
Nucleon-pion-state contribution in lattice calculations of moments
of parton distribution functions

Oliver Bär
Yukawa Institute for Theoretical Physics, Kyoto University,

Kitashirakawa Oiwakechou, Sakyo-ku, Kyoto 606-8502, Japan
(Received 9 January 2017; published 27 February 2017)

We employ chiral perturbation theory to calculate the nucleon-pion-state contribution to the 3-point
correlation functions measured in lattice QCD to compute various moments of parton distribution functions
(quark momentum fraction, helicity and transversity moment). We estimate the impact of the nucleon-pion-
state contribution on the plateau method for lattice simulations with a physical pion mass. The nucleon-
pion-state contribution results in an overestimation of all three moments. The overestimation is at the
5–20% level for source-sink separations of about 1.5 fm.
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I. INTRODUCTION

Lattice QCD calculations of hadron structure observ-
ables have been actively pursued for a long time. Despite
continuous progress, many lattice results still show sizeable
deviations from the experimentally measured values. A
prominent example is the isovector quark momentum
fraction hxiu−d. Compilations of the lattice efforts to
compute this observable can be found in various recent
reviews [1–3], but it seems fair to summarize them by
saying that essentially all lattice calculations overestimate
the quark momentum fraction by 30-60%.
Lattice QCD simulations are afflicted with various

systematic uncertainties. For light quark masses larger
than their physical values, a chiral extrapolation of the
lattice data to the physical point has to be made. Results of
chiral perturbation theory (ChPT) are usually employed for
this step, but a large chiral extrapolation is considered to be
problematic. How well the chiral extrapolation is behaved
depends on the physical quantity, and hxiu−d seems to be
particularly sensitive in that respect.
Progress in computer power and simulation algorithms

in the past few years have made lattice simulations possible
with physical light quark masses. Such ‘physical point
simulations’ require no chiral extrapolation, thus eliminat-
ing a major source of uncertainty. Recently, the Regensburg
QCD (RQCD) Collaboration and the European Twisted
Mass (ETM) Collaboration have reported results for hxiu−d
obtained in physical point simulations [4,5].1 The lattice
results still deviate by about 25% from the experimen-
tal value.
Another source of uncertainty are excited-state contam-

inations in the correlation functions measured on the lattice

to calculate the hadronic observables. In fact, these con-
taminations become more severe the smaller the quark
masses are. In physical point simulations one expects two-
particle nucleon-pion (Nπ) states to contribute substantially
to the excited-state contamination in hadronic correlation
functions. The small physical pion mass implies that the
energy of a Nπ state can be smaller than the energy of the
first resonance state, provided the discrete and opposite
spatial momenta of the nucleon and pion are sufficiently
small. For typical lattice volumes with MπL ≈ 4 and
periodic boundary conditions, this is the case for three
Nπ states. For larger volumes satisfying MπL ≈ 6, as
realized in the simulations of the PACS Collaboration
[6], this number increases to six. This raises the concern
whether the advantage of physical point simulations is
compromised by stronger excited-state contaminations.
In this paper we follow up on a recent ChPT calculation

[7] of the Nπ-state contribution in lattice determinations of
the nucleon axial, tensor and scalar charge. That ChPT can
be employed to compute multiparticle-state contributions
involving light pions has been proposed already some time
ago [8,9]. Here, we compute the Nπ-state contribution to
three Mellin moments of parton distribution functions
(PDFs): the quark momentum fraction hxiu−d, the helicity
moment hxiΔu−Δd and the transversity moment hxiδu−δd. At
leading twist, these moments can be extracted from nucleon
matrix elements involving local one-derivative vector, axial-
vector and tensor operators. As nonsinglet quantities, their
lattice calculation does not involve disconnected contribu-
tions, thus these moments are, together with the nucleon
axial, tensor and scalar charge, the simplest hadron structure
observables one can measure on the lattice. Recently, the
ETM Collaboration has presented results for all six observ-
ables obtained in physical point simulations [5].
The computation presented here parallels the one for the

nucleon charges. We employ the covariant formulation of
Baryon ChPT [10,11] to leading order (LO) in the chiral
expansion. At this order, the low-energy coefficients

1For simplicity, we refer to lattice simulations with pion
masses smaller than about 150 GeVas physical point simulations.
The small mismatch to the physical point is irrelevant for our
discussion.
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(LECs) entering the results are all known from phenom-
enology. Thus, we obtain definite predictions for the Nπ-
state contribution to the three moments estimated by the
plateau method. On the other hand, as long as the next-to-
leading order (NLO) corrections are not known, it is
difficult to assess the error of the LO results. Still, crude
estimates can be made, and we obtain, for example,
a 10–20% overestimation in case of hxiu−d due to the
Nπ contribution using the plateau method at source-sink
separations of about 1.5 fm. Even though not very precise,
this number indicates that the Nπ-state contamination may
be responsible for a substantial part of the discrepancy still
observed between the lattice results and the experimen-
tal value.

