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Quark-gluon vertex: A perturbation theory primer and beyond
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There has been growing evidence that the infrared enhancement of the form factors defining the full
quark-gluon vertex plays an important role in realizing a dynamical breakdown of chiral symmetry in
quantum chromodynamics, leading to the observed spectrum and properties of hadrons. Both the lattice and
the Schwinger-Dyson communities have begun to calculate these form factors in various kinematical
regimes of momenta involved. A natural consistency check for these studies is that they should match onto
the perturbative predictions in the ultraviolet, where nonperturbative effects mellow down. In this article,
we carry out a numerical analysis of the one-loop result for all the form factors of the quark-gluon vertex.
Interestingly, even the one-loop results qualitatively encode most of the infrared enhancement features
expected of their nonperturbative counter parts. We analyze various kinematical configurations of
momenta: symmetric, on shell, and asymptotic. The on-shell limit enables us to compute anomalous
chromomagnetic moment of quarks. The asymptotic results have implications for the multiplicative
renormalizability of the quark propagator and its connection with the Landau-Khalatnikov-Fradkin

transformations, allowing us to analyze and compare various Ansdtze proposed so far.
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I. INTRODUCTION

The nonperturbative study of the Schwinger-Dyson
equation (SDE) for the quark propagator has suggested
infrared enhancement of the running quark mass function
M(p?) through the dynamical breakdown of chiral sym-
metry [1-3]. Lattice studies have provided its confirmation
[4-6]. It is also well known that the corresponding quark
propagator breaches the axiom of reflection positivity and
hence corresponds to a confined excitation [7,8]. However,
it is important to note that the analytic structure of the
quark propagator depends strongly on the details of the
structure of the quark-gluon vertex, which makes the study
of the latter all the more important [8]. Whereas in the
infrared, i.e., M(p?)| 2_0. the quark mass function obtains
a constituent-like value of about 300-500 MeV, its pertur-
bative limit is reproduced correctly in the ultraviolet
domain. This running of the mass function has innumerable
observable consequences in hadron physics; see, for
example, recent reviews [7,9].

The quark propagator is intimately linked with the
corresponding behavior of the gluon propagator and the
quark-gluon vertex through the relevant SDEs as well as
the symmetry relations of quantum chromodynamics
(QCD), namely, the Slavnov-Taylor identities (STIs)
[10,11], the transverse Takahashi identities [12—14], and
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the generalized Landau-Khalatnikov-Fradkin transforma-
tions (LKFTs) [15]. Therefore, a knowledge of the gluon
propagator and the quark-gluon vertex is vital to study their
impact on the quark propagator and the dynamical mass
generation.

In the last decade or so, valuable conclusions have been
arrived at regarding the gluon propagator and a gluonic
mass scale of about (2—4)Aqcp associated with it in the
infrared. The SDEs prediction for the massive gluon
solution [16] has also been confirmed in modern lattice
studies [17-21] which support a finite but infrared
enhanced scalar form factor of the gluon propagator, the
so-called decoupling solution. It is also in agreement with
subsequent SDE results [22-24], exact renormalization
group equations [25], the refined Gribov-Zwanziger for-
malism [26-29], and the earlier suggestion of Cornwall
[30]. Even if one includes the effect of dynamical quarks
[31-33], the qualitative behavior of the gluon propagator
remains unaltered. The screening effect of the increasing
number of flavors is reflected in the reduction in the
infrared strength of the gluon propagator. Moreover, its
feedback into the quark propagator [34] is similar to what
is observed in quantum electrodynamics (QED) [35,36].
Interestingly, the analytic properties of the gluon propaga-
tor do not permit it to propagate freely [37]. Again, a
transition of the associated scalar form factor to the
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perturbative limit of p* > Agcy, is faithfully achieved. All

the above findings thus conform with the fact that indi-
vidual quarks and gluons are confined within color singlet
hadrons.

In addition to the gluon propagator, the quark-gluon
vertex also feeds into the SDE of the quark propagator.
Attempts have been initiated in lattice QCD to compute the
form factors of the quark-gluon vertex for some symmetric
kinematical configurations of momenta involved [38—41].
The SDEs can access any kinematical configuration of the
external momenta with the same amount of effort. Studies
have been carried out to see if the SDE truncations agree
with the infrared enhancement of the form factors reported
in the lattice computation [42—45]. A satisfactory agree-
ment between the lattice and the SDE results reassures that
these two approaches are complementary.

The theoretical and phenomenological implications of
different form factors, defining the quark-gluon vertex, can
hardly be overemphasized. For example, the mass splitting
between the parity partners in low lying mesons, such as
(m,0) and (p,a;), can only be explained through incor-
porating the form factors proportional to the anomalous
chromomagnetic/electromagnetic vector structure gq,0*"
[46]. The associated corrections cancel for the pseudoscalar
and vector mesons but add in the scalar and axial vector
channels [47], hence solving a long standing puzzle. On the
other hand, the choice of the quark-gluon vertex (and
quark-photon vertex, as the hadrons are probed through
photons) is also critically important in studying the form
factors of mesons [48,49] and baryons [50].

