in terms of the parameters of the potential
are listed in Appendix A [Eq. (A1)]. The scalar particles ϕ1

and χ mix; the analysis thereof is presented in Appendix A.
The field ϕ2 remains massless (in the GSW theory, it is the
would-be Goldstone boson corresponding to the longi-
tudinal component of W�). For a detailed analysis of the
effects of the gauge kinetic mixing we refer to
Refs. [21,41]. Unless the mass of the DS scalar χ is large
(mχ ≫ 1 TeV) compared to SM masses, ϵ≲ 10−3 [18,20].
In the 2VEV case, the dark sector Higgs and gauge bosons
do not directly make up dark matter [18,19]. As a result,
there are much less stringent experimental bounds on
the model parameters, e.g., if the mixing of the visible
sector and the dark sector Higgs particles is small enough,
and the dark sector particles are heavy enough, the model
is viable.
By setting q ¼ 0, Cμ ¼ 0 we obtain a semilocal model

coupled through the Higgs field to a dark scalar field (portal
model). Assuming that there is an unbroken Z2 symmetry
in the DS, the dark scalar cannot take on a VEV (1VEV
case). The main interest of such portal models is their
minimality in that the dark scalar field itself can be
considered as a primary constituent of the dark matter.
In the 1VEV case, the gauge boson mass ism2

A ¼ 2, and the
scalar masses are m2

ϕ1
¼ 2β1, m2

χ ¼ β0 − α. Due to the
global SU(2) symmetry the field ϕ2 stays massless.
Experimental limits on the couplings can be found in
Refs. [42–44]. We note that Higgs decays into the dark
sector impose rather strong constraints on the coupling β0,
and the dark matter density imposes constraints on mχ .

1We use the metric signature þ−−−.
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III. VISIBLE SEMILOCAL STRINGS WITH A
BROKEN SYMMETRY IN THE DARK SECTOR

Straight string solutions in a two-component extended
Abelian Higgs model with both fields having a nonzero
VEV have been considered for two charged fields in
Refs. [45–47] and for one charged and one neutral field
in Refs. [34,35]. In the case of two electrically charged
fields, unless the windings of the two scalar fields agree,
the energy per unit length of such strings diverges
logarithmically,2 and their flux is fractional.
In the absence of the gauge kinetic mixing term (ϵ ¼ 0)

the 2VEV vortices of Refs. [34,35] can be embedded in the
model given by Eq. (1), by setting ϕ2 ¼ 0. For ϵ ≠ 0 the
angular component of the DS gauge field also becomes
nonzero. The (straight) string solutions we consider are
translationally symmetric in the z direction, and rotationally
symmetric in the ðx; yÞ plane, corresponding to the ansatz

ϕ1 ¼ fðrÞeinϑ; χ ¼ gðrÞ;
Aϑ ¼ naðrÞ; Cϑ ¼ cðrÞ; ð3Þ

where r, ϑ are polar coordinates in the plane and the other
field components (ϕ2, Ar, Az, Cr, Cz) vanish. Using the
field equations (B1) one easily obtains that the energy (B2)
is a monotonously increasing function of the dark charge q
[see Eq. (B4)]. The derivative with respect to the gauge
kinetic mixing is given by

∂E
∂ϵ ¼ −2πn

Z
∞

0

dr
a0c0

r
; ð4Þ

which vanishes at ϵ ¼ 0, since in that case the field
equation for cðrÞ in Eq. (B1) becomes homogeneous
and a standard maximum principle argument implies
cðrÞ≡ 0. Expanding the fields in a power series of ϵ
[see Eq. (B6)], the energy of the vortex can be written as

E ¼ E0 þ ϵ2E2 þOðϵ3Þ; where

E2 ¼ −2πð2n − 1Þ
Z

∞

0

dr
f20ð1 − a0Þc1

r
: ð5Þ

At β1 ¼ 2, β2 ¼ 3, β0 ¼ 2, α ¼ 2.1, and q2 ¼ 1, Eq. (5)
yields an excellent approximation up to ϵ≲ 0.2. Moreover,
E0=ð2πÞ ¼ 0.906 and the correction is E2=ð2πÞ ¼ −0.089.
A further approximation is to consider the q2 → 0 limit

[see Appendix B, in particular Eq. (B7)], in which case
c1 ≈ a0, simplifying the expression for E2:

E2 ¼ −πð2n − 1Þ
Z

∞

0

rdr

�
a00
r

�
2

þ � � � : ð6Þ

Remarkably, E2 in Eq. (6) is proportional to the magnetic
energy of the unperturbed vortex. At β1¼ 2, β2¼ 3, β0 ¼ 2,
α¼ 2.1, and q2 ¼ 0.1, Eq. (6) yields E2=ð2πÞ≈−0.177. For
these parameter values, Eq. (5) gives E2=ð2πÞ ¼ −0.155,
which compares quite favorably.
Next we summarize the main results of our stability

analysis of string (or vortex in the plane) solutions
corresponding to the ansatz (3). The perturbation equations
around the straight string solutions are given in
Appendix C. Crucially, the fluctuation equations for δϕ2

and δϕ�
2 decouple from the other components (and also

from each other). This decoupling is related to ϕ2 ≡ 0 for
the background solution and to the coupling structure of the
DS. The (only) known instabilities of the semilocal model
(without a DS) have been found in the δϕ2 sector. We argue
that in the semilocal-DS model the only potential insta-
bilities are expected to appear in the fluctuation equations
for δϕ2 (and for δϕ�

2), at least for “not too large” values of
β0, simplifying considerably the stability analysis. Due to
the translation symmetry in the t (z) variable the linearized
equations for the corresponding vector-field components
δA0, δC0 (δA3, δC3) decouple from each other and from
the other components. Exploiting the symmetries of the
background string solution, the linearized equations for
the components Ψl ¼ ðδϕ1; δϕ�

1; δAi; δχ; δχ�; δCiÞ can be
reduced to a coupled system of the form

MlΨl ¼ Ω2Ψl;l ¼ 0; 1;…; ð7Þ
constituting a system of eight second-order radial ordinary
differential equations for a given value of the angular
momentum l. For more details of the small fluctuation
equations we refer to Appendix C, and Refs. [34,35,48–50].
The coupled perturbation system (7) is not expected to

give rise to instabilities at least for not too large values of β0,
ϵ. When β0 ¼ ϵ ¼ 0 the string solution reduces to an
Abrikosov-Nielsen-Olesen (ANO) one [51,52] in the visible
sector, embedded into the semilocal-DS model with ϕ2 ≡ 0
and χ ≡ η2. Therefore, Eq. (7) decouples into the perturba-
tions of theANOvortex in the visible sector, and those of the
vacuum in the dark sector. In the visible sector the lowest
eigenvalues are well known to be positive [49] [e.g., for
β1 ¼ 2, the lowest bound-state eigenvalue isΩ2 ¼ 1.76, and
the lowest continuum state is atΩ2 ¼ minð2β1; 2Þ], while in
the DS positivity is rather obvious as we are perturbing
around a true vacuum state [continuum above Ω2 ¼
minð2β2η22; 2q2η22Þ]. Simple perturbation-theoretic argu-
ments show that for β0≪1, ϵ ≪ 1 the spectrum remains
positive. Therefore, in this paper we shall investigate only
the decoupled fluctuation equations for δϕ2, which can be
written as

−
1

r
ðrs2l0 Þ0 þUs2l ¼ Ω2s2l;

U ¼ ðna − lÞ2
r2

þ β1ðf2 − 1Þ þ β0g2: ð8Þ
2We assume that the potential vanishes at its minimum. This

can be achieved by the subtraction of a constant from the potential
V in Eq. (2).
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For l ¼ 0, the potential in Eq. (8) has a negative valley close
to the origin (the core of the vortex), while for r → ∞ it is
given as ðn − lÞ2=r2. The existence of negative eigenvalues
depends on the depth of the attractive valley. The stabilizing
effect of the scalar condensate comes from making this
attractive potential valley shallower.More quantitatively, for
a given value of β1 > 1, by increasing α (remember that
α − β0 > 0) the negative eigenvalue approaches zero, and for
some value α ¼ αsðβ1; β2; β0Þ it actually reaches zero. For
α > αs, DC vortices are then stable. Quite importantly, a
large value of the coupling α is also compatible with the
experimental bounds on themodel, which is quite promising
for electroweak-dark strings.
Numerical data are presented in Table I. An unstable