II. MOMENTS OF PARTON
DISTRIBUTION FUNCTIONS

A. Basic definitions

Throughout this paper, we consider QCD with the
simplification of equal up and down quark masses. We
work in Euclidean space-time with infinite time-extent. The
spatial volume, however, is taken to be finite with extent L
in each spatial direction, and periodic boundary conditions
are imposed.
We are interested in the forward nucleon matrix elements

hNðpÞjOXjNðpÞi, where the operatorOX with X ¼ V, A, T
stands for one of the following local one-derivative
operators2:

Va
μν ¼ q̄γfμD−

νgT
aq; ð2:1Þ

Aa
μν ¼ q̄γfμD−

νgγ5T
aq; ð2:2Þ

Ta
μνρ ¼ q̄σ½μfν�D−

ρgT
aq: ð2:3Þ

Here, q ¼ ðu; dÞT denotes the isospin quark doublet and the
(color covariant) derivative is defined as

D−
μ ¼ 1

2
ð ~Dμ − D⃖μÞ: ð2:4Þ

The curly and square brackets refer to symmetrization
and antisymmetrization, respectively. Symmetrization also
involves subtracting the trace. The SU(2) generators are
defined as half of the Pauli matrices, Ta ¼ σa=2.
From the forward matrix elements of these operators,

one can obtain the first three moments of the PDFs, the
momentum fraction hxiu−d, the helicity moment hxiΔu−Δd
and the transversity moment hxiδu−δd. This is conveniently
done by computing the ratio

RXðΓν; t; t0Þ ¼
G3pt;XðΓν; t; t0Þ

G2ptðtÞ
ð2:5Þ

of the 3-point (pt) and 2-pt functions

G3pt;XðΓν; t; t0Þ ¼
Z

d3x

×
Z

d3yΓν;αβhNβð~x; tÞO3
Xð~y; t0ÞN̄αð~0;0Þi;

ð2:6Þ

G2ptðtÞ ¼
Z

d3xΓ4;αβhNβð~x; tÞN̄αð~0; 0Þi: ð2:7Þ

Here N, N̄ are interpolating fields for the nucleon. For the
projection matrices Γν, we follow Ref. [5] and define
(k ¼ 1; 2; 3)

Γ4 ¼
1

4
ð1þ γ4Þ; Γk ¼ Γ4iγ5γk: ð2:8Þ

Performing the standard spectral decomposition of the two
correlation functions and taking all times t, t0 and t − t0 to
infinity, it is straightforward to show that the ratio RX goes to
a constant,

RXðΓν; t; t0Þ → ΠXðΓνÞ: ð2:9Þ
According to our definitions this constant is related to the
various moments in the following way [5]:

ΠV44
ðΓ4Þ ¼ −

3MN

4
hxiu−d;

ΠAj4
ðΓkÞ ¼ −

i
2
δjkMNhxiΔu−Δd;

ΠTμνρ
ðΓkÞ ¼ iϵμνρk

MN

8
ð2δ4ρ − δ4μ − δ4νÞhxiδu−δd: ð2:10Þ

For finite Euclidean times t, t0, the ratio contains corrections
which are exponentially suppressed. These stem from
resonances and multihadron states that have the same
quantum numbers as the nucleon. For small pion masses,
the dominant multihadron states are two-particle Nπ states
with the nucleon and the pion having opposite spatial
momenta. Taking only these corrections into account, the
asymptotic behavior of the ratio reads

RXðΓν; t; t0Þ ¼ ΠXðΓνÞ
�
1þ

X
~pn

ðbX;ne−ΔEnðt−t0Þ

þ ~bX;ne−ΔEnt0 þ ~cX;ne−ΔEntÞ
�
: ð2:11Þ

Since we assume a finite spatial volume, the momenta are
discrete, and the sum runs over all momenta allowed by the2We follow to a large extent the conventions in Ref. [5].
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boundary conditions we impose. Here, ΔEn ¼ ENπ;n −MN

is the energy gap between the nucleon-pion state and
the ground state describing a nucleon at rest. Because the
pions interact weakly with the nucleons, the total energy
ENπ;n equals approximately the sum EN;n þ Eπ;n of the
nucleon and pion energy, EN;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
n þM2

N

p
and Eπ;n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2
n þM2

π

p
. The coefficients bX;n, ~bX;n and ~cX;n in (2.11) are

dimensionless ratios of various matrix elements involving
the nucleon interpolating fields and the operator OX. For
example, the coefficient ~cX;n contains the excited-to-excited-
state matrix element hNð~pnÞπð−~pnÞjOXjNð~pnÞπð−~pnÞi.3

B. The chiral effective theory

The correlation functions and the ratios RX defined in the
previous section can be computed in the chiral effective
theory of QCD, i.e. in ChPT. For sufficiently large times t,
t0, pion physics will dominate the correlation functions and
ChPT is expected to provide good estimates for them.
Similar calculations for the 3-pt functions involving the
axial vector current as well as the tensor and scalar density
have been performed in Ref. [7], and the result for the
2-pt function can be found in Ref. [12]. The calculation
presented here is analogous to the ones in these two
references, the main difference is the different set of
operators entering the 3-pt functions. In order to compute
them in the chiral effective theory, we need the ChPT
expressions for the three operators in (2.1)–(2.3).
Our calculations are performed in the covariant formu-

lation of baryon ChPT [10,11]. Based on the transformation
properties under chiral symmetry, parity and charge con-
jugation, the ChPT expressions for the operators (2.1) and
(2.2) have been constructed in [13,14]. Since we work to
LO, we only need the leading contributions. In terms of the
nucleon fields Ψ ¼ ðp; nÞT and Ψ̄ ¼ ðp̄; n̄Þ, which contain
the Dirac fields for the proton p and the neutron n, we find4

Va
μν ¼ av2;0Ψ̄γfμ∂−

νgσ
aΨ −

Δav2;0
f

ϵabcπbΨ̄γfμγ5∂−
νgσ

cΨ;

ð2:12Þ

Aa
μν ¼ Δav2;0Ψ̄γfμγ5∂−

νgσ
aΨ −

av2;0
f

ϵabcπbΨ̄γfμ∂−
νgσ

cΨ:

ð2:13Þ

Here, we have already expanded in powers of pion fields up
to linear order, since this is sufficient for our calculation.