Just like the quark mass function and the gluon propa-
gator, the form factors of the vertex should reduce to their
perturbative Feynman expansion in the weak coupling
limit. Recall that a truncation of the complete set of
SDESs, which maintains gauge invariance and multiplicative
renormalizability (MR) at every level of approximation, is
perturbation theory. In QED, this fact has long been used to
impose constraints on the Ansatz proposed for the fermion-
boson vertex; see for example [S1-60]. There are several
one-loop results, available over the past three decades,
which facilitate this task [51,61,62]. In this article, we shall
employ the one-loop perturbative calculation of the quark-
gluon vertex [63] to deduce a series of analytical and
numerical requirements which any nonperturbative con-
struction of this vertex must comply with in the weak
coupling regime. Once it is achieved, the corresponding
truncation scheme encodes a more reliable transition from
infrared to the ultraviolet behavior of QCD.

This article is organized as follows: In Sec. II we present
the general considerations regarding the construction of a
physically meaningful and reliable quark-gluon vertex
Ansatz. In Sec. 111, analytical and numerical computations
of the vertex form factors for the so-called symmetric limit
(equal incoming, outgoing quark and gluon momenta
squared) are presented. In Sec. IV, we provide analytical
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results for the kinematical regime, where the momentum

squared in one of the quark legs is much larger than in
the other, namely, the asymptotic limit. In Sec. V, we
discuss the physically relevant anomalous chromomagnetic
moment of quarks in the on-shell limit where it is
historically defined. Finally, in Sec. VI, we present our
conclusions and final remarks.

II. THE QUARK-GLUON VERTEX:
GENERAL CONSIDERATIONS

The quark-gluon vertex plays a fundamental role in
perturbation theory and in the nonperturbative treatment of
QCD and hadron physics. Therefore, we set out to study it
in detail.

We start by expanding out this vertex in a tensor
decomposition dictated by a necessary constraint of gauge
invariance, i.e., the STI. We follow the procedure outlined
in QED in [55,61,62] and adopted for QCD in [63]. The
STI [10], which relates the quark-gluon vertex T', =

[, (p.k, q) with the quark propagator, reads as follows:

¢'T,=G(g*)[H(k,p,q)S' (k) =S~ (p)H(p.k.q)], (1)

where ¢ = k — p and G(q?) is the scalar function asso-
ciated with the ghost propagator. The function H, and
its “conjugated” function H, are related to the auxiliary
nontrivial vertices involving the complete four-point quark-
quark-ghost-ghost vertex. k and p are the incoming and
outgoing quark momenta, respectively, while ¢ is the
outgoing gluon momentum. Moreover, S(k) is the full
quark propagator, defined as

F(k?)

(2)

where F(k?) is the so-called wave function renormaliza-
tion, and M (k?) is the running quark mass function. At the
tree level, F(k*) = 1 and M(k*) = m, the current quark
mass. Similarly, we define the tree-level gluon propagator
as

1 9.4y
A;w(qz) = _l? |:g/u/ _5 22 :|’ (3)

where & is the covariant gauge parameter. £ =0 is the
Feynman gauge while £ = 1 corresponds to the Landau
gauge.

Finally, the vector I', (p. k, g) stands for the fully dressed
three-point quark-gluon vertex. Below we enlist the con-
ditions which constrain its construction:

(1) It must satisfy the STI. This implies that the require-

ment of gauge invariance fixes the longitudinal part
of the quark-gluon vertex.
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(i) The transverse part is constrained by the requirement
of the MR of the massless quark propagator, the
LKFTs and the transverse Takahashi identities.

(iii) The tensor decomposition selected guarantees that
every coefficient 7; should be free of kinematic
singularities when k> — p? at the one-loop level in
arbitrary  covariant gauge and dimensions,
[51,54,61,63]. We expect it to be true nonperturba-
tively too because the only singularities which arise
are due to good dynamical reasons such as the mass
poles for physical particles.

(iv) The vertex must transform under the charge con-
jugation (C), parity (P), and time reversal (7)
operations just as the bare vertex.

(v) It should reduce to its perturbation theory Feynman
expansion in the limit of weak coupling. Note that a
truncation of the complete set of SDEs, which
maintains gauge invariance and MR of a gauge
theory at every level of approximation, is perturba-
tion theory. Therefore, physically meaningful
solutions of the SDEs must agree with perturbative
results in the weak coupling regime. In this
article, we use a one-loop perturbative calculation
of the quark-gluon vertex [63] as a guiding principle
to impose tight constraints on the quark-gluon
vertex.

Starting from the STI, Eq. (1), we can decompose

the vertex as a sum of longitudinal and transverse
components [61]:

T, (p.k.q) =Tk(p.k.q) +TL(p.k. q). (4)

where the longitudinal part Fﬁ( p, k, q) alone satisfies the
STI, Eq. (1), and the transverse part, I“Z(p, k,q), is
naturally constrained by the conditions

9'Ty(p. k. q) =
.p,0)=0. (5)
This decomposition ensures that all ultraviolet (UV)

divergences are encoded in the longitudinal component,
which in turn is expressed as

4

- Zﬂi<p2’k2’ q2

i=1

Th(p.k.q) )Li(p.k).  (6)

The longitudinal tensor basis acquires the form:

L,
Lﬁ(p,k) (ﬂ+ k)(p +k),.

