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We investigate spin effects in four-quark systems consisting of two heavy antibottom quarks and two
light up/down quarks. To this end, we use the Born-Oppenheimer approximation. We utilize potentials of
two static antiquarks in the presence of two quarks of finite mass computed via lattice QCD and solve a
coupled-channel Schrödinger equation for the antibottom-antibottom separation. Without taking heavy
quark spins into account, this approach predicted a udb̄ b̄ tetraquark bound state with quantum numbers
IðJPÞ ¼ 0ð1þÞ. We now extend this Born-Oppenheimer approach with coupled-channel Schrödinger
equations, allowing us to incorporate effects due to the heavy b̄ spins. We confirm the existence of the
udb̄ b̄ tetraquark.
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I. INTRODUCTION

A long-standing problem of QCD is the search for
exotic hadrons, beyond the simple quark-antiquark mes-
ons and three-quark baryons [1]. However, studying
exotic hadrons, e.g. glueballs, hybrid mesons, tetraquarks,
pentaquarks or hexaquarks, theoretically turned out to be
much harder than expected (cf. e.g. Refs. [2–11]). Also,
experimentally this is a difficult problem, since exotic
candidates are typically resonances immersed in the
excited hadron spectra, which quickly decay to several
nonexotic hadrons. So far, only the recently observed
tetraquark candidates Zc and Zb have survived the scrutiny
of the scientific community.
In lattice QCD the study of exotics is extremely

challenging. For instance, in Refs. [12–14] the authors
searched for evidence of a large tetraquark component in
the resonance Zcð3940Þ−. To this end, large correlation
matrices of two-quark and four-quark hadron creation
operators (including e.g. two-meson and diquark-
antidiquark structures) were implemented and investigated.
The main difficulty is that the Zcð3940Þ− is a resonance
well above threshold with many lighter two-meson scatter-
ing states below. No robust evidence of a Zcð3940Þ−
tetraquark resonance was found.
In quark model calculations as well, the issue is not

settled. Using the perturbative approximation of the reso-
nating group method, a preliminary estimation of the partial
decay width of the Zcð4430Þ− resonance was found, similar
to the one measured by LHCb [15]. However, because

tetraquarks are always coupled to meson-meson systems,
more sophisticated quark models like the string flip-flop
potential for the meson-meson interaction were developed
to solve the problem of van der Waals forces produced by
the two-body confining potentials [2–7]. However, there
is a recent claim that the string flip-flop potentials still
produce excessive binding [10].
Our main motivation is to investigate in detail exotic

tetraquarks and mesonic molecules by combining lattice
QCD and techniques from quantummechanics. In this way,
we avoid to a large extent both the difficulties found in pure
lattice QCD computations and those found in the model
dependence of quark model computations.
We specialize in systems containing two heavy anti-

quarks and two lighter quarks. From basic principles of
QCD, it is clear that such a system, for instance udb̄ b̄,
should form a bound state—i.e., a tetraquark—if the b̄
quarks are very heavy [16–25]. To understand the binding
mechanism, it is convenient to use the Born-Oppenheimer
perspective [26], where the wave function of the two heavy
antiquarks is determined considering an effective potential
obtained via a lattice QCD computation of the light quarks.
QCD with light quarks and gluons has a characteristic scale
of the order of 400 MeV ∼ 0.5 fm−1, present for instance in
the constituent quark mass and in the confinement string
tension

ffiffiffi
σ

p
. At much shorter b̄ b̄ separations r ≪ σ−1=2, the

b̄ quarks interact with a perturbative one-gluon-exchange
Coulomb-like potential. At large separations, the light
quarks screen the interaction, and the four quarks form
two rather weakly interacting B and/or B� mesons, as
illustrated in Fig. 1. Thus, a screened Coulomb potential is
expected. This potential clearly produces a bound state,
provided the antiquarks b̄ b̄ are sufficiently heavy.
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Moreover, this class of tetraquarks is related to the
doubly heavy class of closed charm tetraquarks Z�

c and
closed bottom Z�

b tetraquarks. The Z�
b was claimed by the

BELLE Collaboration [27], while the Z�
c has received

a series of experimental observations by the BELLE
Collaboration [28,29], the Cleo-C Collaboration [30], the
BESIII Collaboration [31–35] and the LHCb Collaboration
[36]. However, this second class of double-heavy tetra-
quarks is more difficult to address theoretically, since the
Z�
c and Z�

b are QCD resonances, but not QCD bound states.
Thus, we leave it for future studies (cf. Ref. [37] for first
crude results).
Here we continue our previous studies, where we