The derivative ∂−
μ ¼ ð~∂μ − ∂⃖μÞ=2 contains the standard

partial derivatives acting on the nucleon fields. Besides
the LO LEC f, the pion decay constant in the chiral limit,
these expressions also contain two more LECs, av2;0 and
Δav2;0. Their normalization was chosen such that they
correspond to the chiral limit values of the momentum
fraction hxiu−d and the helicity moment hxiΔu−Δd,
respectively.
The results in (2.12) and (2.13) resemble the expressions

for the vector and axial vector currents. There are two
contributions, and their LECs are related due to chiral
symmetry. On the other hand, there is no contribution
involving only pion fields. The reason is that Lorentz
indices in terms with pion fields can only come from partial
derivatives, and we need at least two of those to form a
symmetric tensor. Such an expression is necessarily two
orders higher in the chiral counting, as has been discussed
in Ref. [13].
The expression for the tensor operator (2.3) in covariant

ChPT has, to our knowledge, not been constructed yet. We
only need the LO expression, and the construction to this
order is straightforward. We defer the details of the
construction to Appendix A; here we just quote the final
result. To leading chiral dimension, we find only one term,

Ta
μνρ ¼ δav2;0Ψ̄σ½μfν�∂−

ρgσ
aΨ: ð2:14Þ

Here too, we have already expanded in powers of pion
fields, and we dropped all contributions involving two or
more of them. The LEC δav2;0 associated with this term is
chosen such that it corresponds to the chiral limit value of
the transversity moment hxiδu−δd. Also for the tensor
operator, there is no purely pionic contribution at leading
chiral dimension.
For the calculation of the correlation functions, we also

need the Feynman rules stemming from the chiral
Lagrangian and the nucleon interpolating fields. These are
the same expressions as in Refs. [7,12]. For completeness
and for the readers convenience, we summarize them in
Appendix B and refer to [7,12] for more details concerning
their derivation.

C. The 3-pt functions in ChPT

The perturbative calculation of the 3-pt functions in
ChPT is straightforward. The computation parallels the one
in Ref. [7], where the 3-pt functions involving the axial-
vector current, the tensor and the scalar density are
computed. The calculation is conveniently done using
the time-momentum representation of the finite volume
propagators for the nucleon and pion (see Appendix B).
The leading diagram for the 3-pt functions is shown in

Fig. 1. It gives the leading single-nucleon-state contribution
GN

3pt;X to the 3-pt function, and the result reads

GN
3pt;XðΓν; t; t0Þ ¼ ΠXðΓνÞGN

2ptðtÞ; ð2:15Þ

3Similar contributions involving this matrix element with
different momenta in the initial and final states will be ignored
in the following.

4We follow the notation in Ref. [13]. The expressions (2.12)
and (2.13) are easily obtained from the source term given in
eq. (21) in that reference.
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with the constant ΠX defined in (2.10). Here, GN
2pt denotes

the leading single-nucleon-state contribution to the 2-pt
function [12].5 Forming the ratio of the 3-pt and 2-pt
function, we find RX ¼ ΠX in accordance with (2.9).
Figure 2 displays the diagrams with a nonzero Nπ-state

contribution to the 3-pt functions. Diagrams (a)–(h) con-
tribute to all three correlation functions (X ¼ V, A, T).
Diagrams (i)–(l) contribute to X ¼ V, A only because the
tensor operator does not contain a Ψ̄Ψπ term. It is
convenient to express the Nπ-state contribution GNπ

3pt;X to
the 3-pt function in the form (for notational simplicity, we
drop the subscript n on the coefficients in this section)

GNπ
3pt;X ¼ GN

3pt;X

X
~pn

ðbXe−ΔEnðt−t0Þ þ ~bXe−ΔEnt0 þ cXe−ΔEntÞ:

ð2:16Þ

In order to quote our results for the coefficients, we
introduce the same short hand notation as in Ref. [7]. We
introduce “reduced coefficients” BX, CX that differ from the
original ones by two overall factors that are common to all
coefficients:

bX ¼ 1

16ðfLÞ2EπL

�
1 −

MN

EN

�
BX; ð2:17Þ

cX ¼ 1

16ðfLÞ2EπL

�
1 −

MN

EN

�
CX: ð2:18Þ

As in the calculation of the nucleon charges, we explicitly
find

~bX ¼ bX ð2:19Þ

for all three 3-pt functions, so we quote bX only. The first
factor in (2.17) and (2.18) displays the expected 1=L3

dependence of a two-particle state in a finite volume. The
second factor vanishes if the nucleon is, together with the
pion, at rest. This has to be the case since the state with both
nucleon and pion at rest is parity-odd, thus it cannot
contribute to the 3-pt functions with parity-even nucleon
interpolating fields.

The nontrivial results of our ChPT calculation are the
remaining coefficients BX, CX. For them, we find6

CV ¼ −
1

3
ðḡA − 1Þ2

�
4
EN

MN
−
MN

EN

�
; ð2:20Þ

CA ¼ −
1

3
ðḡA − 1Þ2

�
2
EN

MN
− 2 −

MN

EN

�
; ð2:21Þ

CT ¼ þ 1

3
ðḡA − 1Þ2

�
3
EN

MN
− 1 −

MN

EN

�
; ð2:22Þ

where we have introduced the combination

ḡA ¼ gA
ENπ þMN

ENπ −MN
; ð2:23Þ

withENπ¼ENþEπ,EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2þM2

N

p
andEπ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2þM2

π

p
.