Li(p.k) =—=(p+k),

Li(p.k) = —0,,(p + k)", (7)
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where 6,, = 1[y,.7,]. The longitudinal form factors 4; of
Eq. (6)" are expressed in terms of the scalar functions
associated with the quark, gluon, and ghost propagators and
the four-point quark-ghost vertices [64]. On the other hand,
the UV-finite transverse component is expanded out as

y (P*. k%, ¢*)T,(p. k), (8)

p,qu

||Moo

where the transverse scalar form factors, i.e., the functions
7;, remain unknown, and the 8 transverse tensors are
conveniently defined as

Ty(p.k) = pu(k-q) = k,(p-q),
Tu(p.k) = [puk-q) = k,(p - q)|(#+ k),
T (p. k) = ¢*r, — 4,4,

Tu(p. k) = @[y (k + p) = (k+ p)¥]
+2(k = p)lo,p'k,

u
2
u

3
u

4
u

T;St(p’k) = - ;wqy’

T5(p. k) =7, (p> = &) + (p + k)4,

1
Ta(p.k) =5 (p* = k)7 + &) = (p + k)]
- (p + k)#UMp”k’{,
TS(p.k) = v,0,p kK" — pk + k,p. 9)

Note that these definitions explicitly obey the relations:

qﬂTL(pvk) =0 T;t(p1p> =0. (10)
It is worth noting that the above tensor basis guarantees a
transverse vertex free of kinematical singularities when
k* — p?. 1t is slightly different from the initial one put
forward by Ball and Chiu [61]. They carried out a one-loop
calculation of the electron-photon vertex in QED in the
Feynman gauge. Guided by this calculation, they proposed
the transverse basis, which ensured the corresponding
form factors were independent of kinematic singularities.
However, a later evaluation of the same vertex in an
arbitrary covariant gauge by Kizilersii et al. [62] revealed
that a modification of the basis was required to retain the
absence of kinematic singularities for this general case.
This consideration was later also extended to the case of
finite temperature in [65].

In the next sections, we present one-loop perturbative
results for the longitudinal and transverse vertex form
factors for some special kinematics of interest. We employ
the singularity free basis proposed in [62].

'In perturbation theory, we will express 4; — 1 4+ 4; for the
sake of convenience, separating out the tree-level factor of 1.
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III. THE SYMMETRIC LIMIT

Davydychev et al. [63] has provided one-loop quark-
gluon vertex for arbitrary and distinct off-shell momenta in
any gauge and dimensions. It provides us with an excellent
platform to deduce results in different kinematical limits
to provide a practical guide towards its possible non-
perturbative constructions. We can also infer singularity
structure of this vertex and its connection to the multipli-
cative renormalizability of the massless quark propagator.

In this section, we present analytical expressions as well
as numerical computations for the longitudinal vertex in
the symmetric case: p> = k> = ¢?; see Fig. 1. These results
provide a guide, for this kinematical configuration, to
which all corresponding nonperturbative results should
reduce when the coupling strength is sufficiently weak.

At one-loop perturbation theory, there are two diagrams
which contribute to the longitudinal and transverse com-
ponents of the vertex: Abelian (a) and non-Abelian (b),
corresponding to the left and right diagrams in Fig. 1,
respectively.

A. The longitudinal form factors

The longitudinal form factors are defined through
Egs. (6) and (7). 4,(p?,k*,¢> 1/¢) is the only one of
these which is UV divergent at one loop. Note that the
space-time dimension is defined as n =4 —2¢; n — 4 as
€ — 0. We employ momentum subtraction renormalization
scheme to define the renormalized vertex (identified by the
subscript R below), such that at a large enough momentum
scale p? = —u?, tree-level perturbation theory is valid and
hence, for the symmetric case,

W

Dr(p?. P2 P e = TR(P2 =12 e = 7. (11)

This renormalization condition translates as
/IIR (pzv p27 p2)p2:—;42 = /IIR (pz’ _luz) |p2:—/42 = 0’ (12)

and determines the vertex renormalization constant
Z7H(u?, €) as follows:

FIG. 1. The Abelian (left diagram) and non-Abelian (right
diagram) contributions to the one-loop quark-gluon vertex.
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Tr(p?. =) = Zip(u?. e)Tp(p? ), (13)

where the subscript B specifies the bare quantities. In one-
loop perturbation theory,

Zp(u* e) = 1+ 25 (—p? ¢), (14)

where the bare quantities depend upon the momentum
scale p? and on the regulator ¢, having the pole divergence
1/e for € > 0. We convert the bare coupling into the
renormalized one through the prescription: ¢*/4r1 =
a(u)Z,(u? €). Note that as Z,(u*,€) =1+ O(a), we
can write g?/4r = a(u) to the one-loop order. Therefore,
explicitly

Zip =1 +é {(1 - &), +§(2 - é)Cb} + Finz,  (15)

where

1
cuz"’(”)(cF—cA), ¢, =W,
2 A

Note that Cp = (N> —1)/2N is the eigenvalue of the
Casimir operator in the fundamental representation of
SU(N), while C, = N is that in its adjoint representation.
The term proportional to C, corresponds to the Abelian
QED-like diagram and the term involving C, to the non-
Abelian triple-gluon contribution [66]. Finy is the finite
part of the renormalization constant Z,; and is given by

) m4_ 4 m2
FmZ:Ca(]—af){ 4,u L(—uz)—2+Cm}
H H
1 m4—m2,u2—2/44 m2
—4Cb<2—5){—4L<—u2>+
H H