computed potentials of two static antiquarks in the presence
of two quarks of finite mass using lattice QCD. Details
on the computation of these potentials can be found in
Refs. [38–40]. The existence of bound four-quark states—
i.e., of tetraquarks—is then investigated using the Born-
Oppenheimer approximation [26] and standard techniques
from quantummechanics. Recently, this approach provided
evidence for the existence of a udb̄ b̄ tetraquark with
quantum numbers IðJPÞ ¼ 0ð1þÞ [40–42], while for sim-
ilar combinations of heavier flavors ssb̄ b̄ and ccb̄ b̄, no
bound states seem to exist [43,44] (the latter is consistent
with lattice QCD computations considering four quarks of
finite mass; cf. e.g. Refs. [12,45]).
In this work, we consider for the first time effects due to

the spins of the heavy b̄ quarks. In the first step of the Born-
Oppenheimer approximation, we compute the contribution
of the light quarks ud to the potential of the heavy
antiquarks b̄ b̄ via lattice QCD. As before [40,41,43], we
use the static approximation for the b̄ quarks, where their
positions are frozen and their spin is irrelevant. Then, in the
second step, we use a Hamiltonian for b̄ quarks of finite
mass with their spin interactions incorporated.
Notice that the b̄ spin effects are expected to be of the

same order of magnitude as the estimated binding energy of
the udb̄ b̄ tetraquark. For instance, spin effects account for a
mass difference mB� −mB ≈ 46 MeV, while the binding
energy found in Ref. [40] is EB ¼ −90þ43

−36 MeV. Moreover,
both the kinetic term utilized in previous works, p2=2μ
with μ ¼ mb=2, and the spin-dependent part of the

one-gluon exchange potential of a heavy and a light
quark—

Vjkðrj; sj; rk; skÞ

¼ −
Cαs
4

�
1

r
−
π

2
δ3ðrÞ

�
1

mj
2
þ 1

mk
2
þ 16sj · sk

3mjmk

�
þ � � �

�
;

ð1Þ

where j, k are the (anti)quark indices, and rj, sj and mj

denote their positions, spins and masses, respectively
(cf. Ref. [46])—are of the same order in the 1=mb
expansion. Thus, it is crucial to study the impact of the
b̄ spins on the predicted udb̄ b̄ tetraquark.
At small b̄ b̄ separations, the heavy degrees of freedom

are the two b̄ quarks, while at large separations, they are
instead the two B and/or B� mesons. Thus, in what
concerns the kinetic energy, the reduced mass may be
either mb=2 or mBð�Þ=2. In Refs. [41,43], we verified that
both options result in very similar binding energies for the
udb̄ b̄ tetraquark. Similar considerations apply to the heavy
spin effects: at small separations, we expect a hyperfine
potential similar to Eq. (1); while at large separations,
heavy spin effects should be reflected by the mass differ-
ence mB� −mB.
Hyperfine potentials for udb̄ b̄ systems from lattice QCD

are not yet available, although heavy quark effective theory
(HQET) could in principle be used to compute them (so far,
this has only been done for heavy quark-antiquark systems;
cf. e.g. Refs. [47,48]). Thus, we follow the strategy of
including the heavy spin effects via the mB� −mB mass
difference. We compute potentials of two heavy antiquarks
b̄ b̄ in the presence of two light ud quarks for different light
spin combinations using the static approximation for the b̄
quarks [38–40]. Then we interpret them as potentials
between appropriate linear combinations of pseudoscalar
B mesons and/or vector B� mesons as suggested in
Ref. [49]. These potentials, which correspond to BB,
BB� and B�B� meson pairs, are finally used in a coupled
system of nonrelativistic Schrödinger equations for the
relative coordinate of the two b̄ quarks. This allows us to
investigate how the binding energy of the udb̄ b̄ tetraquark
is affected by the heavy spins. In particular, we are able to
check and will confirm that the predicted udb̄ b̄ tetraquark
with quantum numbers IðJPÞ ¼ 0ð1þÞ still exists when
heavy spin effects are taken into account.
The paper is organized as follows: In Sec. II, we discuss

the Born-Oppenheimer approximation and include heavy
spin effects by setting up a 16 × 16 coupled-channel
Schrödinger equation. In Sec. III, we discuss symmetries
and quantum numbers to split this equation into several
independent problems, which are more easy to solve. In
Sec. IV, we discuss one of these problems in detail and
solve it numerically, a 2 × 2 coupled-channel Schrödinger

FIG. 1. (a) At very short b̄ b̄ separations, the b̄ quarks interact
with a perturbative one-gluon-exchange Coulomb-like potential.
(b) At large b̄ b̄ separations, the light quarks ud screen the
interaction, and the four quarks form two rather weakly interact-
ing B and/or B� mesons.
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equation corresponding to the IðJPÞ ¼ 0ð1þÞ udb̄ b̄ tetra-
quark. Finally we conclude in Sec. V.