For the coefficients BX, we write BX ¼ ðḡA − 1ÞB̄X with

B̄V ¼ 4

3
ḡA

�
EN

MN
þ 2

�
þ gA

�
ENπ

MN
þ 1

�

−
8

3

Δav2;0
av2;0

�
EN

MN
þ 1

�
− ΔB; ð2:24Þ

B̄A ¼ 2

3
ḡA

�
EN

MN
þ 3

�
þ gA

�
ENπ

MN
þ 5

3
þ 2

3

EN

MN

�

−
8

3

av2;0
Δav2;0

�
EN

MN
þ 1

�
− ΔB; ð2:25Þ

B̄T ¼ ḡA

�
11

3
−

EN

MN

�
þ gA

�
2
ENπ

MN
þ 5

3
−
1

3

EN

MN

�
þ ΔB

ð2:26Þ

and

ΔB ¼ 2

3
gA

M2
π

2EπMN −M2
π
: ð2:27Þ

Forming the ratioRX of the 3-pt and 2-pt functions, we obtain
expression (2.11) with the coefficients

~cX ¼ cX − c2pt: ð2:28Þ

FIG. 1. Leading Feynman diagram for the 3-pt function. Squares
denote the nucleon interpolating fields at times t and 0, the
diamond represents the operator at insertion time t0. Solid lines
stand for the nucleon propagators. The two integrations in (2.6)
imply zero spatial momentum propagators in this diagram.

5The definition for Γ4 in Ref. [12] differs by a factor 2 from the
one in (2.8), such that GN

2pt needs to be divided by 2.

6In case of the axial-vector and tensor operators, we show the
results for the averaged correlation functions, where the average
is taken over the indices j in case of Aa

j4 and k, μ, ν for the tensor
operator Ta

μν4. The coefficients for the averaged correlation
functions are slightly simpler than those for fixed indices.
However, the final results for the Nπ-state contribution are the
same in both cases since the sum over the spatial momenta in
(2.11) also averages over the spatial directions.
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The coefficient c2pt entering the 2-pt function is given in [12]
and reads

c2pt ¼
1

16ðfLÞ2EπL

�
1 −

MN

EN

�
C2pt;

C2pt ¼ 3ðḡA − 1Þ2: ð2:29Þ

The coefficients bX, ~cX do not depend on the LECs associated
with the interpolating nucleon fields; these cancel in the ratio.
Thus, the LO results we have derived here are universal
and apply to pointlike and smeared interpolating fields. This
universality property, however, will be lost at the next order in
the chiral expansion.
The coefficients bT , ~cT for the tensor operator depend on

two LECs only, f and gA, which are known experimentally
very well. The coefficients for the vector and axial operator
depend also on the ratio av2;0=Δav2;0, i.e. on the ratio of the
chiral limit values for hxiu−d and hxiΔu−Δd. This ratio can
be inferred from the experimentally measured values of the
momentum fraction and the helicity moment. Therefore,
the LO results derived here provide definite predictions for
the Nπ contributions to the ratios RX, as discussed in the
next section.
The results for the coefficients simplify significantly in

the heavy baryon (HB) limit that is obtained by sending
the nucleon mass to infinity. If we expand EN ≈MN þ
p2=2MN in (2.17) and (2.24) and drop all but the leading
terms, we obtain

bHB
V ¼ g2A

2ðfLÞ2ðEπLÞ
p2

E2
π

ð2:30Þ

as the HB limit of the coefficient bV . Similarly, we obtain
for the remaining coefficients the results

bHB
A ¼ bHB

T ¼ 2

3
bHB
V ; ~cHB

X ¼ −bHB
X : ð2:31Þ

Note that the HB limit values stem from the terms
proportional to ḡ2A; all other terms vanish in the limit of
infinite nucleon mass. In particular, the terms proportional
to the ratio av2;0=Δav2;0 are subleading and do not enter bHB

V ,
bHB
A . From (2.31), we would conclude that the Nπ-state

contributions are equal for the axial and tensor operator, but
50% larger for the vector operator. In the next section, we
see that this simple conclusion is modified once we are
away from the HB limit.
The HB limits of the coefficients are also easily

compared to their counterparts associated with the nucleon
axial, scalar and tensor charges derived in [7]. It turns out
that the coefficients for the vector operator are equal to
those associated with the scalar nucleon charge; i.e. bHB

V ¼
bHB
S and ~cHB

V ¼ ~cHB
S . Similarly, the coefficients for the

remaining two operators are equal to their analogues for the
nucleon axial and tensor charge. This is in accordance with
the expectation that the Nπ contributions to the three
moments and the three nucleon charges should be of the
same order of magnitude, basically because the operators
for all six observables are very similar in LO ChPT.

III. IMPACT ON LATTICE CALCULATIONS
OF THE MOMENTS

A. Preliminaries

In this section we estimate the impact of the Nπ-state
contribution on the determination of the moments in lattice
simulations. In order to do this we first need to fix the
various input parameters that enter our results.
The final result for the ratio RX can be written as

RXðt; t0Þ ¼ ΠX

�
1þ

X
n≤nmax

bX;nðe−ΔEnðt−t0Þ þ e−ΔEnt0 Þ

þ ~cX;ne−ΔEnt

�
ð3:1Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. Feynman diagrams for the LO nucleon-pion contribution in the 3-pt functions. Circles represent a vertex insertion at an
intermediate space-time point, and an integration over this point is implicitly assumed. The dashed lines represent pion propagators.
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if we make use of bX;n ¼ ~bX;n, cf. Eq. (2.19). For notational
simplicity, we suppress the dependency on Γμ when writing
RX and ΠX in the following. The coefficients bX;n, ~cX;n
are dimensionless and depend on five independent dimen-
sionless parameters: gA, f=MN ,Mπ=MN ,MπL and, in case
of the vector and axial-vector operators, on the ratio
av2;0=Δav2;0. To LO, we can use the experimental values
for the LECs; i.e. we set gA ¼ 1.27, f ¼ fπ ¼ 93 MeV.
The ratio av2;0=Δav2;0 is approximately given by
hxiu−d=hxiΔu−Δd ¼ 0.165=0.19 [15,16]. We ignore the
errors in the experimental values since they are too small
to be significant in the following.
We are mainly interested in RX at the physical point, so

we fix the pion and nucleon mass to their physical values.
We take the simple values Mπ ¼ 140 MeV and
MN ¼ 940 MeV, unless stated otherwise. For the finite
spatial volume, we assume two lattice sizes such that
MπL ¼ 4 and MπL ¼ 6. The larger value is motivated
by the simulation setup of the PACS-CS Collaboration [6].
The ratio (3.1) also depends on nmax, the upper limit for

the number of Nπ states taken into account in the sum.
Here, nmax should be chosen large enough such that the
contribution from the omitted states is small and can be
ignored. This essentially requires the times t and t0 to be
large enough such that the contribution of the omitted states
is sufficiently suppressed in the ratio RX.
ChPT puts an additional constraint on nmax. Finite

volume ChPT is an expansion in pn=Λχ , where the chiral
scaleΛχ is typically identified with 4πfπ [17]. Thus, nmax is
also constrained by insisting on a sufficiently small value
for pnmax