—1n<’:f)—<m2+u2><ol<—u2>—z—3cm}, (16)

where C,, = 1 —In(m?) + In(4z) — y, yg being the Euler
constant, and L(p?) = In(1 — p*/m?). Moreover, we have
employed the following convention for the three-point
integrals:

d"w
(w? =m?)(k=w)*(p—w)*’
d"w
w?[(k=w)? =m*|[(p—w)* =m?]’

in'2p, (K. p*.q%) =/

in" ¢, (K. p*. ") = /

and fﬂl,z(Pz) = fﬂl,z(Pz, P2, p?). Explicitly,

034041-4
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5 7 In terms of these definitions, our evaluated analytical
¢i1(p7) = 2\/’ {2(:12( > +2C1, <§ + 29) results for the longitudinal form factors in the symmetric
limit are enlisted as follows.
+ Cl, (g - 29) + Cly (7 — 26) }, Abelian contribution for A’s:
2 2z T~ C,(E-1)
P2(p?) = {2C1 < ) +Cl <—+29> Mp(p? —p?) === {p*(m* = p")L(—4?
2(p) = =120k (3 (=) = S (= )L ()
- 44 _ 4 2\ 22,2002 4 2
+C12(__29>}’ +ut(p* = m*)L(p*) —m*p*u*(p* + p)},
. (17)
where Cl, are the Clausen functions with 6 and @ defined as
see C(20-22) of [63 “ C,(&—1
fsee CR0=22) of (631 i5(7) = 20 (2me 4 ) + 2L (19
p2 _ 2m2
tan9 — 27\/§ . (5 4)
p a
H(p?) = =0 mPL(p?)). (19)
- p*—4m? p'
tanf = || ———.
3p Non-Abelian contribution for A’s:
Cp(é-2 »?
Mr(P? —*) = 72(174/14 ) {p“(m4 — m2p? = 2p*)L(—p?) — p(m* + m?p? = 2p*)L(p?) + p*u*1n (- ;7)
— W p*[(* + p?)m? — i p*(m* + 1)1 (=) + p? p*(m* = p?)g1 (p?)] } (20)
b( 2 Co 2_ .2 2 2 2 r’ 2 2 2
(p?) = 24,0 (2+8p* | p?2m* = p?)gr(p?) +3p* =2p*In | =5 | + (m* +2p*)L(p?)
-3(2- 910+ 27) + 2w (7). @
B = g (- 6)m® +3(& ~ 4)mPp(p? — ) + EpFIL(p?)
8p*[p* +m* —m’p’]
2
2=+t - o?) - ptin (-2 |} 22)

Charge conjugation symmetry of the quark-gluon vertex implies A4(p2, k%, ¢%)

naturally zero in the symmetric limit k> = p?.

= —M4(K?, p?, ¢*). Therefore, it is

Although the perturbative result is valid only for large p?, we have taken the liberty to extrapolate it into the infrared for a
comparative analysis and in the hunt for possible singularity structure. We can analytically calculate Af"h (p*> =0). In the

Landau gauge,

He(p?* = 0) = 25(p? = 0) = 44" (p? = 0) = 0,
H(p?=0)= C“ — —0.020/GeV,
’1[171%(172 =0)= _;b
2(pr=0) = S 0.177/GeV2,
12m?
2(pr=0) = 3C” —0.183/GeV,

2
U
{ 2(5p% = 2m?) + 24> (m?* + i)y (=p?) + 2(m* — m?p® = 2p*)L(—p) — 2u* In <W> } - 0.119,

where the numerical values have been evaluated in QCD for a = .118, m = .115 GeV and u = 2 GeV.
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There are several observations in place:

ey

(@)

3)

0.3

FIG.

2e(p?, —p*) and 24(p?) identically vanish in the
Landau gauge. This is consistent with the fact that so
does the wave function renormalization F(p?) in the
same gauge.

Therefore, for the sake of comparison, we plot
Me(p?,—u?) and Aby(p*,—p?) in the Feynman
gauge, where both are explicitly nonzero. Note that
the non-Abelian contribution is positive in the
infrared and its magnitude there is about 95% more
enhanced; see Fig. 2.

Note that even the one-loop calculation shows an
infrared enhancement of 1 + 4,5 (p?, —u?), see Fig. 3,
plotted in the Landau gauge, £ = 1. However, expect-
edly this is only a small increase as compared to the
nonperturbative effect observed in lattice and SDE
studies; see for example [39,42]. The one-loop result
is responsible for about a 10% infrared increase of
1 + 1z(p?, —u?) from its tree-level value, while the
nonperturbative effects reveal more than a 100% rise.

a 2
- - AR®)

b 2
@)

p? (GeV?)

2. One-loop form factors A9} in the Feynman gauge.

1.3

121 b
o~ L1 \ b
N
& L 4

~

< 1Ir N
=

09 b

0.8 : ; : ‘

"0 1 2 3
p* (GeV?)
FIG. 3. Full one-loop form factor 1 + 1, in the Landau gauge.

“

&)
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These numbers are at the lowest momentum value
where lattice has computed its results [39].

We also check for the deep infrared behavior of
one-loop A;z(p? —p?). A simple analytical and
numerical check shows that this form factor satu-
rates in this limit at the value ~0.119. The same
qualitative feature is also observed for 4,(p?) and
A3(p?), all plotted in Fig. 4. There is no infrared
divergence in the symmetric case. This should be
considered as a guideline for lattice studies for
which we expect p>4,(p?) to vanish in the infrared.
Any nonzero value will imply a divergent infrared
A (p?) [39].