II. INCORPORATING HEAVY b̄ b̄
SPIN EFFECTS

A. Interpreting lattice QCD qqQQ potentials
in terms of B and B� mesons

In Ref. [40], we have computed potentials of two static
antiquarksQ in the presence of two light quarks q ∈ fu; dg
of physical mass using standard techniques from lattice
QCD, which is the first step of the Born-Oppenheimer
approximation. In particular, we have used four-quark
creation operators

OL;Sð~r1; ~r2Þ ¼ ðCLÞABðCSÞCD
ðQCð~r1Þqð1ÞA ð~r1ÞÞðQDð~r2Þqð2ÞB ð~r2ÞÞ; ð2Þ

where C ¼ γ0γ2 is the charge conjugation matrix, and
A;…; D denote spin indices. The positions of the static
quarks ~r1 and ~r2 are fixed; i.e., they can be considered as
quantum numbers. Moreover, the static quark spins do not
appear in the Hamiltonian; i.e., the potentials do not depend
on these static spins, and light and static spins are
separately conserved. Thus, it is appropriate to couple
the two light spins (via L) and the two static spins (via S).
The corresponding potentials, which are independent of S,
are denoted by VLðrÞ, r ¼ j~r1 − ~r2j.
At large r, the considered qqQQ four-quark system

will have the structure of two static light mesons QΓq at
separation r. Since a static quark has only two spin
components—i.e., it can also be denoted according to
Q → Qð1þ γ0Þ=2—there are only eight independent com-
binations of γ matrices corresponding to the following
quantum numbers:
(1) Γ ¼ ð1þ γ0Þγ5

→ JP ¼ 0− (the pseudoscalar B meson).
(2) Γ ¼ ð1þ γ0Þγj (j ¼ 1, 2, 3)

→ JP ¼ 1− (the vector B� meson).
(3) Γ ¼ ð1þ γ0Þ1

→ JP ¼ 0þ (the scalar B�
0 meson).

(4) Γ ¼ ð1þ γ0Þγjγ5 (j ¼ 1, 2, 3)
→ JP ¼ 1þ (the pseudovector B�

1 meson).
As already mentioned, the static quark spins do not appear
in the Hamiltonian, and hence, B and B� mesons are
degenerate as well as B�

0 and B�
1 mesons. For a compre-

hensive discussion of static light mesons we refer to
Refs. [50,51].
To understand the details of the meson-meson structure

generated by the creation operators (2), one has to express
them in terms of static light bilinears QΓq. We do this by
using the Fierz identity,

OL;Sð~r1; ~r2Þ ¼ GðS; LÞabðQð~r1ÞΓaqð1Þð~r1ÞÞ
× ðQð~r2ÞΓbqð2Þð~r2ÞÞ; ð3Þ

with

GðS; LÞab ¼
1

16
TrððCSÞTΓT

aðCLÞΓbÞ; ð4Þ

where Γa ∈ fð1þ γ0Þγ5;ð1þ γ0Þγj;ð1þ γ0Þ1;ð1þ γ0Þγjγ5g
(as discussed above) and Γa denotes the inverse of Γa.
From the right-hand side of (3), one can read off which
linear combinations of pairs of B, B�, B�

0 and B
�
1 mesons the

creation operators OL;S excite.
In this work, we focus on combinations of pairs of B and

B� mesons (the two lightest bottom mesons), which are
degenerate in the static limit and have similar mass in
nature (mB� −mB ≈ 45 MeV). One can show that there are
16 possibilities of light and static spin couplings,

L; S ∈ fð1þ γ0Þγ5; ð1þ γ0Þγjg; ð5Þ
which generate exclusively such combinations—i.e., where
GðS; LÞab ¼ 0, if either Γa or Γb in Eq. (3) is not an element
of fð1þ γ0Þγ5; ð1þ γ0Þγjg.
The corresponding qqQQ potentials, which depend only

on L, but not on S, fall into two different classes:
(a) V5ðrÞ≡ Vð1þγ0Þγ5 .

(i) Corresponding to L ¼ ð1þ γ0Þγ5.
(ii) Attractive for isospin I ¼ 0

½qq ¼ ðud − duÞ= ffiffiffi
2

p
].

(iii) Repulsive for isospin I ¼ 1

½qq ∈ fuu; ðudþ duÞ= ffiffiffi
2

p
; ddg�.

(b) VjðrÞ≡ Vð1þγ0Þγj
(i) Corresponding to L ¼ ð1þ γ0Þγj.
(ii) Repulsive for isospin I ¼ 0

½qq ¼ ðud − duÞ= ffiffiffi
2

p �.
(iii) Attractive for isospin I ¼ 1

½qq ∈ fuu; ðudþ duÞ= ffiffiffi
2

p
; ddg�.