=4πfπ. In Ref. [12] the condition pnmax
=Λχ ¼ 0.3

was imposed for a reasonably well behaved chiral expan-
sion. This bound translates into nmax ¼ 2 and 5 forMπL ¼
4 and 6, respectively. Another reason for this particular
bound is that the energy ENπ;nmax

of the Nπ states satisfying
it is sufficiently well separated from the energy of the
first resonance state, which is approximately 1.5MN. In that
case we can ignore mixing effects with the resonance state
that is not contained in the chiral effective theory.
There is some arbitrariness in imposing a bound on

the momenta and the resulting values for nmax. Following
Ref. [7], we consider two additional values nmax, specified
in Table I. The largest one corresponds to pnmax

=Λχ ≈ 0.6.
This is certainly not a small number, and we do not expect a

well-behaved chiral expansion in that case. Still, it turns out
that for source-sink separations between 1 and 2 fm one
essentially needs to include that many Nπ states to saturate
the sum in (3.1). Note also that the two larger values
nmax imply energies ENπ;nmax

above the energy of the first
resonance. Including Nπ states with such high energies
without taking into account the effect of the resonance is an
approximation, and the results derived from it need to be
interpreted with care.
In practice there are two widely used methods to extract

the moments, the plateau and the summation method. Both
methods are based on the ratio RX as input. In the following
we consider only the plateau method. Applying ChPT and
our results to the summation method requires very large
source-sink separations, much larger than currently acces-
sible in lattice QCD simulations (see Sec. III C).

B. Impact on the plateau method

For a given source-sink separation t, the Nπ-state
contribution to RX is minimal if the operator insertion
time t0 is in the middle between source and sink. Therefore,
the best estimate for the moments is the ‘midpoint’ value
RXðt; t=2Þ. This midpoint estimate is essentially equivalent
to what is called the ‘plateau estimate’ in lattice determi-
nations, and we use this terminology here as well.
Figure 3 shows RXðt; t=2Þ=ΠX, the plateau method

estimate divided by the asymptotic value (2.9) proportional
to the moment. Without the Nπ contribution, this ratio is
equal to 1. Any deviation from 1 is the relative error caused
by the Nπ-state contribution. Plotted are the results for all
three moments (X ¼ V, A, T) for MπL ¼ 4 and MπL ¼ 6.
We can make the following observations: (i) The

TABLE I. nmax and ENπ;nmax
as a function of pnmax

=Λχ , see main
text.

nmax

pnmax
Λχ

MπL ¼ 4 MπL ¼ 6 ENπ;nmax
MN

0.3 2 5 ≈1.35
0.45 5 12 ≈1.6
0.6 10 22 ≈1.9
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FIG. 3. The plateau estimate RXðt; t=2Þ normalized by ΠX for
all three moments (X ¼ V in black, A in blue, T in red). Results
for Mπ ¼ 140 MeV and for MπL ¼ 4 (solid lines) and MπL ¼ 6
(dashed lines). Here, nmax according to the first row in Table I.

OLIVER BÄR PHYSICAL REVIEW D 95, 034506 (2017)

034506-6



differences between the results for the two different
volumes are rather small, much smaller than the expected
accuracy of the LO results. (ii) All three curves are above 1,
so the plateau estimates overestimate the moments in all
three cases.
Qualitatively the same results have been found for the

nucleon charges [7]. There too the Nπ contribution leads to
an overestimation of the charges, and the finite-volume
dependence was found to be equally small. As already
discussed in [7], the small dependence on the volume
requires that the energy interval ½MN þMπ; ENπ;nmax

� of the
Nπ states taken into account for RX is kept constant as a
function of the volume. This is the case for the nmax values
in Table I.
Figure 3 shows that the results for the vector and tensor

operator are very close and about 50% larger than the result
for the axial vector operator. In contrast, the HB limit
predicts the same Nπ contribution for X ¼ A and T,
cf. (2.31). The corrections to the HB limit make both RV
and RA smaller and RT larger, leading to the curves in Fig. 3.
Figure 4 shows the impact of the Nπ states as nmax is

increased in case of the vector operator, i.e. for the
determination of the momentum fraction hxiu−d. Results
are shown for the three nmax values specified in Table I for
MπL ¼ 4. The analogous results for MπL ¼ 6 lie essen-
tially on top of the curves in Fig. 4 and are not displayed. To
a good approximation, nmax ¼ 10 (red curve) saturates the
sum in the ratio; adding more states does not change the
result significantly, at least for the sink times considered in
the plot. Therefore, we call this the full Nπ contribution
for short.
Figure 4 shows clearly what we remarked before: the

larger t the smaller the impact of the high momentum Nπ

states relative to the impact of the lowest two states. At
t ¼ 2 fm, the contribution from the first two states (black
curve) makes approximately 60% of the full contribution
(red curve). This ratio increases to about 70% at
t ¼ 2.5 fm. At source-sink separations as large as this,
we may ignore all but the lowest two states. For those, we
expect our LO result to give a reasonable estimate for the
Nπ contribution; the NLO correction is Oðp2Þ and one may
expect, as a rough estimate, a 30% correction. A more
honest error estimate requires the result of the NLO
calculation.
For t less than 2 fm, the impact of the higher momentum