A variation of current mass for the quarks shows that
the major infrared enhancement is for the lightest
quarks and it diminishes with the increase of current

0.2 ——r

.........

-

0.15—

0.05—

— A
)
2.

-= M)

10

FIG. 4.

St 107 107 10!t 10°

p*(GeV?)

One-loop form factors Az, 4,, and 13 in the Landau

gauge. We draw them until deep infrared to show that all of them
saturate in that limit.

1.3

FIG. 5.

m=0.115

Up

N Down

T~ Strange

~o — —  Charm
~.. —-—  Bottom

One-loop form factor 1 + 4,5 in the Landau gauge for

different quark masses. Smaller masses imply larger infrared
enhancement just as in full nonperturbative QCD. All masses are
given in GeV.
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25 T T T
¢ ° X(pz) Lattice
ok - X (pz) Perturbative
¢
151 ¢} ]
g 14 % P
1 T —
0.5 ‘ ‘ ‘ ‘ | |
0 1 2 3

p’ (GeV?)

FIG. 6. One-loop form factor /'(p?) = Ax(p?) + p*z3(p?) in
the symmetric limit in the Landau gauge and its comparison with
lattice results [40].

quark mass. Quantitatively, the rate of decrease goes
as ~7.2% — 7% — 2.2% — 0.3% as we go from
u,d - s - ¢ — b; see Fig. 5.

In Figs. 6 and 7, we compare one-loop results
against the lattice as well as SDE results
[39,40,42]. As mentioned earlier, the perturbative
rise is only a very small percentage of the non-
perturbative effects. We use m = 0.115 GeV and
m = 0.06 GeV, respectively, in Fig. 6 and Fig. 7, to
make a direct comparison with the lattice results.

(6)

B. The transverse form factors

On the other hand, the transverse vertex is defined via
Egs. (8) and (9). Just as for 4(k?, p?, ¢*), the symmetry of

Abelian contribution for t’s:

PHYSICAL REVIEW D 95, 034041 (2017)

3 T
i ‘ ] Quenched Lattice
250 —— QCD I-Loop a.=0.118
L SDE--Lat (quenched)
2k [l -+ -+ Abelian Ansatz (WI)
L 2 )l
151 z .
......... T Ty |
R e
I R e S g
0.5 .
1 1
0O 1 2 3
p (GeV)
FIG. 7. One-loop form factor 1 -+ Az(p?, p2,0) in the soft

photon limit in the Landau gauge and its comparison with lattice
as well as SDE results.

the quark-gluon vertex under the interchange of quark and
antiquark requires

74(k2’ p2’ q2) = _T4(p2’ k2’ qz)’

76(k*, p2. ¢*) = —16(p*. k2. ¢7). (23)

Therefore, in the symmetric limit, both of these form
factors vanish identically. We now present explicit analyti-
cal results for the symmetric limit, and then carry out a
numerical analysis. Moreover we adopt the simplified
notation 7"*(p?, p?, p?) = ¢ ab
explicitly as follows:

, and write out the 7}

= E =4 B = o+ p)g(p7) =417+ (0 + 207,
7 = 3(;6 {=4m*(&=1) = p*(E=5) + [4m* (= 1) = 2p* 2 (p?) +4(£ = 1) (2m* + p*) f(p?) +2[2m* = (&= 1)p*|L(p*)}.
= =3 P 17 = (€ D]+ e D 422 4 (1200007
26+ 1) =26~ DRl (p) = (= P+ 1)+ (E= DL (),
=0, 8= =SB 20 = P AF()] + (S =20,
G0, o= (= pgal?) + 417+ (o =207,
2C,

= —3—;{172(2?"2 +2)pa(p?) +4p%f (p?) +2(m* = p*)L(p*)}.

(24)
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Non-Abelian contribution for t’s:

Tb— Cbm
L 24p8(m* — m?p? 4 p*)?

2
+2m?p®(48 — 56 — 3£2) — 2p8(24 — 36 — 4£2)] In (— %) +2p*(m* = m?p? + p*)

x [12m*(m?® = p?)(§ = 3) = 3p*(12 — 4& + &) + 2(m* — m*p? +p N 2m*(& - 6) + p*(6 = 2¢ + &) (p)]
+2[4m'0(2¢ = 3) — mBp?E(13 + 2&) + 2mOp* (6 + T& + 4E%) — m*pb(48 + & + 6£2)

024 — 56— 22)]L(p >},

{ 2[8mB (& — 6) + 4mOp? (24 — 3¢ — &) — 6m* p* (24 — 3¢ — 282)