Note that for neither V5ðrÞ [where L ¼ ð1þ γ0Þγ5] nor
VjðrÞ [where L is an arbitrary linear combination of
ð1þ γ0Þγ1; ð1þ γ0Þγ2; ð1þ γ0Þγ3] is it possible to choose
S in such a way that a B-meson pair exclusively appears on
the right-hand side of Eq. (3) [i.e., Γa ¼ Γb ¼ ð1þ γ0Þγ5].
One always finds linear combinations of B and B� mesons.
For example, when L ¼ S ¼ ð1þ γ0Þγ5, the right-hand

side of Eq. (3) is proportional to Bð~r1ÞBð~r2Þ þ B�
xð~r1Þ

B�
xð~r2Þ þ B�

yð~r1ÞB�
yð~r2Þ þ B�

zð~r1ÞB�
zð~r2Þ [B≡Qð1þ γ0Þ

γ5q and B�
j ≡Qð1þ γ0Þγjq; i.e., j ¼ x, y, z denotes the

spin orientation of B�]. Vice versa, a Bð~r1ÞBð~r2Þ pair does
not have defined light quark spin, and hence does not
exclusively correspond to one of the two potentials V5ðrÞ or
VjðrÞ, but to a mixture of both, where one is attractive and
the other is repulsive.
Taking the mass difference and the mixing of B and B�

mesons into account (or the mixing of attractive and
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repulsive potentials, respectively), which has not been
considered in our previous studies [40,41,43], is the goal
of this work.

B. The coupled-channel Schrödinger equation

To determine whether there are bound udb̄ b̄ states, we
study a coupled-channel Schrödinger equation for the two
b̄ quarks as the second step of the Born-Oppenheimer
approximation:

HΨð~r1; ~r2Þ ¼ EΨð~r1; ~r2Þ: ð6Þ

The Hamiltonian H acts on a 16-component wave function
Ψ. The 16 components of Ψ correspond to the 16
possibilities to combine ½Bð~r1Þ; B�

xð~r1Þ; B�
yð~r1Þ; B�

zð~r1Þ�
and ½Bð~r2Þ; B�

xð~r2Þ; B�
yð~r2Þ; B�

zð~r2Þ�; i.e., the first compo-
nent corresponds to Bð~r1ÞBð~r2Þ, the second to Bð~r1ÞB�

xð~r2Þ,
the third to Bð~r1ÞB�

yð~r2Þ, etc. The Hamiltonian can be split
into a free and an interacting part according to H ¼
H0 þHint.
The free part of the Hamiltonian H0 contains the kinetic

energy of the b̄ quarks and the masses of the B and the B�
mesons,

H0 ¼ M ⊗ 14×4 þ 14×4 ⊗ M þ ~p2
1 þ ~p2

2

2mb
116×16; ð7Þ

with

M ¼ diagðmB;mB� ; mB� ; mB� Þ; ð8Þ

where mb ¼ 4977 from the quark model [52] and
mB ¼ 5280 MeV, mB� ¼ 5325 MeV from the PDG [53].
It is illustrative to consider for the moment Hint ¼ 0—i.e.,
the trivial case—where interactions between the b̄ quarks
are absent. Clearly, the system of 16 equations [Eq. (6)]
decouples into 16 independent equations: the first for BB,
the second for BB�

x, the third for BB�
y, etc. It is straightfor-

ward to determine the lowest-energy eigenvalues of these
16 equations, which are mB þmB (1×), mB þmB� (6×)
andmB� þmB� (9×); i.e., they correspond to the sum of the
two corresponding noninteracting mesons.
The interacting part of the Hamiltonian Hint contains the

QQqq potentials V5ðrÞ and VjðrÞ, computed with lattice
QCD and discussed in the previous subsection. These
potentials are spherically symmetric and can be parame-
trized by

VXðrÞ ¼ −
αX
r
exp

�
−
�

r
dX

�
2
�
; ð9Þ

where αX and dX (X ¼ 5; j) are determined by fitting
Eq. (9) to our lattice QCD results from Ref. [40]. At small
b̄ b̄ separations, the potentials are dominated by one-gluon

exchange, and hence are proportional to 1=r; while at large
b̄ b̄ separations, there is exponential screening, which
corresponds to the formation of an essentially noninteract-
ing Bð�ÞBð�Þ meson pair (for details, cf. Refs. [40,43]). Hint
is given by

Hint ¼ T−1VðrÞT; ð10Þ

where

VðrÞ ¼ diagðV5ðrÞ;…; V5ðrÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
4×

; VjðrÞ;…; VjðrÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
12×

Þ: ð11Þ

T is the transformation between the 16 components of the
Schrödinger equation—i.e., the 16 possible meson pairs
BB, BB�

x, BB�
y, etc. and the 16 static-static-light-light

channels defined by the static and the light spin couplings
S and L [cf. Eq. (2)], for which the qqQQ potentials have
been computed. The entries of T are the coefficients
GðS; LÞab appearing in the Fierz identity (3), where S, L
label the rows and ab label the columns of T. T is not
diagonal, and hence couples the 16 equations (6). The
corresponding physics is the interplay between different
meson masses mB and mB� on the one hand and attractive
and repulsive potentials V5ðrÞ and VjðrÞ on the other hand.