Nπ states increases rapidly. At t ¼ 1.5 fm, the lowest two
states contribute less than 50% to the full contribution.
Since the contribution of the high-momentum Nπ states is
prone to larger NLO corrections, we can only give a crude
estimate. Reading off a þ15% Nπ contribution at t ¼
1.5 fm and allowing for a 50% error due to higher order
corrections, we would arrive at a 10–20% overestimation of
hxiu−d at t about 1.5 fm. As before, the error estimate of
50% is a naive guess that can be put on firmer grounds with
a calculation at NLO.
For t smaller than 1.5 fm, the higher momentum Nπ

states rapidly dominate the Nπ contribution, and we do not
expect our LO ChPT result to be a reasonable approxima-
tion anymore. It is also likely that working to higher order
in the chiral expansion will not help in going to such small
source-sink separations. However, we may still conclude
that as many as 10 Nπ states contribute substantially to the
ratio RV for source-sink separations between 1 and 1.5 fm,
a slightly unsettling high number.
The results for the helicity and transversity moment are

shown in Figs. 5 an 6, respectively. In case of the trans-
versity moment hxiδu−δd the differences to the momentum
fraction are only marginal. The results for the helicity
moment are about 30% smaller. Therefore, following the
reasoning given before in case of hxiu−d, we would arrive
at a 7–15% overestimation of hxiΔu−Δd due to the Nπ
contribution at about 1.5 fm.
Since we are mainly interested in lattice simulations with

physical pion masses, we kept the ratioMπ=MN fixed at its
approximate physical value 0.149. For a larger than
physical pion mass, one expects the Nπ contribution to
become rapidly smaller. As an illustration for this behavior,
Fig. 7 shows again the results for the momentum fraction at
the physical point (solid lines) compared to those for
Mπ=MN ¼ 0.27 (dashed lines), a value close to the one
found by the RQCD Collaboration in their simulations with
a pion mass of about 295 MeV.7 Since the pion mass is
larger, the energies ENπ;n of the Nπ states are larger than in
the case with a physical pion mass. If we keep MπL ¼ 4
fixed, also the spatial volume is smaller, implying larger
discrete spatial momenta of the moving nucleon and pion.
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FIG. 4. The plateau estimate RVðt; t=2Þ normalized by ΠV for
Mπ ¼ 140 MeV, MπL ¼ 4 and the three different nmax values
specified in Table I (nmax ¼ 2 in black, 5 in blue, and 10 in red). 7See Table 1 in Ref. [18], results for ensemble IV.
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Therefore, the energy gaps ΔEn in (3.1) are larger, and a
faster exponential suppression of the Nπ contribution is
expected.
Figure 7 supports this expectation, at least for t not

smaller than 1.5 fm. The full Nπ contribution is signifi-
cantly reduced, at t ¼ 2.5 fm by a factor of four (red
curves). Moreover, the impact of the higher momentum
Nπ states is drastically reduced. Even at t ¼ 1.5 fm, the
contribution from the first two states (dashed black curve)
makes 80% of the full contribution (dashed red curve).
However, for smaller t, the contribution of the higher

momentum states increases rapidly again. Interestingly, the
curves for the contribution of the lowest two states (black
curves) cross at t ≈ 1.4 fm. So despite the larger energy
gaps for the heavier pion mass, the lowest two states have
a larger impact than the lowest two states for the physical
pion mass. The reasons are the larger values for the
coefficients bV;n for a heavier pion mass, which are here
about a factor 2.5 to 3 larger than their analogues for the
physical pion mass. Even though we need to be careful with
drawing conclusions from our LO results at such small t
values, this example serves as a warning that prejudices
about excited-state contributions based on the energy gaps
alone can be quite misleading.
Finally, Fig. 8 compares the results for the moments with

the analogous ones for the nucleon charges [7]. Results are
shown for MπL ¼ 4 only. As already mentioned, the Nπ-
contribution results in an overestimation for all moments
and charges. Qualitatively, the observables can be separated
in two groups. The Nπ-contribution for the scalar charge,
the momentum fraction and the transversity moment are
larger by about 50% compared to the contribution in the
axial and tensor charge and the transversity moment. The
Nπ-contribution is smallest for the axial charge and largest
for the scalar charge.

C. Comment on the summation method

The summation method [19,20] starts from the ratio RX

and computes the integral SXðt; tmÞ ¼
R t−tm
tm dt0RXðt; t0Þ. As

a function of t (keeping tm fixed), the slope is proportional
to the moment one is interested in. In actual lattice
determinations, tm is taken to be zero, so the integral is

1.0 1.5 2.0 2.5
1.00

1.05

1.10

1.15

1.20

1.25

FIG. 5. The plateau estimate RAðt; t=2Þ normalized by ΠA for
Mπ ¼ 140 MeV, MπL ¼ 4 and the three different nmax values
specified in Table I (nmax ¼ 2 in black, 5 in blue, and 10 in red).
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FIG. 6. The plateau estimates RTðt; t=2Þ normalized by ΠT for
Mπ ¼ 140 MeV, MπL ¼ 4 and the three different nmax values
specified in Table I (nmax ¼ 2 in black, 5 in blue, and 10 in red).
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FIG. 7. The plateau estimates RVðt; t=2Þ normalized by ΠV for
Mπ=MN ¼ 0.149 (solid lines) and Mπ=MN ¼ 0.27 (dashed
lines). In both cases MπL ¼ 4 and the three different nmax values
specified in Table I are used (nmax ¼ 2 in black, 5 in blue, and 10
in red).
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computed for all insertion times t0 between source and sink.
On the other hand, for ChPT to give a good approximation
of RX, all time separations need to be large. Based on the
results in the last section, we need to require a minimal time
separation of about 1 fm for tm and t − tm. In addition, we
need a nonzero time interval t − 2tm to integrate over. This
implies source-sink separations of at least 2.5 fm if not
larger. Such large values are currently not accessible in
lattice simulations, so at present, it would be purely
academic to study the Nπ-state contribution to the sum-
mation method.