+2m2p8(18 =26 — £2) —

p
{4p2 mt = m2p? 4 pt) = 2(E - 2)(Ep* — 2m2)(m* — n2p? + p)

m=- 12p%(m* — m?p* + p*)
=D+ 3mp? + ( ~ 8+ 46pin (-2 )
+ 4 =2)m* +2(& + 2)m*p? + (& = 2) (& + 1) p*](m* — m*p* + p*)op1 (p?)
+[(=28 + 56 = 6)m° + m*p?(28* = £+ 6) + (£ = 6)m*p* + 4§p6}L<p2>},
o e e S =R P23 = 27+ (62
- PA(E =2 = 2(E =36 it + (52 - 18— 120mp - 28 - 56 -2 n (- )
+ pP(m* = m?p? + p*)[Ep?(p* — 2m?) + 4&(m? + p?)* = 8(m* — m?p* + p*)lg1 (p?)
#20 = p)(E= D - 26(6 - 3P = = Ot + (& =56 - 2L .
p——
&= s { et - (e -4+ 20tE -2 (- )
+ pP(m* = m?p? + p*)[6£ + [p* (18 — 85 + &%) = 2m*EJgpy (p?)]
#2607 = P+ 2= 4) + pHE- DL,
i {4 )24 21 g 4 - 2)

2
— p?[4md — 6mOp? + 8m*p* — m?p®(4 + &) + 2p¥(1 + &)]In <—%)
= p*(m* = m?p* + p*)[Am® — 4m’* p* + 4m?p*lop, (p?)

+2(m% = p?)[3Bm® + mOp(& — 6) — m* p*(& —7) + 2m*pS(E — 2) + pb(& + 1)]L(p2)},
2

C, p
12p*(m* = np? + p) {”2[2’"4(5 —6) = (& - 26— 12)m?p> + 2p*(& =3¢~ 6)] In (‘ m_>
+ Pt —m?p? 4 (& = 68+ 12)p7 = 2(¢ = 6)nli (7) + 2(m” = p?)[(£ = O)m*

+ (& =564 6)m*p? + (& —35—6)p4]L(p2)}, (25)

oo &
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where function f(p?) is defined as

p>—4m? InV [72—4’”24‘\/17
4p? \/p2—4m2—\/17 ’

4 2_ 12 2
1/%arctan1/4m§—_pz, p* < 4m?.

In the Landau gauge, numerical results for the Abelian
components of the symmetric transverse form factors,
Eq. (24), are presented in Fig. 8. One of the checks of
their numerical evaluation is the deep infrared behavior,
7¢(p? = 0), which can be calculated analytically:

p* > 4m?,

f(p?) (26)

{(p? =0) = —63:3 — 0.171/GeV?,
C

5(p?=0)=— 181:14 — 0.497/GeV*,
C

4(p*=0) = 46n:2 - —0.078/GeV?,

#(p? = 0) = (p? = 0) =0,

#(p? =0) =0,

a( 2 Cu 3

T7(p = 0) = _6m3 - 0171/GCV’,

C
4(p? = 0) :m_‘;—> -0.118/GeV?, (27)

where, as before, the numerical values have been evaluated
in QCD for a =.118 and m = .115 GeV. These values
match with the numerical computation of the plots dis-
played in Fig. 8 in the infrared limit. Note that all the z¢
converge to finite values in this limit. Therefore, we expect
that for symmetric configuration of momenta, any QED
construction (which is basically the Abelian version of

057 ———‘-4‘\”:\\ —
0.4j \\ L Tza
0.3 * \\ _ ‘C;
02} \\ —
0.1 \\\ ----- T

0 e Ty
o= -
ol S R |

10" 10° 10°
p* (GeV?)

FIG. 8. Abelian 7¢(p?) for the symmetric configuration of

momenta k> = p? = ¢
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QCD) of the three-point vertex should not be singular in the
infrared limit.

For the non-Abelian transverse coefficients, Eq. (25),
the deep infrared limit, z%(p> — 0), in the Landau gauge
reads as

2

¢ P

The above results reveal a logarithmic divergence for the
non-Abelian coefficients in the deep infrared regime,
p*> — 0, which is absent in the Abelian counterpart.
However, this is not in conflict with the requirement of
no kinematical singularities because in the symmetric case,
one also takes the photon momentum squared — 0, which
is the dynamical limit of taking the photon to be on shell. In
Fig. 9, we can see that the product p>z?(p?) is well behaved
for infrared momenta. Therefore, this is what we opt to plot.
Note that for several 72, the factor p?, necessary to suppress
the logarithmic divergence, comes right from the tensor
basis, Eq. (9).

LAY LY B | HLRRLLL B | 2
ook ] Pt
i .
0.02f -= P,
i )
— P!
L S 2_b
L TN — p1
omk N i P15
| \ / _ pZTb
i \ S 7
0.04 \ y -
. \\ A P Tq
-0.06 g
| | | I | Il |

FIG. 9. Non-Abelian 7%(p?), weighted with p? for the sym-
metric configuration of momenta k> = p* = ¢°.
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We could think of redefining the transverse tensors to get
rid of the divergence in some of the 77(p?) in the symmetric
limit, but it is not possible to get rid of the overall
divergence arising from the three-gluon vertex configura-
tion. So we resist the temptation to do it.

With all the results of this section, we have a complete
guideline for any nonperturbative construction of the quark-
gluon vertex to reduce to in the weak coupling regime of the
symmetric configuration of momenta. Moreover, we have
analyzed the infrared singularity structure of each compo-
nent of the transverse vertex in this limit. We now focus our
attention on the asymptotic limit of momenta, which has
played a crucial role in implementing MR of the electron
propagator in the massless limit.