vortex and the potential in its perturbation equation (8) is
shown in Fig. 1, and a stable one is shown in Fig. 2. As the
parameters are tuned, the valley in the potential around the
origin becomes shallow, and the bound mode disappears.
Importantly, both the Higgs portal coupling and the gauge
kinetic mixing act to stabilize semilocal vortices.
In Table I, some numerical data of DC vortices are given

for α ¼ αs, i.e., at the value of α when the change of
stability sets in. Note that larger values of ϵ correspond to
lower values of αs (i.e., a larger domain of stability). One

may note that the values of αs decrease on the order of
Oð10−2Þ, while ϵ increases from 0 to 0.2. Therefore it may
appear surprising that the change in the energy is rather
small and positive, although ∂E=∂ϵ < 0 while ϵ changes
considerably more than α. This effect can be accounted for
by observing that the energy is rather more sensitive to a
change in α than to one in ϵ, e.g., at β1 ¼ 2, β2 ¼ 5, β0 ¼ 2,
α ¼ 4.6, E2 ¼ −0.002 × 2π and ∂E=∂α ≈ −0.344 × 2π.
The relative smallness of ∂E=∂ϵ ¼ 2E2ϵ as compared to
∂E=∂α can be understood from Eq. (6). Since aðrÞ − 1 is
exponentially suppressed for large values of r the main
contribution to the integral is expected to come from
the region of r < 1; however, fðrÞ2 ¼ Oðr2Þ for r → 0,
accounting for the relative smallness of E2. On the other
hand, ∂E=∂α ¼ Oð1Þ [see Eq. (B5) in Appendix B].
In Fig. 3(a) two-dimensional slices for β2 ¼ 3 and 5 of

the domain of stability of DC vortices are depicted
schematically. For values of ðβ1; αÞ to the right of the
curves, there exist stable DC vortices. Figure 3(a) shows
that the domain of stability increases as α increases, and/or
as β2 decreases. Figure 3(b) shows additionally the curves
separating stable and unstable vortices for fixed values of
β0; these show that the domain of stability increases as β0
increases. For better viewing, data points are connected
with straight interpolating lines.

IV. SEMILOCAL STRINGS IN MODELS WITH
PURELY SCALAR DARK MATTER

In Higgs portal models the DS contains only scalar
fields, i.e., dark gauge fields are absent. Moreover, the VEV
of the dark scalars is zero to ensure an unbroken Z2

symmetry. This case is referred to as the 1VEV case in
this paper.
The string solutions we consider in this section corre-

spond to the embedding of “condensate core” (CC) strings,

with ϕ1 ¼ ϕðCCÞ, Aϑ ¼ AðCCÞ
ϑ , χ ¼ χðCCÞ, and ϕ2 ¼ 0. CC

TABLE I. Stabilization of 2VEV vortices: the value of α where
the vortex becomes stable, and additionally the energy of the
vortex at that value of α is displayed. The hidden sector charge is
q2 ¼ 1.

ϵ ¼ 0 ϵ ¼ 0.1 ϵ ¼ 0.2

β1 β2 β0 αs E=ð2πÞ αs E=ð2πÞ αs E=ð2πÞ
2 5 2 4.571 0.149 4.567 0.150 4.559 0.153
2 3 2 2.196 0.792 2.193 0.795 2.180 0.808
2 1.5 1.25 2.025 0.329 2.020 0.332 2.011 0.341
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FIG. 1. An unstable 2VEV vortex and the potential in its
perturbation equation (8): β1 ¼ 2, β2 ¼ 3, β0 ¼ 2, α ¼ 2.011, and
ϵ ¼ 0. [For the notation, see Eqs. (3) and (8).]
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FIG. 2. A stable 2VEV vortex and the potential in its pertur-
bation equation (8): β1 ¼ 2, β2 ¼ 3, β0 ¼ 2, α ¼ 2.3, and ϵ ¼ 0.
[For the notation, see Eqs. (3) and (8).]
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strings have been studied in Refs. [34,35]. They are the
zero-current limits of the superconducting strings of
Ref. [31]. We refer to these solutions as DC strings.
The linear stability analysis of DC strings is completely
analogous to that of the 2VEV case in Sec. II. For
more details of the perturbation equations, we refer to
Appendix C.
Again, perturbations of the fields δϕ2 and δϕ�

2 decouple
from all other components, and satisfy a Schrödinger-type
equation [Eq. (8)]. The characteristics of the potentialU are
similar to the one in the 2VEV case; it has a repulsive
(centrifugal) contribution determining its r → ∞ asymp-
totics, and an attractive valley close to the origin, the depth
of which depends on the background vortex. Therefore the
existence of negative eigenvalues depends on the character-
istics of the attractive potential valley near the vortex core
in V [Eq. (2)]. Since the positive contribution β0g2 is of
crucial importance, it is illuminating to estimate its influ-
ence. We have found that its parameter dependence is well
described qualitatively by approximating the condensate at
the vortex core simply by a constant. The minimum of the
potential for Φ ¼ 0 is at jχj ¼ ffiffiffiffiffiffiffiffiffiffi

α=β2
p

. Thus in this crude
approximation β0g2 ¼ β0α=β2. Therefore, the larger α and
smaller β2, the larger the domain of stability of CC vortices.

The reference solution of the semilocal model is the
embedded ANO vortex, ϕ1 ¼ ϕðANOÞ, Aϑ ¼ AðANOÞ

ϑ , χ ¼ 0,
and ϕ2 ¼ 0. It is also the unique z-independent string for a
generic β1. Embedded ANO vortices have been found to be
unstable for β1 > 1 [10,11]. We have found that DC
vortices are stable for β1 < β1s, where, e.g., for β2 ¼ 6,
β0 ¼ 2.3, and α ¼ 2.05, β1s ¼ 1.247. Some further numeri-
cal data are collected in Table II. As can be inferred from
Table II, the domain of stability of semilocal strings gets
significantly extended. A comparison of the potential U for
embedded ANO and for DC vortices is shown in Fig. 4.
However, the stable DC solutions we found are still not in
the experimentally allowed parameter range (in the SM,
β1 ≈ 1.92), and the Higgs portal coupling here is also too
large [42–44].
The remaining set of fluctuation equations for the

variables δϕ, δχ, and δAi have been investigated numeri-
cally in Refs. [34,35], and no instabilities have been found.
This is in contrast with the reference semilocal (embedded

TABLE II. Stabilization of the strings by the condensate in the
1VEV case. The value of β1 and the energy of the vortex at that
value of β1 is displayed. Embedded ANO strings are stable for
β1 ≤ 1. The energy of the ANO vortex for β ¼ 2 is 2π × 1.1568,
and at β1 ¼ 1 it is 2π.

β2 β0 α β1s E=ð2πÞ
3 2.3 2.05 1.615 1.0846
4 2.3 2.05 1.459 1.0630
5 2.3 2.05 1.367 1.0504
6 2.3 2.05 1.247 1.0299
2 2 1.85 1.805 1.1022

(a) (b)

FIG. 3. (a) Schematic view of two two-dimensional slices of the domain of stability of DC vortices. (b) Contour plots of the boundary
of the domain of stability of DC vortices.

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3  4  5
r

  UANO

  UDC

FIG. 4. The potentials in the Schrödinger-type equations for
perturbations of ϕ2 around ANO and DC vortices [Eq. (8)], with
β1;2 ¼ 2, β0 ¼ 2.3, and α ¼ 2.05.
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ANO) vortex, which does have an instability in this sector.
It has been shown that this does not persist for the CC
vortex.

V. CONCLUSIONS

We have investigated the effect of a dark scalar field with
the Higgs portal coupling and a U(1) gauge field with a
gauge kinetic mixing term on semilocal strings with local
U(1) and global SU(2) symmetries in the visible sector. The
strings considered in this paper have unit winding number
with respect to the visible U(1) and zero winding number
with respect to the dark U(1). We have found that in a
minimal Higgs portal model (with a single dark scalar
field), semilocal strings get stabilized by a dark scalar
condensate at the core of the string. By also considering a
dark U(1) gauge field with a gauge kinetic mixing term, an
additional stabilizing effect was found. These observations
open up the possibility of the existence of classically stable
dark core electroweak strings.
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APPENDIX A: SCALAR MASSES

To obtain scalar masses in the 2VEV case, we linearize
the potential (2) about the vacuum ϕ1 ¼ η1, ϕ2 ¼ 0, and
χ ¼ η2, with