IV. CONCLUSIONS

As already mentioned in the Introduction, some collab-
orations have already performed lattice calculations of the
various moments with physical or near-to-physical pion
masses [4,5,21]. The main obstacle for applying the results
found here to these calculations are the fairly small source-
sink separations t in these simulations. The maximal
source-sink separation tmax used to extract the moments
with the plateau method ranges between 1.1 and 1.3 fm. As
discussed in the previous section, we do not expect LO
ChPT to provide solid results for source-sink separations
that small. Still, it is worth to emphasize a few observations.
The lattice results of the quark momentum fraction and

the helicity moment are typically larger than their phe-
nomenological values. In case of hxiu−d, the overestimation
is about 20–30%; in case of the helicity moment, it is
somewhat smaller. Thus, qualitatively, the overestimation
due to the Nπ states goes into the right direction. For
source-sink separations of about 1.5 fm, we estimated the

overestimation to 10–20% in case of hxiu−d. Even though
not very precise, this estimate suggests that the Nπ-state
contribution may form a substantial part of the total excited-
state contamination presently observed in lattice data.
Compared with the results for the nucleon charges, we

find the Nπ contribution to the scalar charge gS to be the
largest one. Also, this is qualitatively in agreement with
what is observed in lattice calculations, for example in
Ref. [5]. However, one should also emphasize that LO
ChPT predicts an overestimation of the axial charge gA
due to Nπ states, in conflict with the lattice estimates that
typically underestimate the experimental value.8 This
serves once again as a warning that the source-sink
separations realized in present-day lattice simulations are
probably too small for the LO ChPT results to apply.
Larger source-sink separations in lattice simulations

obviously help in reducing the impact of excited states
and in making contact with the ChPT results derived
here. Continuous progress is being made with lattice
measurements at larger source-sink separations. The
ETM Collaboration, for example, has recently announced
lattice results for the moments at t ≈ 1.7 fm [3]. Still, the
excited-state suppression may not be as efficient as one is
hoping for. Taking once again hxiu−d as an example, we
still expect an overestimation of about 10% for source-sink
separations of approximately 2 fm. Such large time
separations seem out of reach with current lattice tech-
niques, and new methods to increase the signal-to noise
ratio in lattice simulations are needed. A recent proposal
[23,24] to factorize the fermion determinant and propagator
in lattice QCD together with multilevel Monte Carlo
integration methods seems very promising in that respect.
The results derived here are based on LO ChPT. Working

out the NLO correction is certainly desirable because it will
provide stronger error estimates for the LO results. In
addition, the impact of other multihadron states (Δπ, Nππ)
and the Roper resonance need to be studied as well. The
chiral effective theories including the Δ and the Roper are
known, and the calculations will be analogous to the one
presented here. Once all these contributions are taken into
account, one can expect ChPT to provide reliable estimates
for the excited-state contaminations due to multiparticle
states, that, hopefully, can also be used to analytically
remove them from the lattice results.
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FIG. 8. The ratios RXðt; t=2Þ=ΠX for the three moments (solid
lines, X ¼ V in black, A in blue, T in red; same curves as in
Fig. 3) compared to the ratios RXðt; t=2Þ=gX for the three nucleon
charges (dashed lines, X ¼ A in black, T in blue, S in red).
Results for Mπ ¼ 140 MeV and for MπL ¼ 4 with nmax ¼ 10.

8A recent attempt to explain this apparent contradiction can be
found in Ref. [22].
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APPENDIX A: THE TENSOR OPERATOR
IN BARYON CHPT

In the following, we outline the mapping of the QCD
tensor operator in Eq. (2.3) onto its ChPT analogue (to LO)
in (2.14). The mapping follows the general procedure: We
first introduce a source term for the tensor operator that
is added to the massless QCD Lagrangian. Subsequently,
this source term is mapped to ChPT taking into account its
transformation properties under chiral symmetry, parity and
charge conjugation.
In terms of chiral quark fields the source term reads

Ltensor ¼ ψ̄RtRLμνρσ½μfν�D−
ρgψL þ ψ̄LtLRμνρσ½μfν�D−

ρgψR; ðA1Þ

with two matrix valued source fields tRLμνρ ¼ tRL;aμνρ Ta and
tLRμνρ ¼ tLR;aμνρ Ta. They couple left- and right-handed fields as
indicated by the superscripts. The tensor operator (2.3) is
obtainedfromthesourcetermbytakingderivativeswithrespect
to the two source fields and adding the two contributions.
The symmetrization and antisymmetrization that is asso-

ciated with the curly and square brackets in the operator
can be transferred to the source field; i.e. tRLμνρσ½μfν�D−

ρg ¼
tRL½μfν�ρgσμνD

−
ρ . In order to keep the notation simple we drop

the curly and square brackets in the following but keep in
mind the symmetry properties of the source fields.
Under chiral transformations R, L, the source term is

invariant if the source fields transform according to tRLμνρ →
RtRLμνρL† and tLRμνρ → LtLRμνρR†. In addition, the source term is
invariant under parity (P) and charge conjugation (C)
provided the source fields transform according to tRLμνρ →
tLRμνρ under P and tRLμνρ → ½tLRμνρ�T under C, where T refers to
taking the transpose in flavor space.
Based on these symmetry properties, the source term

can be mapped to ChPT. It is useful to introduce the
combinations

t�μνρ ¼ u†tRLμνρu† � utLRμνρu; ðA2Þ

with u being the standard chiral field involving the pion
fields. The reason for this definition is that the fields t�μν;ρ
transform as t�μνρ → ht�μνρh−1 under chiral transformations,
where h denotes the compensator field associated with the
nonlinear realization of chiral symmetry [25,26]. Under P
and C, the source fields in (A2) transform as the original
source fields.
Invariants under chiral symmetry are now easily con-

structed. We find it convenient to follow Ref. [27].9

According to Sec. II. 2. of that reference any invariant
monomial in the effective Nπ Lagrangian is of the generic
form