IV. THE ASYMPTOTIC LIMIT

From the works in QED, we already know that the
intricate structure of the quark-gluon vertex dictates MR
of the electron and hence ensures LKFT for the two-point
function are satisfied. Brown and Dorey [67] argue that an
arbitrary construction of the electron-photon vertex does not
satisfy the requirement of MR. It was realized that neither the
bare vertex nor the Ball-Chiu vertex [61], which satisfies the
Ward-Fradkin-Green-Takahasi identity [68—71], were good
enough to fulfill the demands of MR. Since then, starting
from the pioneering work by Curtis and Pennington [51],
there have been improved attempts to incorporate the
implications of LKFT in constructing a reliable electron-
photon vertex Ansatz [52,55-58,60,72—74]. This owes itself
to our better understanding of the LKFT [59,75-83].

The need for the same in QCD was realized in the work by
Bloch, who constructs a model truncation which preserves
MR, and reproduces the correct leading order perturbative
behavior through assuming nontrivial cancellations involving
the full quark-gluon vertex in the quark self-energy loop [84].

Note that the quark propagator beyond O(«a) involves
gluon self-interactions. These interactions introduce the color
factor C 4 in the adjoint representation. The same is true for the
transverse part of the quark-gluon vertex. In this section, we
provide these transverse form factors for the asymptotic limit,
k* > p? > m?>. For the Abelian part we have

k4%:Ca(4—f)ln<i_2z>’ "413:%(25_1)111(1/:_22)’
K*t§ = —(2 9} <k22> k4§:—%§1n<};—22>,
k2;—g:—%§ln<z_§>’ k2rd = %(l—l—é)ln(Zz)

For the non-Abelian part, we find

PHYSICAL REVIEW D 95, 034041 (2017)

Gy 5 P’
12[18 56— f]ln<k2>

Cy P?
Kb = 5 [-2 +7&+ & ln<k2)

_¢ v
~Sra-o-am().

% C p?
k4£=4—§5<3—5>1n(p),

k4 —
m

2. b
k3

k2% 54 36 — 17¢ + 3&2]1 (’;—22)

e =g 4220 i—j)

g —%6(1 1y ln(’;—§>,

K*th = [6 56+ & 1n<k22 ) (29)

In this asymptotic limit, the leading structures in the massless
quark-gluon vertex are those proportional to 73 and 74, whose
corresponding basis vectors are proportional:

T;My _ _Tlﬁlasy _ kaﬂ _ kkﬂ = Tﬂ’ (30)
thus revealing the linear dependence between them.

Naturally, the leading behavior of the massless transverse
vertex in this limit thus reads as

k2> p?

Ci(p.k.q) = (23 = 76)T"
2-¢&) - 1- 2
64k n k

We confirm this result numerically in Fig. 10.
This is the QCD generalization of the QED result already
derived in [51]:

kl 2
T (p,k.q)" = (25 — TG)T”

_al=¢)
o, In pTﬂ (32)

We can carry out a similar analysis for the massive part. The
leading contribution in this limit comes from 7,57,
whereas, 7; chips in with a subleading term. Moreover,
it is worth noting that the following tensors are all
proportional to each other:

Tﬁasy - _
_ —ZTZ“W
= kz(y,,k - k,)
= (K%, — k o)k = T'k. (33)

2 Sasy
1eTS
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TABLE L

PHYSICAL REVIEW D 95, 034041 (2017)

We compare different vertex Ansdtze as regards the LKFT for the massless quark propagator. The first three columns define

the vertex we consider. The letters correspond to the names of the authors. The fourth column shows whether the quark propagator is MR
or not. The last column states the exact exponent of the quark propagator to determine if the vertex complies with the exact prediction of

the LKFT for the leading log series, namely v = Craé/(4x).

Vertex Structure a; MR v
Bare Yu No

BC [61] I, =%, AL, =5 No

CP [51] [, =T8C 4 7,T§ ay=a3=ag=0,a,=1% Yes Craé/(4n)
BBCR [58] L, =T8C+ 3 3687l ag = -1, ay +2(az + ag) = =2 Yes Numerical
ABG [15] L, =T0+ Y6871 ag =+ a +2(az +ag) =0 Yes Cra¢/(4x)
QCLRS [85] L, =T8+ 3 536577k ay=a5=0,a;=1/2, ag = -1 Yes Numerical

One can readily see that the leading terms of 74 5 ; add up to
cancel. Hence, for small mass m, it is still the massless
transverse part which is dominant.

Recently, there has been a vertex Ansatz proposed in
[60]. The form of the vertex is similar to the ones used in
Table I. However, the coefficients a; depend explicitly on
the angle between k and p and this dependence, in some
cases, continues to persist even in the asymptotic limit
k* > p?, preventing a direct similar comparison.

The massless transverse part of the vertex is crucial in
ensuring the MR of the quark propagator, as was discussed
in detail in [15]. A popular choice of the vertex Ansatz
consists in proposing the following form:

_ aZDF(kZ, Pz)

Tz(kz’pz) = (k2+p2) (343)
13(k2,p2) = a3DF(k2’ P2)7 (34b)
2 2
(k2 p?) = aﬁ%mw,p%, (340)
Ts(kz’ P2) = aSDF(kzv Pz)’ (34d)
where
2 oy 1 1 B 1
D) = e [ )

Note that Dy (k?, p?) starts at one-loop perturbation theory
and contains a multiplicative color factor Cr at that level, as
expected from the one-loop calculation of the quark
propagator. Based upon the choice of the a;, we make
contact with different choices of the quark-gluon vertex
adopted in the literature. With such a choice of the Abelian-
type vertex in QCD, different choices for a; determine
whether a MR solution is possible and if it correctly
reproduces leading logarithm behavior to all orders for
the quark wave function renormalization, as dictated by the
generalized LKFT for QCD introduced in [15], namely,

F(p?)  (p?)*=Cr®/47) We can compare and contrast

different vertex Ansdtze, as explained in Table I, to see
if they permit a MR solution and if the resulting anomalous
dimension is v = Craé/(4r). The contribution of C,
begins at the next level in perturbation theory.