η21 ¼
β1β2 − αβ0

β1β2 − ðβ0Þ2 ; η22 ¼
β1ðα − β0Þ
β1β2 − ðβ0Þ2 : ðA1Þ

We also introduce the new variables δϕ1 ¼ ϕr
1 þ iϕi

1 and
δχ ¼ χr þ iχi. The would-be Goldstone bosons—which
are later gauged into the longitudinal components of the
gauge fields—are then ϕi

1 and χi. The propagating scalar
particles are mixed out of ϕr

1 and χr, and their mixing
matrix is

MS ¼
1

2

�
4β1η

2
1 4β0η1η2

4β0η1η2 4β2η
2
2

�
: ðA2Þ

The Higgs particle H and the dark Higgs particle K are
related to these as [21]

�
ϕr
1

χr

�
¼

�
cos θ sin θ

− sin θ cos θ

��
H

K

�
; ðA3Þ

where

tan 2θ ¼ 2β0η1η2
β2η

2
2 − β1η

2
1

¼ 2MS12

MS22 −MS11
:

The resulting scalar masses are

M2
H ¼ MS11 − ðMS22 −MS11Þsin2θ= cos 2θ;

M2
K ¼ MS22 þ ðMS22 −MS11Þsin2θ= cos 2θ: ðA4Þ

The second semilocal component ϕ2 remains massless.

APPENDIX B: RADIAL EQUATIONS

Inserting the ansatz (3) into the field equations corre-
sponding to the Lagrangian (1) yields the radial equations

r

�
a0

r

�0
¼ 2

1 − ϵ2
f2ða − 1Þ þ 2ϵ

1 − ϵ2
q2g2c;

r

�
c0

r

�0
¼ 2

1 − ϵ2
q2g2cþ 2ϵ

1 − ϵ2
f2ða − 1Þ;

1

r
ðrf0Þ0 ¼

�
n2ð1 − aÞ2

r2
þ β1ðf2 − 1Þ þ β0g2

�
f;

1

r
ðrg0Þ0 ¼

�
q2c2

r2
þ β2g2 − αþ β0f2

�
g: ðB1Þ

The boundary conditions at the origin are demanded by the
regularity of the fields in the plane, for r → 0, f ∼ fðnÞrn,
g → gð0Þ, a ∼ að2Þr2, and c ∼ cð2Þr2. For r → ∞, we
impose a → 1, c → 0, f → η1, and g → η2 in the 2VEV
case, and f → 1 and g → 0 in the 1VEV one.
The energy density of a field configuration in the ansatz

(3) is

E ¼ 1

2

��
na0

r

�
2

þ
�
c0

r

�
2

− 2ϵn
a0c0

r2

�
þ ðf0Þ2 þ ðg0Þ2

þ n2ð1 − aÞ2
r2

f2 þ q2c2

r2
g2 þ Vðf; gÞ; ðB2Þ

where

Vðf; gÞ ¼ β1
2
ðf2 − 1Þ2 þ β2

2
g4 − αg2 þ β0f2g2 − V0;

V0 ¼ −
1

2

β1ðα − β0Þ2
β1β2 − ðβ0Þ2 : ðB3Þ

In Eq. (B3), V0 is the term subtracted in the 2VEV case to
set the potential to zero at its minimum. In the 1VEV case,
no such term is necessary.
As the fields satisfy the Euler-Lagrange equations, in the

derivatives of the energy with respect to the parameters of
the model terms proportional to the implicit derivatives of
the fields vanish, and only explicit terms remain, e.g.,

∂E
∂q2 ¼ 2π

Z
∞

0

dr
c2g2

r
> 0: ðB4Þ

We explicitly spell out the derivative used in Sec. II in the
2VEV case,
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∂E
∂α ¼ −2π

Z
∞

0

rdrðg2 − η22Þ; ðB5Þ

where the second term is due to the subtraction of V0 in
Eq. (B3). In the 1VEV case, the derivative is the same as in
Eq. (B5) without the subtraction of η22.
A series expansion of the solutions in ϵ is as follows:

a ¼ a0 þ ϵ2a2 þOðϵ3Þ; f ¼ f0 þ ϵ2f2 þOðϵ3Þ;
g ¼ g0 þ ϵ2g2 þOðϵ3Þ; c ¼ ϵc1 þOðϵ3Þ: ðB6Þ