ψ̄Aμν…Θμν…ψ þ H:c: ðA3Þ

Here, Aμν… is a product of pion and/or source fields
and their covariant derivatives. Also, Θμν… is a product
of Clifford algebra elements and a totally symmetrized
product of covariant derivatives acting on the nucleon
fields. These building blocks obey various restrictions
stemming from chiral symmetry. In addition, the equations
of motion can be used to remove terms in the chiral
Lagrangian that are redundant.
Here, we are interested in the leading terms involving the

tensor source field only once. The simplest terms with
lowest chiral dimension are obtained with Aμνρ ¼ tþμνρ. A
list of independent rank 3 tensor structures Θμνρ is given in
Eq. (A.21) of Ref. [27],

δμνγ5γρ; δμνDρ; σμνDρ; ϵμνρλDλ; γ5γμDνρ; Dμνρ:

ðA4Þ

The first two, the fourth and the last structure vanish once
they are contracted with tþμνρ due to the symmetry properties
of the source field. Making use of the equations of motion,
the fifth structure is equivalent to γ5σμνDρ, see Eq. (2.33) in
Ref. [27]. Since γ5σμν ¼ ϵμναβσαβ=2, this structure is not
independent of the third entry in the list (A4). So we
conclude that there is only one independent structure
Θμνρ ¼ σμνDρ, and this leads to the operator given in
(2.14) in Sec. II B.
As already mentioned, source terms involving pion fields

only are necessarily beyond LO. The reason is the Lorentz
indices can be provided only by partial derivatives of the
pion fields.

APPENDIX B: SUMMARY OF FEYNMAN RULES

We employ the covariant formulation of baryon ChPT
[10,11], and our calculations are done to LO in the chiral
expansion. To that order, the chiral effective Lagrangian

consists of two parts only, Leff ¼ Lð1Þ
Nπ þ Lð2Þ

ππ . Expanding
this Lagrangian in powers of pion fields and keeping
interaction terms with one pion field only, we obtain

Leff ¼ Ψ̄ðγμ∂μ þMNÞΨþ 1

2
πað−∂μ∂μ þM2

πÞπa

þ igA
2f

Ψ̄γμγ5σaΨ∂μπ
a: ðB1Þ

The nucleon fieldsΨ ¼ ðp; nÞT and Ψ̄ ¼ ðp̄; n̄Þ contain the
proton and the neutron fields p and n. Here,Mπ denotes the
pion mass, whileMN , gA and f are the chiral limit values of

9Ref. [27] assumes the Minkowski space-time metric. For the
main construction principle, this is irrelevant, and we transcribe
the necessary formulas to the Euclidean space-time metric.
Except for this modification, we follow the conventions and
notation in Ref. [27].
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the nucleon mass, the axial charge and the pion decay
constant, respectively.
The interaction term in (B1) leads to the well known

nucleon-pion interaction vertex proportional to the axial
charge. A factor i appears here because we work in
Euclidean space-time. From the terms quadratic in the fields,
one reads off the nucleon and pion propagators. We find the
time-momentum representation for the propagators conven-
ient. In that representation, the pion propagator reads

Gabðx; yÞ ¼ δabL−3
X
~p

1

2Eπ
ei~pð~x−~yÞe−Eπ jx0−y0j; ðB2Þ

with the pion energy given by Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

π

p
. The

nucleon propagator Sabαβðx; yÞ is given by

Sabαβðx; yÞ ¼ δabL−3
X
~p

Z�
p;αβ

2EN
ei~pð~x−~yÞe−EN jx0−y0j: ðB3Þ

Here, a, b and α, β refer to the isospin and Dirac indices,
respectively. The factor Z�

~p in the nucleon propagator (spinor
indices suppressed) is defined as

Z�
~p ¼ −i~p · ~γ � ENγ4 þMN; ðB4Þ

where the þ (−) sign applies to x0 > y0 (x0 < y0), and the
nucleon energy is given by EN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

N

p
. The sum in

both propagators runs over the discrete spatial momenta that
are compatible with periodic boundary conditions imposed
on the finite spatial volume, i.e. ~p ¼ 2π~n=L with ~n having
integer-valued components.
The expressions for the nucleon interpolating fields in

ChPT have been derived in Ref. [28]. To LO and up to one
power in pion fields, one finds

NðxÞ ¼ ~α

�
ΨðxÞ þ i

2f
πaðxÞσaγ5ΨðxÞ

�
; ðB5Þ

N̄ð0Þ ¼ ~β�
�
Ψ̄ð0Þ þ i

2f
Ψ̄ð0Þγ5σaπað0Þ

�
: ðB6Þ

These are the effective fields for the standard nucleon
interpolating fields composed of three quarks without
derivatives [29,30]. The interpolating fields not necessarily
need to be pointlike, but can also be constructed from
‘smeared’ quark fields. These operators map to the same
chiral expressions provided the smearing procedure is
compatible with chiral symmetry and the ‘smearing radius’
is small compared to the Compton wavelength of the pion.
In that case, smeared interpolating fields are mapped onto
pointlike fields in ChPT just like their pointlike counter-
parts at the quark level [12,31]. The expressions differ only
by the LECs ~α, ~β. If the same interpolating fields are used at
both source and sink, we find ~α ¼ ~β.
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