III. SYMMETRIES AND QUANTUM NUMBERS

A. Decoupling the Schrödinger equation according
to total angular momentum

The 16 × 16 coupled-channel Schrödinger equation (6)
can be decoupled into simpler 1 × 1 or 2 × 2 equations,
which correspond to total angular momentum J ¼ 0, 1, 2,
Jz ¼ −J;…;þJ and, in the case of J ¼ 1, to symmetry/
antisymmetry with respect to meson exchange.

1. Total angular momentum J = 0

For J ¼ 0, there is a single 2 × 2 coupled-channel
Schrödinger equation with Hamiltonian,

~H0;J¼0 ¼
�
2mB 0

0 2mB�

�
þ ~p2

1 þ ~p2
2

2mb
12×2 ð12aÞ

~Hint;J¼0 ¼
1

4

�
V5ðrÞ þ 3VjðrÞ

ffiffiffi
3

p ðV5ðrÞ − VjðrÞÞffiffiffi
3

p ðV5ðrÞ − VjðrÞÞ 3V5ðrÞ þ VjðrÞ

�
:

ð12bÞ

The corresponding two-component wave function is related
to the components of the 16-component wave function
from (6) via
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~ΨJ¼0 ¼
�

BB

ð1= ffiffiffi
3

p Þð~B�Þ2
�
; ð13Þ

with ð~B�Þ2 ¼ B�
xB�

x þ B�
yB�

y þ B�
zB�

z .

2. Total angular momentum J = 1

For J ¼ 1, there is a threefold degeneracy (due to
Jz ¼ −1; 0;þ1), both for a 1 × 1 Schrödinger equation
and a 2 × 2 Schrödinger equation.
(1) The Hamiltonian of each of the three 1 × 1 equations

is

~H0;J¼1;1×1 ¼ mB þmB� þ ~p2
1 þ ~p2

2

2mb
; ð14aÞ

~Hint;J¼1;1×1 ¼ VjðrÞ; ð14bÞ

and the corresponding wave functions are symmetric
under meson exchange:

~ΨJ¼1;j;1×1 ¼
1ffiffiffi
2

p ðB�
jBþ BB�

jÞ: ð15Þ

(2) The Hamiltonian of each of the three 2 × 2
equations is

~H0;J¼1;2×2 ¼
�
mB� þmB 0

0 2mB�

�
þ ~p2

1 þ ~p2
2

2mb
12×2;

ð16aÞ

~Hint;J¼1;2×2 ¼
1

2

�
V5ðrÞ þ VjðrÞ VjðrÞ − V5ðrÞ
VjðrÞ − V5ðrÞ V5ðrÞ þ VjðrÞ

�
;

ð16bÞ

and the corresponding two-component wave functions are
antisymmetric under meson exchange,

~ΨJ¼1;j;2×2 ¼
1ffiffiffi
2

p
�
B�
jB − BB�

j

ϵjklB�
kB

�
l

�
: ð17Þ

3. Total angular momentum J = 2

For J ¼ 2, there is a fivefold degeneracy (due to
Jz ¼ −2;−1; 0;þ1;þ2) for a 1 × 1 Schrödinger equation.
The Hamiltonian of each of the five 1 × 1 equations is

~H0;J¼2;1×1 ¼ 2mB� þ ~p2
1 þ ~p2

2

2mb
; ð18aÞ

~Hint;J¼2;1×1 ¼ VjðrÞ; ð18bÞ

with corresponding wave functions

~ΨJ¼2;Jz ¼ T2;JzðB�
x; B�

y; B�
zÞ; ð19Þ

where T2;Jz are the components of a spherical tensor of rank
2, which is quadratic in B�

x, B�
y and B�

z .

B. Antisymmetry of the wave function and isospin

Each of the four Hamiltonians (12), (14), (16) and (18) is
valid only for either isospin I ¼ 0 (where V5 is attractive
and Vj is repulsive) or isospin I ¼ 1 (where V5 is repulsive
and Vj is attractive). The reason is that both the heavy
antiquarks b̄ b̄ as well as the light quarks qq are fermions,
and therefore, their wave function must be antisymmetric
under exchange according to the Pauli exclusion principle.
For the b̄ quarks, this is neglected in our lattice QCD
computations of the potentials, since we have used static
quarks.
In Ref. [43], the quantum numbers of the heavy

antiquarks b̄ b̄ and the light quarks qq have been discussed
in detail to explain why certain potentials are attractive
while others are repulsive. Here we summarize these
arguments again and relate isospin I, light spin j and
heavy spin jb to the Hamiltonians (12), (18), (14) and (16)
characterized by total angular momentum J (cf. Table I for
a summary).
The computed potentials of two static antiquarks VL

appearing in (12), (14), (16) and (18) are different for
different isospins I ¼ 0, 1 and different light spins j ¼ 0, 1
[L ¼ ð1þ γ0Þγ5 corresponds to j ¼ 0; L ¼ ð1þ γ0Þγj
corresponds to j ¼ 1]. Therefore, we will discuss four
possibilities (the four lines of Table I).