The resulting equations of motion are obtained for a0, f0,
g0 by setting ϵ ¼ 0 and c ¼ 0 in the radial equations (B1).
The leading-order correction c1 satisfies

r

�
c01
r

�0
¼ 2q2g20c1 þ 2f20ða0 − 1Þ; ðB7Þ

which can be approximated in the limit q2 → 0: in this limit,
the right-hand side of Eq. (B7) becomes the same as that of
the equation for a0 [see Eq. (B1)], and therefore c1 ≈ a0.
Although the q2 → 0 limit is not uniform in r, the dominant
contribution in the energy correction (6) is expected to come
from the core, which is numerically verified.

APPENDIX C: LINEARIZED EQUATIONS

For the linearized field equations we use the formalism
of Ref. [49] (see also Refs. [50,53,54] for applications to
multicomponent vortices).
For the 2VEV case. in the linearized field equations we

introduce a set of new variables for the gauge fields,

δAμ ¼
δKμffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p þ δLμffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p ;

δCμ ¼
δKμffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p −
δLμffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ
p ; ðC1Þ

which diagonalize the gauge kinetic terms at the cost of
introducing couplings between both gauge fields and both
scalars,

e− ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p ; eþ ¼ 1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p ;

q− ¼ qffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p ; qþ ¼ qffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p : ðC2Þ

The linearized equations assume a particularly simple
form in the background field gauge [48,49],

FK ¼ ∂μδKμ þ ie−ðδΦ†Φ − Φ†δΦÞ þ iq−ðδχ�χ − χ�δχÞ;
FL ¼ ∂μδLμ þ ieþðδΦ†Φ − Φ†δΦÞ þ iqþðδχ�χ − χ�δχÞ:

ðC3Þ

The components δK0;3 and δL0;3 decouple from the rest of
the variables due to the t, z independence of the back-
ground, satisfying

ð□þUKKÞδK0;3 þUKLδL0;3 ¼ 0;

ð□þULLÞδL0;3 þ UKLδK0;3 ¼ 0; ðC4Þ

where

UKK ¼ 2e2−Φ†Φþ 2q2−jχj2;
UKL ¼ 2e−eþΦ†Φþ 2q−qþjχj2;
ULL ¼ 2e2þΦ†Φþ 2q2þjχj2:

Infinitesimal gauge transformations act on the fields as

δKμ → δKμ þ ∂μξ; δLμ → δLμ þ ∂μζ;

δϕa → δϕa þ iϕaðe−ξþ eþζÞ;
δχ → δχ þ iχðq−ξþ qþζÞ: ðC5Þ

Due to the residual gauge freedom allowed by the
gauge fixing (C3), there are ghost modes, satisfying the
equations

ð□þ UKKÞξþ UKLζ ¼ 0; ð□þULLÞζ þUKLξ ¼ 0;

ðC6Þ

which agree with those of the 0,3 gauge field components
[Eq. (C4)] and cancel part of the spectrum, including all
modes in the δK0;3 − δL0;3 sector; therefore, in what
follows we omit these components.
The following ansatz is compatible with the field

equations, due to the cylindrical symmetry of the
background:

δϕ1 ¼ eiðΩt−kzÞeiðnþlÞϑs1;lðrÞþ e−iðΩt−kzÞeiðn−lÞϑs1;−lðrÞ;
δϕ2 ¼ eiðΩt−kzÞeilϑs2;lðrÞþ e−iðΩt−kzÞe−ilϑs2;−lðrÞ;
δχ ¼ eiðΩt−kzÞeilϑhlðrÞþ e−iðΩt−kzÞe−ilϑh−lðrÞ;

δKþ ¼ eiðΩt−kzÞeiðl−1ÞϑitlðrÞþ e−iðΩt−kzÞe−iðlþ1Þϑit−lðrÞ;
δK− ¼−eiðΩt−kzÞeiðlþ1Þϑit�−lðrÞ− e−iðΩt−kzÞe−iðl−1Þϑit�lðrÞ;
δLþ ¼ eiðΩt−kzÞeiðl−1ÞϑiulðrÞþ e−iðΩt−kzÞe−iðlþ1Þϑiu−lðrÞ;
δL− ¼−eiðΩt−kzÞeiðlþ1Þϑiu�−lðrÞ− e−iðΩt−kzÞe−iðl−1Þϑiu�lðrÞ;