We now move onto discussing the on-shell limit in the
next section.

V. THE ON-SHELL LIMIT

In this section we present some “physically” relevant
results for the on-shell limit p? = k* = m? and ¢> = 0. The
Dirac and Pauli form factors, F;(g?) and F,(g?), respec-
tively, define the Gordon decomposition of the quark
current as follows:

i(p)T,u(p. k. @)= pr—peu(k

)
2
=) P (@1 =5 gt

where the spinors, #(p) and u(k), satisfy the Dirac
equation:

i(p)p = miu(p),
ku(k) = mu(k).

The anomalous chromomagnetic moment (ACM) of quarks
can be identified as F,(g?) for g> — 0. The Abelian version
of this decomposition with Cr =1 and C, =0 is the
electron-photon vertex of quantum electrodynamics. The
great successes of the Dirac equation is the prediction of
the magnetic moment of a charged fermion u = eg/(2m)S.
The radiative corrections lead to [86]

e a e
— l4+—)—. 35
m < + 2;;) 2m (35)
These corrections are now known to a much higher order in
perturbation theory [87].
Note that the quark-gluon vertex differs from the electron-

photon vertex already at one loop, by the contributions of an
additional Feynman diagram, involving the triple-gluon
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FIG. 10. The dimensionless combination k?(z3 —17¢) of the
transverse vertex. The solid (blue) line is the numerical
evaluation of the one-loop result. The dashed (red) curve is
the asymptotic result, valid for x — 0 alone. As expected, the
numerical result converges onto the asymptotic analytically
obtained value for x — 0.

vertex. In fact, apart from introducing additional color
structure, this non-Abelian diagram introduces, at the one-
loop level, a kinematical structure which is absent in the QED.

One is naturally tempted to calculate F,(g?). It can be
expressed in terms of the quark-gluon vertex form factors as
follows:

1
Fy(q*)=—2ma$(q*) + A (¢*) — 5 4% (4?)

2
1
- mg’15(q?) = 75°(¢%) + 5 4°77 (%) = ma(q7),

(36)

where we have introduced as a simplifying notation
295,79 (q%) = A;, 7;:(m*, m?, ¢*). At one-loop perturbation
theory, in Landau gauge, the Abelian and non-Abelian
contributions for the ACM are plotted in Fig. 11, as a
function of gluon momenta ¢, for a current quark mass
m = 0.115 GeV, and o = 0.118. These contributions can

be analytically expressed as

8C,m?
Fa 2y — _ a 2 ,
2C,m?
F3(q*) = (qz_bi‘lmz) {8’"2 -2¢> = 6m*q*¢?* (q°)

+ (8m* + ¢*) In (— i—i) } (37)

where we define ¢%*(¢°) = ¢, (m?, m?, ¢%).

It is straightforward to see that for the soft gluon
limit, ¢*> =0, the Abelian contribution for the ACM
reduces to the non-Abelian counterpart of Schwinger’s

PHYSICAL REVIEW D 95, 034041 (2017)
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FIG. 11. F,(¢?) in the on-shell case.

result, F5(0) = —a/12x, already derived in [46]. On the
other hand, the corresponding non-Abelian contribution
vanishes for a massless current quark, m = 0, as reported in
the same article. However, it yields a divergence [88] for a
nonzero quark mass, m # 0. We find this divergence
to be logarithmic. For deep infrared gluon momenta it
behaves as F5(g*> - 0) = C,In(—¢>/m?). Of course,
perturbation theory in QCD is not the way to explore
deep infrared region. All perturbative conclusions will be
taken over by nonperturbative effects, overshadowing this
divergence.

VI. CONCLUSIONS

In this paper, we give a detailed numerical analysis of
all the form factors defining the quark-gluon vertex at the
one-loop level in different kinematical limits of interest:
symmetric, asymptotic, and on shell. The symmetric limit
of momenta is rather well behaved in the infrared region,
where all the Abelian form factors converge to finite values.
The non-Abelian form factors are only logarithmically
divergent. Most noticeably, all the longitudinal form factors
are infrared finite. Any nonperturbative construction of
these form factors or their computation on the lattice must
comply with this requirement. The on-shell limit enables us
to compute anomalous chromomagnetic moment of quarks
and confirm our numerical computation with the corre-
sponding results known for QED and QCD, [46,86]. The
triple-gluon contribution to the ACM of quarks is loga-
rithmically divergent. We find exact analytical expression
for this divergence. The asymptotic results have implica-
tions for the multiplicative renormalizability of the fermion
propagator both in QED and QCD. This connection is
exposed through the LKFT, allowing us to analyze various
Ansdtze put forward in the literature. Our study provides us
with quantitatively detailed results for several kinematical
limits of interest and hence a guideline to all nonperturba-
tive constructions of the corresponding vertices as well as
the lattice computations.
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