TABLE I. Possible combinations of quantum numbers/color representations and corresponding symmetric (S) or antisymmetric
(A) behavior of the wave functions.

Light quarks qq Heavy antiquarks b̄ b̄ qqb̄ b̄

Combination Isospin I Spin j Color Color Spin jb Spin, parity JP

1 0 (A) 0 (A) 3̄ (A) 3 (A) 1 (S) 1þ

2 0 (A) 1 (S) 6 (S) 6̄ (S) 0 (A) 1þ

3 1 (S) 0 (A) 6 (S) 6̄ (S) 0 (A) 0þ

4 1 (S) 1 (S) 3̄ (A) 3 (A) 1 (S) 0þ, 1þ, 2þ
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If isospin and light spin are identical—i.e., either I ¼
j ¼ 0 (combination 1) or I ¼ j ¼ 1 (combination 4)—the
light quarks must be in an antisymmetric color triplet 3. For
a gauge invariant four-quark system, this implies also an
antisymmetric color triplet 3 for the b̄ quarks, i.e., an
attractive potential. Similarly, if isospin and light spin are
not identical—i.e., either I ¼ 0 ≠ j ¼ 1 (combination 2) or
I ¼ 1 ≠ j ¼ 0 (combination 3)—both the light and the
heavy quarks must be in a repulsive color sextet 6 and 6,
respectively; i.e., the potential is repulsive.
We expect that for a possibly existing bound state, the b̄

quarks form a spatially symmetric s-wave (in Sec. IV we
solve the Schrödinger equation for such an s-wave).
Consequently, the heavy spin jb must be symmetric for
color triplets, i.e., jb ¼ 1, and antisymmetric for color
sextets, i.e., jb ¼ 0.
The I ¼ 0 combinations 1 and 2 both have total angular

momentum J ¼ 1 (either j ¼ 0, jb ¼ 1 or j ¼ 1, jb ¼ 0).
They correspond to the 2 × 2 problem (16) with an
attractive V5 and a repulsive Vj potential. In our previous
papers [40,41,43], where we did not take heavy spin effects
into account, we found that this attractive V5 potential is
sufficiently strong to host a bound state, which was
interpreted as an IðJPÞ ¼ 0ð1þÞ tetraquark. The main
question of this paper, which we will investigate in the
next section, is whether this bound state will persist when
we consider the 2 × 2 problem (16)—i.e., when including
heavy spin effects.
The I ¼ 1 combinations 3 and 4 have J ¼ 0 and J ¼ 0,

1, 2, respectively. They correspond to the 2 × 2 problem
(12) and the 1 × 1 problems (14) and (18) with an attractive
Vj and a repulsive V5 potential. Since the I ¼ 1 Vj

potential has been found to be not sufficiently attractive
to host a bound state, even with heavy spin effects
neglected, we do not study these combinations any further.
Since both B and B⋆ mesons have negative parity,

combinations 1 to 4 all have positive parity P ¼ þ.

IV. SOLVING THE COUPLED
SCHRÖDINGER EQUATION

A. Analytical simplifications and
boundary conditions

The 2 × 2 coupled-channel Schrödinger equation (16) is
a partial differential equation in six variables, the positions
of the b̄ quarks ~r1 and ~r2. It can be split into two
independent equations in three variables by transforming
to the center-of-mass coordinate (the corresponding equa-
tion is trivial to solve) and the relative coordinate
~r ¼ ~r2 − ~r1.

Since the potentials V5 and Vj are spherically symmetric,
the Schrödinger equation for the relative coordinate reduces
to an ordinary differential equation in the variable r ¼ j~rj,
and its solutions have defined orbital angular momentum.
As discussed in Sec. III B, we study b̄ b̄ in an s-wave,

��
mB� þmB 0

0 2mB�

�
−

ℏ
2μ

d2

dr2
12×2

þ
�
VjðrÞ þ V5ðrÞ VjðrÞ − V5ðrÞ
VjðrÞ − V5ðrÞ VjðrÞ þ V5ðrÞ

��
χðrÞ

¼ EχðrÞ; ð20Þ

where μ ¼ mb=2 and

χðrÞ ¼
�
χ1ðrÞ
χ2ðrÞ

�
¼ ψðrÞr; ð21Þ

with ψ denoting the wave function of the relative coor-
dinate ~r.
Generalizing well-known results from quantum mechan-

ics to our 2 × 2 coupled-channel Schrödinger equation, we
find that χðrÞ has to vanish linearly for small r, i.e.,

χðrÞ ∼
�
Ar

Br

�
for r → 0: ð22Þ

Moreover, if χðrÞ describes a bound state, it has to vanish
exponentially for large r, i.e.,

χðrÞ ∼
�
Ce−ΔEr

De−ΔEr

�
for r → ∞; ð23Þ

with ΔE ¼ mB þmB� − E.