ðC7Þ

where K� ¼ expð∓iϑÞðKr ∓ iKϑ=rÞ=
ffiffiffi
2

p
and similarly

for L (note that K�
� ¼ K∓). With the ansatz (C7), the

perturbation equation assumes the form

MlΨl ¼ ðΩ2 − k2ÞΨl; ðC8Þ
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where Ψl ¼ ðs1l; s�1−l; s2l; s�2−l; hl; h�−l; tl; t�−l; ul; u�−lÞ. Note that the lowest eigenvalue corresponds to k ¼ 0; therefore,
in what follows we shall only consider such perturbations. We write the 10 × 10 matrix operator Ml in Eq. (C8) as
(suppressing all zero entries)

Ml ¼

0
BBBBBBBBBBBBBBBBBBBB@

D1 U1 V V 0 e−A1 e−A0
1 eþA1 eþA0

1

U1 D̄1 V 0 V e−A0
1 e−A1 eþA0

1 eþA1

D2

D̄2

V V 0 D3 U2 q−A2 q−A0
2 qþA2 qþA0

2

V 0 V U2 D3 q−A0
2 q−A2 qþA0

2 qþA2

e−A1 e−A0
1 q−A2 q−A0

2 D4 UKL

e−A0
1 e−A1 q−A0

2 q−A2 D̄4 UKL

eþA1 eþA0
1 qþA2 qþA0

2 UKL D5

eþA0
1 eþA1 qþA0

2 qþA2 UKL D̄5

1
CCCCCCCCCCCCCCCCCCCCA

: ðC9Þ

In Eq. (C9), the following notation is used:

D1 ¼ −∇2
r þ

ðnð1 − aÞ þ lÞ2
r2

þW1; D̄1 ¼ −∇2
r þ

ðnð1 − aÞ − lÞ2
r2

þW1;

D2 ¼ −∇2
r þ

ðna − lÞ2
r2

þW2; D̄2 ¼ −∇2
r þ

ðnaþ lÞ2
r2

þW2;

D3 ¼ −∇2
r þ

l2

r2
þW3;

D4 ¼ DK þ ðl − 1Þ2
r2

; D̄4 ¼ DK þ ðlþ 1Þ2
r2

;

D5 ¼ DL þ ðl − 1Þ2
r2

; D̄5 ¼ DL þ ðlþ 1Þ2
r2

; ðC10Þ

with

DK ¼ −∇2
r þUKK; Dc ¼ −∇2

r þ ULL;

and

W1 ¼
�
2β1 þ

1

1 − ϵ2

�
f2 − β1 þ β0g2; W2 ¼ β1ðf2 − 1Þ þ β0g2;

W3 ¼
�
2β2 þ

q2

1 − ϵ2

�
g2 − αþ β0f2; U1 ¼

�
β1 −

1

1 − ϵ2

�
f2;

U2 ¼
�
β2 −

q2

1 − ϵ2

�
g2; UKK ¼ 2

1 − ϵ
f2 þ 2q2

1 − ϵ
g2;

UKL ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p f2 þ 2q2ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p g2; ULL ¼ 2

1þ ϵ
f2 þ 2q2

1þ ϵ
g2;

A1 ¼ −
ffiffiffi
2

p �
f0 −

nf
r
ð1 − aÞ

�
; V ¼

�
β0 þ ϵq

1 − ϵ2

�
fg;

A0
1 ¼

ffiffiffi
2

p �
f0 þ nf

r
ð1 − aÞ

�
; V 0 ¼

�
β0 −

ϵq
1 − ϵ2

�
fg;

A2 ¼ −
ffiffiffi
2

p
ðg0 − qgc=rÞ; A0

2 ¼
ffiffiffi
2

p
ðg0 þ qgc=rÞ:
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For ϵ ¼ 0, the ghost mode equations (C6) decouple.
The visible sector case has been solved numerically; it
has positive eigenvalues, which change slowly with the
parameters. The DS case has a positive potential.

Therefore, no modes corresponding to instabilities are
canceled by ghosts.
The formulas presented above also apply for the 1VEV

case by setting ϵ ¼ q− ¼ 0, replacing δKμ with δAμ, and
dropping δLμ and ζ altogether.
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