B. Numerical solution

We solve Eq. (20) for boundary conditions (22) and (23)
numerically by employing the shooting method. The
shooting method is an iterative root-finding procedure,
where in each step the ordinary differential equation (20)
has to be solved, which we do by using the Runge-Kutta-
Fehlberg method.
One possibility is to start the Runge-Kutta-Fehlberg

computation of χðrÞ at very small, but nonvanishing
r > 0 [r ¼ 0 would cause numerical problems due to the
singularities of V5ðrÞ and VjðrÞ at r ¼ 0] with boundary
conditions (22). The resulting χðrÞ depends on two
parameters, E and A=B [the absolute values of A and B
only affect the normalization of the wave function χðrÞ, and
hence are irrelevant]. The values of the components of χðrÞ
at r ¼ rmax ≳ 20 fm, χ1ðrmaxÞ and χ2ðrmaxÞ, are then used
as input for a two-dimensional root solver, to determine the
parameters E and A=B such that the boundary conditions
χ1ðrmaxÞ ¼ χ2ðrmaxÞ ¼ 0 [i.e., Eq. (23)] are also fulfilled. In
case a zero is found, the resulting E < mB þmB� is the
energy of a bound state—i.e., the mass of a udb̄ b̄
tetraquark. In practice, however, multidimensional root
finding is a nontrivial numerical problem. For example,
we observed many cases where each of the multidimen-
sional root-finding algorithms implemented in the GNU
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Scientific Library [54] failed to converge, even when the
initial shooting values of the parameters E and A=B were
chosen close to a solution.
Therefore, we resort to a more powerful and efficient

variant of the shooting method (cf. e.g. Refs. [55–57]),
where root finding is reduced to only one dimension, the
energy eigenvalue E. Let χðAÞðrÞ and χðBÞðrÞ denote
solutions of (20) with asymptotic behavior

χðAÞðrÞ ∼
�
r

0

�
for r → 0; ð24Þ

χðBÞðrÞ ∼
�
0

r

�
for r → 0: ð25Þ

Note that both solutions are consistent with the boundary
conditions (22) at r → 0, but neither of them fulfills the
boundary conditions (23) at r ¼ rmax. Since the differential
equation (20) is linear, one can combine its solutions
χðAÞðrÞ and χðBÞðrÞ to find a more general solution
χðrÞ ¼ AχðAÞðrÞ þ BχðBÞðrÞ. This solution is still consistent
with the boundary conditions (22) and also has the potential
to fulfill the boundary conditions (23),

χðrmaxÞ ¼ AχðAÞðrmaxÞ þ BχðBÞðrmaxÞ ¼
�
0

0

�
; ð26Þ

for appropriately chosen E, A and B. We exclude the trivial
and physically not interesting solution A ¼ B ¼ 0. There
are additional nontrivial solutions, if χðAÞðrmaxÞ and
χðBÞðrmaxÞ are linearly dependent—i.e., if

det

 
χðAÞ1 ðrmaxÞ χðBÞ1 ðrmaxÞ
χðAÞ2 ðrmaxÞ χðBÞ2 ðrmaxÞ

!
¼ 0: ð27Þ

Since the left-hand side of (27) depends on E, but neither
on A nor on B, a simple one-dimensional root-finding
algorithm is sufficient. As soon as a solution E is found,

one can obtain A=B via A=B¼−χðBÞ1 ðrmaxÞ=χðAÞ1 ðrmaxÞ¼
−χðBÞ2 ðrmaxÞ=χðAÞ2 ðrmaxÞ.

C. Results

The lattice QCD computation of the potentials V5ðrÞ and
VjðrÞ is explained in detail in Ref. [40]. We have used two-
flavor gauge link configurations generated by the European
Twisted Mass Collabortaion (ETMC) [58,59].
For the attractive I ¼ 0potentialV5ðrÞ,wehaveperformed

identical computations on several different ensembles to
extrapolate the potential to physically lightu=d quarkmasses.
Moreover, an evolved procedure to compute statistical errors
and to estimate systematic errors has been applied. The lattice
QCD results are consistently described by Eq. (9) with

parameters α5 ¼ 0.34þ0.03
−0.03 , d5 ¼ 0.45þ0.12

−0.10 fm (for details,
cf. Ref. [40]).
The repulsive I ¼ 0 potential VjðrÞ has been computed

in the same way. Statistical errors are, however, much
larger, such that a precise and stable quark mass extrapo-
lation is not possible. A consistent parametrization of the
lattice QCD results is again given by Eq. (9) with
parameters αj ¼ 0.10� 0.07, d5 ¼ ð0.28� 0.17Þ fm,
where the errors have been estimated in a rather crude
but conservative way.
In Fig. 2, both potentials are shown with corresponding

error bands. These potentials are then used in the 2 × 2
coupled-channel Schrödinger equation (20). We observe
that our results concerning the mass E and the binding
energy mB þmB� − E of the udb̄ b̄ tetraquark strongly
depend on V5ðrÞ (which is available rather precisely), but
are essentially independent of VjðrÞ (e.g. varying αj and dj
by �50% does not change the results). In particular, we
find that the bound state in the IðJPÞ ¼ 0ð1þÞ channel
persists. The binding energy is

ΔE ¼ mB þmB� − E ¼ 59þ30
−38 MeV; ð28Þ

i.e., we confirm the existence of the udb̄ b̄ tetraquark with a
confidence level of nearly 2σ. Its mass is

E ¼ 10545þ38
−30 MeV ð29Þ

(for comparison, in previous work, where we did not
consider the heavy b̄ spins, we found ΔE ¼ 90þ43

−36 MeV
[40]—i.e., as expected and discussed in Sec. II, heavy spin
effects reduce the binding energy). The errors for both the
binding energy ΔE and the mass E, are based on many
jackknife samples already generated during the lattice QCD
computation of the potential V5ðrÞ—e.g. correlations
between α5 and d5 are taken into account. Moreover,
systematic errors are also included—e.g. by varying the
temporal fitting range to extract the potentials V5ðrÞ and

FIG. 2. The attractive I ¼ 0 potential V5ðrÞ (green) and the
repulsive I ¼ 0 potential VjðrÞ (blue); the error bands reflect
the uncertainties of the parameters α5, d5, αj and dj provided in
the text.
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VjðrÞ. For details regarding the computation of these errors
we refer to Ref. [40].
In Fig. 3, we show the two components of the wave

function (21), χ1ðrÞ (the BB� component, brown curves)
and χ2ðrÞ (the B�B� component, orange curves). For small
r≲ 0.3 fm, both components are of similar magnitude. In
other words, a roughly even mixture of BB� and the heavier
B�B� is energetically preferred, since it corresponds within
a good approximation to the potential V5ðrÞ, which is
strongly attractive for small r. On the other hand, for large
r≳ 0.6 fm, the behavior is different: jχ1ðrÞj ≫ jχ2ðrÞj—
i.e., when the potentials V5ðrÞ and VjðrÞ become weaker,
the lighter BB� structure is favored.
In Fig. 4, we show the radial probability density for the

separation of the heavy b̄ quarks. One can see that a
measurement of the b̄ b̄ separation will typically result in a
value 0.1 fm…0.5 fm. In this region, both components of
the wave function χðrÞ are sizable, as discussed in the
previous paragraph (cf. also Fig. 3). The conclusion is that
the predicted udb̄ b̄ tetraquark is not just a combination of
the two lightest mesons, i.e. B and B�, as one might naively

expect. It is rather a linear superposition of aBB� and aB�B�
structure, where the latter is quite significant. This should be
of particular interest, e.g. for lattice computations of udb̄ b̄
systems using four quarks of finite mass, where suitable
creation operators need to be chosen (cf. e.g. Refs. [37,60]),
or for corresponding Dyson-Schwinger Bethe-Salpeter stud-
ies (cf. e.g. Refs. [8,9], where, however, flavor combinations
different from udb̄ b̄ have been considered).

V. CONCLUSIONS

We have studied the effects of the heavy b̄ quark spins on
udb̄ b̄ tetraquark binding, using static-static-light-light
potentials computed with lattice QCD and the Born-
Oppenheimer approximation. We also utilize as input the
masses of the pseudoscalar B meson and vector B� meson.
We simplify and block-diagonalize the resulting large

system of 16 coupled Schrödinger equations with the help of
the Fierz identity and according to irreducible total angular
momentum representations. We find that only one of the
resulting blocks is a candidate for a bound four-quark state,
which corresponds to our previously predicted udb̄ b̄ tetra-
quark with quantum numbers IðJPÞ ¼ 0ð1þÞ [40,41,43].
In this block, two channels are coupled, a BB� pair and a
B�B� pair.
Solving the corresponding coupled-channel Schrödinger

equation numerically, we find that the spin of the heavy b̄
quarks decreases the binding energy. Nevertheless, the
attraction is sufficiently strong such that the bound four-
quark state persists. Thus, we confirm our previous results
and present even stronger evidence for an exotic tetraquark
with flavor udb̄ b̄, isospin I ¼ 0, total angular momentum
J ¼ 1 and parity P ¼ þ. It is a bound state with respect to
QCD with a mass, which is ΔE ¼ 59þ30

−38 MeV below the
BB� threshold, but may decay due to the weak interactions.
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FIG. 3. The two components of the wave function (21), χ1ðrÞ
(the BB� component, brown) and χ2ðrÞ (the B�B� component,
orange); the three curves reflect the uncertainties of the param-
eters α5 and d5 provided in the text.

FIG. 4. The radial probability density ρðrÞ ¼ jχ1ðrÞj2 þ
jχ2ðrÞj2 for the separation of the heavy b̄ quarks; the three
curves reflect the uncertainties of the parameters α5 and d5
provided in the text.
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